
Department of Computing

BA(Hons) Degree in Computing

Final Year Project Report (2001/2002)

A Framework for an agent-based development environement

with jini/javaspace

(Real-time collaboration support)

Supervisor Name : Dr. Stephen, Chan

Co-examiner : Dr. Jane, Wong

Student Name : Yim Wai Hin

Student ID : 98133594d

Submit Date : 19/4/2002

Department of Computing

Abstract:
Softwaredevelopmentrequiresthe aid of many developmenttools to accomplishdifferent

tasks. It is impossible that all the tools are available or supportedby an integrated

development environment.

Basedon Jini networktechnology,we proposea distributedsoftwaredevelopmentplatform

for softwaredevelopmenttools. Tools can be pluggedinto the platform dynamically and

become members of distributed development environment.

Besides,we will also addressthe lack of support for real-time collaborationon current

distributedsystems.This project,we will extenda singleuserUML modelingtool to support

real-time collaboration, as one of the tools of the propose developmentenvironment.

Integrationof the collaborativeUML editor into the platform will also help to validatethe

functions of the propose system.

The result of the project is a distributed developmentenvironment,which contains a

collaborative UML editor using versioning algorithm.

2 Of 95

Department of Computing

Acknowledgement
I would like to give my sincerethanksto my projectsupervisor,Dr StephenChan, who gave

me genuinesupportand valuableadvicethroughoutthe developmentprocessof the whole

project.He hasbeengentleandprovidedcommentson the projectso that I could finish the

project smoothly.

I would also like to give my specialthanksto my projectco-examiner,Dr JaneWong, for

spending her valuable time on this project.

Lastbut not least,I would like to expressmy appreciationto my families,classmates,friends

and those who supported my work in intangible ways.

3 Of 95

Department of Computing

Table of Contents

Abstract: ..2

Acknowledgement...3

1. Introduction..9

1.1 Problem statement..9

1.2 Proposed system...9

1.3 Objectives...10

1.3.1 Infrastructure implementation ...10

1.3.2 Collaboration support on development tools ..10

2. Literature reviews...11

2.1 Revision of related works..11

2.2 Relavent previous projects ...12

2.3 Proposed approach...14

3. Technology to evaluate..15

3.1 XML Metadata Interchange(XMI)...15

3.1.1 Advantages...16

3.1.2 Disadvantages [36]..17

3.1.3 Summary..17

3.2 Evaluation of different collaborative algorithms...18

3.2.1 The different consequences of using locking or versioning[1].............................18

3.2.2 Example to show the advantage of versioning enable system[2]...........................19

3.2.3 Summary..19

3.3 Jini network technology..20

3.3.1 Advantages of using Jini...20

3.3.1.1 The problems of existing network architecture..20

3.3.1.2 How jini helps in these problems...21

3.3.2 Summary..22

4. Proposed collaboration algorithm..23

4.1 Concept of the proposed algorithm...23

4.2 Detailed implementation plan...26

4.3 Other references...27

5. Implementation..28

5.1 The architecture of ArgoUML [37]..28

4 Of 95

Department of Computing

5.1.1 Detailed description..30

5.1.1.1 GEF: [21]...30

5.1.1.2 NSUML: [23]..31

5.1.1.3 JMI (Java Metadata Interface) [24]:..32

5.1.2 The functions of the main packages...33

5.1.3 ArgoUML data structure...36

5.2 Prototype..37

5.2.1 Overview of the prototype design..37

5.2.2 Problems encountered in the prototype..37

5.2.3 Solutions of the problems...38

6. Event sharing approach on software collaboration...39

6.1 Overview..39

6.2 Implementation details..39

6.3 The Class diagram of event sharing..40

6.4 Conclusion..41

7. UML data structure sharing at ArgoUML..43

7.1 Reasons for using a other approach in models sharing...43

7.2 Detailed steps of model sharing..43

7.3 Class diagram of UML data structure sharing...45

7.4 Comparison of event sharing and data structure sharing..45

8. New versioning algorithm...46

8.1 The problems of proposed approach..46

8.2 How CVS resolves conflict...47

8.2.1 Overview..47

8.2.3 The action diagram of the flow..48

8.2.4 CVS Experience with SunOS 4[26]...49

8.2.4.1 Overview...49

8.2.4.2 Scalablity of CVS...49

8.2.4.3 Conclusion – The algorithm of CVS is suitable for us...................................50

8.3 The new versioning algorithm..51

8.3.1 Overview..51

8.3.2 The action diagram of the flow..53

8.4 Problems encountered...54

8.5 Screen shot of a model with conflict items..55

8.6 Conclusion..59

5 Of 95

Department of Computing

9. Experience of enhanced public domain software...60

9.1 Advantages of enhancing existing software...60

9.2 Disadvantagse of enhancing existing software..60

9.3 The consideration of choosing tools...61

10. Conclusions of the project...62

10.1 Evaluation of extendeding ArgoUML..62

10.2 Evaluation of XMI file format..63

10.3 Evaluation of versioning collaboration methodology...64

10.4 Evaluation of using Jini...65

11. Furthur Enchancement...66

11.1 New Design of the collaborative UML editor...66

11.2 Further improvement of the collaboration architecture...66

11.3 The Improvement of versioning algorithm..67

12. Reference:...68

13. Appendices..71

13.1 Code snippets of core component ..71

13.1.1 Code snippet of event sharing..71

13.1.1.1 Client side event sending example..71

13.1.1.2 Client side receive event example...72

13.1.2 Code snippet of features sharing..73

13.1.2.1 The thread periodic run to send model..73

13.1.2.2 The merge of the details of the objects..75

13.1.3 Code snippet of new versioning algorithm..81

13.2 Introduction to CVS ...87

13.2.1 What is CVS?[25]...87

13.2.2 Basic ideas behind CVS..87

13.2.3 Getting slightly more complex: multiple developers..89

13.2.4 Fighting for control: merge conflicts...91

13.2.5 Checkout: the missing link...93

13.2.6 Conclusion...94

6 Of 95

Department of Computing

list of figures

Report Header 1

The screen shot of Jedit in Linux, a typical IDE extended from an editor. 11

The screenshot of NETborne, an applet base IDE. 12

The screenshot of the collaboration UML editor. 13

Open interchange with XMI 15

Visual Age, Oracle repository and Unisys UREP work together with XMI 17

An classic diagram of TCP network to work with network failure 20

The flow diagram of jini architecture 21

Example: The system try to merge 2 version with conflict. 24

Case 1 of conflict: slave copy delete some required for master copy 24

Case 2 of conflict: master copy delete some required for slave copy 25

The system architecture of first version of versioning engine 25

The architecture of ArgoUML 28

Screenshot of ArgoUML 29

The relation of ArgoUML and GEF 30

How GEF, NSUML and ArgoUML work together 31

ArgoUML detail plane classes. 34

ArgoUML tree plane classes. 35

The relationship of GEF and NSUML is usually one to one. 36

UML enumerations and NSUML classes 36

Class diagram of event sharing 40

Collaboration diagram using event sharing 42

Use case diagram using event sharing 42

State diagram using event sharing 42

Class diagram of model sharing 45

Table 1: cvs statistics 49

Table 2: cvs usage history for the kernel 49

Screen shots of conflict occur.model 55

Example of collaboration editing 1 55

Example of collaboration editing 2 56

Example of collaboration editing 3 56

Example of collaboration editing 4 57

7 Of 95

Department of Computing

Example of collaboration editing 5 57

Example of collaboration editing 6 58

Example of collaboration editing 7 58

The output of XMLEncoder of JDK 1.4 63

The relation of repository and working files 88

Multiple user editing one document with CVS 89

The “Copy-Modify-Merge” flow diagram of CVS 90

The “Copy-Modify-Merge” flow diagram with conflict resolve of CVS 93

8 Of 95

Department of Computing

1. Introduction

1.1 Problem statement

There are some problems in the current Integrated development environment:

1) No IDE canprovideall featuresthat satisfyeverydeveloper.This is the normalcasethat

developers have to change their develop practice according to the IDE used. This make the

development time longer.

2) In addition,mostof modernIDE tools arestandaloneat local areanetwork.This leadsto

location limitation. For example,the usersneedto downloadand install the program

locally, which is very inflexible. Besides,nowadaysthedeveloperneedto work on many

differencemachinesandwork on large numberof tools, maintainsthesetools on many

machines need extra administration.

3) Besides,mostof thesetools do not supportreal-timegroupwork communication,which

deduce the productivity of the team.

1.2 Proposed system
The proposedsystemis an online distributeddevelopmentenvironmentin order to break

down the location boundary in software development.

1) Thereare somefundamentalproblemswith today'snetwork programmingarchitecture,

which doesnot fit in the distributedcomputingenvironment.For example,the protocol

oriented communication is a not object oriented, non-standardways of network

communication;lack of failure handlingand resourceallocationis other problems.Sun

Microsystemhaveproposeda jini networktechnologyto solvetheseproblems[5].Jini is a

more distributedenvironmentreadynetwork programmingarchitecture,we will discuss

more later. The proposed system will be based on this programming model.

2) The systemis open.It meansthat it facilitates for integratingdifferent tools, which is

developedby differentparties,in a dynamicalway. In anotherwords,theproposedsystem

will focuson investigatingthepossibilityon developinga frameworkfor distributedtools

integration.

3) Real-timecollaborationis also a big challengein distributedcomputing.The proposed

systemwill supportcollaborativedevelopmentwork in the Internetenvironmentby using

multi-versioncurrencycontrol (MVCC) techniquein the project, we will discussmore

about the advantage of MVCC later.

9 Of 95

Department of Computing

1.3 Objectives
The projects will focus on developing a distributed developmentenvironmentfor Java

Application. The main goal is a network base,dynamicand loosely coupling development

environment. Which contains the following feature:

1.3.1 Infrastructure implementation

Theprojectwill makeuseof someopensourcedevelopmentenvironmentcomponentsuchas

a UML editor, text editor andcompiler to migrateinto a set of jini service.Then,we will

build someinfrastructurelevel componentssothatthesystemwill beeasyto extendandplug

other componentdynamically (i.e.: without restart/reload).The next step is implementa

genericuser interfaceframeworkand a humansearchingcomponentframework.Our final

objectiveis building a frameworkfor developereasyto separatethemodelandview. As well

asuserscaneasyto find andusethetools.And themodelstaysat thenetworkandshareable

to the others.

1.3.2 Collaboration support on development tools

Collaborationsupportis an importantfeaturefor multi-userapplication.A standaloneUML

editorwill bemodifiedto becomea collaborativemulti-userapplication,thentry to developa

generic collaboration framework base on this. Versioning technique will be used.

From databasesystemsexperience,locks are the slower mechanismused to maintain

concurrencycontrol and data consistency.Multi-version model becomea more popular

techniquein implementingdatabaseconcurrencycontrol. For example,in PostgreSQL,a

versionis like a snapshotof thedataat a distinctpoint in time.Thecurrentversionof thedata

appearswheneverusersquerya table.Naturally,a new versionappearsif they run the same

query again on the table and any data has changed.Such changeshappenin a database

throughUPDATE, INSERT, or DELETE statements.Thus,performanceis much betterby

eliminating the unnecessary waiting in locking.

My groupconsistof 2 member,I will focuson thecollaborationsupportandmy partnerwill

focus on the infrastructure implementation.

10 Of 95

Department of Computing

2. Literature reviews
Before the systemdesignandimplementation,we havereviewedsomeother relatedworks

and projects. Here is the projects and approaches we have reviewed and considered.

2.1 Revision of related works
One approachis build the project from scratch,with referencefrom existingdevelopments

environment.The codeof someexisting opensourceIDE like netbeans[6]and jedit[7] are

reviewed.Thenbaseon this to evaluateif we canbuild similar but smallerproject.However

there are 2 problems.It is found that if the project developfrom scratch,the project is

probablya duplicationof otherdevelopmentenvironment.Besides,thereareso manybasic

components need to implement, there are not enough time to do this.

The screen shot of Jedit in Linux, a typical IDE extended from an editor.

Besides,mostof theexistdevelopmentenvironmentarenot accessiblefrom thenetwork.i.e.:

Most of the componentsare boundedto the developmentenvironmentsstatically, and the

developmentenvironmentis not ableto run without anyof thecomponents.Theuserneedto

11 Of 95

Department of Computing

downloadandinstall mostof the componentto the client machine.But the proposedproject

is highly distributedthatno similar implementationcanbea reference.Thusthis approachis

rejected.

2.2 Relevent previous projects
Another approachis to developthe projectbaseon someexistingproject.Therearesome

opensourceprogram are reviewed, like NETborne[8]. NETborne is an applet IDE using

client-serverarchitecture,which is betterfit in our project,andtherearesomenice features.

However, after investigating more about this tools, some problem are found:
� The authorof this programneedus to sharethe our result to him andhe doesnot have

licensing his program yet. So there is potential licensing issue of using this tool.
� Most featuresof NETborne is not related to the proposedsystem,like applet-servlet

communicationprotocol of IDE. Other than that, somedesignproblem are found (no

package, duplication between disk storage and database storage without sync.)
� jini do not use traditional client and server architecture.The traditional client-server

architectureis not suitablefor theproposedprojects,we will discusstheadvantagesof jini

in the later section.

The screenshot of NETborne, an applet base IDE.

Otherthanpublic availableopensourceprogram,Somepastfinal yearprojectsarereviewed.

For example,a collaborativeuml editor[9]. This softwareallow multiple usersedit a single

12 Of 95

Department of Computing

UML classdiagramin sametime. It is a very good project, however,it suffer from some

limitation that we can make use of this.

The screenshot of the collaboration UML editor.
� The uml editorcannotextendwithout a heavywork, mostlybecausethe sourceis highly

coupling which it is hard to identify a code to edit.
� The systemalsouseclient andserverarchitectureusingRMI methodcall. Which is hard

to port to jini.
� The system use locking as collaboration methodology but we would like to use versioning.

Changinglocking basecommunicationcode to versioningbasecommunicationcodeis

another problem.

13 Of 95

Department of Computing

2.3 Proposed approach
After reviewing severaldifference tools and technology,the final decision is extending

ArgoUML[22] to have versioning supports. The reason are follow:

1) The tools/techniquemust be ready for distributing environment,as computernetwork

becauselarger and larger scalethat we should build our systemready for distributing

environmentfor the future,andArgoUML havehighly modularizedstructurethatenable

me to port it as a distributed tools

2) ArgoUML is an opensourceproject have a strong community supports,this is a high

volume list. We believe that we can benefit from this.

3) This is the mostadvanceopensourceUML editor available,receivegoodcommentfrom

the press [10].

4) This tools savethe UML in a XML format call XMI which savemuch of our work for

save our work.

5) This tools provide fully supportin UML editing, so the project can concentrateon the

collaborativesupportwithout wasting time of UML editing, which is the core of our

projects. Hopefully we can have better collaboration support finally.

After the implementation,we will discuss the advantagesand disadvantagesof using

ArgoUML in the project.

14 Of 95

Department of Computing

3. Technology to evaluate
In this project,therearesometechnologyof this topic will be evaluated,we will find out is

these technology suitable for future projects. Here is the brief introduction of these

technology.

3.1 XML Metadata Interchange(XMI)
XMI is anvery importanttechnicalspecificationof UML editing,becauseOMG, thebiggest

objectorientedstandardmaker,only recommendXMI to archiveUML. Thesoftwaredesign

diagramcanbe interchangedbetweendifferencemodelingtools via XMI. Besides,XMI is

that standard propose by OMG, and supported by most UML modeling tools[12].

Open interchanged with XMI

XMI integrates three key industry standards:[36]

1. XML - eXtensible Markup Language, a W3C standard

2. UML - Unified Modeling Language, an OMG modeling standard

3. MOF - Meta Object Facility, an OMG metamodeling and metadata repository standard

15 Of 95

Department of Computing

3.1.1 Advantages

XML format provide the following benefits[15]:

1. Objectmodelarchiveis hardto manage,becausejavaobjectarchivecanonly bemanaged

when serializeback to object in memory. That mean object model archive cannotbe

managed without java.

2. Evenafterserializebackto objectin memory,thestructureof thatobjectis unknowns.It

needto castbackto exactlytype manually,the original type needto be recordedfirst, in

most case, it is easy to make mistake.

3. Therearemanysupporttoolson XML thathelpusthemanagethedataformat,like XML

data store.

4. There are existing tools that analysis XML. These can be used to analysis XMI design. For

examplethereare someexisting tool help us to extractsometag content,which can be

used to extract all the comment of the project.

5. XML is a popular technology that most developer familiar with.

When comparewith other similar XML format, like UXF[12] and uml-xchange[13].XMI

have the following advantage:

1. XMI is adoptedin more applicationsby more vendor supportXMI, like IBM, oracle,

togetherJand ArgoUML, which make our resulting applicationcan communicatewith

more program. Even UXF author agree that XMI is the mainstream

2. None of the above full supportcompleteUML 1.4 specification,Fully support open

standard is important, because this make our application extendable.

3. XMI is readilyport to otherformatthroughXSLT, projectis existedon transferringXMI

to HTML[14].

A diagramof how XMI haveIBM Visual Age, Unisys UREPandOraclerespostorywork

together, show the scalability of XMI:

16 Of 95

Department of Computing

Visual Age, Oracle repository and Unisys UREP work together with XMI

3.1.2 Disadvantages [36]

Nothing is prefect, so as XMI, in fact there are some problem of using XMI:

1. XMI do not containanyinformationof how theUML diagramdisplay,it only concernthe

structureof UML diagram,becausethis is thepart thatXMI address.However,this bring

manyproblemsin real use.For example,if 2 UML modelingtools usedifferenceway to

store the presentation, the design diagram cannot share between these 2 tools.

2. It is too complicatedto learn,thespecificationof XMI is very long, so this maynot be a

good choice of final year project. May be some smaller specification like UXF is better.

3. Unlike Java, Rational does not release a standard validation test suit to valid XMI. In fact,

difference vendor have difference validation tools, IBM have it own XMI toolkits,

Rational Rose have it own XMI plugin. This may cause possible incompatible.

3.1.3 Summary

In this project, other than using ArgoUML, the system will also using NSUML package, an

opensource UML metamodel. This package fully support the important software design meta

method standard, e.g.: MOF, XMI and JMI. We will explain this package more in later

section. After the implementation of the project, we will make a conclusion of is it good to

use XMI in the under-graduate projects.

17 Of 95

Department of Computing

3.2 Evaluation of different collaborative algorithms
Some one will refer locking to pessimistic approachesand versioning to optimistic

approaches. Here is a reference that explain the difference very detail:

3.2.1 The different consequences of using locking or versioning[1]

The locking approachis good for keepingmodel valid, but can be perform very bad for

concurrency.Especially,it guaranteesthat that no 'lost updates'occur,becausethe editing

model will be locked to prevent other to update. However, the poor performanceof

concurrency is a side effect.

Thecanbea seriousproblembecauseit is possiblethatanuserhold the lock of theobjectfor

a unexpectedlong time. Therearemanyreasonsfor this, one is the userreally needto edit

that object for a long time. However,the really problemis this canbe a resultsof common

unexpectedsituation,e.g.:Theusereditinga modelat first, but whentheoffice time finish, it

is very easyfor the developerto forget to releasethe lock before leaving office; another

problemis if the client havebeenkilled for somereasons,the systemmany hold the lock

forever, may be the server need to restarted to fix this.

Of course,thesecanbe solvedby settinga timeoutof locking, however,the otherpotential

problemis deadlock, which is a very commonproblemin concurrencysystem,especially

whendoing a batchjob. I do not plan to explaindeadlock in this text very detail, thereare

many papers to discuss this. In fact, the past UML modeling tool[9] is a very good reference.

Soit is very clearthat locking mayhavemanyproblemswhenthesystemwork in a big scale

system.

The versioningapproachaim to solvetheproblemof locking, becauseit do not needto lock

any object. However,the problemis we needmore complexalgorithm to keep the model

valid. The "versioning"definition usually saysthat expectationsof updateclashesarerare,

but in fact it is a normaloccurrencesin a high accesssystem.Thebasicsarethatanychanges

betweentime of accessandtime of updatemustbe detectedandtakeninto account.This is

often doneby comparingtimestamps,but one must be sure that the timestampis always

changed for an update/commit. Will discuss the versioning algorithm more later.

18 Of 95

Department of Computing

3.2.2 Example to show the advantage of versioning enable system[2]

Quotedfrom reference,it is a simple exampleof selectingdata from one table showsthe

differencebetweentraditionalrow-level locking andmultiple versioningconcurrencycontrol

(MVCC) powered database management system:

SELECT headlines FROM news_items

This statementreadsdata from a table called news_itemsand displaysall the rows in the

columncalledheadlines.For datasystemsthatuserow-level locking, theSELECTstatement

will not succeedandwill haveto wait if anotheruseris concurrentlyinserting(INSERT) or

updating(UPDATE) data in the table newsitems. The transactionthat modifies the data

holdsa lock on the row(s) andthereforeall rows from the tablecannotbe displayed.Users

who have encounteredfrequent locks when trying to read data know the frustration this

locking scheme can cause, forcing users to wait until the lock releases.

In MVCC enableDBMS, however,userscanalwaysview thenews_itemstable.Thereis no

needto wait for a lock to bereleased,evenif multiple usersareinsertingandupdatingdatain

thetable.Whena userissuestheSELECTquery,PostgreSQLdisplaysa snapshot,orversion,

of all the data that was committed before the query began. Any data updates or inserts that are

part of open transactions or were committed after the query began will not be displayed.

3.2.3 Summary

As collaborativeUML editorusinglocking algorithmalreadydonein pastfinal yearproject,

this systemwill focusonversioningsupportof UML editing.After theimplementationof the

project,we will makea conclusionof is it good to useversioningalgorithm in the under-

graduate projects.

19 Of 95

Department of Computing

3.3 Jini network technology

3.3.1 Advantages of using Jini

For more information abouthow Jini help in the developmentenvironment,pleaserefer to

my partner's report[38]. Here only the benefit that jini bring to use in the collaborative

system.

3.3.1.1 The problems of existing network architecture

The existing client server architecture is not suitable in large scale system

1. Whenthesystemrequireto modela oneto manyor manyto manycommunication, client-

serverarchitecturerequirethe programmergroupmanyoneto oneconnectionsto model

thesystem.For example,if we want to modela systemhaveoneserverandmanyclients,

we needto keepa list of socketconnectionin theserver.If we needto modelandmanyto

manyconnectionsystem,we needto havea groupsof oneto manyconnectionto handle

them. For some complex network architecture,it is hard to model and hard for the

maintainer to understand the system.

2. Lack of persistencesupport.If a client sendsomethingto the server,the serverneedto

handleit now. If theserverarebusy,theclient needto wait for theserver.A moreworse

case is the server will deny the request of the clients.

3. Possiblefor dead-lock.Refer back to 1), if the server maintaininga list of client to

communicate, becausetheremaybe2 client call theserverin sametime. Theserverneed

to synchronizesomemethods,the synchronizationblock may havedead-lockor other

performance problems occur.

20 Of 95

Department of Computing

3.3.1.2 How jini helps in these problems

Here is the diagram show how jini work.

The flow diagram of jini architecture

1. Jini havea very clearway to modelnetworkarchitecture.In jini, everythingis service,the

userdo not needto build any network connectionsin order to communicatewith other

networkcomponent.Everythingnow aremanagedby the lookup service.If you want to

communicatewith othernetworkcomponent,you just needto find it from lockupservice,

then get the proxy of the serviceand work with it. It work mostly samewith the local

component, so we are more easy to model and understand a large system.

2. Jini providedefaultpersistencesupportin thenetwork,javaspace.Theserverdo not need

to responseto requestimmediately,the client is not needto wait for serverresponse.In

javaspace,theclientscanput anitem to spaceandlet theservershandleanytime helike.

If the serverdo not managethat item for a long time, jini leasingservicewill free the

resource automatically.

3. Jini can preventdead-lockproblem in many way becauseof the help of javaspace.In

responseto the last example,when2 client try to communicatewith the serverin same

time, the serversdo not need to synchronizeany method.Becausethe clients do not

communicationdirectly to theserver,the clientsjust put the itemsinto javaspaceandthe

serverjust pick themupandhandlethemandput it backto javaspace.You canthink now

thereare no server,everythingis clients that work with the persistencejavaspace.This

architecture simplify many programming problems.

In fact, theboardcastof theversioningenginementionedin latersectionwill makeuseof this

architecture, we will show it later.

21 Of 95

Department of Computing

3.3.2 Summary

Jini soundgreat,it seento bea very robustnetworkinfrastructurethatsolvemostnetworking

problem, but is it really that perfect? The system will build on top of jini, after the

implementation,we will find out the goodandthebadof usingJini, andis it goodto usein

an under-graduate project.

22 Of 95

Department of Computing

4. Proposed collaboration algorithm
After designingthe approachof this project, next step is to figure out a algorithm of

versioning collaboration. The first collaborative algorithm was inspired from “Efficient

Version Model of Software Diagrams”[3] and “A flexible object merging framework”[4].

4.1 Concept of the proposed algorithm
“An Efficient VersionModel of SoftwareDiagrams”havepresentan ideaof how to model

the diagramsandthe modificationsof the diagramsin Mathematicsway, where“A flexible

objectmergingframework” introducewhenwill conflict ariseandhow to resolvein simple

data.

Summarize the above idea from the papers and get the following Versioning algorithm:

1. Model UML and modification into some data structure according to [3]

2. The system will consist of a versioning engine and a master copy that is always valid.

3. Thedifferenceclientswork on sameUML diagramwill mergethedatastructureof it with

the mastercopy for every operation.The systemwill identify if thereare any conflict

before merge 2 difference diagram.

4. We find that conflict is actuallysomeoperationbreakthe dependence[4]betweenitem,

e.g.: class I extendclass II, if slave copy have an action to deleteclass II, then the

inheritance relationship between class I and class II is broken.

5. Considerthe following example,thereare2 clients,A andB modify someclassdiagram.

Originally that classdiagramconsistof an interfaceanda classimplementthat interface,

ImplClass.Client A try to extenda child classfrom ImplClass;meanwhileclient B try to

deletesImplClass.conflict arise in this casebecauseA copy and B copy cannotmerge

together.

23 Of 95

Department of Computing

An example of conflict arises

If thereis not conflict, the systemwill mergethe UML diagramof mastercopy andclient

copy(slavecopy),thenupdatebothcopyto the latestversion.If conflict find thesystemwill

takethedo takesomeactionthatpreventthemastermodelbeingcorrupted.Theconflict can

be resolved into 2 category:

1) Slavecopydeletessomeentitiesrequiredfor mastercopy– Wecan just reject theclient

modification and as the client to restore to the originally state.

Case 1 of conflict: slave copy delete some required for master copy

2) Mastercopydeletessomeentitiesrequiredfor slavecopy– In thecaseweneedto recover

the component that client need and then merge 2 diagram.

24 Of 95

Department of Computing

Case 2 of conflict: master copy delete some required for slave copy

The big picture the of the system is follow:

The system architecture of first version of versioning engine

The above algorithm can be extendedfrom object-objectrelationshipto object-features

relationshipand features,becausethereare dependencerelationshipof object and features.

e.g.:everyoperations dependon someclass,we canforbid or recoverdeletean objectthat

haveoneor moreoperationdependon it; we canalsoforbid or recovera operationthathave

any other operationinheritancerelationshipwith this. We can do all thesewith the same

algorithm as stated above.

25 Of 95

Department of Computing

4.2 Detailed implementation plan
1. Use just one model.

2. Oneserverthat owns the model anddiagrams,the mastercopy. The serverconsistof a

versioning engine that guarantees it is valid at all times.

3. All clientswork againstthe samemodelanddiagrams,but havingtheir own copyon the

UML modeling tool instance.

4. Clients do modificationsof the model or diagramsand show views of the model. A

interfaceneedsto be defined that can get all neededinformation from the model and

diagramsfor the client to mergeit copy to the mastercopy. The interfacemust also

contains methods to modify the master copy.

5. Every modifications initiated by the client will merge with the master model. The

modificationcanfail with errorslike: Operationcannotberemoved- it doesnot exist(i.e.

some other client just removed it), or Operation cannot be added - Class does not exist (i.e.

some other client just removedit). All thesekinds of errors must be defined in the

versioningengine.All errorswill have2 handler,becausethereare 2 kind of conflict,

slave delete master required and master delete slave required.

6. Thedefaultcaseof errorhandlingis rejecttheclient of theclient. If theversioningengine

encountersomecasescannothandles.It will reply somethinglike: "You cannotdo that

becausesomebodyelse just did somethingthat made your modification impossible."

Wheresomethingis themostrecentmodification,andsomebodyis theclient namedothat

modification.

7. If thereis no conflict, mastercopy will mergewith the changeof client copy, then the

clients UML modeling tool will get a copy of master copy and replace the local copy.

26 Of 95

Department of Computing

4.3 Other references
Hereis someotherpaperaboutthis topic reviewedfor futurereference,but theyarenot used

because:

1. They are not easy to merge with the algorithm discussed.

2. The algorithm is very complex and not suitable for real time collaboration.

Abstract State Machines:UML State Machines[16]

ASMs are usedto give semanticsfor UML statemachines,as a basisfor constructingan

automated tool for verifying properties of UML state machines.

UMLAUT: an Extendibles UML Transformation Framework[17]

UML TransformationFrameworkallowing complexmanipulationsto be appliedto a UML

model

Modeling Versions in Collaborative Work[18]

Discussa basic version model a domain model capturingthe idea of a version and the

relationships between versions

Version control for asynchronous group work.[19]

Thispaperlooksat theissueof versioncontrolcomparingsingleandmultiple usersituations.

The aim is to focus on requirementsfor version control that will assist asynchronous

distributed group writing.

vUML[20]

vUML is a tool that automaticallyverifiesUML models,UML validationis very important

in our projectso I take referencefrom this. However,the mechanismof this papersis too

complicated that do not suitable for use.

27 Of 95

Department of Computing

5. Implementation

Beforeimplementation,we needto understandthe flow andstructureof the UML modeling

tools, ArgoUML, first. Here is a brief overview of the internal structure of ArgoUML.

Besides,ArgoUML is a highly modularizedUML editor. Personallyspeaking,I learnmany

on studying this system,so I will spenda part in the report to explain the structureof

ArgoUML, as well as the core components of this ArgoUML.

5.1 The architecture of ArgoUML [37]
� GEF - Graph editing framework, model the components in nodes and edges and let user

edit.
� NSUML - UML meta-model implementation, contain the underlying UML structure and

xmi converter
� Swing - build the GUI component

The architecture of ArgoUML

28 Of 95

Department of Computing

Screenshot

Here is a screen-shot of ArgoUML.

Top left: a hierarchical view of the current project file.

Upper right: editor(s) for the selected part of the project, in this case a class diagram.

Bottom left: the designer's "to do" list.

Bottom right: details of the selected object in the diagram or the selected "to do" item.

Screenshot of ArgoUML

29 Of 95

Department of Computing

5.1.1 Detailed description

5.1.1.1 GEF: [21]
� A simple, concrete design that makes the framework easy to understand and extend.
� Node-Port-Edgegraphmodel that is powerful enoughfor the vastmajority of connected

graph applications.
� Model-View-Controllerdesignbasedon theSwingJavaUI library makesGEFableto act

as a UI to existing data structures,and also minimizing learning time for developers

familiar with Swing.
� High-quality user interactionsfor moving, resizing, reshaping,etc. GEF also supports

several novel interactions such as the broom alignment tool and section-action-buttons.
� Generic properties sheet based on JavaBeans introspection.
� XML-based file formats based on the PGML standard (soon to support SVG).

Here is a diagram to show how ArgoUML relate to GEF:

The relation of ArgoUML and GEF

30 Of 95

Department of Computing

5.1.1.2 NSUML: [23]

NSUML(Novosoft metadata framework) is based on JMI specification and generated classes

that are required by JMI specification and also provides additional services like event

notification, undo/redo support, XMI support. NSMDF is local in-memory implementation.

This package also provide code generated from UML 1.4 metamodel. Which could be used

for constructing applications based on UML 1.4.

How GEF, NSUML and ArgoUML work together

31 Of 95

Department of Computing

5.1.1.3 JMI (Java Metadata Interface) [24]:

TheJavaTMMetadataInterface(JMI) Specificiationimplementsa dynamic,platform-neutral

infrastructurethatenablesthecreation,storage,access,discovery,andexchangeof metadata.

JMI is basedon the Meta ObjectFacility (MOF) specificationfrom the ObjectManagement

Group(OMG), an industry-endorsedstandardfor metadatamanagement.The MOF standard

consistsof abaseUML modelanda setof interfacedefinition language(IDL) interfaces.The

MOF specificationprovidesa programmingmechanismthat allows applicationsto querya

metamodelat run time to determinethestructureandsemanticsof the modeledsystem.JMI

is a Javatechnologymappingof the MOF IDL interfacesthat will allow Javacomponents

andapplicationsto accessandmanipulatemetadata.UsingJMI, applicationsandtoolswhich

specify their metamodelsusing MOF-compliantUML can have the Javainterfacesto the

modelsautomaticallygenerated.Further,metamodelandmetadatainterchangevia XML is

also automatically enabled by JMI's use of the XML Metadata Interchange(XMI)

specification.

Advantages of JMI

JMI will increasethe adoptionof standards-basedmetadataand acceleratethe creationof

applications and solutions in which there are no barriers to information exchange.

32 Of 95

Department of Computing

5.1.2 The functions of the main packages
� Application - Application launcher, plugin helper classes and security codes.
� Cognitive - still unknown, but should not relate to our project
� Kernel - kernel components like project management and editing history management
� Language - Support code for difference computer language
� Ocl - code generation from uml supports
� Pattern - reserve for future support of design pattern
� Persistence - reserve for future support of storage and restore UML to DB
� Ui - Swing UI components
� Uml - UML manipulation components
� Util - Misc utils like logging and config loader
� Xml - Xml manipulation codes

The packages we conserve most are Ui and Uml, as the Ui responsible for the for front-end

swing event and swing action handling, as well as the drawing code; and Uml responsible for

the backend Uml modeling code., which need to be shared with other machine.

33 Of 95

Department of Computing

The detail of UI of ArgoUML

The UI of ArgoUML is very complex, but only 2 is highly possible related to our work, one

is detail plane and one is tree plane, the reason will discuss later.

Here is the structure of detail plane, it is important because the project may need to modify

the detail plane to add new tab related to versioning for ArgoUML.

ArgoUML detail plane classes.

34 Of 95

Department of Computing

And hereis the treeplane,this is importantbecausethe projectmay needto get the current

diagrams structure from the tree plane items.

ArgoUML tree plane classes.

35 Of 95

Department of Computing

5.1.3 ArgoUML data structure

GEF
� library provide tools and data let user edit the diagram.

� handle the interaction from screen to model

� XML-based file formats based on the PGML standard

The relationship of GEF and NSUML is usually one to one.

NSUML
� implementation of complete UML 1.3 physical metamodel,

� XMI loading/saving.

� NSUML is able to generate events whenever the model is modified.

� Undo/redo support

36 Of 95

Department of Computing

5.2 Prototype

5.2.1 Overview of the prototype design

After investigatingaboutthedatastructureof theprogram,we needto write someprototype.

The proposeis to test if the structureanddataflow work just asexpected,andto find out if

the algorithm proposed have any problems. The prototype is very simple, it just try to to share

the model between 2 instance of ArgoUML.

1. There are few instance of patched ArgoUML running.

2. Whenthereis onemodeladdedto oneinstance.ArgoUML will generatea modelobject.

The patch will capture the model and send it to the server.

3. When the server receive the object of the model. It boardcastthe model to all other

instance of ArgoUML.

4. Whenthe otherclient receivethe model, it mergethe model to the datastructureof the

diagram editing.

5. Therewill not beanyversioningalgorithmimplementedin theprototype.Soall thedelete

action are allowed to do, and the model may get into an invalid state.

5.2.2 Problems encountered in the prototype

However, after building the prototype, there are some problems:

1. The codeof differenceUML diagramsarenot in samestructure.Differencediagram,say

class diagram and deploymentdiagram, have completely difference architecture.So

writing code for one diagram is not able to apply to any other diagram

2. The prototypehasnot considerthe effect of GEF. As all the diagramdisplay to screen

throughGEF, the prototypeexpectthat if themodelof ArgoUML change,the modelof

GEF alsochanges,so asthedisplaywill updated.However,this is not thecase,I needto

work for it manually.

3. The modelof GEF is very difficult to updateparallelwith ArgoUML manually,because

thereis not muchdocumentdiscussaboutthe structureof GEF,andthe datastructureof

GEFis verycomplex,it containa groupsof modelsthatactasbackenddatastructure,and

a groupsof figuresthat act asfrontenddatastructure.KeepingArgoUML andGEF data

structure update parallel is very difficult.

4. Themodelitself is notserializable,somoving theall theobjectsfrom onesideto serveris

very hard. The prototype just implement a little part of objects in ArgoUML.

37 Of 95

Department of Computing

5.2.3 Solutions of the problems

Actually this is a generalproblemof try to merge2 differencemodel,andwe cansolvethis

by tracking the event flow.

Generallywhen the user need to make the neededmodification, he needto issue some

event/actionto the system,we cantrack theseeventandsavethe relatedinformation.Then

use these information to do our algorithm.

Thesystemneedto capturethemouse/keyeventfrom theuser.Thesystemneedto filter the

eventsothatonly eventissueto create/deletenode/edgearecaptured.Thensavetheeventsin

a pool, and then apply the MVCC algorithm on these event.

38 Of 95

Department of Computing

6. Event sharing approach on software collaboration

6.1 Overview
Evensharinghavebeenusein distributedcomputingfor a very long time. Somedistributed

computingplatform evenprovidea standardeventpassingmechanism,e.g.:Jini distributed

event.

Remoteeventmodel in Jini is like the event model in AWT and JavaBeanso that Java

developercaneasilyadaptthe remoteeventmodelwithout a steeplearningcurve.However,

problemsfor networkenvironmentshouldalsobe takeninto accountin remoteeventmodel.

Jini notices about that and define a set of interfaces and conventions for distribute event.

However,most real time collaborationdrawingtools do not usethis approach.The reasons

are follow:

1) Thereare many eventsmay needto manage,e.g.: Every mousemovementgeneratea

mouseevent.Everymousemovementmaybeuseful.Sotherearelot of casesmayneedto

consider.

2) Becausethereareso manyevents.Theremay needmanynetworkbandwidthto transfer

all these events

3) In eventssharing,it is harderto havea centralizemodelof thediagram,becauseit is hard

to generate the model from events.

Becausetheproblemencounteredin sharingdatastructureseennot possibleto solveeasily,I

decideto try this approach.At the time of implementthis, the jini part is not really, so it just

send the normal Java AWT event through socket network to simulate this.

6.2 Implementation details
1. Oncethe userclick on the node/edgefrom the item menu,the mousepressand mouse

release event will be record and broadcast to another clients.

2. We need to create some object (i.e.: Cmd* objects) if the clients have not create it.

3. Thentheuserclick on the drawingpadandcreatenodeandedge,themouseeventsalso

broadcast to other clients so the other client will also do the creating action.

39 Of 95

Department of Computing

6.3 The Class diagram of event sharing

40 Of 95

Department of Computing

6.4 Conclusion
The similar work implementedfor all edgeandnodecreationof ArgoUML, so that every

kind of UML diagram in ArgoUML can share the model/node creation/deletion.

The advantage of using this approach are:

1. Network bandwidth friendly: it is much light weight for transfer an event than the model.

2. Instanceresponse:The other client shouldadd the model at the sametime of the first

creation of the model.

3. Apply to all diagram:As thesecodespatchthe graphicframeworkpackage.So it ableto

shareevery kind of diagramif the modeling tools unify the node/edgecreation/deletion

into one graphic framework.

4. Relativelyeasyto do: The modelingtools may composeof manypackage,for examples,

ArgoUML consistNSUML andGEF. The approachthat sharethe model itself needto

analysisall thesepackage,then transferand managethe object of individual package.

Which needmanytime to do. Eventsharingcanlet the developencapsulateall thesebut

handle the outer most interface of the modeling tools.

5. Even if the other client are busy, the event can be handle,becausethe client run in a

separation thread.

However, there are also someconstraintsof this approach,which should commonto all

implementation of event sharing of modeling tools:

1. The current diagram will consumethe mouseevent, so all user must work on same

diagram in order to process the event correctly.

2. It doesnot support for the client to join after some user have started.Although it is

possibleto saveall theeventandapplythemfor thenewjoin client to createthemodels,it

needto handlemany unexpectedexceptionof doing this, e.g.: If one event for some

reasoncannotbe handle,is probably meanthat all the rest event cannothandle.This

project just ignore this at this moment

3. If the client can'thandlethe eventfor somereasons,which are rarecasesbecauseTCP

connectionwill resend.Theothersideswill lost thatmodel.This canbesolvedby saving

the eventsendand receive,and comparethem periodically. If there is a client find the

event received are less than other, he can request the other resend that event.

4. The edgecreationevent is dependon the node location. For example,if user 1 create

generalizationrelationbetween2 model,thecreateedgeeventwill sendto theotherside,

with the locationof edgeto becreated.However,if user2 moveoneof therelatedmodel

41 Of 95

Department of Computing

to the othersplace,the systemcancreatethe edgebecauseit cannotfind endnodes.We

can send the ending nodes identifier because they are AWT events.

5. This approachis verynot flexible, becauseotherthanhandletheevent,thesystemmaydo

may needto do somepre-processingandpost-processing.Thereareno hint in theevent

handlerof how to do pre-processingandpost-processing,thedeveloperneedto figure out

how to do this in a try and error way. Other than this, doing pre-processingand post-

processingmay needto break the encapsulationof somepackageuse.Which may not

permitted.

The above diagrams are the screen shots of event sharing

42 Of 95

Department of Computing

7. UML data structure sharing at ArgoUML
Difference approach are used to share the operation and attribute in the model. It is extract the

primitive of the modelandtransferthemto the serverin a fix period.The reasonsof doing

this is follow:

7.1 Reasons for using a other approach in models sharing
1. TheUML modelingtoolsneedto updatethebackendmodelfor anymodification,e.g.:if

theusersetthe nameof a modelto "model" therearetotal 5 modificationof thebackend

model,if thesystemtry to catchall theeventandsendto other,thenetworkmustoverload

and argouml will become very slow.

2. Therearemanyplacesof codeto capturethecode,unlikecreatinganddeletingthemodel.

Thereis no way to unify them.We needto patchmanydifferenceclassto captureall the

event.However, the numberof the event handlerwill increaseor decreasefor further

developments.If thesystemstill sharetheelementsof themodelby eventsharing,Every

new releaseof the softwarewill bring new bugs. It is very like to have inconsistent

operation/attribute sharing and program bugs.

3. Quality UML modeling tools usually provide UML validation when modify the nodes

elements.If thesystemsendtheeventto theothersidedirectly, it is very easyto addsome

invalid modificationstepto theothersides,which makethemodelinconsistent.Theworst

case is the whole model is not displayable.

7.2 Detailed steps of model sharing
1. Thereis a threadrunning of every instanceof UML modeling tools, at the client side,

every severalsecondsit will analysisthe model attributesand featuresof nodes/edges,

extract the primitives items that are serializable.

2. Packtheprimitivesitemsinto somedefinedformatandbroadcastto theotherclients.The

data structure of the sending formats is a tree structure with following elements:

1. ItemID // For indentify difference item.

2. Timestamp // The modification time of that Item

3. content objects // The content of that items

4. childs // items of other sub-elements

3. The other clients make/updatethe local model attributesand featuresaccountingto the

modification time and ID.

43 Of 95

Department of Computing

4. Timestampneededto be addedfor every primitives, becausethe systemneedthis to

checkwhich oneis newer.If 2 itemswith someID in a model,the systemwill keepthe

latest item.

5. The systemassumethe timestampof different machinesdo not havelargedifferent, it is

reasonable because we can synchronize the system time of different machines with NTP.

6. Thesystemneedto preventthetransferitemswhich arecurrentlyeditingby somebodyto

the other sides,becauseit will causeIO exceptions.So the systemneedto find the

modifying items and skip them.

7. Finally, reset the connection for every possible problems

8. Because of the time limitations, Only implement the model sharing for class diagram.

44 Of 95

Department of Computing

7.3 Class diagram of UML data structure sharing

7.4 Comparison of event sharing and data structure sharing
1. Fromthesoftwaredesignpoint of view, thereis no clearwinner. In somesituation,using

eventsharingcan havemorecleancode,moregenericfunctionandmakethe logic more

simpleto read.However,in somecasedatastructuresharingis betterbecauseit is easier

to have a backend model. In this project, both technique being used.

2. Generallyspeaking,the advantageof event sharingis real time response.This is very

important in node and edgedeletion in UML modeling. Becausethe othersideshould

know a node or edge be deleted by other side as soon as possible.

3. On the other hand,data structuresharingcan let the sharingprocessas a background

process. It is easier for collaboration when 2 or more user edit 2 or more diagrams.

4. Besides,there is no dependencebetweenactionsis anothergood thing of sharingdata

structure.In eventsharing,it is very hard to resolvethe problemoccurif oneactionfor

any client fail to handle an action.

45 Of 95

Department of Computing

8. New versioning algorithm
After successfulmodify the singleuserUML modelingeditor to supportmultiple users.It is

the time to implement the collaboration algorithm proposed.However, there are some

problems of the existing algorithm that have not consider before.

8.1 The problems of proposed approach
1. It has not prevent all conflict that will happen.For examples2 clients modify same

elementin sametime. Theproposedalgorithmhasnot addressthis situation.It simpletry

to keep the UML diagram is a valid state.

2. As it hasnot preventall conflict occur, it also hasnot provide a solid conflict resolve

method.In the implementationof modelsharing,whenconflict really happen,oneof the

userwork will overwriteby theotheruser.It is not thesuitablemethod.But if you apply

the proposed algorithm in other implementation, the result may have more problems.

3. It will lost somework for the user,becausethe systemwill reject somechangesthat

violate the dependence.The algorithm make the assumptionthe lost is not much.

However, due to the network latency, it is not the case in any time.

Actually theproposedalgorithmis notno valueat all. First of all, it is a practicalapproachto

implementthemultiusersupportof thesystem,it really work. And it help to userpreventthe

conflict occur in most case.However,as a researchprojects,we would like to adoptsome

more complex algorithm that address more problems in multiple user work.

In responseto aboveweakness,Researchhavedoneon this topic. Thereis a tools call CVS

addresssimilar problemsin text basedocumentationsharing.We canlearnthemechanismof

this tool to solve the above problems.

46 Of 95

Department of Computing

8.2 How CVS resolves conflict

8.2.1 Overview

Below is the detail descriptionof theconflict resolveof CVS, pleaserefer to the appendices

for the operation detail of CVS:

1. Whenthereis a client checkouta document,CVS savethe timestampof checkoutat the

client.

2. Thentheclient do editing on thatdocument,oncefinish theediting,theclient commit the

change to the central repository.

3. During committingdocument,CVS servercheckthe checkouttimestampat the client. If

thecheckouttimestampis laterthanthetimestampof latestversionof thedocument,CVS

server do the following tasks:

1. It update the server document.

2. Assign a new version of the document.

3. Save the timestamp of that version.

4. Otherwise, it check the difference of the document at the server and the client.

 UInt32

 CountStringsInList (

 Ptr inData)

 {

 <<<<<<< Conflict.c

 /* Alice: added the assertion */

 AssertIf_ (Ptr == nil);

 =======

 /* Bob: ignore nil input */

 if (Ptr == nil) return;

 >>>>>>> 1.12

 return *(UInt32*)inData;

1. }

5. The reasonof doing this is simple. If the checkouttimestampis earlier than the latest

versiontimestamp,thanmeansomeotherclientscommit the documentafter checkoutof

that client. CVS cannotdeterminekeepingthe changefrom which client, so it keepboth

version and left it to the client to edit it.

6. After mergingboth changes,CVS sendthemergeddocumentto theclient without saving

the document to reposition. But it will update the checkout time at the client.

7. After that client make suitable change of that document, then CVS server repeat step 3).

47 Of 95

Department of Computing

8.2.3 The action diagram of the flow

48 Of 95

Department of Computing

8.2.4 CVS Experience with SunOS 4[26]

8.2.4.1 Overview

CVS is widely used in software developmentand documentmanagement,and it have

successfullyhelp differenceorganizationto mangetheir codeor document.[26] is a paper

analysis the theory and usage of CVS very detail, using SunOS 4 as an example

8.2.4.2 Scalablity of CVS

Table1 showin SunOS4, how manyfile havebeenmanagedwith CVS. Table2 showsthe

history of files changedor addedandthe numberof sourcelines.Only changesmadeto the

kernelsourcesareincluded.The largenumberof sourcefile changesmadein Septemberare

the result of merging the SunOS 4.0.3 sources into the kernel.

Table 1: cvs statistics

Table 2: cvs usage history for the kernel

49 Of 95

Department of Computing

8.2.4.3 Conclusion – The algorithm of CVS is suitable for us

The performanceof cvs is currently quite reasonable.In this paper,thereare not specific

tuning cvs done. Checking out the entire kernel source tree (1223 files/59 directories)

currentlytakes16 wall clock minuteson a Sun-4/280Mhz.However,bringingthetreeup-to-

datewith thecurrentkernelsources,onceit hasbeencheckedout, takesonly 1.5 wall clock

minutes.Updatingthe complete128MByte sourcetreeundercvs control (17243files/1005

directories)takesroughly 28 wall clock minutesand utilizes one-thirdof the machine.For

now this is entirelyacceptable;improvementson thesenumberswill possiblybemadein the

future.

This result showthat the algorithm is suitablefor usein real time UML modelingsharing.

Evenif theperformanceis poor, therearemanywaysto tune.Thusthis proof the algorithm

of CVS is suitable to adopt in our system.

50 Of 95

Department of Computing

8.3 The new versioning algorithm

8.3.1 Overview

For the UML modeling sharing, a similar mechanismto CVS can be used to prevent

implicitly locking of a part of model. Here is the brief description of the flow:

1. Normally the client does not need to lock the nodes when editing.

2. Every client hasa threadto get the local model for a fixed period.It will sendthe client

modelto a centerrepository.Everyelementto be transferedwill carrya lastmodification

timestamp.The client will also send the last communicationtime with the center

repository.

3. Like CVS, the server will keep the latest version of every elementas well as the

timestamp.Then the servercomparethe last modification timestampwith the client's

timestamp of every element. If the timestamp of server element is later than last

communicationtime, and the timestampof client element is also later than the last

communication time, and two element are difference, conflict arises.

4. If only serverelementis laterthanlastcommunicationtime, theclient needsto updatethe

elements from the server.

5. If only client elementis laterthanlastcommunicationtime, theserverneedsto updatethe

elements from the client.

6. If the two models are the same, there is no need to change for whatever timestamp.

7. Concerningto the conflict resolve,oncethe serverdetectstheconflict, it will broadcasta

messageto all clients to lock that model. When the other clients receive the locking

message,they will lock that elementand prevent further editing, and send the latest

changeof thatmodelto theserver.Oncetheserverreceivesall modelsfrom all clients,it

will merge a model with conflict like CVS, who will then commit the model.

8. Thatclient will thenresolvetheconflict at thatmodelandsendit backto theserver.The

serverwill supposethat modelhasno conflict andupdatethe central repositoryand all

clients. Then it unlocks that model of that client.

9. Then the client updates the last communication time with server for whatever case.

51 Of 95

Department of Computing

The algorithm addresses all the problems mentioned before.

1. It providessolid conflict definition. Thedefinition of conflict basedon timestampis very

clearandsimplefor thesystemto handle.Otherthanonly maintaina valid UML diagram,

this algorithmactuallyaddressesall possiblesituationsthat conflict will occur in a very

simple ways.

2. It providesconflict resolvesolution.Thisalsoprovidesa unified way to solvetheconflict,

althoughit is very simplethat just left the userto mergetheconflict manually.It canbe

extended to a more intelligence resolve solution later.

3. Theuserwill not loseanywork. As thesystemneitherrejectsanychangesof theuser,nor

deletes any work of the user. All the work of the user can be considered safe.

52 Of 95

Department of Computing

8.3.2 The action diagram of the flow

53 Of 95

Department of Computing

8.4 Problems encountered
Themaindifferenceof implementationbetweenthis algorithmandCVS, is thenatureof the

document. The basic element of CVS is line of character, and the document is a list of lines.

In contrast,the basicelementof a UML documentis morecomplex.A projectsconsistof

many documents.A documentconsistof many nodeand edges,in classdiagramthereare

class, interface and generalizationrelation; in use casediagram there are use case and

include, extend relation.

Under all nodesand edge,they havedifferenceselements,like operation,attribute,name,

stereo types....

In orderto simplify thecase,only classdiagramshaveimplementthis algorithmto proof the

concept. And assume that the elements of all kinds of nodes and edges are:
� name
� stereo type
� visibility

For classifier like class and interface, there will be addition elementsoperationand

attributes.

Otherthanthis,astheUML modelingtoolsis not written by myself,lock themodelto forbid

user edit are forbid to do.

54 Of 95

Department of Computing

8.5 Screen shot of a model with conflict items

The flow of the system run:

1. Initially, two instances of ArgoUML opened

2. Then user1 add a model, user2 add immediately, via event sharing

3. Then user1 edit the name, user2 don't change immediately

4. After a while, the name of the model of user2 also change, via UML data structure

sharing.

5. Then 2 user continue to edit the diagram, adding and deleting models.

6. If they edit the some element, say name, in same time; the system will prompt for conflict

arises

7. The users able to work collaborative in this system to improve performance

1) Initially, two instance of ArgoUML opened

55 Of 95

One client call that model
as name1, but other call it
as name2

One client call that operation as
newOperation1, but other call it
as newOperation2

Department of Computing

2) Then user1 add a model, user2 add immediately, via event sharing

56 Of 95

Department of Computing

3) Then user1 edit the name, user2 don't change immediately

4) After a while, the name of the model of user2 also change, via UML data structure sharing.

57 Of 95

Department of Computing

5) Then 2 user continue to edit the diagram, adding and deleting models

6) If they edit the some element, say name, in same time; the system will prompt for conflict arises

58 Of 95

Department of Computing

7) The users able to work collaborative in this system to improve performance

59 Of 95

Department of Computing

8.6 Conclusion
1. The versioningengineis ableto find the conflict when2 usermakemodificationof one

unit in same time.

2. However, the implementationin this projectsis not completed,becauselocking of the

modelof the UML modelingtools is not done.The modelingtools usedis not allow the

developerto lock themodelfrom editing.Currently,theprojectonly addthenoteto notify

the other userthis object haveconflict and shouldnot edit. However,after the conflict

being resolve, there is no way to notify the other users currently.

60 Of 95

Department of Computing

9. Experience of enhanced public domain software
Herearethe experiencesof picking up the public domain/opensourcesoftware,andenhance

it for theundergraduateprojectshere.Thefollowing discussionis only relateto addingcode

on an existing project, not using opensource library.

9.1 Advantages of enhancing existing software
1. Thesoftwarewill providemuchfeaturesrelatedto theproposesystem.Thusit cansavea

lot of time from implementing many infrastructureitems. Using this projects as an

example,ArgoUML hasalreadyprovidedall thefeatureanUML modelingtools,we only

focus on the collaborationsupport.Ideally, the project can build a collaborativeUML

editor that able to allow usersto have collaborationwork for all nine kinds of UML

diagrams. Which is impossible to implement all these in a final year projects.

2. The skill of picking up a projectandenhanceit canbe learnt.According to onefamous

developer:“Good programmerwrite program,bestprogrammerre-write program”. It is

important for a programmerto have the skill to pick up old project and enhanceit.

Especiallyin working environment,existing codeare fully testedand documented.Re-

implementingsimilar codeneedextracttime on testinganddocumentation.Othersthan

this, the programmer can learn good design from existing program.

3. Communicationwith the interestgroup of that project will help the project much. The

interested group may provide good support and nice idea of the project.

9.2 Disadvantagse of enhancing existing software
1. The time spendingin readingandunderstandingthe projectmay be very long. Although

gooddesigncanbe learnt from this process,theremay be not enoughtime availablefor

this.Oncefinal yearbegin,theclasswork arevery heavy.In my own experiencethereare

only 3-4 month for the project.

2. It is highly possibleto brokenthe structureandstyle of the programwhenpatchingthe

system.There are somemethodologieslike refactoringto solve this problem,but it is

possible of not having time or skill to apply these methodologies.

3. Thereare many unknownin working on an existing software.Using our project as an

example,at first I supposeonly needto know the code of the UML modeling tools.

However, turn out I need to know the code of drawing framework (GEF) for event

sharing,andthe codeof UML meta-model(NSUML) for versioningsupport.Otherthan

reading extra code, there are possible that you cannot get the code of the libraries.

61 Of 95

Department of Computing

9.3 The consideration of choosing tools
1. Do not pick too largeprojectsto work with. This dependon theprogrammingexperience,

but for a final year projects,a small to medianproject that not excess400 classesis

suitable.Projectwith size larger is dangerousbecausetheremay be many un-expected

problemsin working on largeprojects.Other than that, too large projectprobablymean

that the tools that you use consist of many function/code that are not needed.

2. The software design of the project should be checked before, to ensure that it is good use.

3. Identify all primitive are needed, do not assume anything without provide. In this project, I

assumethe data-structuresareserializableandableto transferin thenetwork.But in fact

thereareextractwork to extractthe serializabledatastructurefrom UML data-structure.

Here are some assumption that you need to proof generally.

1. What are the objects that need to be transfer on the network? Are they serializable?

2. Identify which functionsbelongto thetools,andwhich functionbelongto thelibraries,

make sure there is no need to edit the code of the libraries?

62 Of 95

Department of Computing

10. Conclusions of the project

10.1 Evaluation of extendeding ArgoUML
After the implementation, I find that there are some problems of using ArgoUML

1. The backend UML meta-model that are not serializable

2. Thecodeneedto learnaretoo large,just ArgoUML consistof 739class,otherthanthis, I

needto patchthe graphicframeworkGEF andUML meta-modelNSUML, all consistof

about 250 class.

3. Thesizeof theprojectsis too large,soduring thedevelopment,I needto makechangeof

some code that not really relate to my part.

4. BecauseArgoUML written by many peoplewithout pay, the coding style is not that

consistence. Make it more difficult to learn.

ArgoUML is a nice tool to work with, it is a good UML editor, and have a highly

modularizedUML editing tools that allow user to add new components,like new code

parsingmodule.However,what we intendedto do needto make many changesof basic

component,like UML metamodeland graphic framework. ExtendingArgoUML to have

versioning support is too difficult in a undergraduateproject. However I will highly

recommendsomeonelike to developan UML editor review ArgoUML first, becausethe

design is good.

Other than ArgoUML, some other opensource UML editor are reviewed during

implementation[30][31][32][33][34].Someof them are likely designed,but none of them

able to modify to a network available, collaborativeUML editor without heavy work.

Becausemost are heavily couple with the UML meta-model package and drawing

framework,but botharenot reallynetworkready.Thus,in conclusion,we needto build from

zero for a real time collaborative UML modeling tools for versioning support.

Personallyspeaking,I will think that it is worth to build a highly modularizedUML editor

from scratch, taking reference from the past projects[9].

63 Of 95

Department of Computing

10.2 Evaluation of XMI file format
TheXMI standardis extensiveandvery big. But in fact a undergraduateprojectwill not take

the benefit from XMI. Our project neither need to communicatethe model with other

commercetools like Rational Rose,nor need a file format that implement the complete

specificationof UML. All we really needis a XML structurefor further processing.So in

most case, the we spend a lot of time on XMI without real benefit.

Thus I will recommendusingsomeUML metadatapackagethat only implementpartly of

UML 1.3 up specification,but not thewhole XMI standard.Dingouml[27] is a goodchoice,

it implementthe completeUML 1.3 specification,but it is much more simple than XMI

packagelike NSUML. Thenwe canuseXMLEncoder[28]to encodean XML documentfor

us for further processing.

XMLEncoder is the new API from Java1.4, which provide a standardway to encoding

JavaBean to XML. The XML basically construct from the primitives of that JavaBean. Which

are very handle to use.

An example output of XMLEncoder

64 Of 95

Department of Computing

10.3 Evaluation of versioning collaboration methodology
In comparewith the collaborativeUML modelingtools using locking, versioninghavethe

following advantage:

1. The user don't needto lock any model before editing. This make the editing more

smooth,as repeatinglocking modelsandunlock modelsare tedious,especiallyfor a

large diagram.

2. The userdon't needto wait for the otherunlock the model.Becauselock andunlock

are tedious, so it is very easy for the designer forget unlock the model after editing. So

if the other designer want to edit that model, he need to remind that designer unlock the

model. This will becomea big problemif that situation repeatmany time. A even

worst caseis the developerforget to unlock the model beforeleaving his deskfor a

long time, e.g.: Go to lunch.

3. If the systemcrash,locking basecollaborativeUML editor may fail to unlock the

model. Versioning system don't have this problem, as no one lock the model.

4. In the implementationpoint of view, versioningsystemis easierto programto survive

if the servercrash,becauseversioningsystemdon'tneedto talk to serverat any time.

Thecommunicationtime is tunable,so if theclient know theservercan'tbereached,it

canjust try next time until it canmergewith the reposition.In locking system,if the

servercrash,how canyou requestlock that model?If you just let the client lock the

modelif servercrash,thenif two client lock andedit samemodel,how canthe server

merge them later?

Other than implementa not difficult algorithm, thereis no disadvantageof CVS at all, the

CPU usageis low, the performanceis good, the user just able to edit the diagramjust like

single user editor in most cases.In fact, the implementationof the algorithm is not too

difficult. I will highly recommend the future using versioning algorithm rather than locking.

65 Of 95

Department of Computing

10.4 Evaluation of using Jini
This part is harderto havea conclusion,in this project,jini proofedto helpus preventmany

problemsof traditional network environment,the lost of connectionof serverare easyto

solve,thearchitecturehelpuspreventthepossibleproblemsbroughtby synchronization,like

deadlock.

However, programming jini is much more time consumptionthan traditional network

programming. It is easy for the developer to model the system as client and server, rather than

a setof services.It is alsomoreeasyfor the developerto find suitablenetworkcomponent,

like a messaging server.

If the developer can easily identify the benefit that jini given match the project, then jini is the

solution. For example,if you needto programa hospital embeddedsystem,that needto

frequencyjoin andremovefrom thenetwork,theembeddedsystemneedto ableto re-config

automaticallyaccordingto the network joined, then jini is very suitable.In normal network

application,like a collaborativeUML editor,jini providebothadvantageanddisadvantage.If

the deadline allowed, it should good to implement using jini, but it is not all the cases.

66 Of 95

Department of Computing

11. Furthur Enchancement

11.1 New Design of the collaborative UML editor
After doing the final year project.I havesomeideaof how to model a collaborativeUML

editor

1. Thebackendprocesslike UML validationshouldbemovedto theserver.Somework like

UML meta-data management, archiving work and the project management should move to

the server to do. The clients should only consist of UI and drawing framework.

2. We canmakeour customwrapperof UML meta-modelanddrawingframework.Thuswe

can have change the UML meta-model and drawing framework.

3. Providea commandline UML processorbeforethe editor. If the designof a UML editor

is good, the componentof UML metamodelprocessingshouldautomatic,we canverify

this via implement a command line tool, like an UML validator.

11.2 Further improvement of the collaboration architecture
1. This projectonly implementthe engineof versioningcontrol.But the versioningsystem

still need other component, like versioning history management[29]

2. Integrates the versioning engine with WebDav, so that we can take the advantage of HTTP

connection, like SSL security connection.[29]

3. The versioningenginedoesnot know any informationaboutthe client in this release.So

somework like the userlike to seethe modification only belongto him is not possible

now.

4. User cannotcontrol the synchronizationof the ArgoUML and versioningengineat all.

Thenextreleaseshouldaddsomecontrol for theuser,like theusershouldableto prevent

his work merge with versioning engine if he want.

67 Of 95

Department of Computing

11.3 The Improvement of versioning algorithm
1. Theversioningalgorithmcanbe improvedto no needto lock thewholemodel.Currently

thesystemjust assume2 itemsaredifferenceandreportconflict if bothserverversionand

clientsversionandlater thanthe last synctime. That mean2 userediting the samebasic

element,e.g.The nameof model.However,the locking make3rd useris not ableto edit

other elements in that model. e.g.: he cannot model the stereo type of that class.

2. The locking canbe refine to a multiple level locking. We makerefine the locking to edit

lock, deletelock andaddinglock. For someevent,we just needto lock the modelbeing

delete,but ableto addsmallerelements.For example,if thereareconflict of the nameof

an operation, it should be ok for other user to add the stereo type of that operation.

3. For thesituationthat2 useredit thesamediagramin start.But, aftersometime, for some

reason,theyneedto edit 2 diagramindividual. We canusetheversioningalgorithmto do

the merging.But it is betterto apply the algorithmin the XML savefile ratherthanthe

object.

68 Of 95

Department of Computing

12. Reference:

1

jGuru.com.WhyshouldI consideroptimisticversuspessimisticapproachesto database

updates. available online: http://www.jguru.com/faq/view.jsp?EID=479243

2

The O'Reilly Network. Postgresql'sMulti-Version Concurrency Control. available

online http://www.onlamp.com/lpt/a//onlamp/2001/05/25/postgresql_mvcc.html

3

JungkyuRho andChisuWu. An Efficient VersionModel of SoftwareDiagrams. IEEE.

Proceedings of APSEC '98, available online: http://selab.snu.ac.kr/~jkrho/apsec98.html

4

JonMunsonandPrasunDewan.A Flexible ObjectMerging Framework. ACM CSCW

Proceedings, Oct 1994, available online:

http://www.cs.unc.edu/~dewan/abstracts/merge.html

5

Sun microsystems. Jini network technology overview, available online:

http://www.sun.com/jini/overview

6 Source of netbeans, available online: http://www.netbeans.org/devhome/download.html

7 Source of jedit, available online: http://jedit.sourceforge.net/index.php?page=download

8 Netborne, available online: http://www.digitalschemes.com/

9

Paul Lee, Web base real time collaborative UML editor, Available online:

http://ils.comp.polyu.edu.hk/fypd/2000/6110/96258637d.pdf

10

Infoworld, ArgoUML offers unique decision support, Available online:

http://www.infoworld.com/articles/ec/xml/00/04/17/000417ecargo.xml

11

ObjectManagementGroup, CORBA, XML andXMI ResourcePage,Availableonline:

http://www.omg.org/technology/xml

12

JunichiSuzuki,UML exchangeformat andPatternmarkuplanguage,availableonline:

http://www.yy.ics.keio.ac.jp/~suzuki/project/uxf

13

NormandRivard, UML-Xchange,availableonline: http://sourceforge.net/projects/uml-

xchange

14

Object by Design, Transforming XML to HTML, available online:

http://www.objectsbydesign.com/projects/xmi_to_html.html

15

Dr Perdita Stevens, XMI Hackers' Homepage, available online:

http://www.dcs.ed.ac.uk/home/pxs/XMI

16

Jim Huggins, Abstract State Machines: UML State Machines, available online:

http://www.eecs.umich.edu/gasm/papers/umlverif.html

69 Of 95

Department of Computing

17

Ho, Wai Ming; Je'ze'quel,Jean-Marc;Le Guennec,Alain; Pennaneac'h,Franc,ois,An

Extendible UML Transformation Framework, available online:

http://www.inria.fr/rrrt/rr-3775.html

18

Alan Dix, Modelling Versions in Collaborative Work, available online:

http://www.comp.lancs.ac.uk/computing/users/dixa/papers/version-PSE97

19

Alan Dix, Version Control for Asynchronous Group Work, available online:

http://www.comp.lancs.ac.uk/computing/users/dixa/papers/version92/version92.html

20

An UML validation framework, vUML, available online:

http://www.abo.fi/~iporres/vUML/vUML.html

21 GEF: Java Library for Connected Graph Editors, available online: http://gef.tigris.org

22

ArgoUML: A modelling tool for design using UML, available online:

http://argouml.tigris.org

23

Novosoft, NSUML: Novosoft UML Library for Java, available online:

http://nsuml.sf.net

24

Java.sun.com, Java metadata Interface, available online:

http://java.sun.com/products/jmi

25

Miro Jurisic, UnderstandingCVS: A brief introduction to the conceptsof CVS,

available

online:http://web.mit.edu/macdev/Development/Documentation/www/CVS%20Docume

ntation/Understanding%20CVS.html

26

Brian Berliner, CVS II: Parallelizing Software Development, available online:

http://www.fnal.gov/docs/products/cvs

27 Dingo, The free, open-source UML modeler, available online: http://www.dingouml.org

28

API document for XMLEncoder of JDK 1.4, available online:

http://java.sun.com/j2se/1.4/docs/api/java/beans/XMLEncoder.html

29

IETF, Versioning Extensions to WebDAV, available online:

http://www.ietf.org/rfc/rfc3253.txt

30 JUG - Java UML Generator, available online: http://jug.sourceforge.net

31 UML object modeller for Linux, available online: http://uml.sourceforge.net

32 Dia, a drawing program, available online: http://www.lysator.liu.se/~alla/dia

33 Quick UML for java, available online: http://sourceforge.net/projects/quj

34 UML Sculptor, available online: http://umlsculptor.sourceforge.net

70 Of 95

Department of Computing

35

Christian Heide Damm, Klaus Marius Hansen,Michael Thomsen,Michael Tyrsted,

Tool Integration:Experiencesand Issuesin Using XMI and ComponentTechnology,

available online: http://www.ideogramic.com/download/resources/toolsEurope2000.pdf

36

IBM.com, XMI Opens Application Interchange, available online: http://www-

4.ibm.com/software/ad/standards/xmiwhite0399.pdf

37

CoCons.org,Enhancinga UML Modelling Tool with Context-BasedConstraintsfor

Components, available online:

http://www.cocons.org/publications/CCL_plugin_for_ArgoUML.pdf

38

Gary Lam, A Frameworkfor an Agent-basedDevelopmentEnvironmentwith Jini /

JavaSpace -Internet Integrated Development Environment Framework(Internet-IDEF)

71 Of 95

Department of Computing

13. Appendices

13.1 Code snippets of core component

13.1.1 Code snippet of event sharing

Here is some code snippet of how to share the event:

13.1.1.1 Client side event sending example

The origin source are here:

http://gef.tigris.org/source/browse/gef/src/org/tigris/gef/base/ModeCreatePolyEdge.java?rev=

1.4&content-type=text/x-cvsweb-markup

The following code is written by my for event sharing, the java file is

org.tigris.gef.base.ModeCreatePolyEdge

 // Change the method that processing mouse release event.

 public void mouseReleased(MouseEvent me) {

 MouseEvent pressEvent;

 // Because in many case we need to pass 2 event for single

task, so we need to cache or make some mouse event ourselves.

 if(_pastMousePressEvent != null)

 pressEvent = new

MouseEvent(_pastMousePressEvent.getComponent(),

 _pastMousePressEvent.getID(),

 System.currentTimeMillis(),

 _pastMousePressEvent.getModifiers(),

 _pastMousePressEvent.getX(),

 _pastMousePressEvent.getY(),

 _pastMousePressEvent.getClickCount(),

 _pastMousePressEvent.isPopupTrigger()

);

 else

 pressEvent = new MouseEvent(me.getComponent(),

 me.getID(),

 System.currentTimeMillis(),

 me.getModifiers(),

 me.getX(),

 me.getY(),

 me.getClickCount(),

 me.isPopupTrigger()

);

 Object[] para = {pressEvent, getArg("edgeClass")};

72 Of 95

Department of Computing

 // Then broadcast the events to the other sides

 _client.broadcastRequest("mouseReleasedImpl",

"ModeCreatePolyEdge", para, me);

 // And then actually run the event handler.

 mouseReleasedImpl(me);

 }

The server is only a thin server, it receive the clients object, then passed the object to other

clients. Then the clients handle the events receive. There may be some work before handle

the event. Like initalize the eventListener factory.

13.1.1.2 Client side receive event example

The java file is org.tigris.gef.base.Client

 // Check if the type match

 if(sender.equals("ModeCreatePolyEdge") &&

type.equals("mouseReleasedImpl")) {

 Object[] paras = (Object[])para;

 MouseEvent args1 = (MouseEvent)event;

 MouseEvent args2 = (MouseEvent)paras[0];

 Class edgeClass = (Class)paras[1];

 for(int i=0; i<modeCreatePolyEdges.size(); i++) {

 if(/* find the correct object */) {

 // handle the event.

 (/* The object */).mouseReleasedImpl(args1, args2);

 flag = true;

 }

}

// If the correct object not find, we need to initalize it as

preprocessing

 if(!flag) {

 CmdSetMode csm = Globals.getCmdSetMode(edgeClass);

 csm.doIt();

 ((ModeCreatePolyEdge)Globals.mode()).mouseReleasedImpl(args1,

args2);

}

There are other possible events need to patch are:

1. Mouse actions in org.tigris.gef.base.ModeCreatePolyEdge

2. Deletion actions in org.argouml.uml.ui.ActionRemoveFromModel

73 Of 95

Department of Computing

13.1.2 Code snippet of features sharing

13.1.2.1 The thread periodic run to send model

The java file is org.argouml.kernel.SyncClient

 // Code that get all model in the system

 MutableGraphSupport gModel =
(MutableGraphSupport)Globals.curEditor().getGraphModel();

 HashMap modelMap = gModel.itemIndex;

 Client client = Client.getInstance();

 List modelList = new ArrayList(modelMap.keySet());

 HashMap sendMap = new HashMap();

 // Loop through every elements

 for(int i=0;i<modelList.size(); i++) {

 Object thisModel = modelList.get(i);

// skip working model to prevent IOException

 if(thisModel.equals(pb.getDetailsTarget()) ||
client.skipModel.contains(thisModel)) {

 System.out.println("skip "+thisModel+" at "+getClass());

 continue;

 }

 HashMap featuresMap = new HashMap();

 if(modelList.get(i) instanceof MClassifier) {

// Code to extract the model element of Classifier

 List features =
((MClassifier)modelList.get(i)).getFeatures();

 for(int j=0;j<features.size(); j++) {

 HashMap infoMap = new HashMap();

 ArrayList infoList = new ArrayList();

// Code to extract the model element of Attribute, child of
classifier

// Extract individual itemID, timestamp, of each element

 if(features.get(j) instanceof MAttribute) {

 MAttribute attr = (MAttribute)features.get(j);

 MModelElementImpl model =
(MModelElementImpl)attr;

 MStructuralFeatureImpl sfeature =
(MStructuralFeatureImpl)attr;

 infoMap.put("MAttribute", "");

 infoList.add("MAttribute");

 infoMap.put(attr.getName(), new
Long(model.setNameTime));

74 Of 95

Department of Computing

 infoList.add(attr.getName());

 infoMap.put(attr.getVisibility(), new
Long(model.setVisibilityTime));

 infoList.add(attr.getVisibility());

 infoMap.put(attr.getType().getName(), new
Long(sfeature.setTypeTime));

 infoList.add(attr.getType().getName());

 }

// Code to extract the model element of operation, child of
classifier

// Extract individual itemID, timestamp of each element

 else if(features.get(j) instanceof MOperation) {

 MOperation oper = (MOperation)features.get(j);

 MModelElementImpl model =
(MModelElementImpl)oper;

 MBehavioralFeatureImpl bfeature =
(MBehavioralFeatureImpl)oper;

 infoMap.put("MOperation", "");

 infoList.add("MOperation");

 infoMap.put(oper.getName(), new
Long(model.setNameTime));

 infoList.add(oper.getName());

 infoMap.put(oper.getVisibility(), new
Long(model.setVisibilityTime));

 infoList.add(oper.getVisibility());

 List para1 = oper.getParameters();

 ArrayList para2 = new ArrayList();

// Process the childs of operation, parameter

 for(int k=0;k<para1.size();k++) {

 MParameter mpara = (MParameter)para1.get(k);

 ArrayList paraInfo = new ArrayList();

 paraInfo.add(mpara.getKind());

 paraInfo.add(mpara.getType().getName());

 paraInfo.add(mpara.getName());

 para2.add(paraInfo);

 }

 infoMap.put(para2, new
Long(bfeature.setParameterTime));

 infoList.add(para2);

 }

 MModelElementImpl model =
(MModelElementImpl)features.get(j);

 Object[] infos= {infoMap, infoList};

 featuresMap.put(new Long(model.createTime), infos);

75 Of 95

Department of Computing

}

 }

 else if(modelList.get(i) instanceof MRelationship) {

 }

// Process the remaining element of Classifier

 MModelElementImpl model =
(MModelElementImpl)modelList.get(i);

 MStereotype stereotype = model.getStereotype();

 String stereoName = stereotype != null?
stereotype.getName(): null;

 Long lastSyncTime = (Long)lastSyncMap.get(model);

 if(lastSyncTime == null) lastSyncTime = new Long(0);

 Object[] para = {featuresMap, model.getName(), new
Long(model.setNameTime), stereoName, new Long(model.setSte

 model.getVisibility(), new Long(model.setVisibilityTime),
lastSyncTime};

 sendMap.put(modelMap.get(modelList.get(i)), para);

 lastSyncMap.put(model, new
Long(System.currentTimeMillis()));

 }

 if(pb.getProject() == null) continue;

 Object[] trashList =
pb.getProject().getTrashedFeature().toArray();

 Object[] para = {sendMap, trashList};

 broadcastRequest ("MergeFeature", "SyncClient", para, null);

// Wait for 10000 milli-second.

 do {

 Thread.sleep(10000);

 } while(client.RUN_FLAG);

 }

// Reset the connection for every un-expected exception

 } catch (Exception e) {

 if(e.getClass().getPackage().toString().indexOf("java.io")
< 0)

 e.printStackTrace();

 doDisconnect();

 connect();

 run();

 }

13.1.2.2 The merge of the details of the objects

The java file is org.argouml.uml.ui.Client

// Get the local models

76 Of 95

Department of Computing

 ArrayList slist = new ArrayList(gModel.itemIndex.keySet());

 Object[] para = (Object[])paras;

 HashMap cMap = (HashMap)para[0];

 Object[] trashedFeatures = (Object[])para[1];

 for(int i=0; i<slist.size(); i++) {

 MModelElementImpl model =

(MModelElementImpl)slist.get(i);

 Object id = gModel.itemIndex.get(model);

 Object[] modelPara = (Object[])cMap.get(id);

// skip working model to prevent IOException

 if(modelPara == null ||

model.equals(pb.getDetailsTarget())) {

 continue;

 }

// Merge the model one by one.

 mergeItem(model, modelPara, trashedFeatures);

 }

 public void mergeItem(MModelElementImpl model, Object[]

modelPara, Object[] trashedFeatures) {

 RUN_FLAG = true;

 HashMap featureMap = (HashMap)modelPara[0];

 String name = (String)modelPara[1];

 Long nameTime = (Long)modelPara[2];

 String stereo = (String)modelPara[3];

 Long stereoTime = (Long)modelPara[4];

 MVisibilityKind vis = (MVisibilityKind)modelPara[5];

 Long visTime = (Long)modelPara[6];

 mergeModel(model, name, nameTime, stereo, stereoTime, vis,

visTime, false);

 //Check if feature changed of a node

 if(model instanceof MClassifier) {

 MClassifier classifier = (MClassifier)model;

 deleteFeatures(classifier, trashedFeatures);

 mergeClassifier(classifier, featureMap);

 }

 if(model instanceof MRelationship){}

 RUN_FLAG = false;

 }

// Merge items other than classifer, relations, attribute and

operation

77 Of 95

Department of Computing

 public void mergeModel(MModelElementImpl model, String name,

Long nameTime, String stereo, Long stereoTime, MVisibilityKind vis,

Long visTime, boolean makeFlag) {

 if(model.setNameTime < nameTime.longValue() || makeFlag)

 model.setName(name);

 if(model.setVisibilityTime < visTime.longValue() ||

makeFlag)

 model.setVisibility(vis);

 if(model.setStereotypeTime < stereoTime.longValue() &&

stereo != null) {

 MStereotype stereotype = new MStereotypeImpl();

 stereotype.setName(stereo);

 stereotype.setNamespace(model.getNamespace());

 model.setStereotype(stereotype);

 }

 }

 public void mergeAttribute(MClassifier classifier, Map infoMap,

List infoList, Long createTimeID) {

 MModelElementImpl model = getExistFeature(classifier,

createTimeID);

 boolean makeFlag = false;

 MAttribute attr = null;

// Make that element if has not create before, otherwise modify it

 if(model == null) {

 attr = classifier.getFactory().createAttribute();

 model = (MModelElementImpl)attr;

 makeFlag = true;

 }

 else {

 attr = (MAttribute)model;

 }

 MStructuralFeatureImpl sfeature =

(MStructuralFeatureImpl)attr;

 mergeModel(model, (String)infoList.get(1),

(Long)infoMap.get(infoList.get(1)), null, new Long(0),

(MVisibilityKind)infoList.get(2),

(Long)infoMap.get(infoList.get(2)), makeFlag);

 if(sfeature.setTypeTime < (

(Long)infoMap.get(infoList.get(3))).longValue() || makeFlag) {

 String typeName = (String)infoList.get(3);

 MClassifier mtype = p.findType(typeName);

78 Of 95

Department of Computing

 attr.setType(mtype);

 }

 if(makeFlag) {

 ((MModelElementImpl)attr).createTime =

createTimeID.longValue();

 classifier.addFeature(attr);

 }

 }

 public void mergeOperation(MClassifier classifier, Map infoMap,

List infoList, Long createTimeID) {

 MModelElementImpl model = getExistFeature(classifier,

createTimeID);

 boolean makeFlag = false;

 MOperation oper = null;

// Make that element if has not create before, otherwise modify it

 if(model == null) {

 oper = new MOperationImpl();

 model = (MModelElementImpl)oper;

 makeFlag = true;

 }

 else {

 oper = (MOperation)model;

 }

 MBehavioralFeatureImpl bfeature =

(MBehavioralFeatureImpl)oper;

 mergeModel(model, (String)infoList.get(1),

(Long)infoMap.get(infoList.get(1)), null, new Long(0),

 (MVisibilityKind)infoList.get(2),

(Long)infoMap.get(infoList.get(2)), makeFlag);

 if(bfeature.setParameterTime < (

(Long)infoMap.get(infoList.get(3))).longValue() || makeFlag) {

 List curParas = oper.getParameters();

 for(int k=0;k<curParas.size();k++) {

 oper.removeParameter((MParameter)curParas.get(k));

 }

 ArrayList newParas = (ArrayList)infoList.get(3);

 for(int k=0;k<newParas.size(); k++) {

 ArrayList paraInfo = (ArrayList)newParas.get(k);

 String typeName = (String)paraInfo.get(1);

79 Of 95

Department of Computing

 MClassifier mtype = p.findType(typeName);

 MParameter mpara = new MParameterImpl();

 mpara.setType(mtype);

 mpara.setKind((MParameterDirectionKind)paraInfo.get(

0));

 mpara.setName((String)paraInfo.get(2));

 oper.addParameter(mpara);

 }

 }

 if(makeFlag) {

 ((MModelElementImpl)oper).createTime =

createTimeID.longValue();

 classifier.addFeature(oper);

 }

 }

 public void mergeClassifier(MClassifier classifier, Map

featureMap) {

 ArrayList timeList = new ArrayList(featureMap.keySet());

 for(int j=0; j<timeList.size(); j++){

 Long createTime = (Long)timeList.get(j);

 Object[] infos = (Object[])featureMap.get(createTime);

 if(infos == null) {

 System.out.print(classifier);

 System.out.print(featureMap);

 }

 Map infoMap = (HashMap)infos[0];

 List infoList = (ArrayList)infos[1]; //We need this to

keep getting the needed information in sequence

 if(infoList.get(0).equals("MAttribute")) {

 mergeAttribute(classifier, infoMap, infoList,

createTime);

 }

 else if(infoList.get(0).equals("MOperation")) {

 mergeOperation(classifier, infoMap, infoList,

createTime);

 }

 }

 }

// Delete the features that have delete at other sides

80 Of 95

Department of Computing

 public void deleteFeatures(MClassifier classifier, Object[]

trashedFeatures) {

 if(trashedFeatures == null) return;

 List sfeatures = classifier.getFeatures();

 for(int j=0; j<sfeatures.size(); j++){

 MModelElementImpl model =

(MModelElementImpl)sfeatures.get(j);

 for(int i=0; i<trashedFeatures.length; i++){

 if(((Long)trashedFeatures[i]).longValue() ==

model.createTime) {

 classifier.removeFeature((MFeature)model);

 }

 }

 }

 }

 public MModelElementImpl getExistFeature(MClassifier classifier,

Long createTime) {

 List sfeatures = classifier.getFeatures();

 MModelElementImpl model = null;

 for(int i=0; i<sfeatures.size(); i++) {

 if(createTime.longValue() == (

(MModelElementImpl)sfeatures.get(i)).createTime) {

 model = (MModelElementImpl)sfeatures.get(i);

 break;

 }

 }

 return model;

 }

}

81 Of 95

Department of Computing

13.1.3 Code snippet of new versioning algorithm

Here is the code snip of the core logic:

// The method to merge the model

 public synchronized Object[] MergeModel (Object paras,

ServerThread sender) {

 Object[] para = (Object[])paras;

 HashMap cMap = (HashMap)para[0];

 ArrayList clist = new ArrayList(cMap.keySet());

// put the new added model in the repository

 if(modelMap == null) {

 modelMap = new HashMap();

 modelMap.putAll(cMap);

 }

 else {

 modelList = new ArrayList(modelMap.keySet());

 for(int i=0; i<clist.size(); i++) {

 modelID = (Integer)clist.get(i);

 if(!modelList.contains(modelID)) {

 modelMap.put(modelID, cMap.get(modelID));

 }

 }

 }

 modelList = new ArrayList(modelMap.keySet());

 for(int i=0; i<modelList.size(); i++) {

 modelID = (Integer)modelList.get(i);

 Object[] modelPara = (Object[])cMap.get(modelID);

 Object[] model = (Object[])modelMap.get(modelID);

 conflictFind = false;

 conflictObj = (Object[])model.clone();

// Delete the removed model from the repository

 if(modelPara == null) {

 modelMap.remove(modelID);

 continue;

 }

 HashMap featureMap = (HashMap)modelPara[0];

 String name = (String)modelPara[1];

 Long nameTime = (Long)modelPara[2];

 String stereo = (String)modelPara[3];

82 Of 95

Department of Computing

 Long stereoTime = (Long)modelPara[4];

 MVisibilityKind vis = (MVisibilityKind)modelPara[5];

 Long visTime = (Long)modelPara[6];

 lastSyncTime = ((Long)modelPara[7]).longValue();

// Merge the model element changed of a node

 model = mergeModel(model, name, nameTime, stereo,

stereoTime, vis, visTime, false);

// Merge the features changed of a node

 if(featureMap.size() > 0){

 model[0] = mergeFeatures((HashMap)model[0],

featureMap);

 }

// Tell all the other client to lock that model

 if(conflictFind){

 ArrayList list = new ArrayList();

 list.add("Conflict");

 list.add("SimpleServer");

 list.add(conflictObj);

 list.add(modelID);

 sender.BroadCastToClient(list);

 System.out.println(list+" sent");

 }

 modelMap.put(modelID, model);

 }

 Object[] returnObject = {modelMap, para[1]};

 return returnObject;

 }

// Method to merge the basic model of a model

 public Object[] mergeModel(Object[] model, String name, Long

nameTime, String stereo, Long stereoTime, MVisibilityKind vis, Long

visTime, boolean makeFlag) {

 String sname = (String)model[1];

 Long snameTime = (Long)model[2];

 String sstereo = (String)model[3];

 Long sstereoTime = (Long)model[4];

 MVisibilityKind svis = (MVisibilityKind)model[5];

 Long svisTime = (Long)model[6];

83 Of 95

Department of Computing

// conflict case, both latest modify time of repository and client

and later than last communication time

 if(lastSyncTime < nameTime.longValue() && lastSyncTime <

snameTime.longValue() && sname != null && !sname.equals(name) &&

!sname.equals("") && !name.equals("")) {

 conflictObj[1] = name + "\n ##name confliction: " +

model[1];

 conflictObj[2] = new Long(System.currentTimeMillis());

 conflictFind = true;

 }

// If only client time is later than last communication time, update

repository version

 else if(lastSyncTime < nameTime.longValue() || sname ==null)

{

 if(name != null && !name.equals("")) {

 model[1] = name;

 model[2] = new Long(System.currentTimeMillis());

 }

 }

//Merge stereo type

 if(lastSyncTime < stereoTime.longValue() && lastSyncTime <

sstereoTime.longValue() && sstereo != null &&

!sstereo.equals(stereo)) {

 conflictObj[1] = model[1] + "\n ##stereotype

confliction: " + stereo;

 conflictObj[2] = new Long(System.currentTimeMillis());

 conflictFind = true;

 }

 else if(lastSyncTime < stereoTime.longValue() ||

sstereo==null) {

 model[3] = stereo;

 model[4] = new Long(System.currentTimeMillis());

 }

//Merge visiability

 if(lastSyncTime < visTime.longValue() && lastSyncTime <

svisTime.longValue() && svis != null && !svis.equals(vis)) {

 conflictObj[1] = model[1] + "\n ##visibile confliction:

" + vis;

 conflictObj[2] = new Long(System.currentTimeMillis());

 conflictFind = true;

 }

 else if(lastSyncTime < visTime.longValue() || svis==null) {

84 Of 95

Department of Computing

 model[5] = vis;

 model[6] = new Long(System.currentTimeMillis());

 }

 return model;

 }

// Get the last modification time of a feature, choose the most last

modification time of an element belong to this feature

 public long getLastModifyTime(HashMap infoMap, List infoList) {

 long max = 0;

 for(int i=1;i<=3;i++){

 long value =

((Long)infoMap.get(infoList.get(i))).longValue();

 if(value > max) {

 max = value;

 }

 }

 return max;

 }

 public HashMap mergeFeatures(HashMap sfeatureMap, HashMap

cfeatureMap) {

 ArrayList ctimeList = new ArrayList(cfeatureMap.keySet());

 ArrayList stimeList = new ArrayList(sfeatureMap.keySet());

 for(int j=0; j<stimeList.size(); j++){

 Long createTime = (Long)stimeList.get(j);

 Object[] infos = (Object[])cfeatureMap.get(createTime);

// remove feature that removed in the client

 if(infos == null);

 sfeatureMap.remove(createTime);

 }

 for(int j=0; j<ctimeList.size(); j++){

 Long createTime = (Long)ctimeList.get(j);

 Object[] cinfos = (Object[])cfeatureMap.get(createTime);

 Object[] sinfos = (Object[])sfeatureMap.get(createTime);

//If not find at server items, mean that that feature need to add

 if(sinfos == null) {

 sfeatureMap.put(createTime, cinfos);

 continue;

85 Of 95

Department of Computing

 }

// if both have that item, we need to see if conflict arise

 HashMap cinfoMap = (HashMap)cinfos[0];

 List cinfoList = (ArrayList)cinfos[1];

 HashMap sinfoMap = (HashMap)sinfos[0];

 List sinfoList = (ArrayList)sinfos[1];

 long cLastModifyTime = getLastModifyTime(cinfoMap,

cinfoList);

 long sLastModifyTime = getLastModifyTime(sinfoMap,

sinfoList);

// Merge features, similar to basic element of UML model

 if(lastSyncTime < cLastModifyTime && lastSyncTime <

sLastModifyTime && lastSyncTime > 0) {

 HashMap conflictMap = (HashMap)conflictObj[0];

 ArrayList conflictList = new

ArrayList(conflictMap.keySet());

 Object[] conflictInfos =

(Object[])conflictMap.get(createTime);

 HashMap conflictInfoMap = (HashMap)conflictInfos[0];

 ArrayList conflictInfoList =

(ArrayList)conflictInfos[1];

 String oldName = (String)sinfoList.get(1);

 Object oldValue = sinfoMap.get(oldName);

 String newName = "### conflict: "+oldName;

 conflictInfoList.remove(1);

 conflictInfoMap.remove(oldName);

 conflictInfoList.add(1, newName);

 conflictInfoMap.put(newName, oldValue);

 conflictMap.put(createTime, cinfos);

 conflictMap.put(new

Long(System.currentTimeMillis()), sinfos);

 conflictFind = true;

 }

 else if(lastSyncTime < sLastModifyTime||sinfoMap.size()

== 0) {

 sfeatureMap.put(createTime, cinfos);

 }

86 Of 95

Department of Computing

 }

 return cfeatureMap;

 }

}

87 Of 95

Department of Computing

13.2 Introduction to CVS

13.2.1 What is CVS?[25]

This part is quote from the reference,ConcurrentVersionsSystem,or CVS, is a revision

control system that

1. Allows multiple developersto collaborateon softwareprojects,while providing much

helpin keepingtheprojectsin a consistentstatealthoughtheymaybemanipulatedby any

number of developers at any given time

2. Allows a developeror developersto maintainversionhistory of a softwareproject and

track changes made to the project over time

3. Allows developersto maintainseveralconcurrentversionsof a project,while providing

help in moving changesamongthoseversions,andpreservingconsistencyof individual

versions.

13.2.2 Basic ideas behind CVS

Two principal partsof a CVS systemare the repositoryand working files. The repository

resideson a CVS server,andcontainshistory andversioninformation aboutall files in the

repository.Working files resideon developers'machinesand only representa particular

revision of each file.

Supposea single developer,Alice, is working on a project on her developmentmachine.

Then the picture looks like this:

88 Of 95

Department of Computing

The relation of repository and working files

Whenevershemakeschangesto somefile in theproject,Alice wantsto recordthosechanges

in therepositorysothatthereis a recordof herprogresslater.Theactof sendingthechanges

made to working files to be incorporatedinto the repository is called 'committing the

changes'.Alice commitsher changesevery day beforesheleaveswork. After a while, the

projecthistory will grow, andthe repositorywill containinformationaboutpastversionsof

all the files that are part of the project:

Thus we seethe simplestform of CVS interaction:modify - commit - repeat.We will see

later how this model will haveto be somewhatextendedlater to cover for more complex

scenarios.

As theprojectprogresses,Alice mayneedto addor removesomefiles. Shecando so using

the CVS commands'add' and 'remove',which schedulethe files for addition or removal.

However, the changes will not be propagated to the repository until Alice commits the files.

Thus we see the first important rule of CVS:

The repository is ALMOST never modified until you commit your changes

Exceptions to this rule are rare, and will be pointed out as they arise.

89 Of 95

Department of Computing

13.2.3 Getting slightly more complex: multiple developers

Someday,anotherdeveloper,Bob, is assignedto work on Alice'sproject.Theynowbothuse

CVS to work the project. The picture is now like this:

Multiple user editing one document with CVS

They happily work on two separateparts of the project, until someday Alice decidesto

modify the file called Conflict.c. Unbeknownstto her, Bob hasalreadymodified the same

file, andcommittedhis changes.Alice makesher modificationsto the file, andattemptsto

commit her changes. However, she gets the following message from CVS:

cvs server: Up-to-date check failed for `Conflict.c'

90 Of 95

Department of Computing

cvs [server aborted]: correct above errors first!

Alice realizesfrom this cryptic messagethat the problem is that her working version of

Conflict.cwasnotup-to-datebeforeshehadmodifiedit. Sheneedsto updateherworking file

to the most recentversion of Conflict.c from the repository,before she can commit her

changes.Sheusesthe CVS 'update'commandto updateher working files, andafter that she

happily commits her changes.

The “Copy-Modify-Merge” flow diagram of CVS

Clearly,Bob andAlice needto modify their working patternto accommodatefor thefact that

theymight beworking on thesamefiles from time to time.Theychangetheir useof CVS to:

91 Of 95

Department of Computing

modify - update- commit - repeat.That way theyarealmostcompletelysurethat,whenever

they attempt to commit changes, they will be successful.

13.2.4 Fighting for control: merge conflicts

Soon,Alice and Bob discoverthat they were too hopeful the last time they revisedtheir

habits. One day, Alice diligently attempted to update her local files, only to get an error:

Merging differences between 1.11 and 1.12 into Conflict.c

rcsmerge: warning: conflicts during merge

cvs server: conflicts found in Conflict.c

C Conflict.c

After briefly consulting with Bob, Alice realizes that she modified the same portion of the file

asBob,andthatCVS decidedthattheir setsof changeswereincompatible.However,looking

inside her local version of Conflict.c, Alice finds the following:

UInt32

CountStringsInList (

 Ptr inData)

{

<<<<<<< Conflict.c

 /* Alice: added the assertion */

 AssertIf_ (Ptr == nil);

=======

 /* Bob: ignore nil input */

 if (Ptr == nil) return;

>>>>>>> 1.12

 return *(UInt32*)inData;

}

After a brief discussionwith Bob (during which he is sentto readsomebooksaboutwriting

solid code), they agree that Alice used the correct approach. Alice modifies the file to read:

UInt32

CountStringsInList (

 Ptr inData)

{

 /* Alice: added the assertion and educated Bob*/

92 Of 95

Department of Computing

 AssertIf_ (Ptr == nil);

 return *(UInt32*)inData;

}

after which she successfully commits her changes.

Having been through this, Alice and Bob learn some important facts about CVS update:
� if CVS updateencountersa conflict andis thereforeunableto updatethefile, it will mark

the conflict in the file with 'conflict markers'(like in the aboveexample).Fortunately,

conflict markers do not compile in any known language, so they are hard to miss.
� if a CVS updatefails, CVS will backupthe working file beforeupdate- so that you can

easilyrevert to it if you decidethat you want to abandontheupdate.The backupfile will

be placedin the samefolder as the file beingupdated,and it will inevitably havea bad,

confusing filename, such as ".#Conflict.c.1.11".

As a result,theymodify theywork flow to be:modify - update- resolveconflicts - commit -

repeat.

93 Of 95

Department of Computing

The “Copy-Modify-Merge” flow diagram with conflict resolve of CVS

13.2.5 Checkout: the missing link

Onething that this explanationsweptunderthe rug wasthe very importantquestionof how

Alice createdthe initial copyof herworking files. Theinitial act of acquiringa freshcopyof

the files from the repositoryis calledcheckout,and is usedonly to createa completenew

copyof working files on a developer'smachine.Evenif Alice or Bob removesome(but not

all) the working files andfolders on their developmentmachines,they needto perform an

update (and not checkout) to get new copies from the repository.

94 Of 95

Department of Computing

13.2.6 Conclusion

The model that hasbeendeveloperabove(modify - update- resolveconflicts - commit -

repeat)doesnot requirefurther modificationsto be usablein practice.Somepeoplemight

prefer to modify it slightly, but the basic ideas contained in this model always remain.

For example,Alice might chooseto updateher working files eachmorningasshecomesto

work, work on them until the afternoon,and then commit all her changes;of course,

committingthechangeswill sometimescauseanup-to-datecheckto fail, soshewill haveto

updateher files againin order to commit,andpossiblyresolvesomemergeconflicts at that

time. However,sinceup-to-datefailuresarenot very frequent,andmergeconflicts areeven

less frequent, this way of using CVS is perfectly reasonable,and does not deviate

fundamentally from the modify - update - resolve conflicts - commit - repeat model.

95 Of 95

