
ebook

The Complete 
Software Engineer 
Technical Interview 
Guide:
Front-end, Back-end 
& Full Stack 
Engineer Edition



A technical interview is an opportunity as much as it is a challenge. Whether 
you’re early in your career or a seasoned engineer, it may be stressful if you 
feel unprepared. While the most important piece of these interviews is, of 
course, your technical skills, we’ve provided some strategies to put your best 
foot forward. 

After all, going in with confidence and preparation is the best way to ease 
those nerves and let your skills shine through. We’re not saying the interview 
will be easy, but we’re sure we can help make it easier. 

So, what is it you’re getting yourself into? Technical interviews put a (fun?) spin 
on the typical job search process. 

In many ways, they let you, as an engineer, do what you do best! They involve 
assignments and problems to solve, often mimicking what you might encounter 
in the role itself. Take them as your opportunity to “walk the walk” instead of 
just “talk the talk” (as you would in a behavioral interview). You get to show 
interviewers what you bring to the table. 

2Hired x Educative

https://hired.com/blog/candidates/30-behavioral-interview-questions-should-be-ready-to-answer/


In this guide we’ve collaborated with our partner 
Educative to bring you a full plan to level up your 
technical interview game. We’ll cover: 

1.	 Chapter 1: How to prepare for technical interviews 
Interviewing in the tech industry is a long process. You'll need a plan and a 
generous amount of time to prepare for a technical interview. Our example 
interview prep plan in this chapter will really come in handy!  

2.	 Chapter 2: What employers look for in technical interviews  
We review some of the major concepts and skills interviewers  
assess for from these three roles: front-end developers, back-end 
developers, and full stack developers.

3.	 Chapter 3: Common technical interview mistakes to avoid  
After spending time reviewing what you should do, we warn you on what  
to avoid. Find the top three technical interview no-nos in this chapter. 

4.	 Chapter 4: Helpful resources  
By this time, you're well on your way to nailing your next technical interview. 
Use our compilation of links to more resources to continue studying with a 
narrower focus. 
 
Let's get started!

3Hired x Educative

https://www.educative.io/hired-offer?siteCoupon=Educative-Hired?utm_source=customerio&utm_medium=hired&utm_campaign=swe-tech-int-guide


How to prepare for 
technical interviews
Interviewing in the tech industry is a long process. You'll need a plan and a 
generous amount of time to prepare for a technical interview. We recommend 
at least three months. That may seem long, but when you've put everything into 
practice, and your interviews start, you'll be happy you did it right. 

Technical interviews take many forms:

•	 Onsite interviews: A series of interviews at a company's office.

•	 Take-home assessments: Assignments delivered virtually and completed 
with a time limit. 

•	 Live virtual coding challenges: Your interviewer monitors you while you 
answer several technical questions virtually.

•	 Whiteboard challenges: A design-centric interview requiring you  
to draw on a whiteboard while talking through your design and  
thought process.

•	 Pair programming: Two programmers, one driver, and one navigator, take 
turns coding at the same workstation. The driver writes the code, while the 
navigator reviews it in real time. Typically, the interview candidate takes the 
role of the driver.

Some forms are harder than others, and your interviewers will likely exert some 
pressure, but not without reason. Most interviewers want you to succeed, but 
they must ensure you're the right person for the job. 

01 

Hired x Educative 4



Making your plan
Choose a programming language

Before you start prepping for a technical interview, you'll need to pick 
the language you want to use. Most interviewers are flexible, as long 
as you stick with your choice throughout the interview. It's not a good 
practice to switch languages halfway through.

Usually, your choice will directly relate to your role. 
For example:

•	 A front-end developer would probably use JavaScript.

•	 A back-end developer would use Python, Ruby, Java, PHP, etc.

•	 For full stack devs, it depends on your typical tech stack.  
Most stacks include JavaScript and a few other languages. 

5Hired x Educative

https://www.educative.io/blog/choose-a-web-development-tech-stack?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096


What and how to study 
No matter what kind of developer you are (or are applying to be) it is 
crucial that you create a strategic interview prep plan. There is a lot 
of material you need to cover so efficiency is a priority.

It can be hard knowing what topics you need to cover, and how best 
to retain all the information. Always start with the basics of your 
favorite programming language, and then work up to coding  
interview patterns.

Here's an example of an ideal interview prep timeline covering what 
and how to study.

Example plan
Depending on your experience, target role, and seniority, your plan may  
look different. This plan aims to be a reference point for most software 
engineering disciplines.

Week 1 
Brush up on the basics of your chosen language. 

Many technical interviews start with easy questions to raise the candidate's 
confidence. Don't let something simple at the beginning trip you up down  
the line! 

Topics to cover:

•	 Splitting strings

•	 Parsing CSV or text files

•	 Declaring and using 2D arrays

•	 Reading and writing to and from files

•	 Processing command line arguments

Hired x Educative 6

https://www.educative.io/blog/leetcode-vs-educative?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/blog/coding-interview-leetcode-patterns?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/blog/coding-interview-leetcode-patterns?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096


Weeks 2 and 3 
Review data structures and algorithms. 

The more difficult questions in your interview will likely stem from these topics. 
Data structures and algorithms are the core of most high-level computer 
science concepts. It's entirely possible that you haven't thought about them 
since school, but they are useful in coding interviews.

Pay particular attention to Big O notation and other practices for 
complexity analysis.

Weeks 4 and 5 
Practice with data structures and algorithms.

As you're reviewing the basics of data structures and algorithms, start 
practicing simple problems with the resources listed below. Reviewing the 
basics will help you internalize these concepts and tackle more difficult 
problems later. 

Topics to cover:

•	 Arrays

•	 Remove even integers from an array

•	 Merge two sorted arrays

•	 Find the first non-repeating integer in any array

•	 Linked Lists

•	 Find the length of a linked list

•	 Search in a singly linked list

•	 Reverse a linked list

•	 Find the middle value of a linked list

Hired x Educative 7

https://www.educative.io/blog/a-big-o-primer-for-beginning-devs?eid=5082902844932096


•	 Stacks/Queues

•	 Sort values in a stack

•	 Implement two stacks using one array

•	 Trees

•	 Find the minimum value in a binary search tree

•	 Find the height of a binary tree

•	 Find kth max value in a binary search tree

•	 Graphs

•	 Implement breadth-first search

•	 Implement depth-first search

•	 Tries

•	 Find the total number of words in a trie

•	 Heaps

•	 Find k smallest elements in a list

•	 Find k largest elements in an array

With the following hands-on, interactive courses, you can review and practice 
solving challenges with common data structures and the most important 
algorithms in a language of your choice.

•	 Data Structures for Coding Interviews in Python

•	 Algorithms for Coding Interviews in Python

•	 Data Structures for Coding Interviews in Java

•	 Algorithms for Coding Interviews in Java

•	 Data Structures for Coding Interviews in C++

•	 Algorithms for Coding Interviews in C++

Hired x Educative 8

https://www.educative.io/courses/data-structures-coding-interviews-python?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/courses/algorithms-coding-interviews-python?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/courses/data-structures-coding-interviews-java?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/courses/algorithms-coding-interviews-java?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/courses/data-structures-coding-interviews-cpp?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/courses/algorithms-coding-interviews-cpp?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096


Weeks 6, 7, and 8 
Coding interview practice.

By this point, you should be breezing through easier practice problems.  
Next, consider the problems interviewers are actually likely to ask.

Best practices:

•	 Time yourself. Try to solve your problem in 20 to 30 minutes, but don't be 
discouraged if some questions take longer at first.

•	 Think about the runtime and memory complexities of your solutions.  
Your interviewers will likely want you to articulate these complexities and 
how to optimize them.

•	 Work on problems using coding interview patterns. Almost all questions for 
a coding interview are built on patterns that serve as a blueprint for solving 
related problems.

Weeks 9 and 10 
System Design Interviews.

System Design Interviews (SDIs) are increasingly common in many software 
engineering interviews. These interviews are important because they help 
determine your engineering level. Many interviewers use the SDI to filter 
candidates to positions of appropriate seniority.

Most SDIs will ask you to design a large-scale web service. Typically, these 
systems mimic popular real-world applications so applicants can easily 
understand the functional and nonfunctional requirements.

SDIs are so important that we'll return to them after this example plan.

Hired x Educative 9

https://www.educative.io/blog/coding-interview-leetcode-patterns?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096


Week 11 
Concurrency and multithreading.

Interviewees aiming for a senior or staff engineering role especially should 
consider these concepts. 

Example questions:

•	 What is a BlockingQueue?

•	 What are some differences between a process and a thread?

•	 How can you interrupt a running thread in Java?

Week 12 
Object-oriented design.

Acknowledging how systems designed with an object-oriented approach work 
will help make you a better programmer and candidate. It's worth learning the 
fundamentals of object-oriented design and applying them to solving  
real-world design problems.

Example designs to consider:

•	 Design an ATM

•	 Design an elevator

•	 Design a parking system

Hired x Educative 10

https://www.educative.io/blog/java-multithreading-and-concurrency-what-to-know-for?eid=5082902844932096
https://www.educative.io/courses/grokking-the-low-level-design-interview-using-ood-principles?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/courses/grokking-the-low-level-design-interview-using-ood-principles?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096


Not vying for a senior position?

If you don't anticipate questions about multithreading, concurrency, or object-
oriented design, consider preparing for the behavioral interview. 

Although potentially less overwhelming than a technical interview, the behavioral 
interview is still critically important in getting that offer letter. Practicing mock 
behavioral questions requires less technical attention than relearning computer 
science basics. You can also learn patterns for behavioral questions and 
strategies for answering each type. Your preparation will pay off when you sit for 
the real thing.

The behavioral interview will vary based on the company. It's good to study the 
company's values and the principles they look for in an employee.

11Hired x Educative

https://www.educative.io/blog/behavioral-interviews-how-to-prepare-and-ace-interview-questions?eid=5082902844932096
https://hired.com/blog/candidates/30-behavioral-interview-questions-should-be-ready-to-answer/
https://hired.com/blog/candidates/30-behavioral-interview-questions-should-be-ready-to-answer/
https://www.educative.io/courses/grokking-the-behavioral-interview?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096


System Design Interviews

SDIs can determine your level, but they are not just for 
senior developers.

Entry-level engineers: At this level, engineers have a narrow focus 
on a few different software components and how they interact with 
each other.

Senior engineers: They have a more holistic view of the software 
system they’re working on, and can describe various scenarios from 
end-to-end. They can explain how each scenario is executed, give 
concrete examples, and offer ways to improve the resiliency of  
a system.

Staff engineers: Engineers at this level are capable of everything 
mentioned above, but they also monitor the software system over  
the course of its entire lifetime. By considering the architecture’s 
ability to sustain and support growth, they plan how a system evolves 
and scales.

12Hired x Educative



What is an interviewer looking for?

Interviewers are looking for hireable signals. This may be especially 
true in an SDI. Unlike in other interviews, the interviewer will expect you 
to lead the System Design conversation.

Important hireable signals to send:

•	 Design ability: How well can you break a large system down into 
necessary components? 

•	 Thought process: How do you solve problems to satisfy functional 
and non-functional requirements while bound by real-world 
constraints?

•	 Communication and leadership: How well can you communicate 
your ideas and designs?

•	 User experience: Do you understand how certain design choices 
affect the user? Do you iterate on your design with the intent of 
improving the UX?

What does a System Design Interview look like?
As mentioned earlier, you will be driving the SDI conversation. 
Knowing what to expect is imperative, as is going in with a strategy. 
Below is an 8-step framework for breaking down the interview and 
solving any SDI question.

Hired x Educative 13



The 8-part RESHADED method:

1. Requirements
2. Estimation
3. Storage schema (optional)
4. High-level design
5. APIs
6. Detailed design
7. Evaluation
8. Distinctive component/feature

System Design Interview Question
Solve Any

Step 1: Requirements
Gather functional & 
non-functional requirements

Consider: 
 • System goals
 • Key features
 • System constraints
 • User expectations

Building Blocks Glossary:

Domain Name System: Maps domain names to IP 
addresses.

Load Balancers: Distributes client requests among 
servers.

Databases: Stores, retrieves, modifies, & deletes 
data.

Key-Value Store: Stores data as key-value pairs.

Content Delivery Network: Distributes in-demand 
content to end users.

Sequencer: Generates unique IDs for events & 
database entries.

Service Monitoring: Analyzes system for failures & 
sends alerts.

Distributed Caching: Stores frequently accessed 
data.

Distributed Messaging Queue: Decouples 
messaging producers from consumers.

Publish-Subscribe System: Supports asynchronous 
service-to-service communication.

Rate Limiter: Throttles incoming requests for 
services.

Blob Store: Stores unstructured data.

Distributed Search: Returns relevant content for 
user queries.

Distributed Logging: Enables services to log events.

Distributed Task Scheduling: Allocates resources to 
tasks.

Sharded Counters: Counts concurrent read/write 
requests.

Step 3: Storage schema (optional)*
Articulate data model 

Define: 
 • Structure of data
 • Tables to use
 • Type of fields in tables
 • Relationship between tables (optional)

*Relevant when you:
 • Expect highly normalized data 
 • Will store different parts of data in various formats
 • Face performance & efficiency concerns around storage

Step 5: APIs
Translate functional requirements into 
API calls

E.g.:
 • Requirement: Users should be  
  able to access all items
 • API call: GET / items

Step 6: Detailed design
• Improve high-level design
• Consider all non-functional    
 requirements & complete   
 design

(8*) Distinctive 
component/feature
Discuss a distinctive feature that 
meets requirements
 • E.g. Concurrency control in   
   high-traffic apps

* Timing varies. Best done after 
completing design (E.g. Step 6 & 7) 

Step 2: Estimation
Estimate hardware & infrastructure 
needed to implement at scale

Consider requirements for: 
 • Number of servers 
 • Daily storage 
 • Network 

Step 7: Evaluation
• Evaluate design against    
 requirements
• Explain trade offs & pros/cons   
 of different solutions
• Address overlooked design    
 problems 

Step 4: High-level design
• Build high-level design
• Choose building blocks to meet functional 
requirements

For each, identify:
 • How they work
 • Why they're needed
 • How they integrate 

This layered visual shows dependencies between 
building blocks. Blocks in lower layers support 
those above. 

Hired x Educative 14



What employers look for 
in technical interviews 

While we won't cover every possible topic or interview question you'll 
encounter, we will review some of the major concepts and skills that 
interviewers will want to assess for three roles. These should give you 
a general idea of what subjects to explore further. 

02

15Hired x Educative

https://www.educative.io/courses/web-development-interview-handbook?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096


Front-end developers
These developers must be fluent in HTML5, CSS3, and JavaScript.  
Beyond that, they should expect questions about modern web  
development frameworks, tooling, and libraries, and how to apply them 
to different projects. 

In addition, front-end developers should have a strong grasp of the  
best practices for implementing responsive design, accessibility, 
and cross-device compatibility. 

Be prepared to answer questions like:

•	 What are the most important principles of good front-end design?

•	 How do you optimize web pages for different devices? 

•	 What are some of the most common front-end development frameworks, 
and how would you choose one?

•	 What are some problems you've encountered while developing web pages, 
and how did you solve them?

Languages: HTML5, CSS3, JavaScript

Frameworks: React, Bootstrap, AngularJS, Vue.js, jQuery

Tools: Version control using Git and GitHub

Skills: Front-end architecture, responsive design, cross-device compatibility, 
web optimization

Hired x Educative 16



Back-end developers
These developers are largely responsible for the functionality of a web 
application. They are usually interviewed on their ability to set up servers and 
connect websites to databases using technologies like MySQL or MongoDB. 

These developers need to create robust, secure back-ends that can meet the 
requirements of their clients, so they should be aware of the tradeoffs of using 
different back-end technologies for performance, scalability, or ease of use. 

Back-end developers are also interviewed on APIs, webhooks, and other 
common tools. APIs are particularly important these days, as they allow 
websites to connect with various third-party services to provide additional 
functionality without writing any extra code.

Languages: PHP, Java, Python, Ruby, etc. Understanding HTML, CSS,  
and JavaScript is a plus, but not necessary.

Frameworks: Django, Laravel, Spring, Ruby on Rails, ASP.NET Core,  
ExpressJS, etc.

Databases: MySQL, MongoDB, PostgreSQL, etc.

Server handling: Cloud hosting, DNS hosting, Docker, Apache, Nginx, etc.

APIs: SOAP, REST, JSON, etc.

Tools: Version control using Git and GitHub

Computer science: Data structures like trees, queues, and stacks. Algorithms. 
Object-oriented programming (OOP) principles.

Be prepared to answer questions like:
•	 When would you use a relational database instead of a NoSQL database?

•	 What are some of the most important considerations when choosing a back-
end development framework?

•	 What are some of your favorite APIs to work with, and why?

•	 What is your preferred method for deploying web applications?

Hired x Educative 17



Full stack developers
These developers can design, build, test, and deploy web applications from 
start to finish. As such, developers capable of working on both the client side 
and server side will need to be familiar with all of the topics mentioned above. 

Full stack developers typically choose a technology stack that includes 
both a front-end framework and a back-end framework like MEAN (Mongo, 
Express, AngularJS, and Node.js) or Ruby on Rails.

Front-end frameworks: ReactJS, AngularJS, Bootstrap, etc.  
Back-end frameworks: Django, Rails, ASP.NET, Spring Boot, etc. 

Interview questions for full stack developers include the front-end and  
back-end in their scope but may focus more on design patterns, best 
practices, or stack-specific processes. 

Here are some examples of questions meant for a candidate who uses  
the LAMP (Linux, Apache, MySQL, and PHP) stack:

•	 How do you debug a PHP application?

•	 What are some tips for optimizing a LAMP deployment?

•	 What are some challenges you have encountered using Apache 
and MySQL?

•	 How would you design the front-end architecture for a 
LAMP application? 

18Hired x Educative



Common technical interview 
mistakes to avoid

Mistake 1: Coming unprepared

One of the biggest mistakes you can make before an interview is not 
preparing at all. Interviewers want to see candidates who express 
interest in what their company does.

•	 Familiarize yourself with the company's culture, mission,  
and values.

•	 Test out or use the company's product or service to see  
what you like or dislike about it.

•	 Learn about their interview process, as not all companies  
are alike!

03

19Hired x Educative

https://www.codinginterview.com/


Mistake 2: Not giving 
specific examples

After you've learned about the company's culture and values, 
practice applying the STAR (Situation, Task, Action, Result) method 
to each bullet point of your resume. While it's unnecessary to 
produce examples of every bit of code you've written in the past, you 
should still prepare to connect your answers to specific projects or 
challenges you've faced. This helps you illustrate your approach to 
problem-solving without wasting time. 

•	 Situation: Describe a specific situation and provide enough  
context for the interviewer to understand the circumstances.

•	 Task: Describe your responsibilities. What were you asked or 
expected to do, and why? 

•	 Action: Describe the actions you took, and how your contributions 
were impactful. 

•	 Result: Describe the outcome. Go over what happened, what 
was accomplished, and what you learned from the experience.  
Be prepared to answer follow-up questions.

20Hired x Educative

https://hired.com/blog/candidates/what-is-the-star-method-and-how-to-incorporate-into-your-interviews/


Mistake 3: Not asking questions

Interviewers assess your coding and problem-solving skills as 
well as your ability to work with others. Asking the right questions 
when you need clarification can show you are both resourceful and 
communicative when there are obstacles. Not asking questions can 
raise the risk of making faulty assumptions. 

Asking questions is especially important during System Design 
interviews where you must determine functional and non- 
functional requirements. 

Examples of questions to consider while designing a website  
or application:

•	 What are the constraints of this system? 

•	 How much traffic should this system be able to handle? 

•	 What are the availability and latency requirements? 

21Hired x Educative



Now that you've read this ebook, you're well on your way to nailing your next 
technical interview. Compiled below are links to more resources that will help 
you continue studying with a narrower focus.

Coding Interview Blogs

3 month coding interview preparation bootcamp
Why a strategic coding interview prep plan matters
The coding interview FAQ: preparation, evaluation, and structure
The insider's guide to algorithm interview questions

System Design Interview Blogs

The complete guide to the System Design Interview in 2023
Simplify system design interviews with the RESHADED approach
The top 6 system design interview mistakes to avoid

If you're ready to take your interview prep to the next level, here are some of 
our favorite courses to help you become an interview pro.

Learning Paths

Deep Dive into the System Design Interview
Ace the Front End Interview

Individual Courses

Web Development Interview Handbook
Grokking the Behavioral Interview
Grokking Coding Interview Patterns in Python
Grokking Coding Interview Patterns in JavaScript

Helpful resources04

Hired x Educative 22

https://www.educative.io/blog/coding-interivew-preparation-bootcamp?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/blog/strategic-interview-prep?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/blog/coding-interview-faq-preparation-guide?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/blog/algorithms-an-interview-refresher?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/blog/complete-guide-system-design-interview?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/blog/use-reshaded-for-system-design-interviews?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/blog/six-common-system-design-interview-mistakes?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/path/deep-dive-into-system-design-interview?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/path/ace-front-end-interview?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/courses/web-development-interview-handbook?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/courses/grokking-the-behavioral-interview?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/courses/grokking-coding-interview-patterns-pythonn?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096
https://www.educative.io/courses/grokking-coding-interview-patterns-javascript?utm_campaign=topic_interview_prep&utm_source=affiliate-link&utm_medium=ebook&utm_content=&utm_term=&eid=5082902844932096


After the interview
While you deserve a big pat on the back post-interview, we understand it can 
still be a stressful time. It’s tricky to balance letting go of possible mistakes 
while also learning to improve. Don’t berate yourself over what you didn’t know.

If there’s a critical gap between what you know and what the job requires, 
perhaps it wasn’t the right fit. If you are concerned about silly mistakes, 
remember that interviewers are human—and they know you are too.

Take every technical interview as a learning experience. If you encountered 
a problem that stumped you, work it out on your own time to figure out why 
it was difficult. Collaborate with others informally or online to learn from their 
perspectives and experience. 

We also encourage you to ask for feedback on your technical evaluation 
after a potential employer makes a hiring decision. This is another chance to 
understand strengths and opportunities for improvement (It also highlights 
your eagerness to learn and ability to absorb feedback.).

Don’t forget to send your interviewer a personalized follow-up email to thank 
them for the opportunity. While a thank you note is not the tipping point to 
extending an offer (it’s the technical skills that really matter here!), it will never 
hurt your chances. Your interviewer may or may not respond, but rest assured 
you’ve left a positive impression.

Feeling more ready for your next technical interview? You should be—you’re 
ahead of the game and a few steps closer to landing that job! Keep practicing 
and taking advantage of all the resources you have at your hands.

If you’re ready to join Hired and have employers search 
for you instead, sign up now!

Looking for more hands-on learning to get prepared? 
Take a course with Educative!

https://hired.com/signup/?utm_source=internal&utm_medium=content&utm_campaign=(b2c)(l-all)(r-all)(educ-tech-fs-be-fe-intv-guide-23)
https://www.educative.io/hired-offer?siteCoupon=Educative-Hired?utm_source=customerio&utm_medium=hired&utm_campaign=swe-tech-int-guide

