
AN OVERVIEW OF LOAD
TEST TOOLS

Authors:
BURET Julien

DROZE Nicolas

Date:
Initial release February 27th 2003
Latest corrections May 21st 2003

1

SUMMARY

INTRODUCTION.. 3
OPENSTA.. 4

Abstract .. 4
Scenario.. 4
Execution .. 5
Results .. 6
Monitoring.. 6
Conclusion.. 7

DIESELTEST .. 8
Abstract .. 8
Scenario.. 8
Execution .. 10
Results .. 10
Monitoring.. 11
Conclusion.. 11

TESTMAKER.. 13
Abstract .. 13
Scenario.. 13
Execution .. 14
Results .. 14
Monitoring.. 14
Conclusion.. 15

GRINDER ... 16
Abstract .. 16
Scenario.. 16
Execution .. 17
Results .. 17
Monitoring.. 17
Conclusion.. 17

LOADSIM... 18
Abstract .. 18
Scenario.. 18
Execution .. 19
Results .. 19
Monitoring.. 19
Conclusion.. 19

JMETER.. 20
Abstract .. 20
Scenario.. 20
Execution .. 20
Results .. 21
Monitoring.. 21
Conclusion.. 21

LOADRUNNER (LOADTEST) .. 22

2

Abstract .. 22
Scenario.. 22
Execution .. 23
Results .. 24
Monitoring.. 24
Conclusion.. 24

RUBIS .. 25
Abstract .. 25
Scenario.. 25
Execution .. 25
Results .. 25
Monitoring.. 25
Conclusion.. 26

CONCLUSION... 27

APPENDICES .. 29
EXTENDED LIST OF APPLICATIONS (NOT EXHAUSTIVE) .. 29
SYNTHESIS .. 31

3

Introduction

This document has been designed in order to have an overview of existing software and
applications that deal with load testing in all aspects. It has been written in the perspective of
creating a new application in this domain, either from scratch or from existing parts. The role
of this document is to highlight what it is possible to do, how are designed the applications,
which are the parts we may benefit from, and which are the parts we may drop.

After a global search of existing software (but not exhaustive because of the necessary trade-
off between the huge number of platforms and the available time for this preliminary study),
we restricted this list to some products that appear interesting to us. We selected both open
source and commercial software, since we can take good ideas from commercial software,
and reuse parts of code from open source applications.

This document analyses these interesting applications. It identifies the specificity of each
application, what are the possibilities and finally points advantages and drawbacks.

4

OpenSTA

Abstract
Open STA is an open source software developed in C++, and released under the GPL licence.
It is an HTTP load test application with scenario creation and monitoring, which can be
distributed on different computers. The version evaluated below is the v1.4.1 from July 2002.
More information can be found on the web site home page: http://opensta.org/

Scenario
OpenSTA provides a script language which permits to simulate the activity of a user
(sequence of accessed files, form filling, delay between each user interaction (think time), …).
This language can describe HTTP/S scenario, with OpenSTA you can only build load tests for
web applications.
You can write scripts with an editor provided with the application or you can use a module
which records the request and response of a browser and generate a script automatically. To
simulate a great number of users, this script is executed by each virtual user at the same time.

Script editor

http://opensta.org/

5

You cannot randomise the think time1, the form filling or the user action like choosing a link
in an HTML response.

Execution
All the test configuration is managed in the graphical interface. The composition of the test is
very simple (drag & drop of elements…). You choose scripts for a test, a remote computer
that will execute each test, the number of users, different monitoring possibilities and you can
launch the test.
During the test execution, you can monitor a great number of parameters like CPU idle time,
network traffic, number of processes, disk usage, error in HTTP response… For each user
configured in the test, OpenSTA creates one thread which executes the script.

Composition of test

The test can be distributed on several computers. OpenSTA provides a name server for
registering the different computers. During the building of the test we choose on which
computer each scenario will be launched.

1The "think time" is a delay representing the time spent by the user thinking between two consecutive clicks.

6

All the distribution is based on CORBA. It uses the omniORB Object Request Broker (ORB)
and Naming Service from AT&T Laboratories Cambridge.

Results
A great number of data can be caught during the test. First, all information of system
monitoring (WinNT performance monitor or with SNMP). We can also catch information on
the test, like number of requests, error, throughput of client…). All information can be
reviewed with customizable graphics. All information can be exported in a file in order to be
used with other software like Excel.

Result and analysis

Monitoring
You can make a lot of queries to monitor the computer. Two systems can be used for this:
Windows performance monitor or SNMP server. You can only use the first one if the
computer uses Windows NT and if OpenSTA is launched (with registration in the name
server), it is not really a problem for all the clients because OpenSTA is designed only for

7

Windows. The second solution needs a SNMP server in the network and SNMP agent on each
computer monitored.

Conclusion
Positive part of this software are the following:

-A user-friendly graphical interface.
-The script capture from the browser.
-The monitoring functionality
-You can make very complete test with the script language

Negative part of this software are the following:
-Only designed for Windows
-Only for HTTP

8

DieselTest

Abstract

DieselTest is a software designed in Delphi 5, for systems under NT environment. It is
distributed under the GNU LGPL license. It is a load injector to test Internet web sites (HTTP
and HTTPS requests), with monitoring and graphical representations.
http://www.dieseltest.com

Scenario

To carry out a scenario of tests, there is no specific script language or technical terms to
know. The scenarios are recorded automatically in a very simple way, using a capture tool
(graphical interface). This interface is a simplified representation of an Internet browser, in
which you can enter a starting URL, visualize the page, launch the recording of the scenario
and stop it. The scenario is recorded according to the user interactions in the integrated
browser, by recording the links visited, the content and the moment it is visited.

Capture tool

There is the possibility to edit the recorded scenarios, by customizing the requests, for
instance modifying the headers, the posted data, the link to visit, the parameters... This
possibility can become tedious in the case of multiple modifications, because it is only
possible to edit the scenario request by request.

http://www.dieseltest.com/

9

Request edition interface

The number of users to be simulated is chosen before starting the test, with a time delay
before each new user creation.
The created scenario will be executed by each simulated user, until the end of assigned run
time. The process can be terminated before the end of the creation of all the users or the
requests if the assigned run time is too short, otherwise the scenario is played again through
the end of the process.

A scenario can be saved in order to be integrated into others, to form a test plan and to define
a sequencing, as in the following screen.

Sequencing of a test plan

10

Execution

The execution of the test plan is characterized by the creation of one thread per user, which
will execute the recorded scenario request by request until the end of the assigned run time.

Results

During the running tests, there is the possibility to visualize two kinds of outputs: a chart
display and a logging functionality.
During the execution of the tests, the graph is refreshed with regular time intervals (time in
seconds, chosen by the user). There is also the possibility to have a written trace of the results
and the events, with the logging functionality, updated in real-time.

The execution of the test plan allows to visualize the main following characteristics:
•Number of created users: This number can be less than the initial number desired, if the

program did not have the time to create all the users in the assigned run time.
•Number of errors: Represents the number of responses with a response code different

from 200.
•Number of pages fetched (errors included)
•Timeout: Number of timeout during the test.

On the chart we can visualize the number of created users, the average fetch time, the
maximum fetch time.

Monitoring

11

The logging functionality details each response received: response code, content, time, link,…

Logging

It is possible to export results into a text file containing the number of the thread, the number
of its executed request, starting time of the thread, ending time of the thread and HTTP return
codes.

Exporting the results

Monitoring

The most interesting results of this software are the average fetch time, the maximum fetch
time, the CPU usage percentage of the computer launching the test.

Conclusion

The features of this software, although traditional, are presented in an easy way for the user.
The positive parts are the following:

usernum requestnum fetchstart fetchend result
0 1 52288655 52288996 302
0 2 52289697 52290027 302
0 3 52290388 52290708 302
1 1 52290658 52290989 302
0 4 52291029 52291359 302
1 2 52291690 52292020 302
0 5 52291700 52292030 302
1 3 52292381 52292711 302
0 6 52292421 52292751 302
2 1 52292661 52293002 302
…

12

•The quality of the chart
•The representation of the users created on the chart for a given time
•The capture tool
•Simple and fast to use
•Exporting the results
•The logging functionality

The negative parts are the following:
•The manual edition of the tests is badly designed
•Some results seem incoherent, particularly fetch times (see chart)
•The ambiguity of certain results
•Distributed tests are impossible
•No feedback from the target system
•Specific technology environment (Delphi, NT)

13

TestMaker

Abstract

TestMaker is a framework and utility that builds intelligent test agents which implement users
interactions in several environments. This program is developed in Java (so it is multi
platform) and it is available as open source.
The main systems tested are the following: HTTP, HTTPS, SOAP, XML-RPC, Mails (SMTP,
POP3 and IMAP)
This version does not support remote clients for distributed testing, but the software
TestNetwork sold by the same company is able to perform remote clients. But of course, it is
not open source. All we know is that it includes parts of TestMaker source code.
This quick overview does not analyze the whole possibilities.
It seems that the developers are actively working on this software since the version we studied
here was released on January 1st 2003 (version 3.2).
We also downloaded version 3.3 released at the end of January.
http://www.pushtotest.com/ptt

Scenario

The software is different from the others in the way they can build scenarios.
To build a test plan it is necessary to program everything in a specific language: Jython, an
hybrid language between Java and Python.
In this software, the term agent is used to describe a file which contains a Jython script.
The language Jython permits to use Java usual methods, and simplify some other aspects such
as statements, class definition, and other manipulations.
Moreover some specific classes are provided by this software. Utility classes can handle
connection protocols, get connection response such as time, content, ...
The Jython web site can be useful for creating some agents: http://www.jython.org
This link is a JavaDoc style documentation of Testmaker’s specific libraries:
http://docs.pushtotest.com/tooldocs/

http://www.pushtotest.com/ptt
http://www.jython.org/
http://docs.pushtotest.com/tooldocs/

14

Editing a scenario

Execution

It all depends on how the test plan is designed by the user. It is possible to program an agent
with threads for a parallel execution, or sequentially, as well as continuously loop, create a
thread by user, ...
Basically the software generates Java objects (classes) such as threads, protocols, responses,
logging utility, ...

Results

Here again, everything depends on the programmer’s choices. In the software it is possible to
trace some operations in a specific window using a Jython command. Otherwise the
programmer can handle his own results representation in a Java frame with graphics, using the
appropriates Java libraries.

Monitoring

Not many characteristics are extracted from the tested system. The only available results are
related to the evaluation of the response. It is possible to get the following parameters:

•The full contents of the response that was sent back from the server.
•The time it took from making the request to the host to when all the response data is

saved to the response object.

15

•The response code value received from the host.
•The amount of time it took to set-up the request without including the time to make the

request or receive the response.
•The total time it took to set-up the request, communicate with the host, and save the

response data to a response object.

Conclusion

The positive parts of this software are the following:
•The possibility to build any kind of test agent.
•The power of Java programming with some Python simplifications.
•Multi-environment
•Open source

The negative parts of this software are the following:
•To build a test plan it is necessary to get familiar with the Jython scripting language, Java

language and to write it from scratch.
•The monitoring tools are very basic, since it is limited to the response analysis.
•The complexity to quickly build some analysis results.
•Must pay for distributed testing

16

Grinder

Abstract
Grinder is a generic framework for load testing any kind of target systems, with scenario in
Jython. It is developed in Java and released under BSD licence. The version evaluated below
is v3 from December 2002
More information can be found on the home page: http://grinder.sourceforge.net/

Scenario
The scenario test are written in Jython (Jython is a Python interpreter allowing manipulation
of Java objects). We can create very complete scripts, because all Java classes can be used in
scripts. For example you can create a scenario which accesses to an EJB server. (Example
code with WebLogic).

http://grinder.sourceforge.net/

17

Execution
On each agent, you must copy a property file that contains all information for the test like
console address, number of thread, etc and start the Grinder agent. On one host you must start
the Grinder console. With this console you can control other agents. When you start the load
test, the console makes a broadcast to the agents on the network and all the agents start the
test.

Results
Each agent creates a log file with the result of each transaction (HTTP code…), it can also
save the result page in HTML. Another file contains time response of each transaction with
the thread number, the number of run, the response time and if the transaction is successful.
The result file can be used with a spreadsheet like Excel in order to construct graphs or
calculate other statistics.

Monitoring
Grinder can monitor only the transaction executed every second. Each agent sends
information to the console during the load test.

Conclusion
Positive part of this software is the following:

-You can test everything with scripts in Jython
Negative parts of this software are the following:

-Deployment for distributed test.
-Poor results and graphical interface.

18

LoadSim

Abstract
LoadSim is an open source software developed in Java, which is designed for HTTP
distributed load testing.
More information can be found on the home page: http://www.openware.org/loadsim/

Scenario
LoadSim uses Muffin (http://muffin.doit.org/) for creating scripts. It captures the requests
made in a browser (You must change proxy configuration of your browser with a virtual
gateway managed by Muffin). A filter provided with LoadSim allows Muffin to generate
XML file with all the user requests on the web application.

<sequence>
<link id="admin"
host="http://10.194.3.154"
pathroot="/admin">
</link>
<link id=""
host="http://10.194.3.154"
redirect="static"
pathroot="/admin/">
</link>
<link id="index.jsp"
host="http://10.194.3.154"
redirect="static"
pathroot="/admin/index.jsp">
</link>
<link id="login.jsp;jsessionid=9EA8CF9806E69D71FAAD2ADE416C75FD"
host="http://10.194.3.154"
redirect="static"
pathroot="/admin/login.jsp;jsessionid=9EA8CF9806E69D71FAAD2ADE416C75FD">
</link>
<link id="j_security_check"
host="http://10.194.3.154"
pathroot="/admin/j_security_check">
<formdata>
<data>
<name>j_username</name>
<value><constant value="admin"/></value>
</data>
<data>
<name>j_password</name>
<value><constant value="admin"/></value>
</data>
</formdata>
</link>
<link id="index.jsp"
host="http://10.194.3.154"
redirect="static"
pathroot="/admin/index.jsp">
</link>
</sequence>

This scripting language can fill the forms. Data used for the form can be defined in the script,
in another file (with a lot of choices for each field) or can be parsed from a result page. You
can also define the number of virtual users and the time distribution of this user.

http://www.openware.org/loadsim/

19

Execution
There is not any GUI for this application, all command are executed from a textual console.
This console is only started on one client. All hosts (client) are defined in a configuration file.
For each other host the configuration can be different.
Scenarios are replicated automatically on remote hosts.

 <use-sequence filename="sequence.xml" hostname="//localhost:8000" num-iterations="1"
num-virtual-users="50" />

 <use-sequence filename="sequence.xml" hostname="//10.194.3.244:8000" num-
iterations="1" num-virtual-users="50" />

All hosts start LoadSim in server mode. The test is launched from the console.

Results
LoadSim generates results in a file (like CSV format), but provides no tool to analyze or draw
the results. The format of result file can be customized from a configuration file.

Monitoring
No monitoring.

Conclusion
Generic load-test, no GUI, no results representation.
Positive parts of this software are the following:

-Generation of script
-Each client have a different configuration (user, script…)

Negative parts of this software are the following:
-No graphical interface
-Poor results
-No graphical representation of result.
-No monitoring

20

Jmeter

Abstract
Apache Jmeter is a 100% Java desktop application designed to load test functional behavior
and measure performance. It was originally designed for testing Web Applications but has
since expanded to other test functions (FTP, Java, SOAP/XML-RPC, JDBC).
More information are available on the web site: http://jakarta.apache.org/jmeter/index.html

Scenario
In order to build a scenario it is necessary to get familiar with Jmeter terminology. Then it is
possible to create a scenario adding some built-in operations hierarchically.
A thread group represents a sequence of operations which will be executed for each virtual
user. It is possible to customize parameters like the number of threads to execute, the ramp up
period and the duration of the test.
Some samplers designate a kind of request (HTTP, FTP, ...) which has to be customized
(filling a form with server address, port number, ...)
Some other elements can be added to the thread group such as charts representation, timers,
logical controllers.
One of Jmeter's peculiarities is the possibility for the user to develop his/her own controllers,
listeners and samplers in order to add them to a Jmeter test plan. The new sampler is added
simply in Jmeter by adding the JAR file in a specific directory.

A simple test plan

Execution
A test run may be distributed on several computers which have an RMI registry running.
However it is only possible to start remote computers one by one, and stop them one by one
too. (at the time we are publishing this document, new developments seem to fix this
problem)
One virtual user is represented by a thread which is executed according to the “thread group”
parameters.

http://jakarta.apache.org/jmeter/index.html

21

Results
Listener elements can be added to the “thread group” to visualize request responses. For
instance it is possible to record results in a graph which will record the average time of the
response, the throughput, ...
The graph representation is a little confusing since it sometime traces new values on old ones,
if data do not fit in the original graph size.
Another representation is a table, which contains the response code, response time and if the
operation succeeded or not.
It is also possible to export the results in a text file, containing basics information such as
response code, thread name, page fetched, timestamp, ...
It is important to note that Jmeter has been designed to be extendible, even as far as data
viewing and monitoring is concerned. So, custom collectors and visualizers may be developed
in Java and added to Jmeter.

Monitoring
The only possible monitored data are the response time and throughput. The current number
of virtual users simulated is not represented. A developer may add other monitoring tools (see
section above).

Conclusion
Positive parts of this software are the following:

-The distributed testing
-Various target systems
-Extensibility: Pluggable samplers allow unlimited testing capabilities

Negative parts of this software are the following:
-Chart representation quite confuse
-Terminology not very clear
-Necessary to start remote machine one by one
-Remote machines must be declared in a property file before starting application

22

LoadRunner (LoadTest)

Abstract
Mercury Interactive's LoadRunner is a load testing tool that analyses system behavior and
performance. It exercises the entire enterprise infrastructure by emulating thousands of users
and employs performance monitors to identify and isolate problems.
LoadRunner is distributed by Mercury Interactive company under a commercial license. The
product web site is available at
http://www-svca.mercuryinteractive.com/products/loadrunner

The target systems are various, and most of existing technologies are supported, like Web
servers, Web application servers, streaming media servers, databases servers, Java, ERP, ...

Another Mercury Interactive product is available for evaluation. AstraLoadTest is a part of
LoadRunner, but it is designed only to check web servers scalability.
The AstraLoadTest software proposes three different modules specialized in creating a
scenario, running a scenario and viewing the results.
The following of this chapter is about LoadTest.

Scenario

Building a scenario is quite simple with an automatic recording tool which records user
interactions in the Internet browser. The result is an automatic creation of the scenario

http://www-svca.mercuryinteractive.com/products/loadrunner/

23

structured as a tree, with each action to execute. It is also possible to manually add
interactions elements to build a hierarchical test plan.

Recorded scenario

Basically, the results displayed for such a test represent response time for each action, but
there is the possibility of creating and ending some transactions. This specificity has the effect
of grouping the response results of the actions comprised between the transaction tags. It
allows for instance to get the response time of a group of actions.
Another functionality is a “rendezvous point”. This functionality waits for all the virtual users
simulated to arrive at this point (or to reach the time out period).

Execution

The scheduling of the test plan can take various aspects.
Here the term “group” represents the name of a computer from which the scenario will be
executed.
There are two main types of scheduling, but both allow to customize a ramp up period, a
duration period and a ramp down period.
The schedule by scenario or schedule by group are two different visions for running the test.
The schedule by scenario allows for instance to start a given number of virtual users every
fixed time.
The schedule by group allows to delay a test on a remote host, by setting the start time after
another host started.

The following snapshot represents a distributed test from two computers, which will emulate
5 users each. The scheduling is in scenario mode and two virtual users will be emulated every
5 seconds.

24

Results

Once the test is finished, results are collected from all the distributed computers, and merged
into one document.
This report summarizes some key results such as number of users emulated, total throughput,
average throughput, total hits, average hits, response codes and transactions information.
These data are also available on charts.
A lot of graphics are available depending on the targeted system.

Monitoring

The monitoring provides a lot of system values such as the percentage of processor time,
number of threads, memory usage but it is only available for NT or Linux systems.

Conclusion

LoadTest seems to be one of the most complete tool for monitoring results.
Positive parts of this software are the following:

-Monitoring capabilities
-Charts representations
-Scenario capture tool
-Variety of target systems

Negative part of this software is the following:
-Commercial license

25

Rubis

Abstract

Rubis is an auction site prototype (Ebay-like), that can be used to evaluate different
application implementations and different application servers scalability. Rubis is provided
with some load-test tool (designed for Rubis, but some parts of code could be re-used) and a
monitoring system. It is an open source application developed in Java.
http://www.objectweb.org/rubis

Scenario

The benchmark tool simulates users, that browse the web site. For each customer session, the
client emulator opens a persistent HTTP connection to the Web server and closes it at the end
of the session. Each emulated client waits for a certain think time before initiating the next
interaction. The next interaction is determined by a state transition matrix that specifies the
probability to go from one interaction to another one. A think time can be randomly generated
between two consecutive interactions, or retrieved from the transition matrix.

Execution

The execution profile is set up in a property file which defines all the parameters for the test,
such as the names of the computers to use, the delay between each new client emulation, slow
down factor, ramp up period,...
Then all threads are created before the test execution, but requests are executed according to a
slow down factor defined in the settings.

Results

The test is started under Linux environment with an ssh connection, which will activate
scripts on the other computers, start the test plan according to the property file and record all
the results in some HTML pages with charts representations. The results files are stored on a
common NFS mount.

Monitoring

A monitoring tool is also developed for the observation of clients and server during the test. A
tool monitors a lot of data like CPU idle, number of processes, memory usage, network, … in
order to guarantee the validity of the test. It also reminds the test execution configuration
parameters. All the monitored data are obtained by the SAR Unix utility.

http://www.objectweb.org/rubis

26

Conclusion

Positive parts of this software are the following:
-Monitoring capabilities
-Charts representations and automatic generation of HTML report

Negative part of this software is the following:
-Specific to Unix environment and Rubis application

27

Conclusion

Many projects and small applications exist, but very few are well designed and complete.
Moreover they mainly only test HTTP servers. Commercial software are more powerful with
the possibility to test many other systems.

Here is a synthesis of each part.
We can distinguish three aspects in a scenario creation:

•Those that allow the user to write entirely his/her scenario, using a scripting language
such as Jython, or using XML (like TestMaker, Grinder, LoadSim, Jmeter).

•Those that allow the user to build his/her scenario with some graphical objects
representing some built-in interactions (like Jmeter, LoadTest). The scenario is
represented as a JTree (see Java Swing GUI library).

•Applications that automatically record a scenario with a capture tool often integrated in
an Internet browser (like DieselTest, OpenSTA, LoadSim, LoadTest).

Some applications also combines the last two parts (LoadTest).

The execution aspect is similar for every application. The model used is the creation of one
thread by virtual user. Then it is possible to schedule the execution and creation of the virtual
users with a delay, a ramp up period. Scenarios written in Jython can be arranged manually to
deal with this aspect.

The monitoring part, if it exists, represents main characteristics: number of virtual users,
response time, average response time, … . But only LoadTest and Rubis propose very
detailed information on the target system: number of processes, processor characteristics,
memory usage, …
Information about target system characteristics are available on Windows NT systems only
with some external libraries. This problem does not exist under Linux or Unix environment.

In conclusion, we can say that each software has his advantages and drawbacks.
The most complete tool tested in this document is probably LoadTest which offers powerful
capabilities to the user. The building of the scenario can be automatic or customized with
scripts or graphical elements. The load test is very simple to launch, and monitored data are
very detailed. This solution is adapted for testing web servers and visualize accurate system
data.

DieselTest also proposes to test web servers, but with a more simple interface, which also
means with less features. A capture tool simplifies the task of recording the scenario.
Collected data are very basic, that is why this software is designed to test small web sites.

TestMaker is a powerful tool since the scenario is created with scripts in Jython which allow
to use all the Java features. This framework permits to build a customized scenario and very
precise test plan, with specific classes. However the monitoring is very poor, and distributed
testing is not possible. But it seems interesting to have a look at the classes structure and
hierarchy.

Grinder is similar to TestMaker, except that it allows distributed tests, so it can simulate
heavy loads.

28

Jmeter offers some good features and can perform tests on several systems, but it is a little
more difficult to use than the other software. It is possible to realize a wide variety of load
tests, even to distribute the scenario. However, the application is weaken by the management
of Java objects and memory concerns which affect global performance.
The major advantage is the possibility to add new features very simply in the application, it is
also a good example of modularity and customization.

Rubis is characterised by the capability to test HTTP servers using a particular model of
execution (transition matrix). Running only under Unix environment, it provides detailed
information and charts on the target system. This application is adapted for a specific
simulation.

OpenSTA provides some good performances for HTTP testing, with simple charts and
distributed tests. It is a good application for simple and reliable HTTP tests.

LoadSim does not propose any graphical interface. With this application, it is only possible to
create scenarios in XML or with a capture tool, execute the test eventually on remote hosts,
and finally get the results in a text file.

Finally, in this overview we found a couple of applications that provide maximum efficiency
for building a test plan. The keys features include:

•Easy, complete and customizable building of the scenario.
•Distributed tests and customizable sequencing of the scenario.
•Accurate charts and data from monitored systems.
•Customizable protocols.

29

APPENDICES

Extended list of applications (not exhaustive)

Nom Lien

123 Load Test http://www.wpidalamar.com/projects/123loadtest/

ANTS http://www.red-gate.com/advanced_dotnet_testing_system.htm

Apache Bench http://httpd.apache.org/docs/programs/ab.html

Apache JMeter http://jakarta.apache.org/jmeter/

Astra Loadtest http://www-svca.mercuryinteractive.com/products/

Bean-Test http://www.empirix.com/Empirix/

Benchmark Factory http://www.benchmarkfactory.com/

CapCal http://www.capcal.com/

Deluge http://deluge.sourceforge.net/

Dieseltest http://dieseltest.com/

DigitalBees Load http://www.digitalbees.com/uses.htm

EasyWebLoad http://www.easywebload.com/

ECPerf http://java.sun.com/j2ee/ecperf/

EJBSPEC http://sourceforge.net/projects/ejbspec/

e-Load Expert http://www.empirix.com/Empirix/Web+Test+Monitoring/Testing+Solutions/

EtherApe http://etherape.sourceforge.net/

eValid http://www.soft.com/

FirstACT http://www.scl.com/products/empirix/datasheets/firstact.html

Flight http://flight.sourceforge.net/

FORECAST http://www.facilita.co.uk/

Fungus http://valvassori.free.fr/unix/fungus/

Grinder http://grinder.sourceforge.net/

Hammerhead http://hammerhead.sourceforge.net/

http-Load http://www.acme.com/software/http_load/

Jabez http://sourceforge.net/projects/jabez/

JavaLoad/JavaStart http://www.products.datamation.com/development/java/916161638.html

Jblitz http://www.clanproductions.com/jblitz/index.html

Jmeter http://jakarta.apache.org/jmeter/index.html

JunitPerf http://www.clarkware.com/software/JUnitPerf.html

LMBench http://www.bitmover.com/lmbench/

Load http://www.pushtotest.com/ptt

LoadPro http://www.keynote.com/solutions/solutions_pt_loadpro_tpl.html

LoadSim http://www.openware.org/loadsim/

Mercury LoadRunner http://www-svca.mercuryinteractive.com/products/

Microsoft Application Center Test http://msdn.microsoft.com/library/default.asp?url=/library/en-us/act/htm/actml_main.asp

Microsoft WCAT load test tool http://support.microsoft.com/support/kb/articles/Q231/2/82.ASP

MTLoadGenerator http://sourceforge.net/softwaremap/trove_list.php?form_cat=138&page=4

NetPressure http://www.syntheticnets.com/

Netwok Traffic Generator http://galileo.spaceports.com/~rsandila/traffic.html

Open DTE http://opendte.sourceforge.net/

Open Performance Suite http://sourceforge.net/projects/performancenet/

Open STA http://opensta.org/

OpenLC http://openlc.sourceforge.net/

OpenLoad http://openload.sourceforge.net/

PerfectLoad http://www.freakysoft.com/

http://www.wpidalamar.com/projects/123loadtest/
http://www.red-gate.com/advanced_dotnet_testing_system.htm
http://httpd.apache.org/docs/programs/ab.html
http://jakarta.apache.org/jmeter/
http://www-svca.mercuryinteractive.com/products/
http://www.benchmarkfactory.com/
http://www.capcal.com/
http://deluge.sourceforge.net/
http://www.digitalbees.com/uses.htm
http://www.easywebload.com/
http://java.sun.com/j2ee/ecperf/
http://sourceforge.net/projects/ejbspec/
http://www.empirix.com/Empirix/Web+Test+Monitoring/Testing+Solutions/
http://etherape.sourceforge.net/
http://www.soft.com/
http://www.scl.com/products/empirix/datasheets/firstact.html
http://flight.sourceforge.net/
http://www.facilita.co.uk/
http://valvassori.free.fr/unix/fungus/
http://grinder.sourceforge.net/
http://www.acme.com/software/http_load/
http://sourceforge.net/projects/jabez/
http://www.clanproductions.com/jblitz/index.html
http://jakarta.apache.org/jmeter/index.html
http://www.clarkware.com/software/JUnitPerf.html
http://www.bitmover.com/lmbench/
http://www.pushtotest.com/ptt
http://www.keynote.com/solutions/solutions_pt_loadpro_tpl.html
http://www.openware.org/loadsim/
http://www-svca.mercuryinteractive.com/products/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/act/htm/actml_main.asp
http://support.microsoft.com/support/kb/articles/Q231/2/82.ASP
http://sourceforge.net/softwaremap/trove_list.php?form_cat=138&page=4
http://www.syntheticnets.com/
http://galileo.spaceports.com/~rsandila/traffic.html
http://opendte.sourceforge.net/
http://sourceforge.net/projects/performancenet/
http://opensta.org/
http://openlc.sourceforge.net/
http://openload.sourceforge.net/
http://www.freakysoft.com/

30

Portent Web Load test tool http://www.loadtesting.com/

Postal http://www.coker.com.au/postal/

Project OpenLoad http://www.opendemand.com/openload/

PureLoad http://www.minq.se/

QALoad http://www.compuware.com/products/qacenter/

QuotiumPro http://www.quotium.com

Radview's WebLoad http://www.radview.com/

Siege http://www.joedog.org/siege/index.shtml

SilkPerformer http://www.segue.com/

Site Tools http://www.softlight.com/sitea/index.asp

SiteTester1 http://www.pilotltd.com/eng/index.html

SiteTools Loader http://www.softlight.com/sitea/index.asp

SSLider http://sourceforge.net/projects/sslider/

Test Perspective Load Test http://www.keynote.com/solutions/html/testing.html

TestMaker http://www.pushtotest.com/ptt

Torture http://stein.cshl.org/~lstein/torture/torture.html

TPTest http://tptest.sourceforge.net/index.php

UrbanCode EJBBenchmark http://www.urbancode.com/projects/ejbbenchmark/default.jsp

VeloMeter http://www.velometer.com/

WAGON: A Web Server Benchmarking Tool http://www-sop.inria.fr/mistral/personnel/Zhen.Liu/wagon.html

Web Avalanche http://www.cawnetworks.com/

Web Polygraph http://www.web-polygraph.org/

Web Roller http://www.webapplicationstesting.com/index.html

WebART http://www.oclc.org/webart/

Webhammer http://www.genusa.com/iis/webhamr2.html

Webmaster Solution: Site Stress http://www.webmastersolutions.com/loadtesting.shtml

WebPerformance Trainer http://www.webperformanceinc.com/

WebServer Stress Tool http://www.paessler.com/

WebSizr/WebCorder http://www.technovations.com/

WinRunner http://www-svca.mercuryinteractive.com/products/winrunner/features/

Zeus: Web Server Benchmarking http://www.zeus.com/products/zws/capacity/benchmarking.html

http://www.loadtesting.com/
http://www.coker.com.au/postal/
http://www.opendemand.com/openload/
http://www.minq.se/
http://www.compuware.com/products/qacenter/
http://www.quotium.com/
http://www.radview.com/
http://www.joedog.org/siege/index.shtml
http://www.segue.com/
http://www.softlight.com/sitea/index.asp
http://www.pilotltd.com/eng/index.html
http://www.softlight.com/sitea/index.asp
http://sourceforge.net/projects/sslider/
http://www.keynote.com/solutions/html/testing.html
http://stein.cshl.org/~lstein/torture/torture.html
http://tptest.sourceforge.net/index.php
http://www.urbancode.com/projects/ejbbenchmark/default.jsp
http://www.velometer.com/
http://www-sop.inria.fr/mistral/personnel/Zhen.Liu/wagon.html
http://www.cawnetworks.com/
http://www.web-polygraph.org/
http://www.webapplicationstesting.com/index.html
http://www.oclc.org/webart/
http://www.genusa.com/iis/webhamr2.html
http://www.webmastersolutions.com/loadtesting.shtml
http://www.webperformanceinc.com/
http://www.paessler.com/
http://www.technovations.com/
http://www-svca.mercuryinteractive.com/products/winrunner/features/
http://www.zeus.com/products/zws/capacity/benchmarking.html

31

Synthesis

	Introduction
	OpenSTA
	Abstract
	Scenario
	Execution
	Results
	Monitoring
	Conclusion

	DieselTest
	Abstract
	Scenario
	Execution
	Results
	Monitoring
	Conclusion

	TestMaker
	Abstract
	Scenario
	Execution
	Results
	Monitoring
	Conclusion

	Grinder
	Abstract
	Scenario
	Execution
	Results
	Monitoring
	Conclusion

	LoadSim
	Abstract
	Scenario
	Execution
	Results
	Monitoring
	Conclusion

	Jmeter
	Abstract
	Scenario
	Execution
	Results
	Monitoring
	Conclusion

	LoadRunner (LoadTest)
	Abstract
	Scenario
	Execution
	Results
	Monitoring
	Conclusion

	Rubis
	Abstract
	Scenario
	Execution
	Results
	Monitoring
	Conclusion

	Conclusion
	APPENDICES
	Extended list of applications (not exhaustive)
	Synthesis

