
Experiment about Test-�rst programming

Matthias M. M�uller and Oliver Hagner

Computer Science Department

University of Karlsruhe

Am Fasanengarten 5, 76 128 Karlsruhe, Germany

fmuellermjhagnerg@ipd.uka.de

Abstract

Test-�rst programming is one of the central techniques of Extreme Programming.
Programming test-�rst means (1) write down a test-case before coding and (2) make all the
tests executable for regression testing. Thus far, knowledge about test-�rst programming
is limited to experience reports. Nothing is known about the bene�ts of test-�rst compared
to traditional programming (design, implementation, test). This paper reports about an
experiment comparing test-�rst to traditional programming. It turns out that test-�rst
does not accelerate the implementation and the resulting programs are not more reliable,
but test-�rst seems to support better program understanding.

1 Introduction

Test-�rst programming is one of the central techniques of Extreme Programming (XP). Test-
�rst combines two general principles: �rst, write down the test-cases before coding, and
second, make them executable for regression testing. The whole process including a small
design, nanoincrements, and ongoing testing is also called test-driven development.
Je�ries describes test-�rst programming in four steps [1]:

1. Find out what has to be done.

2. Write a unit test for the desired new functionality. Pick the smallest increment from
the new functionality.

3. Run the unit test. The new functionality is implemented, if the test succeeds. If there
are still more unimplemented functionalities, go to step 1. If the test fails, go to step 4.
Otherwise, all is done.

4. Fix the immediate problem: maybe it's the fact that the new method wasn't written
yet. Maybe the method doesn't quite work. Fix whatever it is. Go to step 3.

The tasks of test-�rst are manifold within the framework of XP rules and practices: to ensure
that programmed features cannot be lost, to force the developers to think about testable
code and to write down unit tests, to automate test execution, to prevent the program from
regressing by ongoing retesting, and to provide a test-suite as a basis for refactoring.
The list of goals to attain with test-�rst is not less important: to develop programs that are
more capable of accepting changes, to program faster, to increase con�dence of the developer

1



and the customer, by seeing all the tests run correctly, to reduce defect rates in such a way
that the successive test-cycle overhead becomes neglectable, and to understand the program
better.
While experience shows that it is diÆcult for the beginner to adopt to test-�rst [6, 10], the
above formulated goals of test-�rst are still left for evaluation. One of the challenges of
studying test-�rst is its embedding within XP. This embedding makes it diÆcult to show the
e�ects of test-�rst without being blurred by other practices such as pairprogramming or a
simple design. A solution to this problem would be an experiment in which XP is applied
twice: with test-�rst and without test-�rst. The result would be an indirect evaluation of test-
�rst. But this kind of experiment is too diÆcult and too expensive. To solve this problem,
test-�rst was extracted from XP and evaluated on its own. Now, the experiment focuses
on a single programmer with his traditional development process (design, implementation,
test). The authors wanted to know if there are any advantages or disadvantages for a single
programmer when switching from the traditional development process to test-�rst.
Concerning test-�rst, this paper focuses on (1) the programming eÆciency (how fast someone
obtains a solution), (2) the reliability of the resultant code (how many failures can be ob-
served), and (3) program understanding (measured as proper calls of existing methods). The
experiment focused neither on design aspects of the delivered solution (e.g. how changeable
is the design) nor on the bene�ts of test-�rst in the long run (e.g. shorter test-cycles, shorter
time to market, or defect rates in the production code).
The experiment was conducted as part of an XP course held with CS graduate students. The
participants were divided into two groups: the experiment group which used test-�rst and
the control group which followed the traditional development process. Both groups had to
implement the main class of a graph library containing only the method declarations but not
the method bodies. The subjects' work was divided into two phases. During the �rst phase,
the implementation-phase, the subjects implemented the solution up to the point where they
thought that their implementation was correct. The second phase, the acceptance-test phase,
involved passing an acceptance-test. If the acceptance-test failed, the subject got the output of
the test and had to �x the faults. This was iterated until the acceptance-test succeeded. Only
then, was the solution accepted. The goal of the acceptance-test was to ensure a minimum
of code quality of the �nal solutions.
The results show no di�erence between the two groups concerning the overall problem solv-
ing time and the �nal reliability of the produced results. But the test-�rst group had less
errors when reusing an existing method more than once. The last observation is statistically
signi�cant with p = 0:09.
We also compared both groups after the �rst phase, that is, before the acceptance-test took
place. Again, we measured no di�erence in problem solving time but the programs of the
test-�rst group were less reliable (signi�cance p = 0:03).
Looking at these results, we drew the following conclusions. Writing programs with test-�rst
neither leads earlier to a solution nor provides more reliable results. On the other hand, using
test-�rst increases program understanding measured as a proper reuse of existing interfaces.
An open question remains from our study. Why are the programs of the test-�rst group less
reliable than those of the control group at the end of the �rst phase? Possible explanations
are the following. (1) Were the subjects insuÆciently experienced in the use of the test-
�rst approach? That is, was their experience of test-�rst too small to see that a bit more
testing was needed? (2) Did they lull themselves in a false sense of security? Did the ongoing
execution of the tests suggest a code quality that did not exist? Or (3) did they not have

2



any respect for the acceptance-test as a result of the ongoing testing? This could be possible
because they knew an acceptance-test was to come and took it into account as an additional
quality measure at the end of the development process.

So far, knowledge about XP is limited to experience reports. Only pair programming has
been investigated to a certain extend [2, 11, 4, 12]. This paper starts an evaluation of test-
�rst. In fact, it isolates test-�rst from the other techniques of XP, but later, when we have
an understanding of all techniques of XP, we can combine them and study their combined
behavior.

The reminder of this paper presents the experimental settings in Section 2 and the measured
results and their discussion in Section 3. A summary of the paper is outlined in Section 4.

2 Description of the experiment

2.1 Design of the experiment

The experiment uses a single-factor, posttest-only, inter-subject design [3]. The controlled
independent variable was whether the experimental subjects program test-�rst (experiment or
test group, subsequently called \TFG") or use the traditional development process (control
group, subsequently called \CG"). Each subject of either group solved the same task and
worked under the same conditions. The observed dependent variables for each subject were
a variety of measurements of the development process (in particular total time), and various
measurements of the delivered product (in particular program reliability and number of reused
methods).

2.2 Subjects

Overall, 19 persons participated in the experiment, 10 in the TFG and 9 in the CG. All of
them were male Computer Science graduate students who had just previously participated
in a one-semester graduate lab course introducing the XP methodology, along with a larger
programming assignment. This course covered technics from XP such as pair programming,
test-�rst, refactoring and planning.

On average, these 19 students were in their 6th semester at the university, they had a median
programming experience of 8 years total and estimated that they need a median of 3 months
to program their largest program of about 5000 LOC. None of these measures was signi�cantly
di�erent between the two groups. During the experiment all of the participants used Java
with jUnit [9] as they did in the XP course.

None of the participants dropped out of the experiment so that all work was available for the
evaluation.

2.3 Experiment task

The task to be solved in this experiment is called \GraphBase". It consists of implementing
the main class of a given graph library [7] containing only the method declarations and method
comments but not the method bodies. There are methods to add vertices and edges and to
clear and to clone a whole graph. Other methods are only accessor methods, e.g. to show the
number of vertices or edges, to �nd an edge between two given vertices or to test if the graph
is empty, weighted or directed.

3



Each subject is told that the original code of GraphBase was lost and, because there is no
backup, that it should be reimplemented by using the rest of the given graph library. The
requirements for this task were described thoroughly in natural language. The subjects were
expected to work and to test on their own until they thought, they had �nished. They were
also told that they had to pass an acceptance-test to ensure some quality of their solutions.

2.4 Experimental procedure

The experiment was run between July 2001 and August 2001, mostly during the semester
breaks. Most of the subjects started around 9:30 in the morning. The experiment materials
were printed on paper and consisted of two parts. Part one was issued at the start of the
experiment and contained a task description. The second part was handed out at the end
of the experiment. It contained questions about understandability of the documentation and
asked for personal ratings concerning program understanding and reliability of the resultant
program.

The subjects worked on the task using their speci�c Unix account from the XP course. The
account was changed for the experiment to provide the automatic monitoring infrastructure.
It nonintrusively recorded login/logout times, all compiled source versions and all output
from each program run. The recorded source code versions included the GraphBase-class,
all written test-classes, and all other Java-classes the subjects wrote in order to solve the
experiment task. The subjects could modify the account setup as necessary. The source code
of the graph library except for the GraphBase-method-bodies was provided to the subjects.

Subject's work was divided into two phases.

Implementation phase (IP), during which the subjects solved their assignment until they
thought that their program would run correctly. This phase �nished with their call for
the acceptance-test.

Acceptance-test phase (AP), during which the subjects had to �x the faults that caused
the acceptance-test to fail.

The acceptance-test itself is programmed using jUnit. It consists of 20 test cases with 522
assertions which build some graphs and check their structure for correctness. If an assertion
fails it generates an output with the expected and the actual value, aborts the actual test and
continues with the next one.

2.5 Power analysis

Cohen [5] stresses the importance of power analysis to get a closer look at the quality of a
statistical hypotheses test.

The power of a statistical test of a null hypotheses is the probability that it will yield sta-
tistically signi�cant results. It is de�ned as the probability that it will lead to the rejection
of the null hypotheses, i.e., the probability that it will result in the conclusion that the phe-
nomenom exists under the premise that the phenomenom is really existent. Statistically
speaking, 1� power is the probability for an error of the second kind.

In our experiment, we used groups with nCG = 9 and nTFG = 10 subjects. Due to this small
number of data-points, we restrict our analysis to �nd only large e�ects. In this case, Cohen
suggests an e�ect size of ES = 0:8. We set the signi�cance level of the one-sided test to

4



� = 0:1. Thus, the power analysis with a t-distribution yields a power of 0:645 [8]. That is,
we have only a 64.5% chance to �nd a di�erence between the groups!

According to Cohen, the experiment has a poor power. He argues that only experiments
with a power of more than 0:8 have a real chance to reveal any e�ect. Therefore, it is quite
reasonable, that according to this poor power, our experiment has not the chance to show an
e�ect, even if there is one. But, as we could not acquire any more subjects for the experiment,
we had to live with this drawback.

2.6 Threats to internal validity

The control of the independent variable is threatened by the fact that it was not technically
controlled. The subjects in the TFG were told in the requirements to use test-�rst program-
ming as they did during the whole XP course. During the experiment, the subjects were
asked by the experimentator several times if they got along with the test-�rst process. This
question was aÆrmed by all subjects of the TFG.

2.7 Threats to external validity

There are two important problems for the external validity (generalizability) of the experi-
ment. First, professional software engineers may have di�erent levels of skill and experience
than the participants, which might make the results too optimistic or too pessimistic: both
higher and lower levels will occur, because the students are more skilled than most of the
non-computer-scientists that frequently start working as programmers. Better skilled sub-
jects might leave less room for improvement which might reduce the di�erence between the
groups, but higher experience may also sharpen the eye as to where improvements are most
desirable or most easily achieved. Conversely, lower skill may leave more room for improve-
ment but may also impede applying test-�rst correctly at all. Second, the XP education of
the subjects occurred only a short time ago. It is conceivable that the test-�rst usage of these
persons had not yet stabilized and the mid-term bene�ts would be higher than observed in
the experiment. Futhermore, work conditions di�erent than those found in the experiment
may positively or negatively inuence the e�ectiveness of test-�rst.

3 Results and Discussion

This section investigates the following topics: problem solving time, reliability of the produced
results, code reuse, and tester quality.

Box plots are used to show the results of the measurements. The �lled boxes within a plot
contain 50% of the data points. The lower (upper) border of the box marks the 25% (75%)
quantile. The left (right) t-bar shows the 10% (90%) quantile. The median is marked with
a thick dot (�). The M with the dashed line mark the mean value within a range of one
standard error on each side. The variance of a data-distribution is measured as fraction of
the 75%- to the 25%-quantile.

Signi�cance was calculated with the Wilcoxon-Test where the signi�cance p denotes the prob-
ability that the observed di�erence is due by chance.

5



3.1 Problem solving time

For the evaluation of the problem solving time, the following times and fractions were com-
pared: times spent for the whole task, �gure 1, the time spent in the implementation phase,
�gure 2, and the portion of the implementation phase to the whole assignment, �gure 3.

M

o o
oo oo o oo

M

o oo ooo oo o o
TFG

CG

400 600 800 1000

Figure 1: Overall working time in minutes.

Figure 1 shows only a small di�erence between both groups. This means the programming
e�ort increases slightly when switching from traditional programming to test-�rst.

But how is the behavior of the two groups prior to the �rst acceptance-test? Figure 2 shows
the time spent in the IP.

M

o o
o

o ooo oo

M

o oo
oo

o oo o o
TFG

CG

200 400 600 800 1000

Figure 2: Working time in minutes for the implementation-phase.

And again, the box plots show only a slight di�erence between the medians. But when we
look at the portion of the IP related to the whole assignment, see �gure 3, we see that the
TFG spent relatively less time in the IP. While there is no statistical evidence (p = 0:158) for
this observation, the e�ect is quite visible.

To sum up, the TFG was not more eÆcient than the CG, as we originally expected. But the
TFG tended to spend less time for the IP related to the overall working time.

3.2 Reliability

In this experiment, reliability was measured as portion of the passed assertions related to all
possible executable assertions in the test. The initial behavior of jUnit had to be adjusted to

6



M

oo oo
ooo o o

M

o o
o oo
o

oo oo
TFG

CG

40 60 80

Figure 3: Portion of implementation-phase in percent to the overall working time.

count all failed assertions. That is, jUnit was modi�ed in such a way that it did not abort
a test after a failed assertion. Instead, it continued the test-case so that all assertions were
executed. The failed assertions were counted and printed out at the end of the test-run.
Reliability was measured for two programs: the acceptance-test and a random-test with
727; 190 method invocations and about 7.5 million assertions. The reference implementation
runs about seven seconds for the acceptance-test and about 150 seconds for the random-
test. The random-test calls the methods of the implementation randomly and compares the
resulting data-structure with the one built by the reference implementation. Deviations in
the structure are caught by subsequent assertions. Each method got a weight to ensure that
hot methods, such as insert-edge were called more often than more unusual methods, such as
clone-graph.
First, we look at the reliability of the random-test for the �nal programs, see �gure 4.

M

o
o oooooo o

M

oo
o
o

oo oo oo
TFG

CG

0 20 40 60 80 100

Figure 4: Reliability of �nal programs for random-test in percent.

Only three programs of the TFG are less reliable than the median of 91% of the CG. Even
if the median of the CG is smaller than that of the TFG (84% to 91%, respectively), the
observed di�erence is with p = 0:2 due by chance. The variance of the data-distributions
di�ers with 2:38 for TFG to 1:00 for the CG. To interpret the di�erence in the medians as a
trend towards a better reliability of test-�rst is dangerous because of the large variance of the
data-points. Nevertheless, it is remarkable that �ve programs of the TFG achieve a reliability
over 96% compared to only one program of the CG.
Now, the programs right after the IP are examined and the question is asked, what would

7



have happened if the acceptance-test had been omitted? This question is interesting in as
much as these programs represent the output of the pure test-�rst process without further
modi�cation or enhancement by any external quality control. These programs represent the
versions the subjects are most con�dent of concerning accurateness. Reliability of the �rst
run of the acceptance-test is discussed, see �gure 5.

M

oo ooo
o

oo o

M
oo o o

o o oo oo
TFG

CG

20 40 60 80 100

Figure 5: Reliability of programs for acceptance-test after the implementation phase in percent
(p = 0:03).

The reliability of the TFG is signi�cantly lower p = 0:03 than that for the CG. Except for
three programs, all programs in the TFG are less reliable than the worst one in the CG and
two are even worse than 20%.

M
o o

ooo oo o o

M

ooo
o

ooo o oo
TFG

CG

0 20 40 60 80 100

Figure 6: Reliability of programs for random-test after the implementation phase in percent
(p = 0:067).

The results for the random-test are quite similar as shown in �gure 6. The lower reliability
of the programs of the TFG is signi�cant with p = 0:067.

But what is the reason for this di�erence? Is it because of the ongoing testing that lulls
the developer in a false sense of security? False sense, because all of the tests run at 100%
but do not cover the main faults. Or is it, because the subjects of the TFG are so used to
testing that the acceptance-test degenerates to just another test and looses its importance as a
control instance? And is it for that reason, that the subjects of the CG are more motivated to
have less faults entering the acceptance-test phase which leads consequently to more reliable
programs? But these reasons are all speculations. So far, we do not know it.

8



At this point, it is of no further importance and not surprising that the TFG has a signi�cant
larger improvement in reliability during the acceptance-test phase than the CG because it
follows quite naturally from the above presented results.

3.3 Code reuse

Examining code reuse might lead to some conclusions about program understanding. Three
measures were used to get a perception of it. These are (1) the number of reused methods,
(2) the number of failed method calls, and (3) the number of method calls that failed at least
twice. The data-sets of the last two measures were obtained with silent assertions inserted
into the existing graph library. Their output was written to a log �le without notice of the
subjects.

Figures 7 and 8 show the results for the number of reused methods and the number of failed
method calls, respectively.

M

oo
oo oo o

oo

M

o ooo oo oo
o oTFG

CG

20 22 24 26 28 30

Figure 7: Number of reused methods.

M

ooo o ooo o
o

M

oo
oooo oooo

TFG

CG

4 6 8 10 12 14 16

Figure 8: Number of assertions that failed at least once.

Neither �gure shows a remarkable di�erence between the two measures. But there is a di�er-
ence between the two groups when studying the number of method calls that failed at least
twice, see �gure 9.

The test-�rst group had signi�cantly less errors (p = 0:086) by reusing a method more than
once. By combining these two observations into a single result the authors have to say: test-

9



M

o oo
o oo

o oo

M

oo oooo ooooTFG

CG

2 4 6 8 10 12 14

Figure 9: Number of methods that failed more than once (p = 0:086).

�rst does not aid the developer in a proper usage of existing code but it guides him through
ongoing testing in the process of �xing the fault.

3.4 Tester quality

The quality of the subjects' tester-classes is the last studied measure. Branch coverage was
used to measure subject's tester quality. To get an unbiased comparison, each tester executed
the reference implementation and not the subject's implementation. In order to collect this
measure, the reference implementation was modi�ed. Each ground block of the reference
implementation got a distinct number. On entry of the ground block, this number was
written out. The di�erent numbers were collected and summed up for each tester. The
reference implementation had a total of 45 branches. This measure was collected at the end
of the experiment, after the AP. Figure 10 shows the fraction of the actually executed branches
related to all possible branches of the reference implementation.

M

oo o oo o o oo

M

ooo ooo o oo o
TFG

CG

40 50 60 70 80 90

Figure 10: Percentages of branches the subjects' testers covered in the reference implemen-
tation.

Originally, we assumed that the testers of the TFG have a better branch-coverage than
those of the CG. This assumption based on the hypotheses that the TFG delivered more
reliable programs. But as our hypotheses does not hold to some extent, we do not expect our
assumption to hold either. The medians of both groups di�er with 80% for CG to 74% for
TFG. This di�erence is with p = 0:451 most likely due by chance. The following observation

10



is remarkable. Despite the fact, that 80% of the TFG's data-points are smaller than the
median of the CG, the TFG had a slightly better reliability in their �nal implementations,
see �gure 4.

4 Conclusions

This paper presented an experiment about test-�rst programming conducted at the University
of Karlsruhe at the end of the summer lectures 2001. Subjects were CS graduate students
who participated in an Extreme Programming practical training course. The study compared
test-�rst programming with the traditional development process. In particular, it investigated
the inuence of test-�rst programming on (1) programming speed, (2) program reliability, and
(3) program understanding measured as proper reuse of existing methods.
The experiment data led to the following observations.

1. If a developer switches from traditional development to test-�rst programming, he does
not program necessarily faster. That is, he does not arrive at a solution more quickly.

2. Test-�rst pays o� only slightly in terms of increased reliability. In fact, there were �ve
programs developed with test-�rst with a reliability over 96% compared to one program
in the control group. But this result is blurred by the large variance of the data-points.
Concentrating on the program versions after the implementation-phase, the result just
turns around. The test-�rst group has signi�cantly less reliable programs than the
control group. So far, we do not know, if this e�ect is caused by a false sense of security,
less importance of the acceptance-test for the test-�rst group, or if it is quite simply a
result of too little testing.

3. Test-�rst programmers reuse existing methods faster correctly. This is caused by the
ongoing testing strategy of test-�rst. Once a failure is found, it is indicated by a test-
case and, while �xing the fault, the developer learns how to use the method or interface
correctly.

Despite the observed results, this study is far from being a complete evaluation of test-
�rst programming. The authors encourage other researchers to repeat the experiment or to
conduct a similar one in order to extend the knowledge about test-�rst.

References

[1] Code unit test �rst. http://www.c2.com/cgi/wiki?CodeUnitTestFirst.

[2] D. Bisant and J. Lyle. A two-person inspection method to improve programming pro-
ductivity. IEEE Transactions on Software Engineering, 15(10):1294{1304, October 1989.

[3] L. B. Christensen. Experimental Methodology. Allyn and Bacon, 1994.

[4] A. Cockburn and L. Williams. The costs and bene�ts of pair programming. In eXtreme

Programming and Flexible Processes in Software Engineering, XP2000, Cagliari, Italy,
June 2000.

[5] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Academic Press, 1977.

11



[6] R. Gittins, S. Hope, and I. Williams. Qualitative studies of xp in a medium sized business.
In Proceedings of the 2nd Conference on eXtreme Programming and Flexible Processes

in Software Engineering, Cagliari, Italy, May 2001.

[7] David Goldschmidt. Design and implementation of a generic graph container in java.
Master's thesis, Rensselaer Polytechnic Institute in Tray, New York, April 1998.

[8] R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics, 5(3):299{314, 1996.

[9] junit.org. http://www.junit.org/.

[10] M. M�uller andW. Tichy. Case study: Extreme programming in a university environment.
In Proceedings of the 23rd International Conference on Software Engineering, pages 537{
544, Toronto, Canada, May 2001.

[11] J. Nosek. The case for collaborative programming. Communications of the ACM,
41(3):105{108, March 1998.

[12] L. Williams, R. Kessler, W. Cunningham, and R. Je�ries. Strengthening the case for
pair-programming. IEEE Software, pages 19{25, July/August 2000.

12


