
1

Refactoring Functional
Programs

Claus Reinke
Simon Thompson

 TCS Seminar, 1 October 2001

Refactoring TCS 1.10.01 2

Overview

Refactoring: what does it mean?

The background in OO … and the functional context.

Simple examples.

Discussion.

Taxonomy.

More examples.

Case study: semantic tableau.

Refactoring TCS 1.10.01 3

What is refactoring?

Improving the design of existing code …

… without changing its functionality.

Refactoring TCS 1.10.01 4

When refactor?

 Prior to changing the functionality of a system.

refactor modify

Refactoring TCS 1.10.01 5

When refactor?

 After a first attempt: improving 'rubble code'.

build refactor

Refactoring TCS 1.10.01 6

What is refactoring?

• There is no one correct design.

• Development time re-design.

• Understanding the design of someone else's code.

Refactoring happens all the time …

 … how best to support it?

2

Refactoring TCS 1.10.01 7

FP + SE

Functional programming provides a different view of
the programming process …

… however, it's not that different.

Software engineering ideas + functional programming
• design;
• testing;
• metrics;
• refactoring.

Refactoring TCS 1.10.01 8

Refactoring functional programs

Particularly suited: build a prototype: revise,
redesign, extend.

Semantic basis supports verified transformations.

Strong type system useful in error detection.

Testing should not be forgotten.

Refactoring TCS 1.10.01 9

Genesis

Refactoring comes from the OO community …

… associated with Martin Fowler, Kent Beck (of
extreme programming), Bill Opdyke, Don Roberts.

http://www.refactoring.com

http://st-www.cs.uiuc.edu/users/brant/Refactory/

Loosely linked with the idea of design pattern.

Refactoring TCS 1.10.01 10

Genesis (2)

'Refactoring comes from the OO community'

In fact the SE community got there first …

… Program restructuring to aid software
maintenance, PhD thesis, William Griswold, 1991.

OO community added the name, support for OO
features and put it all into practice.

Refactoring TCS 1.10.01 11

Design pattern

A stereotypical piece of design / implementation.

Often not embodied in a programming construct …

… might be in a library, or

… more diffuse than that.

Refactoring TCS 1.10.01 12

What refactoring is not

Changing functionality.

Transformational programming … in the sense of the
squiggol school, say.

3

Refactoring TCS 1.10.01 13

Generalities

Changes not limited to a single point or indeed a
single module: diffuse and bureaucratic.

Many changes bi-directional.

Tool support very valuable.

Refactoring TCS 1.10.01 14

Simple examples

Simple examples from the Haskell domain follow.

Idea: refactoring in practice would consist of a
sequence of small - almost trivial - changes …

… come back to this.

Refactoring TCS 1.10.01 15

Renaming

f x y = …

⇐
Name may be too specific, if
the function is a candidate
for reuse.

findMaxVolume x y = …

�

Make the specific purpose of
the function clearer.

Refactoring TCS 1.10.01 16

Lifting / demoting

f x y = … h …

where

h = …

⇐
Hide a function which is
clearly subsidiary to f; clear
up the namespace.

f x y = … (h x y) …

h x y = …

�

Makes h accessible to the
other functions in the module
(and beyond?).

Refactoring TCS 1.10.01 17

Naming a type

f :: Int -> Char

g :: Int -> Int

…

⇐
Reuse supported (a synonym is
transparent, but can be
misleading).

type Length = Int

f :: Length -> Char

g :: Int -> Length

�

Clearer specification of the
purpose of f,g. (Morally) can
only apply to lengths.

Refactoring TCS 1.10.01 18

Opaque type naming

f :: Int -> Char

g :: Int -> Int

…

⇐
Reuse supported.

type Length

= Length {length::Int}

f' :: Length -> Char

g' :: Int -> Length

f' = f . length

g' = Length . g

�

Clearer specification of the
purpose of f,g.
Can only apply to lengths.

4

Refactoring TCS 1.10.01 19

The scope of changes

f :: Int -> Char f :: Length -> Char

g :: Int -> Int g :: Int -> Length

Need to modify …

… the calls to f

… the callers of g.

Refactoring TCS 1.10.01 20

Bureaucracy

How to support these changes?

Editor plus type checker.

The rôle of testing in the OO context.

In the functional context much easier to argue that
verification can be used.

Refactoring TCS 1.10.01 21

Machine support

Different levels possible

Show all call sites, all points at which a particular
type is used …

… change at all these sites.

Integration with existing tools (vi, etc.).

Refactoring TCS 1.10.01 22

More examples

More complex examples in the functional domain;
often link with data types.

Three case studies

• shapes: from algebraic to existential types;
• a collection of modules for regular expressions,
NFAs and DFAs: heavy use of sets;
• a collection of student implementations of
propositional semantic tableaux.

Refactoring TCS 1.10.01 23

Algebraic or abstract type?

data Tr a

= Leaf a |

Node a (Tr a) (Tr a)

flatten :: Tr a -> [a]

flatten (Leaf x) = [x]

flatten (Node s t)

= flatten s ++

flatten t

isLeaf, isNode,

leaf, left, right,

mkLeaf, mkNode

flatten :: Tr a -> [a]

flatten t

| isleaf t = [leaf t]

| isNode t

= flatten (left t) ++

flatten (right t)

Refactoring TCS 1.10.01 24

Algebraic or abstract type?

⇐
Pattern matching syntax is
more direct …

… but can achieve a
considerable amount with
field names.

Other reasons?

�

Allows changes in the
implementation type without
affecting the client: e.g.
might memoise values of a
function within the
representation type (itself
another refactoring…).

Allows an invariant to be
preserved.

5

Refactoring TCS 1.10.01 25

Migrate functionality

isLeaf, isNode,

leaf, left, right,

mkLeaf, mkNode

depth :: Tr a -> Int

depth t

| isleaf t = 1

| isNode t

= 1 +

max (depth (left t))

(depth (right t))

isLeaf, isNode,

leaf, left, right,

mkLeaf, mkNode, depth

Refactoring TCS 1.10.01 26

Migrate functionality

⇐
If the type is reimplemented,
need to reimplement
everything in the signature,
including depth.
The smaller the signature the
better, therefore.

�

Can modify the
implementation to memoise
values of depth, or to give a
more efficient implementation
using the concrete type.

Refactoring TCS 1.10.01 27

Algebraic or existential type?

data Shape

= Circle Float |

Rect Float Float …

area :: Shape -> Float

area (Circle f) = pi*r^2

area (Rect h w) = h*w

perim :: Shape -> Float

…

data Shape

= forall a. Sh a => Shape a

class Sh a where

area :: a -> Float

perim :: a -> Float

data Circle = Circle Float

instance Sh Circle

area (Circle f) = pi*r^2

perim (Circle f) = 2*pi*r

Refactoring TCS 1.10.01 28

Algebraic or existential?

⇐
Pattern matching is available.

Possible to deal with binary
methods: how to deal with ==
on Shape as existential type?

�

Can add new sorts of Shape
e.g. Triangle without
modifying existing working
code.

Functions are distributed
across the different Sh types.

Refactoring TCS 1.10.01 29

Replace function by constructor

data Expr = Star Expr |

Then Expr Expr | …

plus e = Then e (Star e)

⇐
plus is just syntactic sugar;
reduce the number of cases in
definitions.

[Character range is another,
more pertinent, example.]

data Expr = Star Expr |

Plus Expr |

Then Expr Expr | …

�

Can treat Plus differently,
e.g.
 literals (Plus e)

= literals e

but require each function over
Expr to have a Plus clause.

Refactoring TCS 1.10.01 30

Set comprehensions (Haskell-specific)

makeSet

[f x y |

x <- flatten xs,

y <- flatten ys,

p x y]

⇐
The notation looks more like
{f x y | x<-xs, y<-ys, p x y};
the monadic notation has a
different connotation.

do x <- xs

y <- ys

guard (p x y)

return (f x y)

�

Doesn't require the
abstraction to be broken by
flatten :: Set a -> [a]

Might not be possible to
define a flatten function.

6

Refactoring TCS 1.10.01 31

Other examples ...

Modify the return type of a function from T to
Maybe T, Either T T' or [T].

Would be nice to have field names in Prelude types.

Add an argument; (un)group arguments; reorder
arguments.

Move to monadic presentation.

Flat or layered datatypes (Expr: add BinOp type).

Various possibilities for error handling/exceptions.

Refactoring TCS 1.10.01 32

What now?

Grant application: catalogue, tools, cast studies.

Online catalogue started.

Develop taxonomy.

A 'live' example?

Refactoring TCS 1.10.01 33

A classification scheme

• name (a phrase)
• label (a word)
• left-hand code
• right-hand code
• comments

• l to r
• r to l
• general

• primitive / composed
• cross-references

• internal
• external (Fowler)

• category (just one) or …
… classifiers (keywords)
• language

• specific (Haskell, ML etc.)
• feature (lazy etc.)

• conditions
• left / right
• analysis required (e.g. names,
types, semantic info.)
• which equivalence?

• version info
• date added
• revision number

Refactoring TCS 1.10.01 34

Case study: semantic tableaux

Take a working semantic tableau system written by
an anonymous 2nd year student …

… refactor as a way of understanding its behaviour.

Nine stages of unequal size.

Reflections afterwards.

Refactoring TCS 1.10.01 35

An example tableau

¬((A����C)����((A∨∨∨∨ B)����C))

¬((A∨∨∨∨ B)����C)
(A����C)

××××

C¬A

××××

(A∨∨∨∨ B)
¬C

××××

××××

A B Make BTrue
Make A and C False

Refactoring TCS 1.10.01 36

v1: Name types

Built-in types
[Prop]

[[Prop]]

used for branches and
tableaux respectively.

Modify by adding
type Branch = [Prop]

type Tableau = [Branch]

Change required throughout
the program.

Simple edit: but be aware of
the order of substitutions:
avoid
type Branch = Branch

7

Refactoring TCS 1.10.01 37

v2: Rename functions

Existing names
tableaux

removeBranch

remove

become
tableauMain

removeDuplicateBranches

removeBranchDuplicates

and add comments clarifying
the (intended) behaviour.

Add test datum.

Discovered some edits undone
in stage 1.

Use of the type checker to
catch errors.

test will be useful later?

Refactoring TCS 1.10.01 38

v3: Literate →→→→ normal script

Change from literate form:
Comment …

> tableauMain tab

> = ...

to
-- Comment …

tableauMain tab

= ...

Editing easier: implicit
assumption was that it was a
normal script.

Could make the switch
completely automatic?

Refactoring TCS 1.10.01 39

v4: Modify function definitions

From explicit recursion:
displayBranch

:: [Prop] -> String

displayBranch [] = []

displayBranch (x:xs)

= (show x) ++ "\n" ++

displayBranch xs

to
displayBranch

:: Branch -> String

displayBranch

= concat . map (++"\n") . map show

More abstract … move somewhat
away from the list representation
to operations such as map and
concat which could appear in the
interface to any collection type.

First time round added incorrect
(but type correct) redefinition …
only spotted at next stage.

Version control: undo, redo,
merge, … ?

Refactoring TCS 1.10.01 40

v5: Algorithms and types (1)

removeBranchDup :: Branch -> Branch

removeBranchDup [] = []

removeBranchDup (x:xs)

| x == findProp x xs = [] ++ removeBranchDup xs

| otherwise = [x] ++ removeBranchDup xs

findProp :: Prop -> Branch -> Prop

findProp z [] = FALSE

findProp z (x:xs)

| z == x = x

| otherwise = findProp z xs

Refactoring TCS 1.10.01 41

v5: Algorithms and types (2)

removeBranchDup :: Branch -> Branch

removeBranchDup [] = []

removeBranchDup (x:xs)

| findProp x xs = [] ++ removeBranchDup xs

| otherwise = [x] ++ removeBranchDup xs

findProp :: Prop -> Branch -> Bool

findProp z [] = False

findProp z (x:xs)

| z == x = True

| otherwise = findProp z xs

Refactoring TCS 1.10.01 42

v5: Algorithms and types (3)

removeBranchDup :: Branch -> Branch

removeBranchDup = nub

findProp :: Prop -> Branch -> Bool

findProp = elem

8

Refactoring TCS 1.10.01 43

v5: Algorithms and types (4)

removeBranchDup :: Branch -> Branch

removeBranchDup = nub

Fails the test! Two duplicate branches output, with different
ordering of elements.

The algorithm used is the 'other' nub algorithm, nubVar:
nub [1,2,0,2,1] = [1,2,0]

nubVar [1,2,0,2,1] = [0,2,1]

The code is dependent on using lists in a particular order to
represent sets.

Refactoring TCS 1.10.01 44

v6: Library function to module

Add the definition:

nubVar = …

to the module

ListAux.hs

and replace the definition by

import ListAux

Editing easier: implicit
assumption was that it was a
normal script.

Could make the switch
completely automatic?

Refactoring TCS 1.10.01 45

v7: Housekeeping

Remanings: including foo and
bar and contra (becomes
notContra).

An instance of filter,
looseEmptyLists

is defined using filter, and
subsequently inlined.

Put auxiliary function into a
where clause.

Generally cleans up the script
for the next onslaught.

Refactoring TCS 1.10.01 46

v8: Algorithm (1)

splitNotNot :: Branch -> Tableau

splitNotNot ps = combine (removeNotNot ps) (solveNotNot ps)

removeNotNot :: Branch -> Branch

removeNotNot [] = []

removeNotNot ((NOT (NOT _)):ps) = ps

removeNotNot (p:ps) = p : removeNotNot ps

solveNotNot :: Branch -> Tableau

solveNotNot [] = [[]]

solveNotNot ((NOT (NOT p)):_) = [[p]]

solveNotNot (_:ps) = solveNotNot ps

Refactoring TCS 1.10.01 47

v8: Algorithm (2)

splitXXX removeXXX solveXXX

are present for each of nine rules.

The algorithm applies rules in a prescribed order, using an
integer value to pass information between functions.

Aim: generic versions of split remove solve

Have to change order of rule application …
… which has a further effect on duplicates.

Add map sort to top level pipeline prior to duplicate removal.

Refactoring TCS 1.10.01 48

v9: Replace lists by sets.

Wholesale replacement of lists by a Set library.
map mapSet

foldr foldSet (careful!)
filter filterSet

The library exposes the representation: pick, flatten.
Use with discretion … further refactoring possible.

Library needed to be augmented with
primRecSet :: (a -> Set a -> b -> b) -> b -> Set a -> b

9

Refactoring TCS 1.10.01 49

v9: Replace lists by sets (2)

Drastic simplification: no need for explicit worries about
 … ordering and its effect on equality,
 … (removal of) duplicates.

Difficult to test whilst in intermediate stages: the change in a
type is all or nothing …
… work with dummy definitions and the type checker.

Further opportunities:
… why choose one rule from a set when could apply to all elements
at once? Gets away from picking on one value (and breaking the
set interface).

Refactoring TCS 1.10.01 50

Conclusions of the case study

Heterogeneous process: some small, some large.

Are all these stages strictly refactorings: some
semantic changes always necessary too?

Importance of type checking for hand refactoring …
… and testing when any semantic changes.

Undo, redo, reordering the refactorings … CVS.

In this case, directional … not always the case.

Refactoring TCS 1.10.01 51

What next?

Put the catalogue into the full taxonomic form.

Continue taxonomy: look at larger case studies etc.

Towards a tool design.

