
 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2005, Allen I. Holub www.holub.com 1

Allen I. Holub
Holub Associates
www.holub.com
allen@holub.com

Everything
You Know is

Wrong!

©2003, Allen I. Holub www.holub.com 2

The Problem

©2003, Allen I. Holub www.holub.com 3

Words of Wisdom

"A long habit of not thinking a thing wrong,
gives it a superficial appearance of being
right, and raises at first a formidable outcry
in defense of custom."

-Thomas Paine

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 4

People don’t know they don’t
know

• Unskilled and Unaware of It: How
Difficulties in Recognizing One's Own
Incompetence Lead to Inflated Self-
Assessments

» Justin Kruger and David Dunning, Department
of Psychology, Cornell University.

• http://www.apa.org/journals/psp/psp7761121.html

• I’ve gotten death threats when I’ve written
about this stuff.

©2003, Allen I. Holub www.holub.com 5

Procedural thinking is
everywhere

• OO really is a different way of thinking about
programming.

• Don’t confuse familiar with “right.”
– Procedural methods are familiar.
– Many commonly used libraries (particularly open

source [e.g. Struts, JavaBeans]) are
fundamentally procedural.

• It takes as long (or longer) to learn design
as it does to learn how to program.
– Programming and design are different disciplines.

©2003, Allen I. Holub www.holub.com 6

Basic OO principles.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 7

OO ≠ Procedural

main

•Centralized control.

•Data passed to functions.

•Cloud of peers.

•Messages flow between
objects, data stays put.

©2003, Allen I. Holub www.holub.com 8

The “Replacement” Principal

You should be able to
radically change a

class’s implementation,
even replace it entirely,
without affecting any of

the objects that use
that class.

©2003, Allen I. Holub www.holub.com 9

Data abstraction

• The less you know about how objects work,
the more maintainable your code.

• The less you know about the actual classes
you’re using, the more maintainable your
code. (Abstraction)
– Program in terms of an abstraction layer

(interfaces), not concrete classes.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 10

What is an object?

• Objects are defined by what they do,
not what they contain.
– objects ≠ data + functions.
– objects have responsibilities, not data.

• The way in which the object does the work
should be completely hidden
(Encapsulation).

©2003, Allen I. Holub www.holub.com 11

Ask for help, not for information

 Don’t ask an object to give
you the data you need to do
something ask the object
that has the information to do
the work for you. (Delegation)

©2003, Allen I. Holub www.holub.com 12

Some Examples

• An Employee doesn’t need a getName()
– exportAsXML(“name”, Writer out);

• A String doesn’t need a getBytes()
– The String class should support all necessary string

operations.

– String.print(Writer)

• An EJB running on a bank’s server does not
need a getBalance().

Boolean IsBalanceGreaterThan(
Money requestedFunds);

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 13

Getters and Setters Are Evil

©2003, Allen I. Holub www.holub.com 14

More on Data Abstraction

• The goal is to be able to change a class’s
implementation without impacting the code
that uses that class.

• Implications of implementation hiding:
– public fields are bad

• They expose implementation.

– Getter/setter (accessor/mutator) methods are
bad
• They are just complicated ways of making a field

public.

©2003, Allen I. Holub www.holub.com 15

An example of why accessors are
bad

• Consider this class: class Money
{ double value;

double getValue();
}

• What if you need to support multiple currencies?
– getValue() fails: we don’t know the currency.
– Adding getCurrency() doesn’t help

• All the code that uses getValue() must be modified to
use getCurrency().

– Operations like comparing values represented in
different currencies are now complicated, and
must be performed all over your code.

– Can’t be fixed with automated refactoring.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 16

The problem is endemic

• A procedural programmer sees nothing
wrong.
– Many books recommend putting mutators and

accessors on all fields!

• JavaBeans introduced the getter/setter
“design pattern” because it was “easy.”
– There’s a better alternative, called a

BeanCustomizer, but nobody uses it.
– “Metadata” (Java 1.5) is vastly better:

@property private int someProperty;

• People have blindly copied the idiom
without considering the consequences.

©2003, Allen I. Holub www.holub.com 17

How should it work?

• Don’t ask for the information that you need
to do the work; ask the object that has the
information to do the work for you.

class Money
{ private double value;

public Money addTo (Money x) {/*...*/}
public int compare (Money x) {/*...*/}
public Money printTo (Writer w) {/*...*/}

 public String asXML () {/*...*/}
public String toString () {/*...*/}

}

©2003, Allen I. Holub www.holub.com 18

Ramifications in the UI

• An object must be responsible for building its own UI.
– or at least providing generic representations of its attributes.

• (Simplistically) not
System.out.println(obj.getAttribute());

but
obj.printTo(Writer w);

or
JComponent c =
 object.getRepresenationOf(“attribute”);

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 19

A realistic solution

• You can’t add a billion printYourselfAsXXX()
methods for different representations.

• exportAsXML() can work, but is awkward.
• Solve the problem generically with the GoF Builder

design pattern.
– An object (the “director”) builds a representation to itself

by passing information to a builder object, which is passed
into the director.

– Different builders build different products.
– The director doesn’t know what is build.
– Accessors, if reqired, are part of the builder, not the

director, so changes in the director ripple only to the
builders.

©2003, Allen I. Holub www.holub.com 20

Using the Builder

XMLBuilder exporter = new XMLBuilder();
Employee.exportTo(exporter);
exporter.printTo (someOutputStream);

JComponentBuilder builder =
new JComponentBuilder();

Employee.exportTo(builder);
someFrame.add(builder.getRepresentation());

XMLImporter importer= new XMLImporter(stream);
Employee fred = new Employee(importer);

©2003, Allen I. Holub www.holub.com 21

Builder (1)

public class Employee
{ private Name name;
 private EmployeeId id;
 private Money salary;

 public interface Exporter
 { void addName (String name);
 void addID (String id);
 void addSalary (String salary);
 }

 public interface Importer
 { String provideName();
 String provideID();
 String provideSalary();
 void open();
 void close();
 }

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 22

Builder (2)

public Employee(Importer builder)
{ builder.open();

this.name = new Name (builder.provideName());
 this.id = new EmployeeId(builder.provideID());
 this.salary = new Money (builder.provideSalary(),
 new Locale("en","US"));
 builder.close();
 }

 public void export(Exporter builder)
 { builder.addName (name.toString());
 builder.addID (id.toString());
 builder.addSalary(salary.toString());
 }
 //...
}

©2003, Allen I. Holub www.holub.com 23

Building a Swing UI

class JComponentExporter implements Employee.Exporter
{ private String name, id, salary;

 public void addName (String name){ this.name = name;}
 public void addID (String id){ this.id = id; }
 public void addSalary(String salary){this.salary=salary;}

 JComponent getJComponent()
 { JComponent panel = new JPanel();
 panel.setLayout(new GridLayout(3,2));
 panel.add(new JLabel("Name: "));
 panel.add(new JLabel(name));
 panel.add(new JLabel("Employee ID:"));
 panel.add(new JLabel(id));
 panel.add(new JLabel("Salary:"));
 panel.add(new JLabel(salary));
 return panel;
 }
}

©2003, Allen I. Holub www.holub.com 24

Exporting to HTML

HTMLExporter implements Employee.Exporter
{ private final String HEADER = "<table border=\"0\">\n";
 private final StringBuffer out = new StringBuffer(HEADER);

 public void addName(String name)
 { out.append("\t<tr><td>Name:</td><td>");
 out.append("<input type=\"text\" name=\"name\”value=\"");
 out.append(name);
 out.append("\"></td></tr>\n");
 }
 public void addID(String id) { /*.. .*/ }
 public void addSalary(String salary) { /*.. .*/ }
 String getHTML()
 { out.append("</table>");
 String html = out.toString();
 out.setLength(0); // erase the buffer
 out.append(HEADER);
 return html;
 }
} HTML Exporter e = new HtmlExporter;

someEmployee.export(e);
someStream.print(e.getHTML());

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 25

Initializing from an HTML form

class HTMLImporter implements Employee.Importer
{ ServletRequest request;
 public void open() { /*nothing to do*/ }
 public void close(){ /*nothing to do*/ }
 public HTMLImporter(ServletRequest request)
 { this.request = request;
 }
 public String provideName()
 { return request.getParameter("name");
 }
 public String provideID()
 { return request.getParameter("id");
 }
 public String provideSalary()
 { return request.getParameter("salary");
 }
}

Employee e =
new Employee(new HTMLImporter(request));

©2003, Allen I. Holub www.holub.com 26

Ask for help, not for information

• Eliminate getters/setters by rethinking how
the object works.

• Ask the object that has the information
to do the work for you.
– then you don’t need to “get” anything.

• Develop code using accepted OO-Design
processes.
– Code that develops from use-case analysis and

dynamic modeling doesn’t have getters &
setters because they simply aren’t necessary.

©2003, Allen I. Holub www.holub.com 27

When are getters/setters okay?

• Returning an object in terms of an interface that it
implements can reduce the consequences, but
should be avoided if possible.
– Eg. Collection.iterator().
– The returned object must hid its own implementation.

• Accessors/mutators are mandatory at the
“procedural boundary layer.”
– The database.
– The Operating System.
– The UI Toolkit.

• Designers of generic toolkits must accessors and
mutators because they don’t know how the objects
will be used, so can’t define the operations.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 28

Extends is evil

©2003, Allen I. Holub www.holub.com 29

Inheritance

• There are two types of inheritance:
– Implementation inheritance (extends)

• The base class has methods and fields which
are effectively part of (are inherited by) the
derived class.

– Interface inheritance (implements)
• The base class is nothing but prototypes of

methods that are implemented by the derived
class.

• Implementation inheritance is risky, and
can almost always be replaced by interface
inheritance and delegation.

©2003, Allen I. Holub www.holub.com 30

Interfaces make your code more
flexible.

• LinkedList list = new LinkedList();
g(list);

g(LinkedList list)
{ list.add(...);
 g2(list)
}

• – vs. –
Collection list = new LinkedList();
g(list);

g(Collection list)
{ list.add(...);
 g2(list)
}

Changing the
collection type doesn’t
impact g().

Changing the list
type impacts g().

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 31

Design patterns can add even
more flexibilty

• void f2()
{ Collection c = new HashSet();
 //...
 g2(c.iterator());
}

void g2(Iterator i)
{ while(i.hasNext() ;)
 do_something_with(i.next());
}

©2003, Allen I. Holub www.holub.com 32

When is implementation
inheritance appropriate?

• Implementation normalization.
– Encapsulate into a base class operations that

would otherwise be implemented identically in
several derived classes.

• Compile-time restriction of activities.
Class Employee { /*…*/ }
Class Manager extends Employee
{ do_manager_stuff(){/*…*/}
}

• Other reasonable uses of extends all
involve design trade offs.

©2003, Allen I. Holub www.holub.com 33

Fragile base classes

• The main problem with implementation
inheritance is “fragility.”
– Derived classes often depend on base class

behaving in a certain way.
– If you change the behavior of a base-class

method, you can break the derived class.
– This base-class change is often an

IMPROVEMENT.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 34

Consider this code

• class Stack extends ArrayList
{ private int stack_pointer = 0;

 public void push(Object article)
 { add(stack_pointer++, article);
 }

 public Object pop()
 { return remove(--stack_pointer);
 }

 public void push_many(Object[] articles)
 { for(int i = 0; i < articles.length; ++i)
 push(articles[i]);
 }
}

©2003, Allen I. Holub www.holub.com 35

So what’s wrong?

• What if a user leverages inheritance and uses
the ArrayList's clear() method to pop everything
off the stack:
Stack a_stack = new Stack();
a_stack.push("1");
a_stack.push("2");
a_stack.clear();

• The stack pointer is not modified, so the stack
now holds garbage.

©2003, Allen I. Holub www.holub.com 36

How about using encapsulation?

• class Stack
{ private int stack_pointer = 0;
 private ArrayList the_data = new ArrayList();
 public void push(Object article)
 { the_data.add(stack_pointer++, article);
 }
 public Object pop()
 { return the_data.remove(--stack_pointer);
 }
 public void push_many(Object[] articles)
 { for(int i = 0; i < o.length; ++i)
 push(articles[i]);
 }
}

• There’s no clear() [that’s good]. But ...

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 37

The new version breaks under
inheritance

• class MonitorableStack extends Stack
{ private int high_water_mark = 0;
 private int current_size;
 public void push(Object article) // override
 { if(++current_size > high_water_mark)
 high_water_mark = current_size;
 super.push(article);
 }
 public Object pop() // override
 { --current_size;
 return super.pop();
 }
 public int maximum_size_so_far() // new
 { return high_water_mark;
 }
 // inherit pushMany();
}

©2003, Allen I. Holub www.holub.com 38

Consider what happens when
someone improves base class

class Stack
{ private int stack_pointer = -1;
 private Object[] stack = new Object[1000];
 public void push(Object article)
 { assert stack_pointer < stack.length;
 stack[++stack_pointer] = article;
 }

//...
 public void push_many(Object[] articles)
 { assert (stack_pointer + articles.length) < stack.length;

 System.arraycopy(articles, 0, stack, stack_pointer+1,
 articles.length);

 stack_pointer += articles.length;
 }
}

No longer
calls push()

©2003, Allen I. Holub www.holub.com 39

The improvement broke the
derived class.

• The MonitorableStack did not override
pushMany() because it expected pushMany() to
call push() (which it did override).

• If someone calls pushMany(), then the high-
water-mark will not be adjusted.

• A solution using interfaces and
encapsulation fixes the problem
permanently. (next slide)

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 40

An improved version (1)

• First, introduce an interface:

interface Stack
{ void push(Object o);
 Object pop();
 void push_many(Object[] source);
}

• Implement SimpleStack just like before, but
implement the interface:

class SimpleStack implements Stack
{ //... as in eariler slide.
}

©2003, Allen I. Holub www.holub.com 41

An improved version (2)

class MonitorableStack implements Stack
{ private SimpleStack stack = new SimpleStack();

 private int high_water_mark = 0, current_size;
 public void push(Object o)

 { if(++current_size > high_water_mark)
 high_water_mark = current_size;
 stack.push(o);
 }
 //...
 public void push_many(Object[] source)
 { if(current_size + source.length > high_water_mark)
 high_water_mark = current_size + source.length;
 stack.push_many(source);
 }
 //...
}

©2003, Allen I. Holub www.holub.com 42

The “inheritance” pattern

• Rather than:
class Simple{ void f(){ /*...*/ } }
class Specialization extends Simple{ /*...*/ }

Use:
interface Simple
{ void f();

static class Implementation implements Simple
{ void f(){ /* does some work */ }
}

}
class Specialization implements Simple
{ Simple delegate = new Simple.Implementation();

void f(){ delegate.f(); }
}

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 43

A few observations

• At any time in the future, anyone can add a
method to a base class (e.g. clear()) that
might break the derived class.

• Avoid “Framework” architectures. (in which
you must use implementation inheritance to
customize base-class behavior)

• Since you can implement as many
interfaces as you like, you can use the
“inheritance” pattern to implement multiple
inheritance in Java.

©2003, Allen I. Holub www.holub.com 44

What this all means

©2003, Allen I. Holub www.holub.com 45

There is no such thing as perfect

• Design is a series of trade-offs.
• Assess risk, then make reasonable decisions.

– If you use implementation inheritance, then you
run the risk of a fragile-base-class related bug.

– If you expose implementation (with getters and
setters) then you run the risk of a change to the
exposing class rippling out to the entire program,
with concomitant maintenance headaches.

– That might be okay. Use your brain!

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 46

There’s often a better solution

• Approach popular libraries with skepticism
– Use them if they help, but don’t hold them out as a model

of good design.

• There’s almost always a way to do it “right.”
– Move the work into the class that has the information

needed to do the work.
– Replace implementation inheritance with interface

inheritance.

• You will learn to think in an OO way with enough
practice.

• Study design.
– Know the Gang-of-Four design patterns cold.
– Read code.
– Learn at least two OO languages.

©2003, Allen I. Holub www.holub.com 47

References

• These slides
– http://www.holub.com/publications/notes_and_slides

• Why extends is evil: Improve your code by
replacing concrete base classes with interfaces
– http://www.javaworld.com/javaworld/jw-08-2003/jw-

0801-toolbox.html

• Why getter and setter methods are evil: Make your
code more maintainable by avoiding accessors
– http://www.javaworld.com/javaworld/jw-09-2003/jw-

0905-toolbox.html

• More on getters and setters: Build user interfaces
without getters and setters
– http://www.javaworld.com/javaworld/jw-01-2004/jw-

0102-toolbox.html

©2003, Allen I. Holub www.holub.com 48

Shameless Self-Promotion

The first couple chapters
discuss these issues
in depth.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 49

Q&A

Allen Holub
www.holub.com

