
Copyright 1998 AT&T. Permission is granted to make copies for PLoP 98 Page 1

Essence Pattern

Andy Carlson

4 July 1998

Abstract:

Many classes, particularly persistent ones, require that a certain subset of their attributes be valid before a
given instance can be considered valid. How can this be guaranteed in component based or distributed
environments where the client which creates the instances is outside our design control?

Traditional solutions involve long lists of parameters to be supplied by the client at creation time or
allowing an invalid object to be created and using a separate validation step. This paper examines situations
in which these solutions are not desirable or acceptable and presents an alternative solution which can be
more generally applied.

Copyright 1998 AT&T. Permission is granted to make copies for PLoP 98 Page 2

Pattern Name: Essence

Aliases: none

Context
You are building an information system in which objects have a known set of properties (attributes and/or
relationships) each of which can have a meaningful value or not (e.g. can be in an uninitialized state, absent
altogether, have a null value or refer to a Null Object [WOOLF97]). For some classes there is a subset of
properties which must always have a meaningful value (compulsory properties). You are considering how
to support creation of instances of these classes by clients which may not be under your design control (for
example CORBA [OMG] or ActiveX clients).

Problem
Many classes have ‘compulsory’ properties which must be specified in order for an instance to be in a valid
state, for example, before having attributes used as keys in a dictionary or database index. We would
therefore like to force the clients of such classes to specify the compulsory properties when creating new
instances. Sometimes we also need to ensure that these properties cannot be altered at any time after
creation.

Custom er

Supplier

Contract

startDate
en dDate

1 ..1
0..*

1 ..1
0..*

1..1
0..*

1..1
0..*

Figure 1 Contract class with optional and compulsory information.

For example, consider model in Figure 1. When a Contract is created, both a Supplier and a Customer must
be specified and these cannot be changed after creation. Start time must also be specified at the moment of
creation although this may later be delayed or brought forward. End time is completely optional as the
contract may be ‘open ended’.

Typical solutions to this problem are:-
1. Avoid the issue at object creation time by using a zero argument constructor and providing public ‘set’

methods for all properties. Pick some later moment at which a separate validation step can be
performed.

2. If the implementation environment permits it, use only constructors (or Factory objects) which require
all compulsory properties to be specified.

3. If the compulsory properties are (or are derived from) a relationship to another (pre-existing) object,
force the client to ask the related object perform the creation.

Solution 1 is not really solving the problem at all, it does not allow the creation process to provide feedback
to the client on whether the object is legal (unless we rely on the client to call a validation method the
object, which is placing even more faith in the client). It also assumes that we know when the object should
be valid so that we can check it before we try to use it. This is not always possible (for example, when
writing persistent objects to an ODMG93 [ODMG] database there is no ‘save’ operation which is
identifiable to the application code). It also requires us to open up all properties to change at any time,
which is unacceptable in the case of the Customer and Supplier relationships.

Copyright 1998 AT&T. Permission is granted to make copies for PLoP 98 Page 3

Solution 2 is better but it can result in cumbersome constructor parameter lists. This can be a particular
problem when several different permutations of parameters are valid. We may, for example, wish to allow
clients to specify customers and suppliers either by name or by passing an object reference. It also forces us
into questionable techniques like throwing exceptions from constructors if we want to reject any invalid
values.

Solution 3 is perfectly acceptable but is only applicable in a limited set of circumstances, mainly where the
related object can in some way be considered as the ‘owner’ of the object being created. In the example, we
would be forced to choose either the Customer or Supplier to be the creator of the contract, neither of
which may be obvious or desirable.

Forces
• Object Integrity and Future Proofing: If clients are not under your design control (or not

designed yet), you cannot rely on them to specify valid properties or validate the object after
creation. Sooner or later a client will attempt to create an invalid object.

• Property Immutability: There are many situations where immutable properties are required,
either because of design decisions or implementation constraints (e.g. indexing mechanisms).

• Negative Aspects of Encapsulation: In some solution domains (e.g. some persistence
frameworks) the application code has no control over when other parts of the system expect the
object to be ‘valid’.

• Language Limitations: The syntax of many common object oriented languages is limited in the
area of supporting different permutations of constructor parameters without needing to specify
every possibility separately.

• Flexibility vs Complexity: If every permutation of constructor parameters is specified, a cluttered
interface may result.

• Elegance and Safety: Throwing exceptions from constructors is a problematic implementation
technique and should be avoided. It may not be allowed in some implementation environments.

• Interface Coherence: Classes are easier to understand and use if the methods for manipulating
and validating their properties are part of the same class.

Solution

Essence

compulsoryAttribute1
compulsoryAttribute2

setCompulsoryAttribute1()
getCompulsoryAttribute1()
setCompulsoryAttribute2()
getCompulsoryAttribute2()
createTarget()
Essence()
validateParameters()

CreationTarget

compulsoryAttribute1
compulsoryAttribute2
optionalAttribute1
optionalAttribute2

getCompulsoryAttribute1()
getCompulsoryAttribute2()
setOptionalAttribute1()
getOptionalAttribute1()
setOptionalAttribute2()
getOptionalAttribute2()
CreationTarget()

Figure 2 Structure of the Essence pattern

Use a separate object (the Essence object) to receive the compulsory properties of the object being created
(the CreationTarget) as shown in Figure 2. Creation of the Essence object should be unrestricted. Assign a
separate method for each property in the Essence class and have the method store the parameter value in
the Essence. For properties which should not be changed after object creation, provide ‘set’ methods for
these only in the Essence class.

Copyright 1998 AT&T. Permission is granted to make copies for PLoP 98 Page 4

Force clients to obtain new instances of the CreationTarget class via a method of the Essence class. Have
this method validate the properties supplied and then either create the new object or report a failure to the
client. When creating the CreationTarget the Essence should pass a reference to itself to the CreationTarget
constructor to allow it to retrieve the parameter values and initialize its own properties.

aClient anEssence aCreationTarget

new

setCompulsoryAttribute1

setCompulsoryAttribute2

createTarget

validateParameters

new

getCompulsoryAttribute1

getCompulsoryAttribute2

Figure 3 A client creating a CreationTarget using the Essence pattern

From the client’s perspective, he must first create an instance of an Essence object as shown in Figure 3.
No extra information is required to do this. He must then call methods on the Essence object to specify
each of the compulsory parameters. Once this has been done, the client can call the createTarget method.
At this stage, the Essence must validate the supplied parameters and either reject them or create a new
CreationTarget as requested, passing itself to the new object’s constructor. The values can then be retrieved
by the CreationTarget from the Essence. Finally, the fully constructed CreationTarget is passed back to the
client.

As an optional addition, the client can call the validateParameters method of the Essence object one or
more times during specification of parameters, for example to provide an interactive user with feedback as
to whether the object’s fields have been completed satisfactorily.

To return to our original example, the methods for the ContractEssence class might be as shown in
Figure 4. Note that we are now able to support alternative ways to specify customer and supplier without
needing to include all possible permutations in the interface design.

Copyright 1998 AT&T. Permission is granted to make copies for PLoP 98 Page 5

ContractEssence

ContractEssence()
setCustomerName(name : string)
setCustomer(cust : Customer)
setSupplierName(name : string)
setSupplier(supp : Supplier)
setStartDate(d : date)
validateParameters()
createContract()

Figure 4 ContractEssence interface

Consequences
9 Clients are forced to supply valid property values
9 The object is never created unless and until valid properties values are supplied by the client.
9 The CreationTarget object is valid at the end of its constructor’s execution.
9 There is no need to provide ‘set’ methods for properties which must not be changed after creation.
9 Using a method per parameter allows more flexibility in allowing different permutations of parameters

without needing to decide on these before the interface design is fixed.
9 If multiple instances of the same CreationTarget class are being created with parameters which differ

only slightly from each other, a single Essence can be used to create several targets, saving the client
from repeated specification of identical property values.

9 The Essence object can also be used as a Builder [GAMMA94] if the desired end result is a number of
related objects rather than a single object.

8 Adding the Essence class introduces another class to the design, possibly causing confusion to client
developers who must now decide which class to call when setting property values.

8 Responsibility for validation of attribute values for CreationTarget is in two places instead of one.
8 This pattern requires a circular dependency between the Essence class and the CreationTarget class.

Implementation
The main problem to be solved in implementing this pattern is how to prevent clients from directly creating
instances of the CreationTarget object but still allow the Essence objects to do so.

In C++ this can be achieved by making all of the CreationTarget constructors private and making the
Essence class a friend of the CreationTarget class.

In Java, the CreationTarget constructors can be made protected. The Essence can be granted access to the
constructors by placing the Essence and CreationTarget classes in the same package. This assumes that the
clients are in a different package, otherwise they too would be able to use the protected constructors.

In distributed environments (e.g. CORBA) this job is typically much easier as the object creation process is
often forced by the distribution architecture to go through some indirect mechanism (for example, a Factory
Object). Clients are therefore unable to use constructors directly.

In environments which lack the ability to tailor method accessibility depending on client, some protection
can be obtained by the requirement that an Essence is passed when creating the CreationTarget. In these
situations the CreationTarget constructor should call the validateParameters method on the Essence class.
In the event that a client creates an ‘incomplete’ Essence and then directly creates a CreationTarget (i.e.
without going via the createTarget method on the Essence), the CreationTarget constructor at least has the
opportunity to flag an error by whatever means are available.

Copyright 1998 AT&T. Permission is granted to make copies for PLoP 98 Page 6

Another question is how to report creation failure back to clients. This can be done either by returning a
null value (or Null Object) or by throwing an exception.

The designer has three choices of location for validation. Validation of attribute values which cannot be
changed after location should be placed in the Essence class. Validation of attributes which are not
involved in the creation process should obviously be done by the CreationTarget. Parameters which can be
changed after creation are more difficult to deal with as they require validation in both the Essence and
CreationTarget. A class level method on CreationTarget is a possibility to avoid code duplication in this
situation.

An enhancement which may be useful, depending on the nature of the client is to use Bjarne Stroustrup’s
[STROUSTRUP94] suggestion of having all of the ‘set’ methods on the Essence return a reference to the
Essence. This allows the full set parameters to be specified by the client in a single line if desired, for
example:-

(new WindowEssence()).textColor(black).font(courier).bckColor(grey)

Although it is no longer necessary, overloaded constructors can still be provided for common parameter
combinations if desired.

Known Uses
The AT&T Rialto system provides a component called the Rialto Repository. The Repository is
implemented as a CORBA server which provides an interface on top of which data management tools can
be built. Underlying this is an ODMG93 database and it is the responsibility of the CORBA server to
ensure that only valid data reaches the database. The Essence pattern has been used in several situations to
solve the problem of compulsory and/or immutable properties. For example:-
• Corporate Legal Entities must have a Company Name and at least a minimal set of contact

information.
• Contracts must have both a supplier and a customer.
• Domains must have a domain name

Related Patterns
This pattern was inspired by a section in Bjarne Stroustrup’s ‘Design and Evolution of C++’
[STROUSTRUP94] discussing the case for an argument naming syntax in C++ and alternatives in light of
the lack of one. The motivation for this pattern is, however, somewhat different from Bjarne’s.

Abstract Factory [GAMMA94] is typically used in distributed environments to create new instances of
objects and can be used as the source of Essence objects.

References
[GAMMA94] E Gamma, R Helm, R Johnson, J Vlissides. Design Patterns : Elements of Reusable Object
Oriented Software. Reading, MA: Addison Wesley, 1994.
[ODMG] R Cattell, D Barry (eds). The Object Database Standard: ODMG 2.0. San Fransisco, CA:
Morgan Kaufmann, 1997.
[OMG] Object Management Group. The Common Object Request Broker: Architecture and Specification.
1995.
[WOOLF97] B Woolf. Null Object from Pattern Languages of Program Design 3. R Martin, D Riehle, F
Buschmann (eds.). Reading, MA: Addison Wesley Longman, 1998.
[STROUSTRUP94] B Stroustrup. The Design and Evolution of C++. Reading, MA: Addison Wesley,
1994.

Copyright 1998 AT&T. Permission is granted to make copies for PLoP 98 Page 7

Acknowledgements
I would like to thank my shepherd, Wolf Siberski for his helpful comments on this paper.

Trademarks
Rialto is a trademark of AT&T.

Keywords : essence, compulsory property, compulsory parameter, object creation

