
Introduction to cryptology: Pt. 3

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Introduction to the tutorial 2

2. Background and reminders 4

3. Steganography and watermarking 9

4. "Exotic" protocols 16

5. Resources 25

6. Feedback 26

Introduction to cryptology: Pt. 3 Page 1

Section 1. Introduction to the tutorial

Is this tutorial right for you?
This tutorial builds on the foundation provided by the two introductory tutorials on
general cryptology concepts (Part 1 and Part 2). You don't necessarily need to have
completed the introductory tutorials, but you should be familiar with general cryptology
concepts, such as symmetric encryption algorithms, asymmetric encryption algorithms,
cryptanalysis, attacks, Alice and Bob, messages, hashes, cipher text, and key length.

If you feel comfortable with these concepts, you should not have difficulty
understanding this tutorial. If answers to those questions are unclear, take a quick look
at Parts 1 and 2 of this tutorial series by David Mertz. (The section below, "Background
and reminders," includes a brief overview of important concepts.)

In general, this tutorial is aimed at programmers who wish to become familiar with
cryptology, its techniques, its mathematical and conceptual basis, and its lingo. Most
users will have encountered various descriptions of cryptographic systems and general
claims about the security or insecurity of particular software and systems, but without
entirely understanding the background of these descriptions and claims. Additionally,
many users will be programmers and systems analysts whose employers have plans to
develop or implement cryptographic systems and protocols (perhaps assigning such
obligations to the very people who will benefit from this tutorial).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 2

http://www-105.ibm.com/developerworks/education.nsf/security-onlinecourse-bytitle/76FFCD5366D876F8862569CF005A026D?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/security-onlinecourse-bytitle/76FFCD5366D876F8862569CF005A026D?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/security-onlinecourse-bytitle/2A4CAAE7A60E6E46862569DC00773076?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/security-onlinecourse-bytitle/2A4CAAE7A60E6E46862569DC00773076?OpenDocument

What does this tutorial cover?
This intermediate tutorial introduces users to a variety of protocols that are useful for
accomplishing specific and specialized tasks. Algorithms as such are not covered here,
but are treated as building blocks for larger protocols. For example, a protocol
discussed here might, as a general assumption, state something like: "Assume E() is a
strong symmetric encryption algorithm with key length of 256 bits." It is up to tutorial
users to know what this statement means; and it is up to protocol implementers to
actually choose an appropriate algorithmic building block. However, the "Resources"
section provides information on a number of common building blocks (so that might be
a good place to start).

The number of things you can accomplish with cryptographic protocols is quite
astonishing! Many readers will be surprised that some of the matters discussed here
are possible at all. The author certainly was when he first encountered many of them.
Moreover, this fairly brief tutorial is unable to address every protocol and goal
cryptologists have developed. If something is not covered here, please do not assume
that means its goal cannot be accomplished cryptographically. It likely means the
tutorial author simply did not include it (either because of limits of space or limits of his
knowledge). Then again, there are certain goals that are easy to state -- and that you
might find discussed and requested repeatedly in discussion forums -- that simply
bump up against mathematical impossibility. The difference is not always obvious. You
might need to think about the issues at some length, and ask questions of folks with
some experience.

Contact
David Mertz is a writer, a programmer, and a teacher who always endeavors to
improve his communication with readers (and tutorial takers). He welcomes any
comments; please direct them to mertz@gnosis.cx .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 3

mailto:mertz@gnosis.cx

Section 2. Background and reminders

Protocols and algorithms
One fundamental notion introduced in the earlier tutorials is worth emphasizing again
before we get underway: It is important to make the distinction between protocols and
algorithms.

A protocol is a specification of the complete set of steps involved in carrying out a
cryptographic activity, including explicit specification of how to proceed in every
contingency. An algorithm is a much narrower procedure used to transform some
digital data into some other digital data. Cryptographic protocols inevitably involve
using one or more cryptographic algorithms, but security (and other cryptographic
goals) is a product of a total protocol.

Clearly, using a strong and appropriate algorithm is an important part of creating a
strong protocol, but it is not sufficient by itself. The first sections of this tutorial mostly
address how cryptographic algorithms work; the later sections take a look at the use of
some algorithms in actual protocols, particularly protocols that combine multiple
algorithms to accomplish complex goals.

Block ciphers and stream ciphers
Encryption algorithms can be divided into block ciphers and stream ciphers. Stream
ciphers are able to take plain text input one bit (or one byte) at a time and output a
corresponding cipher text bit (byte) right away. The manner in which a bit (byte) is
encrypted will depend both upon the key used and the previous plain text stream
encrypted leading up to that point.

In contrast to stream ciphers, block ciphers require an entire block of plain text input
before they can perform any encryption (typically blocks are 64 bits or more). In
addition, given an identical plain text input block and an identical key, a block cipher will
produce the same cipher text no matter where in an input stream it is encountered.

Although stream ciphers have some advantages in cases where immediate responses
are required -- for example on a socket -- the majority of widely-used modern
encryption algorithms are block ciphers. In this tutorial, whenever symmetric encryption
algorithms are discussed generically, the user should assume the tutorial is referring to
block ciphers.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 4

Some impossible things
Many of the things cryptography cannot accomplish are quite simple to understand, but
nonetheless they repeatedly prompt wishful thinking by people getting started in
cryptology. In some cases, vendors promise algorithms and protocols with properties
that are impossible to achieve. A good place to cultivate suspicion about impossible
claims is the Snake Oil FAQ (see Resources). A few impossible (or at least suspicious)
things are worth considering before proceeding with this tutorial.

Impossible things with random numbers, part 1
Random numbers are important to a variety of cryptographic protocols, such as
randomly-generated keys and seeds. A problem one runs up against when seeking
random numbers is that it's impossible to generate true random numbers from
deterministic algorithms. Instead, what algorithms produce are "pseudo-random
numbers" -- such algorithms are called "pseudo-random generators" (PRGs).

The difference between pseudo-random numbers and genuine random numbers is a
basic fact of information theory. A genuine random number contains as much entropy
or information as its bit length. Any algorithm that can be written in a computer
language cannot contain more entropy than is contained in its actual source code
(including any contained in language libraries and the like). So there is a limit to the
number and length of random numbers that can be generated by a given algorithm.
After a while, patterns start occurring in pseudo-random streams. By gathering some
real-world random seed information (for example, the microsecond timing of a user
typing a phrase, or a bit of information about external changes in the Internet), the
entropy of a PRG can be improved, but only by the amount of the entropy content of
the real-world seed data.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 5

Impossible things with random numbers, part 2
Finding a way of making one-time pads (OTPs) from PRGs is something like a
philosopher's stone for beginning cryptologists. One-time pads, you may recall, have
the wonderful property of being provably and unconditionally secure. As long as
genuinely random data (of the same length as the message being encoded) is used
only once, an attacker has absolutely no way of deciphering which message (of the
given length) was encoded. Further, an attacker's failure here is not just a
computational matter of exceeding the MIPS of all the computers that exist (or might be
built), but rather the mathematical fact that nothing distinguishes an actual crack from a
false decipherment.

Of course, OTPs have the inconvenient quality of requiring the out-of-channel
exchange of a great deal of key material. And the key material gets used up
automatically as messages are sent (unlike the keys in other algorithms which can be
reused over many messages without being consumed, per se). As a consequence, a
lot of beginners develop an understandable desire to combine the provable security of
OTPs with the finite key distribution requirements of other systems. The result is,
frequently, a system that will generate "keys" for a purported OTP system by using
pseudo-random generators. PRGs can keep generating new "key" material
indefinitely; and at a first pass, these keys appear to have the same statistical and
stochastic properties as true random key material.

The catch is that pseudo-random key generators really do not have the same deep
properties as true random keys. Many PRGs are quite good, but in the end, their
entropy is as finite as their algorithms and seeds; they always exhibit cyclical patterns.
Mind you, finding these patterns might require serious cryptanalysis. And in the best
case (such as with many good stream ciphers), the security provided by PRGs is quite
adequate -- even comparable with other strong systems. But this is no free lunch: A
PRG is not really an OTP.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 6

Provable security
Provable security is another feature that is sought -- and even claimed -- fairly
frequently. It turns out that there actually are some very interesting proofs for security
properties of some algorithms; however, these proofs must be regarded within their
precise mathematical context, and what they prove is contingent upon all sorts of
assumptions and limitations. Further, most algorithms that have provable properties
like this are developed for academic research purposes. In general, none of the
algorithms in widespread use (whether public-key or symmetric) has rigorously proven
mathematical properties. Instead, we settle for algorithms that have stood up well to
years of attack efforts by the best cryptanalysts. This is not the certainty of a
mathematical proof, but it is pretty good.

The point of these observations is that you should look with suspicion upon vendors or
amateurs who claim to have proven the security of their algorithms. Most likely they
have not, except perhaps in highly constrained and circumscribed ways. Unless you
are the type of expert cryptanalyst who is able to evaluate such alleged proofs (and if
you are, this tutorial is way too basic for you), you should take claims about provable
security with a grain of salt.

Distributing "secret" software
Cryptographers often seek to make and distribute software that performs some action,
but prevents users from carrying out that same action without having access to the
software. Usually, this goal goes hand-in-hand with a desire to control the distribution
and use of mass-produced commercial software -- but it sometimes pertains to other
security features of the software.

In general, this goal is impossible to accomplish. If a determined attacker has access to
your software, he inherently has the ability to determine what the software does. If
there is a key, or an encryption algorithm, buried within the software (perhaps in
obfuscated form), reverse engineering can always reveal that "secret" key/algorithm. It
may well be that it is not worth an attacker's effort to find your software's secret, but
cryptography never gives software the ability to perform non-replicatable magic.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 7

Entropy and compression
Another matter worth mentioning, which relates only partially to cryptology itself, is that
you might hear claims that new lossless compression methods have been discovered
that have fundamentally new properties. In extreme cases, a compression algorithm is
sometimes purported to compress any data sequence by some amount. There is a
one-line reductio ad absurdum for this case: Iterate compression of each
"compressed" result; if everything is compressible, you wind up with a one-bit (or
zero-bit) representation for every original data sequence. But weaker claims are often
similarly absurd.

A basic understanding of compression is important to cryptology because both largely
come down to the same concept of entropy and information content. Not all data is
compressible for the same reason that PRGs cannot generate OTPs -- the
redundancy, entropy, and information content of data are fundamental properties of
that data, and these factors fundamentally constrain what transformations can be made
to data.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 8

Section 3. Steganography and watermarking

What is steganography?
Steganography (in Greek, "secret" + "writing") is the practice of hiding secret
information inside non-secret, or less secret, information. Various methods of
steganography predate electronic/computer cryptography by centuries: invisible inks,
conventions for altering public texts, code words, etc. What distinguishes
steganography from plain old encryption is that an attacker does not know with
certainty that there is any secret message inside another message. In some
circumstances this can be important for plausible deniability; in others as a diversion for
an attacker; in still others as a way of subverting a channel that an attacker might
choose to leave open.

It is worth giving a couple of hypothetical examples of steganography here. In order to
pass a secret message, a typed letter might include a number of deliberate "typos," the
position of the words with "typos" would encode a subset of the numbers between one
and the number of words in the letter. An attacker would not know whether an
intercepted letter contains a subtext or subchannel -- or whether it simply has typos
(as do many letters with no hidden message). Obviously, the recipient must be aware
of the protocol used to encode the subchannel. Similarly, a sound recording (for
example, one played on the radio) might have a number of clicks and pops added to it
that are indistinguishable from scratches on a vinyl record (in fact, they could be
produced by making scratches in such a vinyl record before playing it). The exact
timing of the pops would encode a message (for example, the millisecond gaps
between successive pops encodes a series of numbers). Because regular phonograph
recordings also contain pops, an attacker would not (immediately) know whether a
particular song played on the radio actually contains a subtextual message.

What is watermarking?
Watermarking is similar to steganography, but is not quite the same thing. (You might,
however, see them discussed together). In the old-fashioned case, both invisible ink
and an authenticating watermark might appear on a sheet of paper and require special
procedures to reveal. In digital data, almost exactly the same situation exists. But the
purpose of a watermark is always to be implicitly available for revelation in appropriate
circumstances; the purpose of steganography is to hide its own existence from those
unaware of its method of revelation. In digital terms, a watermark might be something a
copyright holder puts inside a digital image to prove she is the owner, whereas a
steganographic message might be something a political dissident puts inside a digital
image to communicate with other dissidents (in which case, a repressive government
could not prove the message was sent at all, that it's not simply a family photo). The
techniques for concealing the subtext might be similar, but the concealer's relation to
an attacker is almost exactly opposite.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 9

Watermarking vs. signatures
It is worth contrasting watermarks with another technique that serves a somewhat
similar purpose: signatures. In both physical and digital forms, the basic difference is
that a watermark is harder to remove than a signature. A digital file with a specified
format can have a digital signature appended to the end of it; in this way, the signer
purports: "I (signer) agree to/authorize the content/meaning of this digital file." But it is
simple to utilize the digital file and discard the signature; doing so removes the claim
made by the signature (in the same way that scissors can be used on a signed sheet of
paper). A watermark is much more closely tied in with the file; ideally you would not be
able to remove the watermark without altering the content in any obvious way (this
doesn't hold true in the paper/scissors example, and some watermarks are designed to
photocopy in a way that makes copying evident). Of course, if you have the option of
defining what constitutes a valid digital file format, you can explicitly specify that it
include a digital signature (from a certain party, if necessary); a file without a signature
can be considered automatically invalid by an application (or operating system).

Problems with watermarking, part 1
Digital watermarking is an increasingly desired, but (in this author's opinion)
conceptually flawed cryptographic technique. Overwhelmingly, digital watermarking is
proposed as a way to prevent (or at least identify) unauthorized reproduction of digital
information. A prominent and recent example is the Recording Industry Association of
America's (RIAA) Secure Digital Music Initiative (SDMI). The idea behind a digital
watermark is to scatter some bits into a digital file in such a way that the scattered bits
cannot be identified by an attacker, and therefore cannot be removed or altered without
making the changes evident (in the case of analog source media, such as sound,
video, and images, this amounts to assuring unacceptable degradation of the quality of
the source).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 10

Problems with watermarking, part 2
The problem with digital watermarking is that it seeks to break mathematics and
information theory. The trick is to keep in mind perceptual content and compressibility.
The real meaningful information in a digital file that represents an analog source is
whatever features can be perceived by a human (or perhaps in certain cases by a
machine, but the issue is the same). Anything that cannot be perceived is noise, not
meaningful content; not every bit in a digital representation of analog data is
necessarily information in the proper sense. An ideal (lossy) compression algorithm for
analog data (MP3 and Ogg Vorbis come close for sound; JPEG comes close for
images; video compression techniques are still subject to large improvements) keeps
every perceptible feature of the representation while discarding every non-perceptible
feature. While you cannot know for certain the "ideal-ness" of a single digital
representation, a smaller representation producing the same perceptible features is
closer to this "ideal." A digital watermark is, by definition, a non-perceptible feature
(otherwise the perceiver could simply remove it). In other words, the watermark adds
entropy to the digital encoding, while doing nothing to add meaningful information to
the representation.

SDMI is a good illustration. In developing a music format that includes copyright
identification (digital) information, the RIAA has exactly two choices at a conceptual
level: (1) They can increase the size of music files over the size of an ideally
compressed format in order to include the copyright identification; (2) They can replace
some of the analog information in the digital representation with copyright information
(in other words, make the format sound worse to a discerning ear). The exact same
tradeoff exists for watermarks in images and other analog sources. In practice, no
digital watermarking format has ever stood up to any serious scrutiny, and watermarks
have always proven to be relatively easy to remove once analyzed. In theory, there is
an inherent conflict between the goals of maximum compression and inclusion of a
watermark.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 11

Digital steganography using images
In order for steganography to find a handle in digital data files, the format of those files
must contain a degree of non-predictable variation. Steganography operates by
substituting desired bit values in unpatterned bit positions. Fortunately, many file
formats contain quite a bit of non-predictable variation. The most commonly-used file
formats for steganography are those that encode real-world (analog) data, such as
image and sound formats. Typically, a subchannel in an image is encoded in the "least
significant bits" of that image. That is, if each image's pixel color is encoded with a
number of bits (often 24) some of those bits cause less color variation of the pixel than
others do. Specifically, 24-bit images usually have 8-bit values devoted to each
primary color (red, green, blue). If the image is generated through a real-world process
(such as taking a photograph), the sequence of lowest-order red bits will be largely
random to start with (because of the finite resolution of cameras and also because of
"random" variations in the pictured object). A steganographic encoding might substitute
subchannel values into that sequence of lowest order red bits (red variation is the least
perceptible of the primary colors). The receiver reads the subchannel back out of a
received image by stripping out everything other than the sequence of lowest order red
bits (which are identified purely positionally by the file-format structure).

Digital steganography using other formats, part 1
Digital steganography is often used with images and sounds simply because these file
formats make it easy to identify the areas of variability in a purely structural way. This
might be as simple as knowing that every 24th bit in the file (after some initial offset) is
a lowest order red bit. Other file formats can be used, but often require more semantic
consideration of the file contents. Let us look at a few examples.

Source code. Programming languages have fairly strict structural constraints. That is
the point of grammar, after all. Even within grammatical constraints, most changes to a
source code file will result in programs that do not compile or run (for example, you
might be able to change a character in a variable name in a subtextual way, but doing
so will most likely break the program logic in some manner). Even so, there are a
number of areas of non-predictable variation even in source code files; the trick is that
encoding them involves "understanding" the code in a richer way than changing
recurrent bit positions. Many programming languages offer several equivalent
constructs for the same operation: for example, both "!=" and "<>" to express
inequality. Or at a higher level, you might even automate transformations between
different (equivalent) loop structures (for example, for(;;){...} and
while(1){...}). The pattern of choices between constructs could contain one bit of
subchannel for each loop occurrence. Still, the best place to hide a subchannel in
source code is likely to be in the comment fields -- but with some subtlety to make it
look like actual source code comments (you do comment source code, right?).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 12

Digital steganography using other formats, part 2
Delimited data. Data file formats are, in most cases, even more rigidly structured than
source code. Delimited data is a good example, but the same line of thought applies to
many other data formats (XML, however, has a lot of optional white space, which could
make for a good subchannel). At the level of content, however, data file formats have
non-predictable variation by definition. After all, the point of actually sending a data file
is to convey the information in it that the recipient does not know. For example, a row
record for a person might have a first name, last name, and social security number,
each of which must look a fairly specific way. But the actual SSN a person has is not
predictable from the other information. A possible subchannel exists in subtly varying
this data content. However, a danger of revelation exists if an attacker has independent
ways of correlating data (if no one in your data file has the true match between name
and SSN, this looks suspicious to an attacker). Finding this kind of subchannel requires
specific knowledge of the data format and content being used.

Digital steganography using other formats, part 3
Compressed archives are probably the very worst format for trying to insert a
subchannel. The problem here is that almost every bit change in an archive has an
effect on many bits in the unpacked contents, and in a way that depends on the whole
archive contents. Changing a bit or two at random is extremely likely to produce
unpacked files that have invalid file formats (or just corrupt archives). This is easy for
an attacker to notice. About the only place a few bits of subtext might be located is by
taking advantage of the error-correcting codes (ECC) some archive formats use. You
could introduce an occasional "error" in archives of the type the ECCs would correct
upon unpacking. One trick would be to make sure that archives with subtexts do not
have many more errors than archives without subtexts (which means introducing
random "errors" to all transmitted archives that an attacker might intercept).

Natural language text. Natural language is extremely free-form, and thus is an
excellent format in which to embed a subchannel. Normal texts contain all sorts of
spacing variations, word-choices, types, and other "random" features. But then, a
too-obvious subchannel encoding strategy is easy to detect. Sure, people make typos,
but not in uniformity in every third word. Too much pattern in the "random" variations is
easy for a machine scan, or a human reader, to identify as a probable subtext.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 13

Cryptanalysis of digital steganography, part 1
The efficacy of a subchannel encoding strategy is simply a measure of how well it
prevents an attacker from proving the existence of the subchannel. Of course, another
desirable feature of a subchannel is the ability to embed more, rather than less,
bandwidth in it. Sometimes a couple of bits of subtext are sufficient for a particular
purpose; but most of the time you are more likely to need the ability to send more
extensive messages. Unfortunately, the goals of bandwidth and invisibility tend to pull
in opposite directions: More fiddling with bits makes detection more likely and easier.

Your first assumption in designing subchannel encoding should be that an attacker is at
least as able to identify non-predictable variation as you are. Do not try to hide the
message simply by assuming an attacker will not know where to look. The key in
maintaining the invisibility of a subchannel is to make sure that the distribution and
pattern of subchannel bits closely match those in a typical file of the same format.

In many cases, the expected distribution of pre-encoded subchannels will be uniform
and stochastic -- but not always. You have to look at whether there is a bias toward 1
(or 0) in the pre-encoded subchannel slot (the bits or variations you have identified as
encoding sites); but you also have to look at whether there is a frequency shift between
the start and end of a file and/or whether cyclicalities exist in bit frequencies of
pre-encoded subchannels. A good first step is to extract a large number of
pre-encoded subchannels, and see if this data is compressible (if so, it is not purely
stochastic and uniform, and you need to look more closely at the patterns).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 14

Cryptanalysis of digital steganography, part 2
Pure plain text messages are absolutely terrible candidates for subchannel encoding. A
bit pattern that works out to the ASCII sequence "Secret meeting at 6 PM" is a dead
giveaway (maybe literally!). Assuming you are aiming for stochastic-looking bit
patterns, compression removes much redundancy. But watch out for compression
headers: A subtext that begins with "PK" does not look like random data (for example,
PKZip header bytes). The best choice is usually to compress plain text first (mostly just
to save on a limited subchannel bandwidth), then to encrypt the compressed text
second. Of course, you also have to watch out for encryption format headers (i.e.,
choose a format that is headerless). The use of a symmetric key requires a separate
key negotiation out-of-channel; but use of public-key systems can avoid this
requirement.

Without a doubt, the most important design issue in creating steganographic
subchannels is: Don't use stock files! If you use files to which an attacker has access to
the original copy, a simple binary comparison of the original with the new overt
message will reveal that the file has been tampered with. This applies especially to
image or sound files that exist in the public domain (or generally, in public, even if
copyrighted). If you downloaded an image from the Web, so can an attacker. What you
really need are entirely original files -- ones that you have a plausible reason for
sending other than to hide subchannels. Home videos, for example, are bulky files with
lots of unique subchannel bandwidth. Of course, if you leak these originals to an
attacker, you have destroyed your system; the same applies if you encode different
messages to different parties based on the same original. You should treat a
steganographic overt message much like you would a one-time pad: Use once and
destroy! However, multiple digitizations of the same analog original are possible; they
will differ in much more than just the subchannel, so a binary comparison just shows
them as wholly different files.

Cryptanalysis of digital steganography, part 3
Two smaller issues are raised in the previous panel. One is that the files you send
need to be plausible. Do you generally send pictures of your family to your business
associates? Maybe yes, but if not, sending them just announces the likelihood of a
subchannel. The prior discussion of techniques for other file types might be useful in
strategizing plausible files for normal transmission. The second issue was mentioned
earlier: If your subchannel encoding involves altering non-predictable data, can an
attacker gain access to that same data in other non-identical files? For example,
suppose you have a strategy for altering information in transmitted flat-file records.
Good enough, so far. But can an attacker gain access to individual records by other
means, or at other times? Perhaps you have sent an intersecting record set (either with
or without a subchannel), or want to later on. If the alterations are inconsistent in
individual records, this provides a clue to a subchannel (obviously, production data
changes occasionally, but within some limits).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 15

Section 4. "Exotic" protocols

Shared secrets, part 1
The general idea behind secret sharing is that you might want to require multiple
parties to cooperate in order to decrypt a certain cipher text. It is not enough for one
person to have her key, she needs some help accessing the plain text. It turns out that
you can design schemes of arbitrary complexity that specify exactly who has to
cooperate to decrypt a particular message. For example, you could specify a "Chinese
menu" approach, where you need two from column A, three from column B, and one
from column C, to decrypt a message. Even more complex dependencies are possible
as well. For example, if Alice uses her key, she needs Bob's help; if Carol uses her
key, she needs Dave's help (only one combination will work).

The simplest case of secret sharing is secret splitting. This protocol requires the
cooperation of all parties (two or more) to decrypt a message. The protocol is quite
simple:

Given a secret M, of length n.
Given N persons who will share the secret (named P1, P2, ..., PN).
Generate random bit strings R{1}, R{2}, ..., R{N-1}, or length n.
Calculate S = M XOR R{1} XOR R{2} ... XOR R{N-1}.
Destroy or hide M.
Give S to P1
Give R{1} to P2
[...]
Give R{N-1} to PN

The secret splitters need not even know which one receives S, and which ones receive
the Rs. Either way, M can only be constructed by XOR-ing back together the
information given to every person. This works just like a one-time pad, and has the
same degree of absolute security (it is subject to bad random numbers and human
weaknesses, but those contravene the explicit protocol).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 16

Shared secrets, part 2
Secret splitting is simple and provably secure, but it also has some limitations. If any
one party loses his portion, or becomes unwilling or unable to share it, no sharer can
get at the secret message. The secret splitting protocol also puts total power in the
hands of the person who originally generates the split secret (but then, M belonged to
that person as well). Furthermore, there are a number of ways in which a malicious
party, who either genuinely knows a secret share or pretends to, can find another
person's portion without revealing her own portion and/or the message. All of these
limitations can be avoided in other (more complex) protocols. The "Resources" section
can lead tutorial users to many of these specifics; here we will only discuss
(m,n)-threshold schemes.

Before we do, though, it is worth making a general observation. The secret shared in
secret sharing schemes need not be the ultimate interesting content. In practical terms,
the size of calculations and distributed portions can be limited by letting C = E{K}(M)
for a strong symmetric-key algorithm. C can be revealed to everyone (even those not
involved in the secret sharing), while K rather than M becomes the secret to use in a
sharing scheme. Good encryption algorithms use keys of less than 256 bits, while
messages themselves might well be multiple megabytes in size. The math in most
protocols is computationally intractable for the numbers represented by huge files, but
reasonable-sized keys can act as effective proxies for the actual secret message.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 17

Shared Secrets, part 3
The LaGrange Interpolation Polynomial Scheme is an easy-to-understand
(m,n)-threshold scheme for secret sharing. The "Resources" section includes others.

Suppose you want to share a secret, M, among n people, such that any m of them will
be able to reveal the secret by cooperating.

1. Generate a random prime, p, larger than M.
2. Generate n-1 random integers, R{1}, R{2}, ..., R{n-1}, each less than p.
3. Let F(x) be a polynomial in a finite field, defined by: F(x) = (R{1}*x^n +

R{2}*x^(n-1) + ... + R{n-1}*x + M) mod p
4. Generate m "shadows" of F, defined by: k{i} = F(x{i}) where each x{i} is

distinct (using successive integer values [1,2,3,...] is a fine choice for x's).
5. Give [p, x{i}, k{i}] to each of the m secret sharers, for i corresponding to the

number of each sharer (the enumeration is arbitrary).
6. Destroy R{1}, R{2}, ..., R{n-1}.
7. Destroy or hide M.

Given the information provided, each secret sharer is able to write out a linear
equation. For example, Linda, who was enumerated as sharer #l, can construct the
equation:

k{l} = (C{1}*x{l}^n + C{2}*x{l}^(n-1) + ... + C{n-1}*x{l} + M) mod p

Because these linear equations have n unknowns -- C{1}...C{n-1} and M -- it
requires the n equations with these same unknowns to solve the system of equations,
and thereby reveal M (and also the C{i}'s, but these are not interesting once we have
M).

Because the coefficients of F were chosen randomly, the cooperation of less than n
secret sharers -- even combined with infinite computing power -- does not allow
revelation of M. Without the nth sharer participating, any possible M (of a length less
than p) is just as consistent with the (less than n) equations as any other!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 18

Key escrow
There may be times when it is desirable to give a secret key, or indirect access to a
secret key, to parties other than those directly involved in a secured communication.
Unfortunately, most of the time the issue comes up in a context the author finds
undesirable, such as providing a (possibly circumscribed) backdoor to "secure"
communications to a government/police agency and/or to corporate employers.
Cryptography is a technology that cannot be fully considered apart from its political
implications.

However, there are other legitimate reasons for key escrow. It may happen that you
would like certain people to have the ability to access your secured communications in
the event you are no longer able to divulge them yourself (or do not wish to require
your effort, given certain circumstances). Two techniques are useful for key escrow
goals (and can be used individually or jointly): multiple recipient lists and secret sharing
of keys.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 19

Key escrow: Multiple recipient lists
You are probably aware that most concrete public-key encryption systems actually use
symmetric "session keys" to encrypt messages, and public keys only to encrypt these
session keys. Computational speed considerations are the main motivation behind
such split systems, but they also have desirable side effects. In fact, even when using
entirely symmetric-key systems, the same sort of split systems can be useful. It is
possible to encrypt a session key for multiple recipients, not merely for one. While
youcould send the same encrypted message to multiple parties, it might be easier to
simply attach multiple versions of the encrypted session key, and allow general
distribution. This might look like the following:

Let E{k} be a symmetric-key encryption algorithm.
Let S be a random session key.
Let M be a message.
Let Ka be Alice's public or symmetric key.
Let Kb be Bob's public or symmetric key.
Generate C = [E{S}(M), E{Ka}(S), E{Ka}(S))].
Make C available to both Alice and Bob.
Destroy S.

Either Alice or Bob can determine S from C. And once they have S, they can decrypt
M. Other parties besides Alice and Bob have no access to S or M (C does use E with
three keys over two messages, so this provides a bit of extra cipher text for attack). A
nice property of C is that it is not much bigger than E{Ka}(M), which would be a direct
way of encrypting for Alice only. Certainly, for megabyte messages and 128-bit keys,
the extra session key encryption is insignificant.

If Alice is intended as the direct recipient, but Bob should be able to get access to M if
he needs to (and at his own discretion), then this scheme would give Bob an "escrow
key." For that matter, we could just send E{Ka}(S) to Bob, and forgo sending E{S}(M) to
him at all; this would make sense if he had access to Alice's stored encrypted files, but
not to her key. You can imagine these arrangements might make sense if you wish for
an employer to have access to employees' messages should an employee quit (or die,
or forget passwords). Of course, it leaves decryption at the employer's discretion (but
this might be appropriate for company-related correspondence).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 20

Key escrow: Secret sharing of keys
The second key escrow technique is secret sharing of key material (either session keys
or private keys). Suppose that Alice does not wish to disclose her secret key to anyone
directly, but does feel that it would be okay for at least five of her 10 friends to decrypt
her messages (perhaps she is worried about disposition of her secret inventions after
her death; or maybe just about the possibility that she will lose her original private key).
In government proposals the same structure is suggested: In the presence of a
warrant, multiple non-government agencies would disclose citizens' shared-secret
keys. The latter case is politically troubling, but the cryptographic issue is the same in
both cases.

Alice can use a (5,10)-threshold scheme to divide her key among her 10 friends. No
one except Alice has access to the whole private key, but five friends can recover it by
working together (and thereafter decrypt any messages Alice has encrypted using the
key). More complex threshold schemes can also be used if the requirements for key
revelation are more structured than this. As mentioned earlier, using a threshold
scheme for key escrow is consistent with using session keys; depending on the
requirement, it might be a message session key rather than Alice's long-term private
key that gets distributed in such a scheme.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 21

Zero-knowledge proofs, part 1
For this author, probably the most surprising thing cryptography can accomplish is
zero-knowledge proofs. The idea behind a zero-knowledge proof is to prove that you
have a certain piece of knowledge without revealing the content of that knowledge to
an interlocutor. The purpose of a zero-knowledge proof is to demonstrate access to
some secret information without giving that access to someone else. For example,
imagine a conversation between Alice and Bob:

* Alice: "I can decrypt the confidential message encrypted as C."
* Bob: "I do not believe you. Prove it!"
* Alice (bad response): "The key is K, and therefore, as you can see the message

decrypts to M."
* Bob: "Ah ha! Now I know the key and the message also."
* Alice: "Oops!"

Alice really took a bad approach here, since she failed to keep the message
confidential. And she even gave away the key while she was at it (she could have done
slightly better if, for example, the cryptographic hash of M could be verified instead of
revealing the key; but the idea is the same). A much better conversation for Alice to
engage in is:

* Alice: "I can decrypt the confidential message encrypted as C."
* Bob: "I do not believe you. Prove it!"
* Alice (good response): "Let's engage in a zero-knowledge protocol, and I will

demonstrate my knowledge with an arbitrarily high probability (but not reveal
anything about the message to you)."

* Bob: "OK."
* Alice and Bob go through the protocol...

Zero-knowledge proofs, part 2
Zero-knowledge proofs can be generalized to a wide range of information. In fact, it
turns out that any mathematical theorem with a proof can have a zero-knowledge
"proof of the proof." That is, Alice can claim to have a proof of theorem T, but not wish
to state it (she wants to wait for publication). Nonetheless, Alice can prove that she has
proved T without revealing the proof. This very general fact is broad enough to cover
specific cases like factoring large numbers and the like, which are involved in many
cryptographic algorithms. The broadest scope exceeds this tutorial; we will just look at
one case (others are similar in form).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 22

Zero-knowledge proofs, part 3
Graph isomorphism is a hard problem; that is to say, it is NP-complete. It is one of
those problems that could take millions of computers millions of years to solve, even
though constructing a problem takes only a moderate amount of time and space. A
graph is a collection of vertices connected by a collection of edges. Every edge
connects exactly two vertices, but not all pairs of vertices are (necessarily) connected
by an edge. Some graphs are isomorphic to other graphs, meaning:

For isomorphic graphs G and H, there exists a one-to-one function F such that:

* The domain of F is the set of vertices of G.
* The range of F is the set of vertices of H.
* If and only if [g1,g2] is an edge in G, [F(g1),F(g2)] is an edge in H.

Obviously enough, if G and H do not have the same number of vertices and edges as
each other, they are not isomorphic. But assuming G and H meet this minimum
condition of "plausible" isomorphism, determining whether they really are isomorphic
basically means attempting every mapping from G onto H, and checking whether it
creates an isomorphism.

What this boils down to is that if someone tells you he has two isomorphic graphs with
enough thousands of vertices and edges, it is because he constructed the graphs to be
isomorphic -- not because he discovered the isomorphism. On the other hand, it is
trivial to construct isomorphic graphs with thousands of vertices and edges; you could
do it on paper without using a computer if you spent a bit of time on it! Next, let's see
why all this is important.

Zero-knowledge proofs, part 4
Suppose that Peggy claims to know an isomorphism between graphs G and H. In
practice this means that she has constructed the graphs herself (for large graphs), or at
least was provided the isomorphism by someone who did. Knowing this isomorphism
might be Peggy's way of proving her identity if it has been published previously that
she is the person who knows the isomorphism of G and H. Obviously, just showing the
isomorphism directly allows any observer to pretend he is Peggy, so that is no good.

Here is what Peggy does to prove she knows the isomorphism:

1. Peggy randomly permutes G to produce another isomorphic graph I. Since Peggy
knows the isomorphism between G and H, it is easy for her to simultaneously find
the isomorphism between H and I.

2. Peggy gives I to Victor.
3. Victor may ask Peggy to prove either (a) that I and G are isomorphic, or (b) that I

and H are isomorphic. But Victor may not ask for both proofs (were he to obtain
both, he would have the isomorphism proof of G and H himself).

4. Peggy provides the proof requested by Victor.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 23

Zero-knowledge proofs, part 5
So far, so good. What has this shown? If a Peggy imposter did not know the
isomorphism of G and H, the best the imposter could do is to try to pass off an I that is
isomorphic with G (she knows G and H, as does Victor), and just hope Victor doesn't
ask for the isomorphism of H and I. Alternately, a Peggy imposter could try to pass off
an I she constructed from H, and hope the opposite. Either way, the imposter has a
50% chance of getting caught by the protocol above.

Victor, however, probably does not find 1/2 confidence sufficient for Peggy to prove she
knows the isomorphism. Fortunately, Victor can simply demand that Peggy now
generate an I' and undergo the protocol again. If she passes now, Victor can be 3/4
confident about Peggy. If that's not good enough, she can do a third pass of the
protocol with I'', and obtain a 7/8 confidence; or a 15/16 confidence, a 31/32
confidence, and so on. By iterating the protocol, Peggy can prove that she knows the
isomorphism for an arbitrary confidence requirement by Victor (but always less than
100% by some amount). No matter how many times the protocol is iterated, Victor
gains no knowledge that helps him in constructing his own G/H isomorphism, so "zero
knowledge" is leaked to Victor.

Conclusion
Having finished this tutorial, you have received a good glimpse of many of the
surprisingly powerful things that can be accomplished by combining cryptographic
building blocks. On the other hand, you have also seen a few cases where
mathematical facts limit the wished for -- and sometimes claimed -- capabilities of
cryptography. The development of cryptological protocols is beautiful, fascinating, and
even fun; but if you're interested, you should investigate further the mathematical and
programming details in the Resources section to gain a more complete understanding
of the subject.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 24

Section 5. Resources

Further reading
The nearly definitive beginning book for cryptological topics is Bruce Schneier's Applied
Cryptography (Wiley). I could not have written this tutorial without my copy of Schneier
on my lap to make sure I got everything just right.

Online, a good place to start in cryptology is the Cryptography FAQ .

To keep up on current issues and discussions, I recommend subscribing to the Usenet
group sci.crypt.

A nice Web page with both good explanations and links to a variety of cryptological
topics is provided by John Savard.

For topics related to compression, the author is particularly fond of his own A Data
Compression Primer . For background on the several topics in this tutorial that touch on
compression, this is a good starting point.

Snake Oil FAQ

Popular Symmetrical Algorithms
The National Institute of Standards and Technology has recently completed selection
of an algorithm for its Advanced Encryption Standard (AES). The winner was Rijndael
which is thereby guaranteed to become a widely-used algorithm. Rijndael is both
powerful and versatile, and makes a good choice for the AES selection, and for general
use.

Counterpane's Blowfish has been popular for a number of years. Its successor,
Twofish was another AES finalist that is likely to continue in widespread use (despite
the selection of Rijndael as the winner).

The most widely-used symmetrical encryption algorithm has almost certainly been
NIST's (formerly called National Bureau of Standards) Data Encryption Standard (DES)
. Although DES has developed key length problems with the advancement of computer
capabilities, triple-DES is still viable, and even single-DES is an algorithm you are
likely to come across in existing products.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 25

http://www.landfield.com/faqs/cryptography-faq/
http://www.landfield.com/faqs/cryptography-faq/
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://home.ecn.ab.ca/~jsavard/crypto.htm
http://gnosis.cx/publish/programming/compression_primer.html
http://gnosis.cx/publish/programming/compression_primer.html
http://gnosis.cx/publish/programming/compression_primer.html
http://gnosis.cx/publish/programming/compression_primer.html
http://www.interhack.net/people/cmcurtin/snake-oil-faq.html
http://www.interhack.net/people/cmcurtin/snake-oil-faq.html
http://www.interhack.net/people/cmcurtin/snake-oil-faq.html
http://www.nist.gov/
http://www.nist.gov/
http://www.nist.gov/
http://www.nist.gov/
http://www.nist.gov/
http://www.nist.gov/
http://csrc.nist.gov/encryption/aes/rijndael/
http://www.counterpane.com/blowfish.html
http://www.counterpane.com/twofish.html
http://www.itl.nist.gov/fipspubs/fip46-2.htm
http://www.itl.nist.gov/fipspubs/fip46-2.htm
http://www.itl.nist.gov/fipspubs/fip46-2.htm
http://www.itl.nist.gov/fipspubs/fip46-2.htm

Section 6. Feedback

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it
better. We'd also like to hear about other tutorial topics you'd like to see covered.
Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to cryptology: Pt. 3 Page 26

