
Identity Management on a Shoestring
Architectural Lessons from a Real-World Implementation
Identity Management on a Shoestring
Architectural Lessons from a Real-World Implementation

Ganesh Prasad &
Umesh Rajbhandari

a book by

ENTERPRISE SOFTWARE
DEVELOPMENT SERIES

© 2010 C4Media Inc.
All rights reserved.

C4Media, Publisher of InfoQ.com.

This book is part of the InfoQ Enterprise Software Development series of
books.

For information or ordering of this or other InfoQ books, please contact
books@c4media.com.

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recoding, scanning or otherwise except as
permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the Publisher.

Designations used by companies to distinguish their products are often
claimed as trademarks. In all instances where C4Media Inc. is aware of a
claim, the product names appear in Initial Capital or ALL CAPITAL
LETTERS. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.

Library of Congress Cataloguing-in-Publication Data:
ISBN: 987 – 1 – 105 - 55863 -4

Printed in the United States of America

iii

Acknowledgements

Our grateful thanks to Edward Chin, without whose unstinting support and
organisational nous our bold experiment would never have got off the
ground, much less achieved the penetration it has today.

Intended Audience

This document is aimed at Security and IT practitioners (especially architects)

in end-user organisations who are responsible for implementing an

enterprise-wide Identity and Access Management (IAM) system. It is neither

a conceptual treatment of Identity (for which we would refer the reader to

Kim Cameron's excellent work on the Laws of Identity) nor a detailed

technical manual on a particular product. It describes a pragmatic and cost-

effective architectural approach to implementing IAM within an

organisation, based on the experience of the authors.

Starting in early 2009, we built an IAM system for a large and established

Australian financial services company, using a rather unconventional

approach. While the system has not yet reached its envisioned target state,

we have had significant success so far, and we believe our experience carries

valuable lessons for others considering a similar journey. Identity

Management as an applied practice does not enjoy a rich knowledge base in

the public domain, so we are pleased to contribute our experience herewith.

Most of what we describe here is from what we have already implemented

and proven. Some of it refers to planned designs to meet forthcoming

requirements, and some of it reflects (with the benefit of hindsight) the way

we wish our solution had been designed! We have distilled these learnings

into an architectural approach we call LIMA
1
.

Our background and experience are largely with Java-based technologies, so

Java shops would probably be best positioned to benefit from our

suggestions, but we are sure these general principles can be suitably

adapted to other technology platforms.

As with any piece of unsolicited advice, the usual caveats apply. No
guarantees or warranties are provided or implied. The reader is expected to
apply common sense and sound design judgement when developing a
solution based on this approach.

1 Low-cost/Lightweight/Loosely-coupled Identity Management Architecture

iv

Cover Illustration

The male and female faces on the cover are South African photographer
Mike Mike's “average” faces of Sydney, morphed from a hundred
photographs of real people in the suburb of Bondi, Sydney. From the
standpoint of identity, they are as non-specific as a fingerprint or barcode
are specific, and we hope that provides you with something philosophical to
mull over with your evening glass of wine.

v

Contents

ACKNOWLEDGEMENTS .. III

INTENDED AUDIENCE .. III

COVER ILLUSTRATION ... IV

LIMA AT A GLANCE .. 1

LESSONS LEARNT FROM TRADITIONAL IAM IMPLEMENTATIONS 1

THE CORE PROBLEM – BEING UNABLE TO CORRELATE RELATED DATA 3

TIPTOEING AROUND SLEEPING DRAGONS – “HARMONISING” WORKS BETTER THAN

“UNIFYING” .. 4

LOOSE COUPLING BETWEEN THE LOGICAL STEPS OF ACCESS MANAGEMENT 5

LOOSE COUPLING AS AN APPROACH TO USER PROVISIONING 6

INTRODUCTION ... 7

THE MODERN ENTERPRISE – A REALITY CHECK ... 10

SO YOU THINK YOU'RE GOING TO CHANGE THE WORLD .. 10

WHO'S YOUR SUGAR DADDY? FUNDING MODELS THAT WORK 12

FIRST THINGS FIRST – OBJECTIVES OF IDENTITY AND ACCESS MANAGEMENT 14

THE TROUBLE WITH BRAND-NAME PRODUCTS ... 16

MISCONCEPTIONS ABOUT SECURITY ... 21

AUDITORS, SECURITY AND WORDS OF WISDOM ... 23

INTRODUCING LIMA – A DIFFERENT ARCHITECTURE FOR IAM 25

LOOSE COUPLING – A FIRM FOUNDATION FOR IAM ... 25

SNEAK PREVIEW – WHAT A LIMA IMPLEMENTATION LOOKS LIKE 30

ACCESS MANAGEMENT, LIMA-STYLE... 35

ACCESS MANAGEMENT CONCEPTS ... 35

HOW SINGLE SIGN-ON WORKS ... 41

THE BEST THINGS IN LIFE (AND IN IAM) ARE FREE .. 43

CENTRAL AUTHENTICATION SERVICE AND THE CAS PROTOCOL 45

SHIBBOLETH'S FEDERATED IDENTITY MODEL .. 48

CAS SERVER CONFIGURATION AND THE “TWO-LAYER PROTOCOL ARCHITECTURE”...... 51

ENHANCING ACCESS MANAGEMENT FUNCTIONALITY INCREMENTALLY 54

Extension Case Study 1: LAN SSO Integration with SPNEGO 54

Extension Case Study 2: Two-Factor Authentication with SMS One-Time

Tokens ... 60

Extension Case Study 3: Federated Identity with SAML Tokens 63

LIMITS TO THE TWO-LAYER PROTOCOL ARCHITECTURE... 67

vi

MISCELLANEOUS TOPICS IN ACCESS MANAGEMENT... 70

Protecting Non-Web Applications ... 70

Implementing “Single Sign-Out” .. 72

IAM and Cloud Computing ... 74

What Do We Do with Active Directory?... 76

Tailoring Coarse-Grained Access Control ... 78

Using CAS to Centralise Enforcement of Authorisation Rules 80

Using a Reverse-Proxy Device as a Common Interceptor 82

Access Management for “Portal” Applications 84

IDENTITY MANAGEMENT, LIMA-STYLE .. 86

IDENTITY MANAGEMENT CONCEPTS ... 86

SEPARATING CHURCH AND STATE – THE ROLES OF DIRECTORY AND DATABASE 87

DESIGNING THE IAM DIRECTORY ... 89

USER UUID – THE ONE RING TO RULE THEM ALL .. 93

DECOUPLING AUTHENTICATION, COARSE-GRAINED AND FINE-GRAINED AUTHORISATION

REALMS .. 94

PERSON UUID – THE ULTIMATE IDENTITY REFERENCE .. 96

DATA REPLICATION AND MASTER DATA MANAGEMENT ... 98

DESIGNING THE IAM DATABASE .. 100

REST EASY WITH REST SERVICES ... 107

IAM REST SERVICE INTERFACE AT A GLANCE ... 109

AUTOMATED USER PROVISIONING – INVOCATION OF REST SERVICES 110

USER ADMINISTRATION ... 113

IAM, PROTECT THYSELF ... 118

PROVISIONING USERS TO DOWNSTREAM SYSTEMS .. 120

DESIGNING USER PROVISIONING MESSAGES .. 124

IMPLEMENTING LIMA ... 129

TRANSITIONING TO THE TARGET STATE ... 130

Harmonising data .. 130

Managing SSO realms ... 130

Manual provisioning .. 132

THE BAU OF IAM – A “COOKIE-CUTTER” IMPLEMENTATION 133

Development tasks .. 133

Provisioning tasks .. 134

CONCLUSION .. 135

APPENDIX A – TYPICAL SECURITY REQUIREMENTS FROM AN IAM SYSTEM 136

APPENDIX B – MAPPING THE LIMA DESIGN TO THE OASIS MODEL OF IAM 138

vii

APPENDIX C – SPECIAL CASE EXAMPLE 1 (MULTIPLEXING USER IDS) 139

APPENDIX D – SPECIAL CASE EXAMPLE 2 (RESETTING LAN PASSWORDS) 142

APPENDIX E – A SAMPLE PHASED ROLL-OUT PLAN ... 144

ABOUT THE AUTHORS .. 145

1

LIMA at a Glance

Lessons learnt from traditional IAM implementations

This document is about a radically different approach to Identity and Access
Management (IAM) called LIMA (Lightweight/Low-cost/Loosely-coupled
Identity Management Architecture). It is based on the lessons learnt from
traditional IAM initiatives, and recognises that:

1. IAM isn’t monolithic. Identity and Access Management has two distinct

domains that require to be approached differently,

o Access Management (which is a real-time function controlling
user authentication and authorisation at the time users attempt
to access resources), and

o Identity Management (which is a somewhat less real-time back-
end function dealing with user provisioning and related data
management, and the audit function)

2. Off-the-shelf IAM products are more trouble than they’re worth.

Attempting to implement IAM using a single monolithic Identity
Management product often doesn’t work in practice, for technical as
well as for financial reasons. The product’s tightly coupled components
create logistical complexity, and “Big Bang” funding is generally
required, which either taxes the enterprise budget or the first business
project. Loose coupling is a much better architectural approach that
imposes only incremental costs, is affordable by projects and eases the
integration of future components.

3. There are no security shortcuts from any particular approach. Identity

Management almost always requires tailoring or customisation to suit
an individual organisation’s requirements, which from a security
perspective necessitates an end-to-end audit of all processes prior to
implementation. Prior security certifications don’t mean much when
processes are customised, which negates the basic security argument in
favour of packaged products over loosely-coupled components from
multiple sources.

2

4. Commercial Access Management solutions are a waste of money.
Access Management is highly commoditised today and can be readily
implemented using cost-effective and certified Open Source
components, all without compromising the key cryptographic
techniques used for user authentication. The integration of these
components to Identity Management is through data.

5. Data design is a key part of loose coupling. A core reality to work with

(rather than work against) is that existing identifiers within systems are
local, but User Identity needs to be global. The use of a meaning-free
and globally unique yet federated identifier for each unique user entity
is a simple approach that facilitates integration across distributed
systems through association with local identifiers. This association can
be maintained in either a centralised or decentralised manner as
required.

6. Authorisation data is best separated into coarse-grained and fine-

grained access rules. Business applications generally implement fine-
grained access control logic as an inherent part of their business logic
and this cannot usually be factored out, especially with COTS
(Commercial off-the-shelf) applications. Only coarse-grained access
rules should be managed in IAM. The association between the global,
meaning-free identifier and the local identifiers should be leveraged to
coordinate the uniform enforcement of access control logic.

7. User provisioning processes can be much simpler than you think. The
complex workflow supported in many Identity Management products is
overkill. Segregation of duties can be ensured without “workflow”. With
appropriate data design, it is also easy to keep multiple user data stores
mutually consistent without complex synchronisation or replication.

8. You can’t avoid bespoke development. User Provisioning and Audit

functions are not as generic as they may seem. An organisation’s
requirements may have their own unique quirks that need to be
addressed. Fortunately, these functions are quite easy to build as
bespoke modules, provided some general security principles are
followed and the system is audited before implementation.

The rest of this document will expand on these insights and provide practical
guidelines for an implementation. The following overview diagrams may
help set the stage for the detailed description that follows.

3

The core problem – Being unable to correlate related data

Fig 1: The problem of “Fractured Identity”

4

Tiptoeing around sleeping dragons – “Harmonising” works better than “Unifying”

Fig 2: Integrating identity, non-intrusively

5

Loose coupling between the logical steps of Access Management

Fig 3: How Authentication and Authorisation should work

6

Loose coupling as an approach to User Provisioning

Fig 4: How User Provisioning should work

7

Introduction

When you read the literature or talk to the experts, you may come away
with the impression that IAM (Identity and Access Management)

2
 is a huge

and complex domain.

In our experience, that's just not true. Like SOA (Service-Oriented
Architecture), IAM may not be easy. But it is simple

3
. Here is essentially the

value that Identity and Access Management adds to your business functions:

Fig 5: IAM Functions

Once you understand some simple principles, you can very quickly see what
needs to be done to enable this, and (with some guidance) even how to do
it. But ah, actually doing it is the killer! It takes political will, a battering ram
and very thick skin to be able to steer an organisation to a simpler place,
from which point onwards (funnily enough), everything becomes easy as
well.

What actually happens in practice? Faced with a task that is simple but not
easy, organisations generally do the most expedient thing. They go out and
buy a product. Because buying a product is easy.

A couple of years and oodles of dollars later, organisations then wonder why
the promised goodies failed to materialise. The honest ones organise a
court-martial and a firing squad. The dishonest ones (the majority) tend to
declare victory regardless. In one egregious case, an organisation we know

2
 To be exact, Identity Management includes Access Management, so we will refer to

the combined capability as IAM (Identity and Access Management) throughout this
document, although the common industry term seems to be just Identity
Management.
3
 By way of analogy, “Don't tell lies” is a simple principle, but not an easy one to

follow!

8

spent tens of millions of dollars on IAM without even achieving Single Sign-
On capability! And no heads rolled.

It doesn't have to be that way. This document is meant to cut a lot of time,
expense and suffering out of your IAM journey. It won't give you the political
will or the thick skin, of course. That's your stuff. What it will do is show you
how simple IAM really is. The architecture we describe here can quite
literally save you millions of dollars, if you can just get your organisation
around to implementing it.

The following diagram shows you the basic functions of IAM at a glance

4
,

and the subsequent sections will gradually provide more detail, so as to ease
you into this really simple way of approaching IAM. (Confidentiality
agreements with employers past and present prevent us from sharing
specific design details and code from our experience, but principles, patterns
and tips are as free as the air we breathe, and as precious.)

We hope our experience will benefit you in your own journey. Good luck!

4
 Also see Appendix B for a more formal model of Identity and Access Management.

9

Fig 6: IAM at a glance

10

The Modern Enterprise – A Reality Check

So You Think You're Going to Change the World

If you're reading this document, it's probably because you're an enthusiastic
and idealistic change agent who wants to shake up their organisation with a
simpler, faster and cheaper model. That's great, but we're painfully aware
that even our simple and cost-effective approach may not work for you,
because your organisation may just not have the right culture to accept
solutions like this.

What makes it really hard to implement an IAM system isn't the technology.
You would be half right if you thought it was data. Yes, cleaning and
reorganising huge volumes of legacy data are moderately hard tasks, but
they're not exactly insurmountable. What can stop your IAM initiative in its
tracks is that elusive beast known as organisational culture.

Here are some killer characteristics we have identified. If you perceive a
scarily close resemblance to your own organisation, stop reading this paper
right now. It will only frustrate you needlessly.

Brand-Name Idolatry: Some organisations will only buy “reputed” products
from big brand-name vendors. We've heard all the arguments about risk that
are raised in such organisations, and our cynical observation is that this is
more about political risk to decision-makers (i.e., “Nobody ever got fired for
buying IBM”) than any real risk to the organisation. In our experience, the
brand-name path involves plenty of effort and expense, and a rather low
probability of success

5
, for reasons we cover in a later section. If this is your

organisation (especially if your security auditors put their faith in products
rather than in adherence to principles), you should probably fall in line and
console yourself with the thought that they deserve to waste their money
anyway. Cost-effective solutions take a back seat to political survival at such
organisations.

Hostile Fiefdoms: People and systems need to play ball, at least to some
extent. If there are areas in your organisation that require to be brought
under the ambit of IAM, but they refuse to change the way they work and

5
 Projects that greatly exceed budgets should also be counted as failures.

11

are powerful enough to resist pressure to do so, then you should probably
pick an easier project. Likewise, when powerful persons or groups decide for
whatever reason to oppose your approach, either overtly or in a passive-
aggressive manner, you will need powerful backers of your own, or else
failure is virtually guaranteed.

Zombies: Sometimes, past (misguided) attempts at implementing an IAM
system create legacy components that continue to limp on in a twilight zone.
You will find it extra hard to convince people of the superiority of your
approach if it means undoing what has been done earlier. That would be an
admission of failure – always a no-no from a political perspective! In
addition, management sometimes doesn't seem to understand the term
“sunk costs” and may keep throwing good money after bad. It will be hard to
turn this Titanic around once it has set its heart on reaching that iceberg, so
it would be prudent to grab a lifeboat and abandon ship.

If you've made it this far, it probably augurs well for your plans, so let's
proceed.

Notice that we have not listed “Funding Model” as a problem for our
approach. Why not?

12

Who's Your Sugar Daddy? Funding Models That Work

It's true that inadequate attention to funding can kill many prospective IAM
initiatives. That's because most organisations have a “first project pays”
policy even for the creation of shared enterprise utilities. Integration of
applications with big brand-name Identity Management products typically
involves huge upfront costs (licensing as well as initial effort), and the very
first roll-out tends to be too expensive for any single business project to
bear. That's why many IAM initiatives fail at the starting line. Sometimes, a
one-time injection of enterprise funding gets such projects over the starting
line, but IAM needs to cover all major applications to be effective, and from
a logistical angle, this is necessarily a multi-year roll-out exercise. Without a
long-term vision and a phased multi-year budget, subsequent roll-outs tend
to go unfunded or place an onerous burden on business projects.
Accordingly, these initiatives then either peter out or impose unforeseen
ongoing costs to the organisation.

The approach we describe here has been specifically designed to work
around these funding constraints, because this is a problem we ourselves
faced and had to tackle. It is therefore lightweight and can be rolled out
piecemeal.

Every component is simple, minimal and relatively inexpensive. Using this
approach, you can roll out your IAM system over a multi-year period without
incurring the full cost up front. The loosely-coupled nature of the solution
also makes it feasible to implement just the parts each project needs. There
are no artificial dependencies that force the deployment of unnecessary
components at extra cost. Every project can independently justify the
business case for funding that part of the IAM solution that it requires,
because the returns are also immediate and incremental

6
.

We recommend that you plan and organise these incremental roll-outs into
a coherent multi-year roadmap that leads to your desired target state
through a series of intermediate stages. Align these stages with the specific
capabilities that business projects are looking for, and piggyback off those
projects for funding

7
. You may also find that each step on this journey costs

less than the previous one because you leverage off the assets that have
already been created and you need smaller and smaller additional capability.

6
 The next section lists the major benefits from IAM that can be used to build up a

business case.
7
 Appendix E provides a sample roadmap that you can tailor to your organisation's

context.

13

Eventually, rolling out IAM to a new application becomes a “cookie-cutter”
operation

8
.

Enterprise funding is a bonus with this approach, but not essential.
Enterprise funding could be seen more as a lubricant, paying for tasks and
components that the more finicky business projects may baulk at paying for.
Such funding would typically be small and infrequent, and definitely not
comparable to the Big Bang roll-outs of enterprise IAM initiatives. Squirrel
away a small slush fund that can enable such activities :-).

8
 One of the last sections in this document lists out the typical tasks involved when

you get to the “cookie-cutter” roll-out stage.

14

First Things First – Objectives of Identity and Access

Management

Before we get all excited and dive into the details of our solution, it's
critically important to understand why you may need an IAM solution in the
first place. Far too many organisations jump into the product procurement
activity without a clear understanding of what they intend to achieve from
implementing IAM. The term “Single Sign-On” is often used synonymously
with IAM, but while this is readily understandable to end-users, it's only a
nice-to-have in the larger scheme of things, and the business case simply
doesn't stack up when that is the only planned benefit. Fortunately, it so
happens that IAM is about a lot more than Single Sign-On.

Put simply, the drivers for IAM usually revolve around three considerations –
Risk & Compliance, Cost Reduction and Convenience. Typical objectives, in
descending order of importance, are:

I Risk & Compliance

1. To secure information assets and restrict their access only to legitimate

users through authentication and authorisation, and to protect against
business, legal and reputation risk arising from inappropriate access

2. To ensure compliance with enterprise security policy across all
applications and information assets (e.g., through password policies,
role-based access control, etc.) and meet internal and external audit
requirements

3. To ensure accountability through role-based access, approval processes

and audit trails of relevant user activity (e.g., logins, failed logins,
application accesses, etc.)

II Cost Reduction

1. To reduce the effort (i.e., support staff headcount) involved in manual

provisioning, de-provisioning and user management, through
automation and self-service, especially with increasing volumes

2. To eliminate or reduce the cost of errors, delays and inefficiencies

arising from manual processes and other elements of waste (e.g.,
orphan accounts, unused storage, etc.)

15

III Convenience

1. To provide a Single Sign-On (SSO) environment to users (eliminating the

need to remember multiple sets of authentication credentials)

2. To expedite operations through self-service features (e.g., password

reset/forgotten password, delegated administration, etc.)

Some organisations also hope to achieve a “Single View of Customer”
through implementing IAM, which allows them to understand customer
behaviour better and to enable up-selling and cross-selling of products.

If you want to make out a business case for an IAM system, you will need to
provide some variant of the above list of benefits from the proposed
exercise. Hopefully, the approach we outline in the following pages will also
give you enough input to help you quantify the cost of the solution, so you
can see if your business case stands up. We think it will.

16

The Trouble with Brand-Name Products

This is probably one of the most controversial topics in this document, which
is why we have devoted a fair bit of effort to discussing it. We have arrived
at our architectural approach after exhausting the alternatives, so we are
very familiar with the pros and cons in this debate.

If your organisation is like most others, then the first thing you would do
after determining that you need an IAM system is to look for a good off-the-
shelf product. Many organisations have a practice of consulting the Gartner
Magic Quadrant

TM
 or Forrester Wave

TM
 to identify the top players in the

relevant market segment, then they issue RFPs (Requests for Proposal) to
them, evaluate the responses, create short-lists, organise vendor
presentations and Proofs of Concept, then after conducting commercial due
diligence and negotiations, settle on a product and set about planning an
implementation.

When organisations apply this typically “corporate” approach to sourcing an
IAM solution, they usually overlook six 'C's, - problems that are common to
all their candidate alternatives:

 Conceptual Subtlety

 Centralised Model of Design

 Commoditised Functionality

 Complexity of Features

 Custom Requirements

 Closed Interfaces

Conceptual Subtlety: Human nature has a bias towards the tangible. People
expect the heavy lifting in an IAM ecosystem to be performed by
components that they can see and touch, so to speak. A suggestion that
effective integration can be achieved through appropriate data and protocol
design is often unconvincing. Techniques like the use of open protocols,
meaning-free and universal identifiers, master data management principles,
idempotent messages, one-way notifications instead of synchronous service
calls, etc., seem somewhat anticlimactic compared to “a product that does
everything”. Yet it is precisely these understated and unobtrusive elements
of design that are the most effective. The judicious use of these techniques
reduces the need for dedicated products, which may be all the more reason
that IAM products don't emphasise them!

17

Centralised Model of Design: IAM products are in a sense victims of their
own hype. A prestigious (and expensive) IAM product is expected to
comprehensively manage user data by itself, because its purchase cannot
otherwise be justified. Such an expectation places an onerous burden on any
single application, because by its very nature, an enterprise has many
different applications, many of them standalone, off-the-shelf commercial
products with their own user databases, role definitions and fine-grained
access control rules. If a centralised product has to manage all of this
detailed and dispersed data, it will lead to two practical, logistical problems.

One, the IAM user repository will become overpopulated and excessively
complicated in structure, because it has to store the fine-grained roles and
access control rules of every application in the enterprise, along with the
mappings of users to all those roles.

Two, since it will in most cases be impossible to remove the fine-grained
access control logic from each individual application, some sort of
replication, often two-way, will need to be set up to keep the IAM repository
and the individual application databases in sync. What seems at first to be a
simple and elegant model of centralisation is in fact operationally
cumbersome and error-prone.

A model where the IAM product only manages coarse-grained roles and
access control rules, and leaves fine-grained ones to each individual
application, will work better in practice. However, it will seem wasteful to
perform user management in multiple places, and the value of purchasing an
IAM product will be questioned. “We've paid a lot of money for this product.
We should use it to the maximum,” will be the inevitable argument. It is very
hard for common sense to prevail unless expectations are managed from the
start. The vendors are mostly to blame for raising expectations in the pre-
sales period which their products cannot realistically meet in a diverse
ecosystem.

Commoditised Functionality: Quite frankly, the Access Management aspect
of IAM is a thoroughly commoditised capability today. You can source
solutions from a competitive market that includes some very capable Open
Source implementations, so you don't have to pay the premiums that the
market-leading vendors charge for it. You may be surprised to hear that
many vendor products are priced on a per-transaction (based on the number
of “hits” on a website) or per-user basis. The vendors make more money as
your volumes increase, but the same capability can be sourced without
having to pay such a rent, if you know where to look.

18

Complexity of Features: Some functions and data structures seem common
to most organisations, but the generic implementations provided by major
IAM products tend to be a superset of required capabilities that is more
complex than warranted for any single organisation's needs. One reputed
product we evaluated boasted five different administrator roles, which could
confuse most administrators at any organisation. As another example, many
IAM products boast sophisticated workflow capabilities, yet auditors only
require a two-step request/authorise process to enforce the “segregation of
duties” principle. Feature complexity is a selling point for a vendor in a
competitive market but imposes unnecessary costs on a user organisation.
Sometimes, this complexity of features comes about because a vendor's
product suite is made up of disparate products brought together through
various acquisitions, and the integration is consequently clunky and
unnatural.

Custom Requirements: IAM is an area where every organisation has some
unique requirements, and we provide two such examples in Appendices C
and D. Not all specialised requirements can be met by simple configuration
settings on a generic product, no matter what the brochures may tell you.
Many of them will require some custom development. This has two logistical
downsides in additional to a security implication that we cover separately in
the next section.

One, your own in-house resources may be unable to make these changes
because of their unfamiliarity with the new product, so you have to rely on
vendor resources to make these changes for you. You will have to pay for
the vendor's own consultants to work on your project and provide ongoing
support for those customisations, and this is not something an organisation
always budgets for at the outset.

Two, customised products are difficult to upgrade. When the vendor
releases the next version of the product and your current version goes out of
support, you will find it harder and costlier to migrate because of all the
customisations you have made to the current version.

Closed Interfaces: The components of many brand-name products are often
described as “tightly integrated”. To a SOA-sensitised architect, the
approving tone that usually accompanies this pejorative is a source of
endless surprise and amusement. Tight integration in a product is not a
desirable feature! It is a warning sign. Loose coupling is what we should be
after.

19

What “tight integration” means in practice is that products only play well
with others from the same stable. Many of them have proprietary “hooks”
into complementary products even when open protocols would suffice. We
know of one vendor whose interceptor component would only work in
conjunction with their own policy/rules engine, which in turn was dependent
on their specialised directory server. It was impossible to deploy one
component without deploying at least two others, and interoperability with
competing products was out of the question. This happens to a greater or
lesser extent with all commercial vendors. It's part of their competitive DNA.
Vendor lock-in also leads to a higher TCO (i.e., ongoing and switching costs,
even if not up-front costs).

Conclusion: The combination of high upfront licence and consultancy fees,
the tight coupling between components that complicates roll-outs and rules
out incremental funding, the complexity of the product (impacting its
understandability and maintainability), its impractical centralised model, the
necessary customisations you need to make and the possibility of being
locked into a particular vendor, contrasted with the simplicity of data design
that can facilitate robust integration and the availability of a significant
subset of IAM capability at commodity prices, should give you pause.

Well, this paper offers a much more attractive alternative. Our prescribed
approach is simple:

1. Use the venerable architectural principle of “High Cohesion, Low

Coupling” to identify the core functional components of an IAM system.
Design loosely-coupled interfaces between them, often based on just
data elements. Economy and agility follow from this principle.

2. Use Open Source components to deliver commoditised functionality

(we'll name some good products you can use). There are many
organisations that provide commercial support for these products for a
reasonable annual fee, if you don't want to do it yourself.

3. You may find that the functionality gap to the simplest system that

meets your requirements is quite bridgeable. Many of these
requirements are necessarily specific to your organisation and we would
be no better at predicting these than the big IAM vendors. So rather
than hack an unfamiliar product to deliver that functionality, build it in
the simplest way possible, using the tools your in-house developers
know best. This is cheaper than using vendor consultants, maintenance
is easier, and upgrades are on your own schedule with no artificial
dependencies. We will identify some likely data structures and

20

functions, and provide some tips on how to build these simply yet
adequately.

We estimate that with this approach, you could save about 60%

9
 of the cost

of a comparable implementation using a brand-name commercial product.

9
 Our estimate is based on projections from empirical data that show that a 5-year

roll-out of IAM at a medium-sized organisation (about 10 major applications, 5,000
employees and B2B users , and 100,000 customers) using a brand-name vendor
product would cost about $5 million, while the approach we describe here would
cost about $2 million. These are rough estimates, and your mileage will certainly
vary, but we have no doubt the savings will be very significant.

21

Misconceptions about Security

While it's easy to mock organisations that blindly worship at the altar of big
brand names, we also accept that there is some method in that madness. Big
brand names are a convenient shorthand for compliance with the various
security principles and standards that need to be followed in such an
obviously risk-sensitive area.

Having said that, let us be under no illusions here. Even if you start with a
certifiably secure product, as soon as you install it in your organisational
environment, connect it to a couple of other systems, change a few
configuration settings and customise some of its workflow, all that
certification is moot. What may appear to a lay person (i.e., not a security
specialist) as a trivial change could often introduce security holes into a
previously secure system. Therefore, you will need to have your particular
implementation audited and certified afresh. And this is not a one-time
activity either but a periodic requirement, because changes are constantly
applied to systems, and fresh security vulnerabilities could be introduced at
any time in the application's lifecycle. There is no exemption from this
procedure for organisations that implement an off-the-shelf product as
opposed to an in-house build. At best, some subsystems that are untouched
may be treated as black boxes. Keep in mind that a brand-name IAM product
with a bunch of security standards certifications does not obviate the need
for a security audit of your end-to-end system design

10
.

The good news is that we're not necessarily starting off with no guidance or
direction. There are many relevant security principles and standards that
need to be followed in IAM, and we will demonstrate as we go along that the
design we describe in this document is not a “cowboy” solution but an
approach that is scrupulous in its adherence to security best practice.

For example, the Access Management side of IAM, which most requires the
use of cryptographic techniques, is something we would not recommend
writing in-house (unless your organisation specialises in writing security
products). We recommend off-the-shelf, yet commoditised, products to
perform these functions. The Single Sign-On ticketing server we recommend
(CAS) provides various configuration points to enforce different aspects of

10

 We're reasonably confident about the soundness of the approach we describe

here because we had our system independently audited by an external consultancy.
There were code and design reviews as well as penetration tests. Only after the
review concluded with no serious findings did the system go live. You will almost
certainly need to do the same with yours, regardless of whether you buy a vendor
stack or “roll your own”.

22

security policy, such as token expiration, authentication throttling, and very
high levels of cryptographic strength.

Some typical IAM-specific security requirements are listed in Appendix A,
along with suggestions on how a LIMA-based system can support them.

In short, implementing IAM "on a shoestring" does not mean cutting corners
on security. Far from it. Security is extremely important, as we will
emphasise again and again. However, you should not allow anyone to use
security as a bogeyman to scare you into paying much more for IAM than
you really need to.

That's what this document is about.

23

Auditors, Security and Words of Wisdom

The proof of the security pudding is in the audit review, so to speak.
However, security auditors will generally not sit down with you up front and
help you design an IAM system, because it could compromise the
independent stance they need to maintain. What they will probably do,
though, is give you some principles to follow. Here are some that we learnt
from our internal auditors:

Data Classification

 Levels of sensitivity

An organisation's data can be grouped into several categories, e.g., Public,
Internal, Commercial-in-confidence, Confidential, Secret, etc. This
categorisation is key to understanding the levels of access that should be
granted to them, and should be carried out at the outset for any business
system or application. Operations on data should also be categorised by
sensitivity.

Access Management

 Secure-worthiness

In general, it is wasteful to expend effort to secure a resource beyond the
value of the resource itself.

 Privacy

This relates to the confidentiality level of the data being considered.
Encryption is one of the key mechanisms to ensuring privacy, and public key
cryptography is a fairly standard technology used in IAM systems. Most of
the security standards in the Identity Management area (AES, FIPS-140-2,
etc.) pertain to cryptography.

 Least Privilege/Need to Know

Access should not be granted beyond the levels justified for a given purpose.
The need to implement this uniformly then creates the justification for role-
based access control mechanisms.

24

Identity Management

 Segregation of duties

One of the core principles in risk management is aimed at preventing
corruption and fraud, by implementing proper controls. For example, a user
cannot approve the request they have themselves made. This creates the
justification for implementing two-step request/authorise functionality in
IAM.

 Auditability

Any action that is deemed to be significant within a system needs to be
logged with all relevant details surrounding it, – who did it and when, what
was the purpose, who authorised it, etc. Audit logs need to be guaranteeably
produced whenever such sensitive actions are performed, and the logs need
to be secure against tampering or loss. Audit functions are a big part of an
IAM system.

The Open Web Application Security Project (OWASP) lists a few more
principles that you may want to cover off as well:
https://www.owasp.org/index.php/Category:Principle

25

Introducing LIMA11 – A Different Architecture

for IAM

Loose Coupling – A Firm Foundation for IAM

We've mentioned before that a major failing of big-name vendor products is
the “tight integration” they feature. While “tight integration” means that
components snap together readily, it could also mean they won't work
without another component from the same vendor being present, or that
they won't talk to third party components at all. These “lock-in” and “lock-
out” consequences are the hidden costs of “tight integration”.

The LIMA approach is consciously the opposite. We look for ways to
decouple functions and retain the bare minimum functional dependency
between them that is justifiable. Loose coupling makes it just as easy to
“snap components together”, but without the “lock-in” and “lock-out”
disadvantages of proprietary interfaces. We have also learnt that
appropriate data design can be a very effective way to achieve such loose
coupling. We don't necessarily need a physical component to act as a
decoupling intermediary.

User Identity

User Identity is the fundamental concept we are dealing with in an IAM
system, and this can itself be treated in a decoupled manner with
appropriate thought and design.

Tip 1: Identity references should be meaning-free

A major source of conceptual confusion comes from mistaking system
accounts for user identity. A user may have a login account name of 'jbloggs'
on a system, but this is just their identity on that localised system. It must
not be conflated with a more global identity for that user. Even the user's
login ID on the SSO server is not their identity, even though this is the
identifier that grants them access to a multitude of systems. Any system-
specific identifier is limiting because its scope is restricted.

11

 The “IMA” part of LIMA stands for “Identity Management Architecture” of course,

but you can choose to interpret the “L” as either “Low-cost”, “Lightweight” or
“Loosely-coupled”, depending on whether your interest is economy, agility or
architecture for its own sake.

26

Having a meaning-free identifier, on the other hand, provides tremendous
flexibility. It can be associated with any set of identity attributes on any
number of different systems. Those attributes and their mapping to this
identifier can be modified quite easily to suit changing circumstances (e.g., a
user changing their name or login ID on a system), and control can still be
maintained.

So instead of linking attributes and meaning directly to a user's identity,
make it meaning-free and associate it loosely with groups of attributes,
including local identifiers on different systems.

Tip 2: A UUID is the most flexible meaning-free identifier

Universally Unique IDs (UUIDs) are extremely large numbers (128 bits long),
traditionally expressed as 36-character hexadecimal strings

12
. UUIDs that are

randomly generated have another very useful property. They are virtually
guaranteed never to conflict, because their range of values is so large.
Therefore, unlike sequence numbers, UUIDs don't have to be generated by a
single source to guarantee their uniqueness. Multiple sources can
simultaneously generate UUIDs, and they would still be guaranteeably
unique. This becomes useful in IAM because more than one “upstream”
system may provision new users.

Standardising on a UUID gives you the flexibility to let such upstream
systems generate a UUID themselves and maintain a mapping from it to any
local ID they may define. The treatment of user identity then becomes
uniform from then on. You don't need to rely on a centralised component to
provide unique identifiers to users from different provisioning sources.

Tip 3: Exploit the UUID to aid the audit function

One of the requirements of the audit function is to correlate activities
performed on different systems. The challenge with traditional approaches is
that when a message goes from one system to another, the user IDs on the
two systems could be different, and the timestamps would also invariably be
different. This makes it hard to prove that a log record on one system
corresponds to a log record on another system. The User UUID is a good
bridging mechanism. If each system logs the user's local ID and the UUID, it
will be far easier to correlate activities across systems that belong to the

12

 A 128-bit integer would be expected to translate to a 32-character hexadecimal
string, not 36. It's the convention though, to express UUIDs with hyphens separating
groups of digits. E.g., 0fec5f44-1dc6-4b4e-8dd0-a5404520118d

27

same “thread” of execution. This doesn't remove the need for other
correlating attributes like transaction IDs, but it strengthens the association
of the activity with the user.

The other major advantage of including the UUID in log records is that the
logs can be held on another system. Perhaps a centralised, enterprise
logging service may in time replace the individual logging mechanisms of
various systems, and you would then need to replace the system-specific
identifiers with something global. Including the UUID reference from the
start would make log records readily portable.

Identity versus Access

Identity refers to who someone is. Access refers to what they are allowed to
do. While the two concepts are closely related, they are not the same.
Therefore, they should not be coupled together more tightly than they need
to be.

Tip 4: Decouple identity information from access control information

Following from Tip 1, treat the two groups of attributes relating to identity
and access independently, and associate both of them with the user they
refer to through a meaning-free identifier. In practical terms, this means the
user repository that deals with authentication should be independent of the
user repository that deals with authorisation. This counter-intuitive insight is
explored in greater detail when we discuss the design of the IAM directory
and database.

User Provisioning

The major benefit from automating user provisioning is the saved effort that
would otherwise go towards setting users up on all the systems where they
need to be defined. But almost by definition, this multi-system provisioning
scheme needs to deal with multiple schemes for identifiers. Some older
systems only take limited length numeric identifiers (e.g., “7634”), while
others take longer alphanumeric ones (E.g., “jdoe” or “john.doe”). Still
others may use email addresses as identifiers. Some are case-sensitive while
others are not. It's not feasible to unify the schemes used for identifiers
because of this diversity. A number of techniques could be used to manage
this complexity, though.

28

Tip 5: User provisioning must exploit the mapping of UUIDs to local user IDs

Application systems need to set users up with IDs that conform to local
schemes. However, it would be good if those local IDs could be mapped to a
global, meaning-free ID and held within each system (as far as possible).
There are a few complications here, as when downstream systems cannot
hold references to UUIDs, and also when it is not possible for a provisioning
message to know in advance what local user ID a user will be assigned on a
system. These are explored in greater detail when we discuss user
provisioning.

29

Fig 7: IAM – Opportunities for loose coupling

30

Sneak Preview – What a LIMA Implementation Looks Like

We will go into the details in later sections, but for now, this is a quick
overview of some of the components a LIMA implementation may include.

Infrastructure:

 Use commodity infrastructure components – e.g., Intel x86_64 servers,
Linux, Tomcat and stock-standard network devices that can filter
accesses, perform network address translation and load-balance web
servers. Higher-end infrastructure will generally cost you more without
delivering any greater benefit. We discuss how to provide scalability and
availability with an appropriate architecture.

 Use commodity directory, database and message queuing products. If
you don't already have preferred products in these categories,
OpenLDAP, MySQL (or PostgreSQL) and ActiveMQ are perfectly
adequate Open Source offerings. There are some complications here for
organisations that already use Microsoft's Active Directory, but we will
cover that case a bit later.

Data design:

 It may be counter-intuitive, but you must use both an LDAP directory
and a relational database, and split user data between them. Store only
authentication credentials in the directory using the simplest possible
tree structure and store all other attributes in the database

13
. The

database design will be unique and specific to your organisation.

 Use a globally unique “User UUID” to associate multiple system
accounts (application-specific user IDs) across different systems,
including the IAM directory and database. This mapping provides the
foundational capability to manage a user's attributes and access rights
across multiple systems using a single, meaning-free identifier.

 Use a single “Person UUID” to associate multiple “User UUIDs”. This
provides the foundation to build sophisticated audit capabilities across

13

 Our thanks to Stan Levine of Hyro Ltd for this extremely useful suggestion.

31

multiple incarnations and engagements of the same physical user over a
multi-year horizon.

 Adopt a simple model for user roles and keep IAM's role-based access
control tables relatively coarse-grained (e.g., application-level access
rights only). Finer-grained roles within IAM to control access to
application functions are neither necessary nor practical.

Access Management:

 Choose CAS (JA-SIG's Central Authentication Service product) as the
heart of the Access Management solution. This is a ticket-based Single
Sign-On system based on the Kerberos architecture but specially tuned
for web applications. (We'll cover non-web applications later.)

 Shibboleth is a good choice for a federated identity solution, and we will
describe its use in some detail.

 There is a wide choice of interceptors. CAS provides a servlet filter that
you can simply configure and bundle with every web application. Or you
can set up an authenticating reverse proxy that is common to a group of
applications. There are other options as well.

Identity Management:

 Expose user administration functions as simple REST-based services.
Upstream “sources of truth” for user data such as HR applications and
resource management systems should initiate user provisioning/de-
provisioning and the grant and revocation of user access rights by
invoking these services. You can secure access to these HTTP-based
services using IAM's own Access Management capability.

 Build simple user administration screens using an agile toolkit of your
choice (e.g., Grails, Roo) that can also reuse these REST services.

 The invocation of REST services and the use of user administration
screens may require “user events” to be generated downstream in
addition to local updates to the IAM directory and database.

 The interaction between upstream systems and IAM need be no more
complex than synchronous request/response. However, the interaction
between IAM and downstream systems needs to be asynchronous and

32

loosely-coupled for maximum flexibility. These aspects are described
below.

 Implement user provisioning to applications downstream of IAM using
an event notification mechanism rather than tightly-coupled service
calls. To make them future-proof, keep the “user event” messages
generic rather than tailored to each downstream application. Using
persistent messages, durable subscriptions and listeners on all target
applications, changes to user data can be managed across the enterprise
in a flexible, reliable and robust manner. Applications can be added or
decommissioned at any point in the system's lifetime without any
downtime.

 Make your provisioning messages idempotent, for a really simple
reliability mechanism. The ability to retry an operation without danger
of duplication is very powerful and liberating.

 Where responses are required from downstream systems, use the same
notification mechanism with separate “user event acknowledgement”
messages that only IAM listens for.

 Errors encountered by downstream systems when processing user
events must be handled in a decoupled way. A separate error reporting
mechanism, even a separate error queue, is preferable. User event
notification, acknowledgement responses and errors are not to be
treated as they would be in synchronous request/response systems.
This is an important aspect of loose coupling that keeps the Identity
Management solution simple and modular.

These are the basic ingredients of a cost-effective IAM solution, and we will
describe and explain them in detail in the rest of this document.

The following diagrams illustrate the logical and physical components of
LIMA.

33

Fig 8: Logical components of LIMA

34

Fig 9: Physical components of LIMA

35

Access Management, LIMA-style

Let's now go through the detailed conceptual steps that build up to the
solution above.

Access Management Concepts

Take Access Management first. Let's say we want to control access to a web
application. The simplest model is when the application itself challenges the
user for credentials (e.g., asks for a user ID and password by popping up a
login page) and validates them against its own database before allowing
access to its functions. The application performs both authentication (“Is the
user who they claim to be?”) using the password, and authorisation (“Is the
user allowed to access this information or perform this function?”) using
stored access rules.

The diagram below illustrates this.

Fig 10: Standalone authentication

While this is a simple model, it becomes operationally cumbersome when an
organisation has many such applications. Each application needs to maintain

36

an independent set of credentials, which means users may need to
remember many user IDs and passwords. It becomes logistically expensive to
manage user data consistently across multiple systems, to “provision” new
users or to “de-provision” them when they leave the organisation. Processes
are necessarily manual and error-prone. Security policies are not uniformly
applied across all applications. The list goes on.

A simple extension is to have all applications validate user credentials
against a common repository, most frequently an enterprise LDAP directory.
Here's what the picture then looks like:

Fig 11: Delegated authentication

This is somewhat better because applications can now delegate the
management of user credentials (and even access rights) to an external
component. User credentials are held in and validated against a single
repository (i.e., centralised authentication). When access rights are also
similarly held and validated, this is centralised authorisation. User
provisioning and de-provisioning are a lot simpler because only one data
store needs to be managed. Security policies are more consistent across
applications because they are essentially defined at a single point (although
enforcement is still at each application's discretion).

From an auditor's perspective, although this is progress, it is still not
guaranteeably secure because enforcement of enterprise security policies,
however well defined, is still left to individual applications. Moreover, it still
isn't as convenient to users as it could be, because it isn't really “Single Sign-
On”. True, users now only have to remember one set of credentials, but they
have to enter them afresh when accessing each application they use. It's
more “Single set of credentials” than “Single Sign-On”. Can something be
done about these points? In other words, can the enforcement and
challenge parts of the process be delegated to an external component as
well?

37

The answer is yes, and modern Access Management systems do exactly this.

Delegating the challenge for user credentials is done as follows. The
application needs to redirect the browser, on initial access, to a centralised
component (the SSO server), which performs the challenge and validation
steps before redirecting the browser back (transparently) to the application.
If the user credentials are not valid, the SSO server will essentially block this
access. The application now trusts the identity of the user that is passed in,
because this has been vetted by a trusted system.

Fig 12: Basic Single Sign-On (SSO)

This delegation provides true “Single Sign-On”, and we will shortly explain
why a second login is not required for subsequent accesses to other
applications. However, enforcement of access control is still left to the
application, and the delegation of this function is typically addressed using a
dedicated security “interceptor”.

The interceptor is a component that sits in front of an application and
redirects access to the SSO server. It may also perform the access control
(authorisation) function based on the user identity and any other user
attributes sent back by the SSO server. The application is then completely
agnostic to the presence of the authentication and authorisation functions
that are being performed

14
. A specialised interceptor component not only

14

 In practice, the application will still perform fine-grained authorisation
(“i.e., Can the user perform this function?”) based on the user attributes

38

relieves the application from having to implement these aspects of security,
it can be treated as part of the enterprise security framework and is also a
more easily auditable control point. This is illustrated in the following
diagram.

Fig 13: Comprehensive SSO

Note that we need the extra steps 9, 10 and 11 to make this fool-proof. The
interceptor has to perform a further level of validation against the SSO
engine to ensure that the security token is genuine. The SSO server needs to
confirm the authenticity of the token. It may also send back extra user
attributes along with this confirmation. The interceptor uses these attributes
to enforce access control rules (authorisation). And with this, the access
management model is complete.

There are some details that need to be understood about this essentially
simple model. There are two types of security tokens required to make this
system work. The first is related to authentication and the second is an
“application access token” that is loosely related to authorisation. In fact,
because authentication is for the user but access relates to the user and an
application, only one authentication token is generated per user but there

passed in, but authentication and coarse-grained authorisation (i.e., “Can
the user access this application at all?”) are done by the SSO server and
interceptor, respectively.

39

will be as many access tokens as there are applications that the user wants
to access.

A diagram will explain this.

Fig 14: Authentication and access tokens

The authentication token is generated by the SSO server once the user is
authenticated. As the diagram above shows, the SSO server shares this token
with the user's browser

15
. If the browser presents this token to the SSO

server again (within a reasonable time window), the SSO server will not
demand a fresh login and authentication cycle. This is Single Sign-On, of
course. We'll see the details of how this works in the next section, but note
that both types of tokens are stored by the SSO server in a token database,
because they will need to be retrieved for validation later.

The application-specific access token for a user and application is generated
after authentication. This second token (or more specifically, the handle or
ID of the token) needs to accompany the redirected request back to the
application, and the application's interceptor will need to have it validated
by the SSO server to prevent spoofing. That's why it needs to be saved in the
token database.

15

 This is usually a session cookie, and we'll see more of this when discussing the CAS

product.

40

As we have seen, the interceptor may also use the user identity and other
attributes to perform an authorisation check before allowing the user in

16
.

As we will see in our discussion of CAS, a common optimisation is for user
attributes retrieved when authenticating access to the first application, to be
stored with the Authentication Token in the token database. This allows the
SSO server to send user attributes to each application's interceptor without
having to retrieve them repeatedly from the user repository.

16

 It is also possible to ensure that the application access token is only generated by
the SSO server after it performs this authorisation itself. So verifying and enforcing
authorisation rules may be done either by the SSO server or by the interceptor, and
both are optional in any case, which is why we said this token is only loosely related
to authorisation.

41

How Single Sign-On Works

To understand how SSO works, let's see what happens when a user accesses
a second application within the Single Sign-On environment after having
been successfully authenticated and granted access to the first one. Follow
carefully the flows in the diagram below. It may look complex at first glance,
but follows quite simply from what we have seen earlier.

Fig 15: SSO steps

What is happening here?

When the interceptor redirects the browser to the SSO server, the browser
produces the Authentication Token that the SSO server gave it at the time of
its first login (when the browser tried to access the first application). The SSO
server checks the validity of the Authentication Token against its Token
Database. If the token is valid, it means the Single Sign-On session is still
active and the user doesn't have to log in again. So the user will not see a
login screen this time. This is SSO!

What about authorisation? Well, there are a few options on how this can be
done. The diagram above shows how coarse-grained authorisation works in
the general case. The SSO server generates an Application Access Token for
this application anyway, stores it in the Token Database and then redirects
the browser back to the application along with the token's “handle”, usually

42

as a URL parameter. As before, when the application's interceptor receives
the token handle, it checks back with the SSO server to see if this is genuine
and still valid. The SSO server retrieves the full token from its Token
Database based on the “handle” and validates it. The Application Access
Token is also linked to the Authentication Token, which has a bunch of user
attributes stored along with it. The SSO server passes all of this back to the
interceptor. If the Application Access token is certified to be valid, the
interceptor may apply authorisation checks based on the user attributes
accompanying the response, and then allow or disallow access to the
application as a whole. This is coarse-grained authorisation. The interceptor
may also pass these user attributes through to the business application for it
to do any fine-grained authorisation.

In a later section, we will see how to implement simple extensions to the
challenge protocol to exploit the existing Windows-based LAN session,
support multi-factor authentication and also federated identity systems. We
will also explore a more tailored version of coarse-grained authorisation.
However, the model described here is all there is to Access Management, so
it is conceptually quite simple.

We stated earlier that Access Management is also the most commoditised
part of IAM, so let's now look at two of the best (and cheapest) products you
can find to implement Access Management.

43

The Best Things in Life (and in IAM) are Free

If you're looking for a secure and tested product to implement the Ticketing
Server-based Single Sign-On Access Management model that we just
described, then CAS (JA-SIG's Central Authentication Service) is far and away
the simplest and least expensive.

Likewise, if you're looking for a federated

17
 Single Sign-On Access

Management solution, you cannot do better than Shibboleth
18

.

Both of these are Open Source, which means there are no licence fees, but
more importantly, that there are no hidden hooks or dependencies (our
infamous “tight integration”) to lock you into the product and lock out
competing vendors' products. You will find that integration and operational
costs, more than licence costs, are the real arguments in favour of an Open
Source solution.

If you have strong Java support skills in your own organisation, then the only
ongoing cost of implementing these products is the cost of the staff
dedicated to supporting them. However, most organisations would also
prefer to back up such front-line support with some kind of commercial
support agreement (second- and third-level support). Here again, because of
the Open Source nature of these products, you are very likely to find
companies that understand and are willing to support them for a reasonable
annual fee

19
.

17

 We have a rather simple and practical definition of federated identity

management as opposed to local identity management. If you provision user data
(including authentication credentials) into repositories, for your own organisation's
use, then all you need is local identity management. But if you have to grant access
to users who you do not yourself provision but rely on other organisations to vouch
for, or if other organisations need you to vouch
for users in your repositories who will access their systems, then what you need is a
federated identity system. In both these cases, one organisation trusts another to
vouch for users who are not provisioned in the first organisation's repository.
18

 Why not just use Shibboleth for everything, since its capabilities are obviously a
superset of CAS's? Shibboleth is a more complex product than CAS to install, maintain
and roll out, so if you don't need federated identity, you're probably best off using
just CAS. Even if federated identity is part of your requirement, we discuss a couple
of ways in which you can keep the consequent complexity restricted to only a part of
your infrastructure.
19

 An organisation used to traditional commercial software support agreements
would very likely be pleasantly surprised at the support rates they are likely to be
quoted for Open Source products.

44

With both CAS and Shibboleth, the SSO ticketing model works roughly
analogously:

1. A client application (browser) attempts to access a business application

2. There is an interceptor of some sort that redirects the browser to an

SSO server. With Shibboleth, locating the SSO server is a little more
involved because it's not a local system.

3. The SSO server challenges the browser to provide user authentication

credentials.

4. Once the browser has submitted these credentials and the SSO server

has validated them in some way, it generates an Authentication Token
and an Application Access Token of its own and redirects the browser
back to the business application with the handle of the Application
Access Token. (The Authentication Token is given to the browser to
store as a session cookie and produce each time it returns to the SSO
server.)

5. The interceptor again blocks the redirected request and finds the handle

of the Application Access Token. It issues a confirmation query to the
SSO server internally (without redirecting the request through the
browser) to check if this is a valid token.

6. If the SSO server confirms the validity of the token, the interceptor

allows access to the application, after optionally checking the
accompanying user attributes.

45

Central Authentication Service and the CAS Protocol

In the 1980s, MIT developed an authentication system for distributed
applications that would work even over an untrusted network. The protocol
was called Kerberos, and it has since become the most successful Single
Sign-On mechanism used in the industry.

Yale University then took the Kerberos idea and implemented a version
called CAS, tailored to web applications. While the tokens used in CAS are
not kerberized tickets (i.e., they don't use the same formats that Kerberos
does), the types of components and the sequence of interactions between
them is an exact analogue of Kerberos.

CAS is a product that is extremely popular in academia, with most major
universities using it to secure their websites and web applications and
provide Single Sign-On to them. However, it has not been as popular in
corporate circles, and the reason for that is probably just corporate
snobbery with regard to academia! There is certainly nothing deficient in the
product that either we or our auditors could find. We believe you will find
CAS to be an extremely efficient, secure and maintainable piece of software.

Here is the Kerberos/CAS authentication model at a glance, using the
appropriate terminology:

Fig 16: Kerberos/CAS model

1. The Requesting Authority (RA), which could be any application but

specifically a browser in the CAS implementation, tries to access an
application (the Service Provider or SP). The SP is nothing but a web
application in the CAS model.

46

2. The Service Provider has no way of authenticating the RA or of trusting
any credentials that the RA may present to it directly. So it redirects the
RA to an Identity Provider (IdP) that it trusts, and will only accept a
proof of authentication from that trusted source. With CAS, this is a
simple HTTP redirect to the URL of the IdP, with the URL of the SP
appended. The latter URL is required because the IdP needs to be able
to redirect the RA back to the original SP after successful validation of
the RA's credentials.

3. The RA follows the redirect and accesses the IdP. With CAS, since the

URL contains the SP's URL, the IdP knows which application is being
accessed.

4. The IdP challenges the RA to provide authentication credentials. In the

case of CAS, this is usually just a login page that employs HTTP Form-
based Authentication.

5. The RA submits its credentials to the IdP. With CAS, a user fills in the

login page with a user ID and password and submits the form. The form
submission is over HTTPS for security.

At this point, the IdP validates the user's credentials against a repository
(usually an LDAP directory). If the credentials are valid

20
, the IdP

generates two tokens – the Authentication Token is called a “Ticket-
Granting Ticket” (TGT), which is the Single Sign-On token. Production of
this token by the RA within a certain session duration means the RA will
not have to log in afresh. The Application Access Token is called a
“Service Ticket” (ST) that the Service Provider requires if it has to allow
the RA access to its functions. In CAS, the TGT is a session cookie while
the handle to the ST is a string appended to the application's URL. The
tickets are also stored in a local Ticket Registry for future reference, as
will be seen

21
. The TGT is typically stored for a few hours because that

defines the length of an SSO session, while the ST only needs to be

20

 If the credentials are not valid, CAS can be configured to simply display the
login page again. This can continue until the directory server locks out the
user account.
21

 CAS can be extended to retrieve any additional user attributes from a user
repository after authentication, and to store these attributes along with the
TGT in a “blob” attribute that is meant for this purpose. This is done just
once at initial login, and these user attributes can thenceforth be retrieved
from the Ticket Registry on each subsequent application access, saving a
fresh user repository access each time.

47

stored for a few seconds or a couple of minutes until the SP asks to
verify its validity.

6. The IdP sends both tokens to the RA. With CAS, this is another HTTP

redirect. The Ticket-Granting Ticket is placed in a session cookie that is
only shared between the RA and the IdP and never with any SP. The
redirect URL is the SP's URL which was appended to the original redirect
to the IdP in step 2. In addition, CAS appends the ST's handle to the URL
as a standard URL parameter.

7. The RA follows the redirect instruction and accesses the SP again. This

time, the ST handle is part of the URL. The TGT is not sent to the SP
because that is a cookie shared only between the browser and the IdP.

The SP picks up the Service Ticket handle from the URL but has no way
to verify its authenticity.

8. The SP sends the ST handle to the IdP to validate it. In CAS, this is a

direct HTTP call (not redirected through the browser since the RA is not
yet trusted at this point).

The IdP uses the ST handle to retrieve the ST from its Ticket Registry and
validate it. The ST does not need to be held in the Ticket Registry for
more than a few seconds, because the verification request from the SP
typically comes in almost immediately after the IdP sends the RA the
redirect request containing the ST handle. The ST has a reference to the
TGT, so the IdP also retrieves the TGT with its associated user attributes.

9. The IdP sends back a response to the SP verifying the authenticity of the

ST
22

 along with the user attributes it has retrieved. At this point, the RA
is authenticated. The SP uses these ser attributes to decide whether to
grant access to its functions or not.

The CAS website provides plenty of detailed technical material:
http://www.jasig.org/cas

22

 The Service Ticket validation message sent back by CAS is accompanied by the user
attributes that were stored in the Ticket Registry as a “blob” attribute of the TGT.
This approach saves a separate database access during the performance-critical login
process. We used an XML structure in the response body to transport attributes but
any suitable data format can be used.

48

Shibboleth's Federated Identity Model

In many ways, Shibboleth's industry street-cred is better than CAS's, which,
as we have mentioned, is unfairly viewed as a product for academic
institutions. Three disparate federated identity schemes (Liberty ID-FF,
Shibboleth and the earlier SAML 1.1) fed into the recent SAML2
specification. Many of the spec writers were Shibboleth developers, and this
must have played no small part in ensuring the close match between the
SAML2 standard and the Shibboleth implementation. Open Source has thus
managed to gain the inside track on federated identity. Any commercial
product that claims compatibility with the SAML2 spec is by definition
interoperable with Shibboleth. The implication is that interoperability with
business partners is not a concern that should stand in the way of your
implementing Shibboleth for your federated identity management
capability.

Here is how Shibboleth works. Keep in mind our earlier description of a
ticketing server-based SSO solution as well as the CAS model, and you will
see the main differences.

Fig 17: Shibboleth model

1. The browser attempts to access the business application protected by

an interceptor. This combination is referred to as the Service Provider
(SP).

49

2. The interceptor may redirect the browser to a service called WAYF
(Where Are You From), which determines the appropriate Identity
Provider (IdP) for the user. However, the IdP can also be resolved using
a number of different mechanisms.

3. The browser is then redirected to that Identity Provider. This usually

belongs to the user's “home organisation”, where they have been
provisioned and where their authentication credentials are stored.

4. The Identity Provider challenges the user to provide the appropriate

authentication credentials for that organisation and receives those
credentials. This could again use any number of challenge/assertion
protocols.

5. After successful authentication, a set of tokens is generated for this

session, and the browser is redirected back to the Service Provider with
a service token.

6. The interceptor requests the Identity Provider to validate the service

token and queries for user attributes.

7. The Identity Provider validates the service token and provides user

attribute information as per its attribute release policy.

8. If the token is valid and the user's attributes also conform to the

application's specified requirements, the interceptor grants access to
the application.

As you can see, the federated access management model is virtually
identical to the local one in its general outline, with the only additional
feature being the WAYF service that resolves the correct Identity Provider to
use. Within a local context, every interceptor knows the location of the SSO
server, so there is no need for a specialised component to perform this
resolution function.

The main complexity in Shibboleth is the requirement to set up a Service
Provider capability at each business application node, which is a lot more
onerous than the equivalent simple CAS interceptor. Therefore, you
wouldn't want to use Shibboleth in preference to CAS unless you have a
legitimate requirement for federated identity

23
.

23

 With the increasing popularity of cloud-based solutions, this could become a
common requirement very soon. Not every cloud-based system requires federated
identity, though. We cover this subtle point in a later discussion on Cloud Computing.

50

Let's look at CAS in greater detail now. Although CAS is simple, it can be
enhanced with very little effort to cover a number of different Access
Management situations, such as integration with Windows-based LANs and
Two-Factor Authentication for applications requiring greater security. We
will show how this can be done using case studies.

It's only when we start to talk about federated identity that Shibboleth
needs to come into the picture. We will look at federated identity and its
unique requirements later using a specific case study.

A good external reference to Shibboleth:
http://www.jisc.ac.uk/whatwedo/themes/accessmanagement/federation/s
hibbolethdemo.aspx

51

CAS Server Configuration and the “Two-Layer Protocol

Architecture”

Here are some tips for setting up CAS as your SSO server.

Tip 1: Cater for high availability of the IAM solution

IAM can become the single point of failure for all your applications unless
you take steps to ensure its availability. You would of course set up your
directory in a replicated configuration, and your database is also likely to be
set up in HA (High Availability) mode. But what about the SSO server?

CAS servers are stateless (i.e., they maintain no data in session state), so
there is no need to cluster them. A load-balanced configuration is sufficient
to provide high availability. Any standard hardware-based load-balancer will
do nicely, as shown below:

Fig 18: SSO load-balancing

Tip 2: Don't reveal your SSO implementation through your domain naming
scheme

As the diagram above suggests, keep your domain names technology-
neutral. When an application's interceptor redirects a browser to CAS, the
browser will display the URL of the CAS server (or more correctly, the URL of
the load-balancer) at the top of the SSO login page. As long as this says
something neutral like “sso.myorg.com” and not “cas.myorg.com”, it will not
provide any clues about the actual product being used to implement SSO. It
is prudent to avoid revealing details of your organisation's implementation in
case a hacker exploits a known vulnerability in the product at some future
date.

52

Tip 3: Share repositories between internal- and external-facing CAS servers

While CAS is stateless (i.e., no in-memory state), it does reference data in
three data stores, i.e., the directory, the user database and the ticket
registry.

Sharing the directory and database makes sense because you can provision
all users to a single repository and have them access either internal- or
external-facing applications, from either within the corporate LAN or from
outside. A suitable directory structure as we will describe later can support
all types of access.

Similarly, sharing the ticket registry can also make sense. In certain use
cases, it may be necessary to grant access to an application that is normally
internal-facing to an external user or vice-versa. Having a shared ticket
registry can ensure that SSO spans both internal and external systems with
no additional effort.

Tip 4: Most importantly, try and adopt a “Two-Layer Protocol Architecture”
and use CAS to hide the various challenge/assertion protocols required, from
application interceptors

As we will see in the next three sections, we often have a requirement for
other “challenge/assertion” protocols to authenticate users. Rather than
complicate the entire Access Management infrastructure to support these
varied protocols, we suggest a simple “Two-Layer Protocol Architecture”
that looks like this:

Layer 1: The CAS protocol should be the sole “internal” protocol seen by
application interceptors, i.e., they will expect CAS service tickets with every
initial access from a browser and will redirect the browser to a CAS server if
they don't find one. They will also make a validation request to the CAS
server to verify the authenticity of every service ticket presented to them.

Layer 2: The CAS server (and any associated products) will manage the
various “external” challenge/assertion protocols that may be required.

53

The Two-Layer Protocol Architecture is illustrated below:

Fig 19: Two-Layer Protocol Architecture

The next three sections will illustrate the utility of the Two-Layer Protocol
Architecture when we extend our Access Management infrastructure to
cover three different situations:

1. LAN-based Single Sign-On using SPNEGO
2. Two-Factor Authentication using SMS One-Time Tokens
3. Federated Identity using SAML2

24

24

 There is a potential problem with using the Two-Layer Protocol Architecture for

federated identity situations, which we will cover when we get to that discussion.

54

Enhancing Access Management Functionality

Incrementally

Let's see how the LIMA approach, especially the Two-Layer Protocol
Architecture for Access Management, can help you painlessly enhance the
functionality of your IAM system to cater to additional requirements.

Extension Case Study 1: LAN SSO Integration with SPNEGO

A frequent requirement, especially for intranet applications, is to exploit the
fact that the user has already logged into the corporate LAN through their
Windows workstation login screen. There should be no need to log in again
to a web-based application. Without LAN integration, even web-based Single
Sign-On implies two logins, which is not ideal.

The solution lies in a Microsoft protocol called SPNEGO (Simple and
Protected Negotiation), by which a web application can transparently query
the browser for a token from the Windows security environment which it
can verify against Active Directory. So without the user having to log in again
explicitly, the system can perform an authentication and thereby secure web
applications by leveraging the earlier LAN authentication

25
.

The following figure illustrates the way SPNEGO would work in the
straightforward case:

25

 SPNEGO refers to the negotiation protocol. The actual authentication protocol,

which is invisible at the level we are interested in, is either NTLM or Kerberos.

55

Fig 20: Straightforward SPNEGO

In our experience, the same web application may have to support both
internal (LAN) users as well as external users (B2B and B2C) who do not have
a prior Windows LAN login session. Implementing the model above would
mean that an application (or its interceptor) would need to understand and
implement two different protocols (SPNEGO and CAS) to cater to these two
sets of users.

As we suggested in the last section, a Two-Layer Protocol Architecture can
alleviate this complexity. The application interceptors only understand CAS
as always. The CAS server itself is capable of issuing an SPNEGO challenge
and validating the token presented by the browser, so SPNEGO should be
delegated to the CAS server, as shown below:

56

Step 1:

The browser attempts to access the application and the CAS interceptor
redirects it to the CAS SSO server as usual.

Fig 21: CAS SPNEGO Step 1

The default behaviour of CAS is to try various types of authentication
mechanisms in a particular order (as specified in a configuration file) until
one of them successfully authenticates the user. For example, CAS can try
SPNEGO first and if that fails, it can display a login form. Alternatively, the
interceptor can provide a hint of some sort to CAS that this access requires
to be authenticated through SPNEGO rather than a login form. We'll talk
about a simple way to do this at the end of this discussion.

57

Step 2:

Now CAS issues the SPNEGO challenge, receives the token from the browser
and validates it against Active Directory.

Fig 22: CAS SPNEGO Step 2

At this stage, the situation is very similar to the standard CAS protocol at the
point where CAS has just succeeded in authenticating the user against the
directory. From here on, the sequence of events resembles the standard CAS
protocol.

58

Step 3:

The CAS server generates its two tokens (Ticket-Granting Ticket and Service
Ticket) before redirecting the browser back to the application. The
interceptor receives the Service Ticket as part of the redirected access
request and validates it against CAS. CAS retrieves user attributes stored in
the Ticket Registry and sends a response back to the interceptor. If
everything checks out, access is granted.

Fig 23: CAS SPNEGO Step 3

From the perspective of the interceptor, the only protocol it has to know
about is CAS. The domain names can be set up so that internal (LAN) users
and external users access the application through two slightly different URLs.
This difference in URLs is all the hint that CAS requires to use different
challenge protocols for the two types of user.

We recommend the same architectural approach when supporting any other
challenge/assertion protocol. Keep the interceptor logic simple and standard
(i.e., based on CAS). Delegate the actual challenge/validation logic to the
centralised server. This way, all complexity is contained within a single unit

59

(the SSO server) rather than dispersed across the network. Applications and
their interceptors are all standard regardless of the kind of authentication
protocol used.

60

Extension Case Study 2: Two-Factor Authentication with SMS One-

Time Tokens

Sometimes, web applications have the requirement for “Two-Factor
Authentication” for extra security. In other words, the user is expected to
produce two independent sets of credentials to be successfully
authenticated. Two-Factor Authentication is also described as “what you
have and what you know”. This is more secure than merely having two
passwords, because two passwords can be stolen as easily as one, but two
factors are harder for a malicious user to steal from a legitimate user than
one, because a physical object has to be stolen in addition to a piece of
information.

There are many forms of Two-Factor Authentication

26
, but what we will

illustrate here is a simple scheme involving a mobile phone (what the user
has) and a password (what the user knows).

Remember that CAS is an Open Source product with several
customisation/extension points, making it easy to add the functionality we
need. One of these extension points is the login screen. We will touch on the
ability to customise the login screen using stylesheets specific to a partner
organisation later on, but the customisation that we will use here is a change
of screen flow

27
.

CAS uses Spring Web Flow internally, so any Java web developer with
knowledge of Spring Web Flow should find it easy to make the change we
describe below.

The idea behind this implementation of Two-Factor Authentication is that
every user of the protected business application has a mobile phone that
they always carry with them. They also know their Single Sign-On password.
The CAS server will prompt them for a user ID and password as always, but
instead of generating tickets and letting them into the application upon

26

 CAS already supports authentication through either passwords or X.509

certificates. With a simple code tweak, it can be made to require both, thereby
providing another implementation of Two-factor Authentication.
27

 Keep in mind that although the change we describe should not negatively impact
security, it will need to be documented and the new design reviewed by auditors
before it can go into production. The auditors must confirm that the extension
implemented does not compromise the basic CAS security protocol in any way, since
it is only meant to add an extra authentication step before tickets are generated.

61

successful authentication, it will also test for their possession of their mobile
phone at that point in time, and grant access only if they can prove it.

For this to work, the user will have to have been provisioned earlier on in the
IAM database with their mobile phone number as an important attribute. As
soon as CAS successfully authenticates the user against the LDAP directory, it
retrieves the user's mobile phone number from the database. It also
generates a One-Time Token (OTT), e.g., a random number of (say) 6 digits,
stores the OTT temporarily in the database against the user record along
with a timestamp, and sends the OTT to the user's mobile number through
an SMS gateway. It then displays a second screen to the user prompting
them to enter the OTT. (This is the simple Spring Web Flow customisation
we referred to). If the database has the correct mobile number and the user
is in possession of the phone at that time, they will receive the OTT as an
SMS message and can then enter it at the second screen. CAS will then
validate the OTT against the value stored in the database (checking the
timestamp to make sure the value isn't stale). If the OTT matches, it means
the user has passed the second factor test. CAS then generates its tickets
and proceeds to redirect the user's browser back to the application as
normal.

The diagram on the following page illustrates the flow of logic.

62

Fig 24: Two-factor authentication

63

Extension Case Study 3: Federated Identity with SAML Tokens

In theory, it is fairly simple to extend our Two-Layer Protocol Architecture to
support federated identity mechanisms as well.

As we mentioned before, the key aspect of federated identity is that the
organisation that receives user credentials does not have to have that user
previously provisioned within its user directory. The information about the
user (a set of assertions) is taken on trust because it is asserted by a trusted
partner organisation. For this to happen, we need a way to authenticate the
assertions rather than the user. This is usually done by validating a digitally
signed document against the signing organisation's public key that has
previously been received through a trusted channel.

To understand federated identity systems better, we find it useful to refine
the standard model containing a Service Provider (SP) and an Identity
Provider (IdP), by identifying a third component that we call an Identity
Consumer (IdC). The identity Consumer is just a role played by the Identity
Provider itself when the Service Provider requests it to validate a service
token, but we find it useful to separate this role out under a separate name,
and you will see why shortly.

In the standard CAS model, the CAS SSO server is the one that performs
authentication of user credentials against a directory, checks their access
rights to the application

28
 and generates tickets. At this point in time, it is the

Identity Provider, because it is generating one or more identity tokens. The
interceptor (on behalf of the application) then receives a service ticket that it
is expected to trust. Typically, the interceptor will ask the CAS SSO server to
validate the presented ticket before it grants access to the resources it
protects. It's a way of asking, “Do you really know this guy?” At this point,
the CAS SSO server plays the role of the Identity Consumer, because it is
being presented with an identity token that it has to verify.

In the non-federated case, the CAS SSO server is both the Identity Provider
and the Identity Consumer and sits within the corporate network.

28

 Of course, as described before, the actual enforcement of access control may be

performed by the interceptor instead of by CAS based on the roles that are (or
aren't!) passed in. However, the logical function of validating authorisation is
performed by CAS.

64

Fig 25: Access Management – Non-federated Model

In the federated case, imagine the two halves of the CAS SSO server being
stretched across a network and implemented on opposite sides of the
corporate firewall. Let's say the business partner organisation implements
the Identity Provider function. Then your organisation must implement the
Identity Consumer.

Fig 26: Access Management – Federated Model

65

Not all organisations use CAS, so we can hardly expect the Identity Assertion
to be a CAS Service Ticket. The industry standard for identity assertions is a
SAML2

29
 token. We therefore need a way to validate SAML2 tokens. But as

we have seen, token validation is not all there is to federated identity
management. Even if we extend CAS to integrate with a SAML2 token
validation component, that's not an architectural fit for the federated case.
This is where Shibboleth enters the picture.

Rather than set up a completely independent infrastructure based on
Shibboleth for the federated identity case, we would like to follow our
architectural approach of using the CAS protocol internally, so that our
interceptors do not have to know about Shibboleth. The University of
California at Merced has pretty much the same idea, and they provide a
Shibboleth-CAS “gateway” to keep interceptors innocent of the existence of
Shibboleth. They have a more interesting way to justify the Two-Layer
Protocol Architecture. In their eloquent words, it is easier to “CASify”
applications than to “Shibbolize” them.

The following diagram shows a setup combining CAS and Shibboleth to
provide federated identity using the same pattern as for LAN integration
with SPNEGO.

29

 Security Assertion Markup Language, a dialect of XML. CAS version 4 is slated to
support the SAML2 format even for its own Service Tickets, but the version we used
was CAS 3.3.1, which used a native format.

66

Fig 27: CASShib

67

Limits to the Two-Layer Protocol Architecture

At first glance, we seem to have managed to preserve our model (i.e., the
Two-Layer Protocol Architecture) even when faced with a requirement to
support federated identity. The developers of the CASShib Gateway certainly
have the right architectural idea.

However, the implementation of CASShib lacks maturity at the time of
writing. The product and architecture have not been security-certified. More
worryingly for its prospects, it has not gathered the critical mass of
development activity required for a successful Open Source project, and its
development has languished. Therefore we don't believe we can avoid the
complexity of a full-fledged Service Provider infrastructure at each business
application node where federated identity is to be supported.

A more realistic implementation of federated identity may look like the
following diagram. The same application, when accessed by locally-
provisioned users as well as by users not locally provisioned, would need to
be exposed as two separate domain names (URLs) and protected through
two different mechanisms. This model is more complex at each application
node, but it has its own overall symmetry when you gaze at it for a while.

68

Fig 28: Federated identity – Partner Access to Your Applications

A similar architecture in reverse would apply if your organisation's users had
to be granted access to a partner organisation's applications. You would host
a Shibboleth IdP backed up by a user repository, and your partner
organisation would host some SAML2-compliant SP to protect their
application.

69

Fig 29: Federated identity – Your Access to Partner Applications

It is important not to confuse a locally-provisioned user with an internal
(B2E) user. A locally-provisioned user could be a B2E, B2B or B2C user, but
you are responsible for provisioning them in your organisation's user
repository. Users who are not provisioned locally are those for whom your
partner organisation is responsible. Your partner organisation will vouch for
the identity, roles and other attributes of these users. You know nothing
about them because they are not found in your user repository. You take all
these attributes on trust, because you have the mechanism to verify that it is
indeed your trusted partner organisation that is making those assertions.

That should give you a good picture of federated identity and how
Shibboleth works. There's a bit of work involved in setting it all up, but
hopefully you will see that it's conceptually quite simple. The challenge is to
resist the pulls of expediency and to implement a clean design.

70

Miscellaneous Topics in Access Management

There are a few items we haven't covered in the course of our study of the
LIMA Access Management model, so let's do so right away.

Protecting Non-Web Applications

While web applications are the bulk of an organisation's modern fleet of
applications, there are important applications built using earlier generations
of technologies.

Native Windows-based applications are probably the second-largest group.

Standalone Java applications are probably another significant group.
Mainframe-based “green screen” applications are a third set altogether.

And then there are Unix system accounts.

Let's be realistic. We can't provide a seamless IAM “layer” over all these
disparate types of applications, but we can come pretty close. Here's how.

Windows-native applications can use SPNEGO directly and transparently
authenticate against Active Directory. They'll need to skip coarse-grained
authorisation and implement just fine-grained authorisation. This is no real
loss of capability or security vulnerability if the fine-grained access control
logic is implemented right.

Standalone Java applications have a choice of techniques, because some of
them are client-server systems, while others run purely on the client. We
recommend building a common security module for the client side of all Java
apps, bundled as a jar file with all of them. The CAS classes that authenticate
against the IAM directory, perform coarse-grained access control checks
against the IAM database and retrieve user attributes from it, should be
replicated within a separate server module to serve Java client applications.
The client security module should call this server module (over HTTP or RMI)
to invoke its services for authentication, coarse-grained authorisation and
attribute retrieval. The client-server systems can have a listener on the
server side to hook into the IAM User Event Bus to provision users.

The pure client systems can't do this and you will have to explore other
mechanisms, some of which may have to be manual. It's a bit of work and
unlikely to be 100% satisfactory, but then, it's a different technology and will
require effort to harmonise with the rest of the ecosystem. There are

71

smartcard technologies that will allow better integration, such as Sun's Sun
Ray system. It depends on how far you want to go to acquire seamless
integration and how you define “good enough”.

Mainframe “green screen” programs have their own security model
(RACF/ACF2). The best that we believe is possible is to hook up the
provisioning on the mainframe with IAM's User Event Bus. Having template
or model users with canned access rules is a good shortcut for user
provisioning, since these can be referenced when creating new users. Access
Management will have to be handled entirely by the mainframe.

For Unix system accounts, consider using a Pluggable Authentication Module
(PAM) to interface with the IAM directory rather than rely on the local
“passwd” and “shadow” files to store user data.

72

Implementing “Single Sign-Out”

Our experience has shown us that while business units often demand Single
Sign-On for their users, they don’t realise that an unintended consequence is
that it no longer makes sense to speak of logging out of any single
application. The term “Single Sign-Out” is sometimes talked about, but this
(if implemented) can be quite irritating from a usability perspective.

Remember that Single Sign-On is defined for the environment as a whole and
is governed by a single SSO token stored in a cookie on the user’s browser.
The SSO token is usually valid for many hours, usually a full working day, so
that a user does not have to log in again once they have done so at the start
of their working day. In contrast, service tickets or application access tokens
typically expire after a few minutes, and it is only the validity of an
application’s web session that governs the need for a user to be revalidated
by the SSO server. Logging out of an application in most cases involves
invalidating the web session (and perhaps the service ticket), but
importantly, this does not prevent the user from transparently regaining
access to the application.

The reason for this behaviour is that an application interceptor may redirect
a user back to the SSO server if the web session or service ticket is no longer
valid, but as long as the SSO token is still valid, the user will not be
challenged for their login credentials again. After all, this is the required
behaviour for SSO. The SSO server will check the user’s access rights against
the IAM database and as long as the access is still granted, will silently
generate a fresh service ticket which will let the user into the application
once more.

The effect of this is that a user cannot be logged out of any application as
long as their SSO session is valid. This comes as a bit of a shock to business
owners and even some security people because it implies that an open
browser can be used by any passer-by to gain access to sensitive
applications, even if the legitimate user has “logged out” of them and closed
the relevant browser tabs.

Note that while this behaviour is definitely less secure than what we had
with standalone applications, it is not a bug or a drawback with IAM or with
Single Sign-On, merely a failure to understand the implications of the Single
Sign-On feature that is otherwise desired.

73

A common knee-jerk response to this security problem is to demand
implementation of “Single Sign-Out”. In effect, the global login session is to
be terminated when the user finishes up with the individual business
application in question. Indeed, CAS has a simple mechanism to invalidate
the SSO token, so “Single Sign-Out” is very easy to implement. However, this
sledgehammer approach is quite a nuisance, because the user will then have
to log in again to access any other application. Single Sign-Out negates the
benefits of Single Sign-On! We may as well have stayed with standalone
applications and just used a centralised user directory for authentication and
authorisation.

We believe that the most pragmatic approach is to rely on old-fashioned
workstation timeouts at the operating system level to lock the user’s
workstation itself after a certain period of inactivity. This narrows the
window available for opportunistic access to passers-by. It is also the generic
solution to protect applications, because it is in any case impossible to
enforce a rule that users must log out of sensitive applications before leaving
their workstations.

A combination of workstation timeouts and education about the
implications of Single Sign-On is the most practical solution to this security
issue.

74

IAM and Cloud Computing

When Yoda said, “Clouded our vision was,” he did so ruefully. But today, the
vision for any software system must include the Cloud!

For end-user organisations that rely on Infrastructure as a Service (IaaS)
clouds, IAM is something they would need to set up themselves to protect
the applications they upload to it

30
.

Cloud providers who offer a Platform as a Service (PaaS) need to worry
about setting up a supporting set of shared services on top of a basic IaaS for
client applications that are deployed on their platform, and IAM is a classic
shared service that they would need to configure

31
.

Both groups of people need to understand how IAM plays in the cloud.

One may be tempted to ask, “Is CAS or Shibboleth the better product for the
Cloud?”

The question, however, is misguided. The important factor to consider is
where users are provisioned relative to where the applications they access
are hosted.

 If the user repository is hosted on the same cloud that hosts the
applications those users access, then this is a case of local identity
management, and CAS will do nicely.

 If the user repository and the applications that users access are hosted
on different clouds, then this is a case of federated identity
management, and Shibboleth is the better fit.

The following diagram illustrates this rule with the help of a mnemonic.

C: Co-located user repository and applications – use CAS
S: Separately located user repository and applications – use Shibboleth

30

 End-users of Platform as a Service (PaaS) clouds don't have to worry about

designing IAM configurations. They would just use the IAM-equivalent services
provided by their vendor. The design of IAM is even less relevant for end-users of
Software as a Service (SaaS) platforms.
31

 E.g., Amazon Web Services include IAM, which is leveraged in their Beanstalk PaaS
offering.

75

Fig 30: Cloud and User Repository Location

The term “cloud” should not faze us. These are all distributed systems with
the same underlying principles. And as we said before, don't confuse locally-
provisioned users with internal (B2E) users.

76

What Do We Do with Active Directory?

We've talked about the IAM directory and we'll shortly show how minimal its
data structure really is. However, most organisations with Windows
workstations also have Active Directory to provide a centralised
authentication point for LAN logins, as we saw during our SPNEGO
discussion.

Can organisations use AD as their IAM directory? This may seem trivial to do,
but there are some organisational reasons why it may not be a good idea.
The more elegant solution, we believe, is to maintain both directories. This
may appear logistically more complex, but doesn't have to be.

AD has a fairly complex data structure, and it holds data on many entities
(e.g., workstations and printers) in addition to users. The temptation when
using AD as the IAM directory is to go the whole hog and do away with the
IAM database altogether. That would be a bad idea. The separation of
directory and database, loosely coupled by the User UUID, is one of the
biggest effort-saving innovations we have seen. In fact, we would
recommend using as many directories as required to authenticate different
groups of users, but to share a single IAM database for their authorisation

32
.

Directories should hold authentication credentials and nothing else. As
always, the UUID is the link between repositories that reconciles user data
between any directory and the database. (A trivial format conversion may be
required between AD's GUID and IAM's UUID

33
.)

32

 The UUID's role in decoupling authentication and authorisation realms is illustrated
diagrammatically later on.
33

 The curly brace-delimited GUID “{0fec5f441dc64b4e8dd0a5404520118d}”
favoured by Microsoft corresponds to the hyphenated UUID format “0fec5f44-1dc6-
4b4e-8dd0-a5404520118d” that is more common in the Unix world.

77

Fig 31: How to Incorporate Active Directory into an IAM System

If other (Windows-native) applications require AD to store some user
information that they rely on, then treat AD as an “Associated System” in
IAM that holds replicated user data, and implement a listener on the User
Event Bus to update those user attributes when they change within IAM.

The above diagram summarises our recommendation.

78

Tailoring Coarse-Grained Access Control

As we have seen, CAS can retrieve user attributes from the IAM database
right after the very first authentication in an SSO session and store them in
the Ticket Registry along with the Ticket-Granting Ticket. This provides a
performance optimisation because it then doesn't have to go back to the
IAM database to retrieve them every time a new application is accessed
during that SSO session. The Ticket Registry is always accessed for ticket
validation in any case, so an extra database access thereby avoided.

You may find though, that a generic set of user attributes is not good enough
to enforce application-specific access control. Even if IAM restricts itself to
coarse-grained access control, we may implement it through a mapping from
the user to an application role such as “Application X User”. We may also
need to pass other attributes that are specific to each application, such as
local user IDs on associated systems that that particular application may
have to access.

At the cost of a slight performance penalty, we can extend CAS's default
functionality to make an extra database retrieval once ticket validation is
over, and add an application-specific set of attributes to the generic ones
that are stored with the TGT.

Fig 32: Coarse-grained access control

79

We now have a means of enforcing coarse-grained access control through
IAM. If the interceptor does not find the specific attribute it is looking for, it
means the user is not authorised to access the application. It can then either
display a suitable error message, or it can pass the request through to the
application (with the expected attribute missing), so that the application can
perform a similar check and provide a gracefully degraded level of
functionality (e.g., “guest” access).

80

Using CAS to Centralise Enforcement of Authorisation Rules

One idea that occurred to us was to ask why CAS could not perform a
coarse-grained authorisation check against the IAM database right after the
authentication check against the IAM directory. Wouldn't that be more
guaranteeably secure from an auditor's perspective than just passing back
user attributes and leaving enforcement to each application's interceptor?

In other words, how about a process as shown below, where CAS actively
blocks access if step 7 fails?

Fig 33: Centralised enforcement

Well, even though CAS has historically been an authentication mechanism
for distributed systems and not really an authorisation system, it is after all
an Open Source product, so it can be modified to perform this function with
very little effort.

When we explored this design option however, we encountered some
usability concerns that neutralised its minor edge in auditability. These
issues could be fairly universal, so you should think about them too.

What should CAS do if a user is correctly authenticated but doesn't have
access rights to the application they are trying to access? Should it just
display an error page?

81

Application owners typically want control over the look-and-feel of error
pages, especially when delivering sensitive news like a denial of access. They
may want to sugar-coat the pill in different ways. While it is possible to tailor
CAS's functionality to show different error screens for different applications,
we are now straying a fair bit away from enterprise functionality and into
application territory. It's better to let application owners themselves design
(and re-design!) their error pages.

Also, some applications prefer to degrade the access level to “guest”
privileges when authorisation fails. For these reasons, we decided to stick to
the approach of using the interceptor to enforce tailored access control. You
could of course, implement the above logic if it works for you.

82

Using a Reverse-Proxy Device as a Common Interceptor

Another approach we considered was to centralise the interception function
through a reverse-proxy that is set up to intercept access to all web
applications in the network. This has several architectural advantages, the
most important being its guarantee of protection to all applications in the
network at a single stroke. While software-based proxies face concerns of
being potential performance bottlenecks, there is a class of hardware
devices that are quite performant and effective in this role.

The diagram below illustrates how a reverse proxy device could work as a
common interceptor.

Fig 34: Reverse proxy

However, we faced two problems with this design, a minor one and a major
one.

The minor problem was that very few of the devices we surveyed had
support for the CAS protocol. A couple had support for Kerberos, which
would also have been acceptable. However, the programming models were
quite limited and could have constrained the development of customised
logic, which was a definite requirement.

This constraint could also have been worked around, but in any case, the
major problem that stymied this approach was cost, specifically the initial
outlay required.

A reverse-proxy device of the required capability and acceptable quality
costs about $100,000 at the time of writing. We would have had to deploy

83

this in a redundant, load-balanced configuration for availability if not
scalability. That meant a minimum of two devices in the production
environment. But any medium-to-large organisation has a number of
environments in which its applications are deployed, i.e., development,
system testing, user acceptance testing (UAT), production and disaster
recovery (DR). We would have needed one device in the development
environment and two each in the others, bringing the total number of
devices to 9. A single device costing $100,000 really meant a cost outlay of
almost a million dollars for the overall solution.

So while the architectural model was quite elegant and the purchase was
well worth the price from an enterprise viewpoint, the usual budgetary
constraints ensured that this approach never got off the ground. You should
however consider this model if you can manage the initial outlay.

84

Access Management for “Portal” Applications

Many organisations have “portals”, which are gateways that aggregate and
provide a common point of access to a group of business applications. IAM is
expected to provide security for portals as well. It's important to realise that
there is a portal function that is different from a specialised model that is
portal technology.

The portal function is a simple one of providing some form of aggregation, so
that a user sees all their required functions in the same place and they can
follow links from that starting point to do those specialised tasks. Many so-
called “portals” are nothing but menu pages on websites that provide simple
hyperlinks to other full-fledged web applications.

Portal technology, on the other hand, refers to a programming model
defined by two Java standards, – JSR-168 and JSR-286. Business functions
cannot be standalone web applications in this model. To be able to run
inside a portal, they must be written as specialised components called
portlets. Among other peculiar requirements, portlets must emit fragments
of HTML instead of complete web pages and conform to a complex, multi-
phase event behaviour defined by these standards. There is also an adjunct
standard called WSRP (Web Services for Remote Portlets) that allows
portlets and portals of different technology families (i.e., Java and .NET) to
interoperate.

Fig 35: Portals and IAM

85

The figure above shows what it would look like to integrate portals with IAM.

IAM can protect both types of portals under its SSO regime. The main
difference is that a true portal (i.e., the JSR-168/286 and WSRP kind) is seen
as a single application. “Menu page” portals and the applications they
aggregate are seen as independent web applications at the same level. Here,
the portal page is just a convenience for novice users. Advanced users can
bookmark and directly access the business applications behind it. With the
“true portal” model, access to an individual portlet is not even possible,
because portlets only run within the portal environment.

86

Identity Management, LIMA-style

We've seen how Access Management works. Identity Management is the
other half of IAM. We can think of Identity Management as the system that
provides Access Management with up-to-date data to work with. It also
performs an audit function by keeping track of all significant user events.

Doing all of this behind-the-scenes stuff is hard work. It's conceptually
simple, but operationally hard – until you get the processes in place. Then
it's both simple and easy. But you need to avoid the expedient shortcuts that
can complicate matters over the long run and end up costing you more. The
key principle is loose coupling, as always.

Identity Management Concepts

The key processes in Identity Management are User Provisioning and Audit.
In essence, User Provisioning is keeping user data up-to-date and consistent
on a number of different systems, so that Access Management and Audit can
both work correctly. Audit is recording all relevant user events and activities.
This diagram puts all these concepts into context.

Fig 36: Identity Management concepts

We've already covered many techniques of loose coupling early on. Now is
the time to drill down into the details to see what loose coupling really
means in the context of Identity Management.

87

Separating Church and State – The Roles of Directory and

Database

If you follow no other recommendation in this document but this one, you
will still save yourself hundreds of thousands of dollars of unnecessary
effort. It is simply this – split your user data into an LDAP-based directory
and a relational database, with only authentication credentials in the
directory and everything else in the database. There were many occasions
when we had to implement a new feature and thought to ourselves, “Thank
goodness we chose to split the user data!” This is such a fundamental design
characteristic of a flexible IAM.

A directory server is a strange beast. It evolved at a time when relational
databases were being tuned for mixed read-update loads and were not fast
enough for read-mostly use cases. Directories emerged to cater to this need.
Directory servers were very fast on reads but very slow on updates. This was
OK for situations that required lookups much more frequently than updates.

However, in recent times, relational databases have become extremely fast
for any kind of load, so performance is no longer a differentiator. On the
contrary, the tree structure of a directory is needlessly constraining when
you have to model all sorts of complex data relationships. Many data
elements in an IAM have a many-to-many relationship

34
, and directories

simply suck at modelling anything but one-to-one and one-to-many
relationships. For example, if you're trying to put user role information into a
directory, be warned that you're stepping into quicksand. You will be tearing
your hair out very soon. Relational databases are a much better fit for all
such information.

You may wonder then why we don't put all our data into a relational
database. Is a directory useful at all any more? The short answer is yes.
Directories still do certain things extremely well:

 They are good at storing passwords in a secure encrypted form and
performing password validations internally with a single operation.
Implementing this functionality in a generic relational database will
require the application to perform encryption and/or decryption in
memory and perform retrievals and comparisons as separate
operations. Subsequent functions like recording the number of failed

34

 Association tables are usually employed to split many-to-many relationships into
two one-to-many relationships back-to-back, but they're still hard to fit into a tree-
structured data store.

88

attempts, or clearing that count on a subsequent successful login, will
also have to be explicitly coded.

 Directories can enforce enterprise password policies based on simple
configuration settings. Aspects of security policy such as password
length, password expiry (i.e., how frequently must passwords be
changed?), password history (e.g., users cannot reuse the last 15
passwords), invalid logins allowed (i.e., how many times can a user enter
incorrect credentials before the account gets locked?), etc., are very
easy to specify in a directory

35
. A general purpose database needs

special application logic to enforce these aspects of security policy.

35

 Some aspects of password policy (e.g., a password must contain at least one
uppercase letter, one lowercase letter and a digit) may still require to be specified at
the application level, especially since it is considered more user-friendly for an
application to provide a continuous indication of password acceptability as the user is
typing.

89

Designing the IAM Directory

Tip 1: As mentioned before, your directory should contain only user IDs and
passwords as core data, with a couple of other attributes we will cover in a
moment. You may organise user records under different organisation units
(e.g., “ou=internal, ou=users”), but the user object itself should have no
other attributes, not even the user's name or type (B2B, B2C, etc.) It may
seem unnatural to have such a minimal directory structure, but resist the
temptation to put in anything more, and you will be thankful for this
restraint on many future occasions.

This is a minimal structure for the user node of the directory that will serve
you well:

Fig 37: A minimal directory structure

90

Tip 2: The larger structure that caters for internal and external users may
look like this:

Fig 38: A more comprehensive directory structure

Tip 3: Although you may split B2E and B2C users into separate sub-trees, it
may not be possible to do so with B2B and B2B2C users.

This is because B2B2C users are customers of your business partners, and
you may have a common external-facing portal for both these types of users
to log into. In these cases, you won't actually know which kind of user they
are at the moment they hit your portal's login page and enter their
credentials, and so binding to the right sub-tree of the directory for
authentication will be a challenge. It's far better to treat all external users
the same as far as placing them in the directory goes. You can of course tell
whether they're B2B or B2B2C after authentication, because the “user type”
attribute is in the database.

Tip 4: The last point implies that we need a way to map the user record in
the directory to the corresponding one in the database. The attribute that
provides this mapping is what we call a “User UUID”. This is a random,
meaning-free and universally unique identifier that you can confidently use

91

without fear of conflict with any previously assigned identifier
36

. This is what
you will use to map a user record in the directory to the corresponding
record in the relational database (see figure below).

Fig 39: Mapping directory to database

As part of its Access Management function, CAS will authenticate the user's
credentials (cn and userPassword values) against the directory, then use the
uid (User UUID) attribute of the directory user object to retrieve any other
required attributes of the user from the relational database

37
.

Tip 5: Try and implement password policies at a per-user level

Your organisation's security policy may specify different rules governing
passwords for B2E users, B2B users and B2C/B2B2C users

38
. Most directories

only support password policies at an “ou” node level (which then affects
user nodes below that root node), but as we have seen above, sometimes
we are forced to place B2B and B2B2C users under the same “ou” sub-tree,

36

 A UUID is a 128-bit string, and the chances of two randomly generated UUIDs
being the same is about 1 in 10

33
. These are such stupendous odds (and modern

pseudo-random number generation algorithms so reliable), that you can blindly
insert records in a table without checking for duplicates. If someone you know insists
that you must check for duplicate UUIDs before inserting new records, they probably
don't understand how big a number 10

33
 really is, and are probably disappointed that

the Universe has “only” 10
80

 atoms! The authors have learnt not to argue in such
situations.
37

 The query may require a SQL join to map the User UUID to the primary key used
within the relational database, because tables within the database only reference the
local primary key.
38

 Internal users may need to change their passwords every month, while customers
may be allowed to keep theirs for 3 months. Internal users may not be allowed to
reuse the last 10 passwords, while customers may not have such a restriction, etc.

92

in which case this approach to password policies wouldn't work. It has to be
more fine-grained. We need a reference to the applicable password policy to
be stored at the level of the user node, not a parent node. OpenLDAP is one
of the few directory servers that implement this feature.

Tip 6: Have a separate sub-tree for “system” objects

The reference to the password policy node in the user nodes above hints at
a separate system sub-tree. Here is where you may want to store password
policies as well as “system accounts” (i.e., directory administrator accounts
as well as user IDs corresponding to applications rather than to human
users). The structure of this part of the tree may look like this:

Fig 40: System objects in the directory structure

93

User UUID – The One Ring to Rule Them All

The User UUID as the association between user records in the authentication
directory and the user database is a generic pattern you should try to use
when associating user records across any two systems. The User UUID
should be a candidate key in every application or system where user
provisioning is in some way to be managed by the IAM (what we call
“Associated Systems”), but it need not be the primary key in any of them. In
fact, we recommend that you always use another local primary key in each
system, in the interests of loose coupling. However, many legacy systems
will be unable to support a local mapping to the User UUID. In such cases,
the IAM database will need to hold that mapping for them.

The diagram below shows both mechanisms of mapping user identity across
systems. The UUID-based mapping is preferred, and the Associated System
table is the fallback when this is not feasible.

Fig 41: The User UUID as the link between systems

94

Decoupling Authentication, Coarse-grained and Fine-

grained Authorisation Realms

The following diagram shows how the consistent use of a User UUID makes
it easy to manage the Authentication and Authorisation requirements of
different (even overlapping) groups of users with absolute flexibility in the
choice of products at each level. (Of course, if an associated system cannot
hold a UUID reference, then the IAM database must hold the mapping.)

95

Fig 42: Decoupling realms

96

Person UUID – The Ultimate Identity Reference

Associating various system accounts through a common identity at the user
level (i.e., a User UUID) is definitely a convenient handle for user
administration across applications and systems at a point in time.

However, another very common requirement is an audit query that seeks to
associate the actions of a person at various points in time, and this may span
multiple engagements of the person under different user identities. What
we need is a simple, unobtrusive method that can be applied at any time to
create this extra level of association.

We suggest creating a “Person UUID” that can be used to map to multiple
“User UUID” values, as shown below:

Table 1: Person UUID mapping table

This is a one-to-many mapping that sits “outside” of the rest of the IAM
database, so to speak. This mapping can be created whenever a relationship
between two users is discovered through some out-of-band mechanism (say,
through a name or address search).

The Person UUID will have no attributes of its own, because attributes are
generally captured at the User level. You may need some conventions to
report on Persons, perhaps using the attributes of the most recent User
associated with the Person.

The following diagram illustrates the use of both the Person UUID and the
User UUID as handles to manage user information.

97

Fig 43: The Person UUID as the link between various user incarnations of the same physical person

98

 Data Replication and Master Data Management

One of the common mistakes possible when implementing an IAM system is
to duplicate information across more than one repository, with an excessive
reliance on product-based replication mechanisms to keep them in sync. This
is highly error-prone in practice and will be a perennial source of
maintenance headaches.

Our recommendation is to stick to well-understood principles of Master Data
Management (MDM):

 Identify the application or system that is the “source of truth” for each
data item. This system should be the only one that creates, updates or
deletes this data item.

 Try and store each data item in only one place. The most natural place
to store it is local to the system that is its “source of truth”.

 Try to avoid replicas of any data item. If possible, let other systems that
need access to this data item query it directly from the source of truth.

 If it is too cumbersome or it creates unnecessary dependencies to force
such queries back to the source of truth, then consider storing a read-
only replica of the data item locally with some strict rules around its
management.

 Needless to say, read-only copies of data items must never be updated
locally. They can only be periodically refreshed from the source of truth.

In an ideal world, all systems that store user data will maintain a “User
UUID” candidate key into each user record. This will be used as a reference
key whenever a source of truth for any user attribute wants to propagate
updates to that attribute to all other systems that may maintain a copy of
it

39
. When we talk about User Provisioning as part of the Identity

Management capability of IAM, we will describe how this can be made to
work elegantly.

39

 For systems that cannot hold a UUID reference, the IAM Associated System table
will provide the local user ID as the key to be used by that associated system for
performing these updates.

99

A good (if somewhat complex) discussion on Master Data Management can
be found here:

http://www.ibm.com/developerworks/data/library/techarticle/dm-
0804oberhofer/index.html

100

Designing the IAM Database

It may seem a daunting task to design a custom database for your
organisation's requirements, but hopefully, the following tips and
suggestions will make the job easier.

Tip 1: Keep core tables minimal and store sets of related attributes in other
tables

Normally, the tendency is to store all attributes that have a one-to-one
relationship with an entity's primary key together in one table. We have
found that it is more flexible to group such attributes and store them in
separate tables.

For example, the user table should have very few attributes in it. The user's
name should be stored in a separate table with the related attributes of title,
first name, last name, preferred name, etc. Sometimes, it may be required to
store details of users for whom such information doesn't make sense, for
example system or admin accounts. Decoupling attributes in this way avoids
having to carry null values when they are meaningless.

Another example is the “application” table. Keep this minimal (just code and
description), and hold other attributes like URLs to be protected in another
table.

Tip 2: Make the UUID a candidate key of the User table

Design the IAM database as you would any other application, i.e., the
primary key of the user table is a database-internal field, perhaps an
automatically-generated sequence number. This value will hence be the
foreign key in other tables that reference the user. The UUID needs to be a
candidate key in the User table, and that should be the logical entry point
from other systems. A simple join spanning the UUID and the User table's
primary key will allow you to access any user attribute, so this is a trivial
indirection. It's needlessly cumbersome to make the UUID the primary key.

Tip 3: Consider application-specific roles rather than global roles

We haven't found much value in defining global (i.e., organisation-wide)
roles. What we think are relevant are global role names or role types. These
are standard identifiers such as “Administrator”, “User” and “Read-Only
User”. You can have codes and descriptions for each. Where these are useful

101

is when they are combined with applications. For example, if the IAM
protects an ERP system and an HR system, then we may have 6 “application
roles” in all (ERP Administrator, ERP User, ERP Read-Only User, HR
Administrator, HR User and HR Read-Only User). These are the roles that will
be granted access to applications. Two role types that are useful for IAM in
particular are “Requester” and “Authoriser”. Auditors like to ensure that
user management functions are initiated (requested) by one user and
authorised by another.

Tip 4: Build support for coarse-grained access control, not fine-grained

When stakeholders hear that you are building an IAM, there will be pressure
on you to incorporate support for everything they can think of, including the
proverbial kitchen sink. One of the really insidious requirements is fine-
grained access control. An example of this is the expectation that IAM will
control the specific screens and buttons that a user can access within an
application. But, looking ahead to the day IAM protects a dozen or more
applications, each with its specialised roles and functions, it is clearly a very
complex undertaking to try and hold all those various application-specific
roles and functions and map the allowed accesses within tables of the IAM
database. It gets even worse because applications change their local roles
and functions fairly frequently, so IAM will end up having to stay current
with the requirements of every application in the ecosystem. This is a largely
infeasible task, and allowing fine-grained access control to be part of IAM is
asking for trouble. Resist such pressure strongly. IAM cannot manage fine-
grained function or data access. The most it can do is protect applications
themselves as coarse-grained units from unauthorised access. It can also
pass in user attributes to these applications as part of the initial access, so
applications are free to apply more fine-grained access control logic
internally.

Getting the granularity of Role-Based Access Control right is one of the
crucial decisions in determining the success of IAM

40
.

40

 Some companies have a more sophisticated HR practice that defines an enterprise-
wide “Job Family Framework” or JFF. If an organisation has no more than 50-100
generic roles that are mapped to specific job titles in individual divisions and
departments, then it becomes feasible for IAM to manage this reasonable number of
generic roles in its own database. It may be possible to extend the authorisation logic
of IAM to include a rules engine that considers the user's JFF role and their
department to arrive at more refined judgements of access rights to business
functions. In the absence of a JFF, we recommend that IAM stick to coarse-grained
roles (I.e,. whether allowed to access an application or not) and leave the individual
applications to enforce finer-grained access control logic.

102

Tip 5: Understand the difference between “protected applications” and
“associated systems”

They're both business applications, but “protected applications” in the IAM
context are those that have an exposed URL protected by IAM. “Associated
systems” are those that have users provisioned in them. So “protected
application” is an Access Management concept, while “associated system” is
an Identity Management concept. You need separate tables to hold their
attributes and the different relationships they have with users. Needless to
say, some systems may be both protected applications and associated
systems .

Tip 6: Consider maintaining a set of “Associated Roles” for a given role, to
automatically cascade role assignment

Sometimes, one application role implies another one. It may be that an
Administrator role within a B2B application implies a Requester role within
the IAM user management application, because such a user tends to request
the creation of other users. Holding such associations in another table can
remove the need to remember these role dependencies by automatically
cascading them. When a user is assigned one application role, the system
can derive the other application roles that must also be assigned, and do the
assignment transparently. Of course, revocation of roles must also follow the
same logic.

Given a two-step request/authorise workflow, you will need to think about
whether to cascade role assignment requests and show all the resulting role
assignments as pending changes to an authoriser, or whether to create only
the main role assignment request at first and create the other role
assignments once this has been approved by the authoriser.

The Associated Roles functionality can be a labour-saving enhancement to
the IAM system that is funded separately when the workload justifies it.

Tip 7: Consider using “Role Profiles” as a shorthand to assign a set of
application roles that usually go together

Here's an alternative approach to associating roles with each other, so you
may only need one or the other scheme.

A corollary of having application-specific coarse-grained roles is that groups
of users tend to require similar sets of roles. For example, every customer

103

service representative may need to be granted a “User” role on the
corporate intranet (like any other employee), the CRM system and one or
more product systems. This set of roles (i.e., “Intranet User”, “CRM System
User”, “Product System X User”, etc.) is used repeatedly for so many people
that it may make sense to group them into a “Role Profile” as a sort of
shorthand and use that in the User Administration screens to quickly assign a
set of roles to each new user. Under the covers, the association of each user
is still to the different individual roles, so exceptions can be catered for quite
easily by dropping or granting additional application roles to individuals.

As before, the association of application-specific roles to “Role Profiles”
would be a separate table in the IAM database and can be a later
enhancement when patterns of access begin to be established.

Tip 8: Have a table of security questions and another table of per-user
answers to two or three of these security questions.

Security questions like “What is your mother's maiden name?” or “What was
the name of your first pet?” are alternate ways to identify a user and
therefore very useful for providing self-service password reset or forgotten
password capability. If a user claims to have forgotten their password, they
should enter their user ID. IAM should retrieve their User UUID from the
directory using this User ID, then retrieve and display their security
questions from the database using the User UUID. If the user is able to
answer all the required security questions correctly, a new password should
be generated and sent to the user's email address. This password should also
be updated in the directory and simultaneously marked “expired”, so the
user will be forced to reset it on first login.

Tip 9: You will almost certainly need a user activity log

From an audit perspective, many user activities like logins, failed logins,
password changes, application accesses, etc., will need to be logged. A
separate table will need to record these events.

As this discussion shows, the IAM database can be built up incrementally like
all the other components of IAM, so it doesn't have to be developed in a “Big
Bang” fashion with an immediate price-tag. The design lends itself to
incremental enhancement through layering of functionality, and this is one
of its big advantages when project budgets are tight.

The following diagram provides some hints on the types of entities you may
need to model, and their likely relationships. You may need about 20-25
tables, which isn't overly complex.

104

Fig 44: Entity-Relationship Diagram for the IAM database

105

Tip 9: Use database triggers to record changes to sensitive tables

The user activity log table is an important one from an audit perspective.
Other tables, e.g., those that control access to applications, are also
sensitive, and auditors also want IAM to record all changes to sensitive data
(users, roles, application-to-role access rights, etc.) Each such table should
have columns to record the user ID of the user who requested the change,
the user ID of the user who authorised the change, as well as timestamps for
each of those actions. Since the columns holding these request/authorise
fields only pertain to the latest change to a record, we need a way to store
the entire history of changes to a table in a reliable way.

Here's a simple mechanism: For every table that needs its change history
recorded, create 3 database triggers, one each on the INSERT, UPDATE and
DELETE actions. For each table, also create a history table that has all the
same fields as the original, but whose primary key is a meaning-free
sequence number. This table also needs another special field that says what
action resulted in a record being logged. The values of this column would be
INS (for inserted record), UPO (for updated old record), UPN (for updated
new record) and DEL (for deleted record).

The advantage of database triggers is that changes to tables are logged even
if a user bypasses the IAM application and directly updates a table.

The following diagram illustrates how a table's change history can be
automatically maintained.

106

Automated tracking of changes to tables for audit purposes using history tables and database triggers
41

Fig 45: Database triggers for audit history tables

41

 Strictly speaking, user records are not usually deleted when a user leaves the organisation, but merely marked deleted (i.e., an update). The example
above illustrates the generic mechanism which may be useful for other tables.

107

Rest Easy with REST Services

For a variety of reasons, it's good to maintain a service interface to the
functions of IAM. Services are the way to hide the gory details of the
implementation from client applications. The traditional approach to
building services involves the use of SOAP-based web services. Without
getting into the larger SOAP-versus-REST debate, we find that IAM's user
management functionality is extremely intuitive and easy to build using
REST-based services.

For those unfamiliar with REST, think of it as a way to interact with a web
application, with just a few special features. One, although the interaction is
over HTTP, the content need not be HTML rendered by a browser. It could
be any data structure sent from one application to another. Two, the
interaction can be defined quite rigorously, so that the “service contract” so
beloved of SOA practitioners is exposed in a recognisable way. Three,
although the HTTP protocol appears to be synchronous and also an
“unreliable” protocol, it is possible to model asynchronous and reliable
behaviour using some standard techniques.

The REST style consists of modelling the various aspects of an application
domain as “resources”, and dealing with other systems in terms of
“representations” of those resources. Representations are somewhat akin to
the immutable Data Transfer Objects used in distributed computing.

What makes REST simple is the standardisation of its service interface. There
are standard verbs for operations and standard status codes that they
return. The resources managed by a server are also exposed in a fairly
standard way, i.e., as URIs. In true service-oriented fashion, the actual
implementation is completely opaque to the outside world. Only the URIs
representing resources, the standard verbs and the standard status codes
are ever known by external systems. REST is another great decoupling
technique, effectively minimising and formalising the dependencies between
service consumers and service providers.

The following diagram helps to understand the REST idiom at a glance.

108

Fig 46: The REST idiom

The design of REST-based services is generally a subtle art, because
resources need to be conceptualised in such a way that standard verbs will
operate on them in a polymorphic way. Fortunately, IAM functionality is
quite intuitive to start with, so the REST service interfaces for IAM pretty
much design themselves! Low-ceremony documentation will therefore
suffice, and there is no need for the elaborate WSDL and WS-Policy files that
are required with SOAP-based services.

The table on the following page illustrates what an IAM REST service
interface could look like.

109

 IAM REST Service Interface at a Glance
This is an indicative example. You can design your interface differently, or with more specialised services.

Function Internal (B2E) Users B2B Users B2C Users42 Response codes

Create a new user, letting IAM generate the User UUID43
(User data in request body)

POST
/b2eusers/

POST
/b2busers/

POST
/b2cusers/

201 Created
202 Accepted44
400 Bad request

Create a new user using User UUID provided by service
consumer (User data in request body)

PUT
/b2eusers/{UUID}

PUT
/b2busers/{UUID}

PUT

/b2cusers/{UUID}

201 Created

202 Accepted,

400 Bad request

Retrieve a user's details GET

/b2eusers/{UUID}

GET

/b2busers/{UUID}

GET

/b2cusers/{UUID}

200 OK

404 Not found

Retrieve a list or subset of users, with an optional
qualifier

GET

/b2eusers/?qualification=...

GET

/b2busers/?qualification=...

GET

/b2cusers/?qualification=...

200 OK

404 Not found

Update a user's attributes (Changed attributes in request
body)

PUT (ideally PATCH)

/b2eusers/{UUID}

PUT (ideally PATCH)

/b2eusers/{UUID}

PUT (ideally PATCH)

/b2eusers/{UUID}

200 OK
404 Not found
409 Conflict45

Delete, deactivate or mark a user record for archival DELETE

/b2eusers/{UUID}

DELETE

/b2busers/{UUID}

DELETE

/b2cusers/{UUID}

200 OK
404 Not found
410 Gone46

Table 2: REST service interface

42

 B2B2C users may be supported either through separate URIs, or by reusing the B2C URIs if their treatment is likely to be the same.
43 On success, the response includes the HTTP header “Location: /{usertype}/{UUID}”
44 “201 Created” is a synchronous response. “202 Accepted” is an asynchronous acknowledgement, i.e., the request has been successfully received but will be acted on later.
45 A “409 Conflict” response is used when an attempted update would put the resource into an inconsistent state. “500 Internal service error” is also a possibility in all cases.
46 “410 Gone” would specifically signify that the record has already been deleted, and is used instead of “404 Not found” as a confirmation of idempotent behaviour.

110

Automated User Provisioning – Invocation of REST

Services

We visualise two groups of “upstream” applications that will invoke the REST
services exposed by IAM, in addition to any business applications that may
need direct access to user data.

The first is an HR type system, which is the authoritative source for
employee onboarding and offboarding. User creation and deletion within
IAM may need to be triggered by the corresponding events in this system.

The second is a resource management system that is used to grant and
revoke user access to various business applications. User role assignments in
IAM may need to be triggered when the corresponding access rights are
assigned or deassigned in this system.

An important consideration is the two-phase request/authorise model that
follows from the Segregation of Duties principle. You will need to decide
whether the request/authorise phases occur in the upstream system (in
which case the invocation to IAM is simply to action the decision), or
whether both the request and the authorisation need to be communicated
to IAM and recorded as two separate events. This has implications on where
logging is done, for example.

111

Fig 47: Request/Authorise model 1

Fig 48: Request/Authorise model 2

112

Fig 49: REST service invocation

113

User Administration

It may seem like wheel reinvention to build an application for user
administration when so many vendor IAM products exist to provide this
capability out of the box.

Although we started off with similar misgivings, we quickly realised a few
things. As we said before, most vendor products are over-designed and tend
to cover a much larger set of functionality than your organisation is likely to
need. Their processes may not match what your organisation normally does.
They may use different (generic) terminology for similar concepts, which
could confuse users who are accustomed to the business-specific terms used
within the organisation. Aspects like workflow are definite overkill. In short,
all of this complexity in an off-the-shelf product requires specialised training,
and will continue to mystify newbies to the system in future too. Ironically,
these products could miss some specialised functionality that you do need.

We also found that a user administration module built using standard web
technology is an application of only moderate complexity that is well within
the capabilities of an in-house development team to put together fairly
quickly. When you use an agile framework like Grails or Roo, you simply
define domain objects (based on the data model we presented), and the
framework generates the persistence layer and the web interface for you.
Customisations to this, such as the two-phase request/authorise process,
will be the only real development required.

All this makes IAM User Administration a good candidate for a bespoke
application.

If you set out to build a User Administration module, these are the core
functions you will need:

User creation:

You'll need to identify the organisations a user belongs to, the user type
(B2E, B2B, B2C, etc.), and a few other attributes.

Design this for delegated user administration, so it can be used by your own
organisation's administrators as well as by administrators of business
partners to manage their own B2B and B2B2C users. Your own
administrators get an organisation dropdown to let them choose the set of

114

users they want to look at. Your business partners' administrators only get to
see data pertaining to their own organisations. This is easy to implement
because IAM protects this application just as it does other business apps,
and the logged-in user's organisation should be one of the user attributes
passed in.

Design user creation as a two-step process. The user who enters all the
details of the user is the “requester”. You'll need another screen for an
“authoriser” to see all pending user creation requests. It's only after the
authoriser authorises a user creation request does the user actually get
created and activated. You could create the user record in the IAM database
on the creation request but mark it inactive. When authorised, you make it
active and also insert the corresponding record in the directory. Needless to
say, both steps of the user creation process need to be audit-logged.

Once the user has been created (i.e., on authorisation), send off two
separate emails to the user containing their user ID and their password

47
.

The password should be pre-expired so that the user has to change it on first
login

48
.

Other user functions:

User search, View/Edit Selected User and Delete/Deactivate User would be
other standard user management functions you will need. Again, design
these functions to work in the delegated administration context as well.
Deletion should also follow the two-step request/authorise process and be
audit-logged at each step.

Protected Applications and Associated Systems:

You will need to define a set of protected applications and associated
systems, and provide maintenance screens for these. Protected applications
are web applications that need to be hooked into the Access Management
side of IAM through interceptors. Associated systems are applications that
maintain user data and need to be hooked into the Identity Management
side of IAM through user event listeners. A business application could be
both a Protected Application and an Associated System, so you may need to
provision it as both.

47

 Security folk don't like to see both user ID and password in the same email.
48

 They may also be encouraged or forced to set two or three security questions (E.g.,
“What is your mother's maiden name?”) on their first login to assist with password
self-service afterwards. This is an extension to the CAS login screen.

115

Self-service screens:

Rather than provide these as part of the User Administration module,
provide links to “Forgotten ID”, “Forgotten Password” and “Reset Security
Questions” as part of the CAS login screen.

When clicked, the “Forgotten ID” button takes the user to a screen that
captures the user's email address. Check the email address against the IAM
database but provide no indication as to whether it was found or not,
because this could be an important clue to hackers. Respond with a standard
message that the user ID has been sent to the appropriate email address in
either case. If the email address is valid, retrieve the corresponding user ID
(the ID used to log into the SSO environment) and mail it to that address. Log
all these events.

When clicked, the “Forgotten Password” button takes the user to a screen
that captures their User ID. It then retrieves their security questions and
prompts the user for the answers. If the user answers correctly, a new
password is generated, stored in the directory as a pre-expired password,
then the password is mailed to the user's email address retrieved from the
database. The user will not only have to change their password on first login,
they could even be forced to set answers to new security questions. To
prevent hackers from distinguishing valid User IDs from invalid ones, prompt
the user for answers to two random security questions even when the User
ID entered is invalid. Provide a standard error message afterwards, so that
invalid User IDs and invalid answers to security questions are treated the
same way.

“Reset Security Questions” can only be clicked if the user has entered both
User ID and password. Authentication proceeds as before, but they are
taken to the Security Questions screen where they may select two or more
questions and enter their answers. The Security Questions screen can also
be set up to appear on a user's first login. The entry of this data can be made
mandatory or optional depending on your organisation's security policy.
Once they enter this data, they should be redirected back to the original
application they were trying to access.
All of these are important security events, so they must be logged as well.

Reset Password and Unlock Account:

While self-service features exist to help users regain access to the system
when they forget their User ID or password, you will also need to provide
your administrators the ability to force-reset a user's password and mail

116

them a new one. The administrators are also the only ones who can unlock a
user's account after it has been locked out because of a number of incorrect
login attempts. It's assumed that they will have already verified the user's
bona fides out of band before unlocking the account.

Fine-grained authorisation:

In the LIMA model, we delegate fine-grained authorisation to the respective
business applications themselves because these rules are best defined close
to where they are used. The rate of change of such detailed information also
militates against their management at an enterprise level.

However, we do have some options to make an administrator's life easier.

We can loosely couple the administration screens of IAM and the business
applications, so that when the administrator is finished creating a user on
IAM, they can follow a hyperlink to the business application's own user
administration screen and continue the fine-grained provisioning from there.
Since the business application is protected by IAM's SSO regime, and since
the administrator has a suitable role within the application that gives them
access to this screen, the navigation will be seamless, uninterrupted by any
login screen or other access challenge. There may be a change in the look-
and-feel of the two applications, but this is cosmetic rather than functional.

To be truly loosely-coupled, each user must store their own browser
bookmarks to the different user provisioning screens, but to sweeten the pill
of having to cross application boundaries to perform this function, it may be
desired to provide hyperlinks to the business applications' user admin
screens from within the IAM user admin screen. Since it's not expected that
the URIs of these admin screens will change frequently, it may not be a bad
compromise.

Role Type, Application-Role and User-Application-Role associations:

Arguably the most important part of user administration is the grant and
revocation of access rights to applications. Keeping in mind that IAM only
manages coarse-grained authorisation, you will need screens to define
generic enterprise roles, associations between generic roles and applications
to create application-specific roles (coarse-grained, of course), and finally
the mapping of users to these application-specific roles.

All grants and revocations should be two-phase (request/authorise), and
they must be logged.

117

Reports:

Every organisation needs a unique and different set of user reports, so it
would be pointless to try and list them out. We can talk about categories of
reports to consider, though.

Some of these would be audit reports, and they could be exception-based.
Other reports could be daily and periodic statistics (e.g., number of new
users provisioned, etc.) Yet other reports could be reconciliation reports, to
ensure that user data on various different systems are consistent.

For Java-based web applications, BIRT is an excellent report-generation tool.

118

IAM, Protect Thyself

One of the interesting side-effects of building an IAM system using web
technology (especially the user administration screens and REST services) is
that it can be elegantly secured using its own authentication and
authorisation mechanism. No special measures are necessary.

Tip 1: Define a role called “Administrator” under an application called “IAM”
in the database, and associate specific users with this application role

With this, an interceptor sitting in front of the IAM Administration module
will work exactly the same way as interceptors that sit in front of business
applications (i.e., by restricting access to this application to only authorised
administrators).

Tip 2: Build security for REST services in the same manner as for a web app

The same principle holds true for the REST services. Since these are HTTP
calls, they can also be intercepted in exactly the same way as requests for
web pages. Applications that invoke REST services will need to use HTTP
Basic Authentication and send their system account names and passwords as
part of the service call (over SSL, of course). IAM will authenticate these
credentials against its directory just as it does for human users. There are
standard ways to encrypt and store system account passwords on the
respective application servers such that they are not accessible or usable by
developers or other staff who happen to have access to the servers. Consult
your system administrators to implement these measures.

Tip 3: Build support for delegated user administration using exactly the same
code base as for regular user administration

CAS can retrieve any required user attributes from the database and pass
them into an application. The organisation that a user belongs to can be one
of these attributes. The IAM administration module can implement a level of
fine-grained access control by modifying the content of user management
screens based on the organisation that the logged-in user belongs to.

If the logged-in user belongs to your own organisation, you can assume that
they are your own administrators and are to be given access to user
management functions across your organisation as well as those of business
partners. User management screens can have dropdowns allowing the user

119

to select an organisation before performing user administration functions.
This is standard user administration.

If the logged-in user belongs to a partner organisation, they should only get
to see information pertaining to their own organisation. They cannot select
an organisation from a dropdown because they are sandboxed within their
own organisational context. This is delegated user administration.

Tip 4: Tailor the appearance of the delegated administration module to the
partner organisation

The look-and-feel of the administration module can be tailored to conform
to the style of the partner organisation's website, because the logged-in
user's organisation is one of the attributes that is passed into the
application. You only need to hold stylesheets on your website with
appropriate naming conventions, and use codes for partner organisations
that can be substituted into a template to get the appropriate stylesheet
name.

Using some very simple techniques, you can produce a fairly sophisticated
and flexible user administration module for both internal and external
administrators, and also secure it effectively.

120

Provisioning Users to Downstream Systems

The standards body OASIS has a comprehensive model for user provisioning
that is shown in Appendix B. They also specify a markup language to be used
for user provisioning, called SPML (Service Provisioning Markup Language).
Although SPML seems very rigorous and promising, the entire SPML
standard is just a shell that defines the schema of the XML message
envelope. The actual message body is left to the discretion of the
implementing organisation.

SPML also assumes a request/response model that may be too constraining.
We have found value in treating the semantics of user provisioning as a
simple event broadcast rather than as a request/response interaction
between systems. IAM should not have to “know” what downstream
systems exist, for the purpose of provisioning to them. That would be a form
of tight coupling. The list of downstream systems should be maintained in a
flexible and dynamic way, because IAM is rolled out to application after
application over a period of time, and this needs to be done without much
incremental effort, which includes changes to IAM. A loosely-coupled
interaction model would therefore be more robust and operationally cost-
effective in a real-world organisational environment. Here, IAM would only
need to “announce” an event, and it would be up to all concerned
downstream systems to act on it.

Therefore, after a lot of deliberation, we concluded that standards-
compliance for its own sake wasn't worth the cost in complexity and that a
simpler scheme was desirable.

Tip 1: Use a Publish/Subscribe model to propagate user events to systems
“downstream” of IAM

Multiple systems that maintain local copies of user data need to be notified
when there are changes to user data (adds, updates and deletes). They only
need to register with IAM to receive such notifications. Such a
publish/subscribe model is easily implemented through a “bus” mechanism.
IAM publishes user events on this bus and systems subscribing to these
events receive such messages and make updates to their local data
accordingly. This is the “User Event Bus”.

121

Tip 2: The User Event Bus must deliver messages to listeners in a secure and
reliable way

The User Event Bus has certain required characteristics:

 Secure subscription model: A system may register an interest in user
events by subscribing to them. Systems must be validated at the time
they subscribe using an authentication scheme that is supported by the
queue or broker product used. This prevents unauthorised systems and
applications from tapping into the bus to listen on user provisioning
messages. The bus may additionally encrypt messages to prevent
eavesdropping by third parties.

 Persistent messages: User provisioning messages are crucial for
downstream systems and cannot afford to be lost, otherwise the loss of
synchronisation will lead to many application errors or even security
breaches. Hence messages must be persisted so that they can be
recovered even if the bus crashes.

 Durable subscriptions: Given a large enough ecosystem, some system or
the other is bound to be offline at any given time. User provisioning
messages must eventually be delivered to all of them even if they were
offline at the time the event occurred. The bus must therefore store
messages that should be delivered to a system until it comes back
online.

 Guarantee of delivery: When an administrator makes a change to user
data, or when an upstream system makes a REST service call into IAM
making such a change, they need an immediate acknowledgement that
the message will eventually be delivered. It is not feasible to provide a
real-time acknowledgement that the message has been acted upon by
all downstream systems because this is not a synchronous process.

Tip 3: Manage by exception, and avoid notification of the status of
processing if at all possible

Given the guarantee of eventual delivery, it is sufficient for a downstream
system to quietly process the event. Silence signifies successful processing,
just like in the Unix environment.

Tip 4: Where notification is unavoidable, use a simple acknowledgement
event on the same bus

122

In rare cases, a user event may require a response. An example is when a
new user is to be provisioned on a mainframe, but (1) IAM cannot
authoritatively generate the user ID on the mainframe, and (2) the
mainframe cannot store a reference to the User UUID locally. The
mainframe has to generate an appropriate user ID, then notify IAM of this
user ID so that IAM can update its “User-Associated System” table. In such
cases, the downstream system's event listener must place an
acknowledgement message on the bus, which IAM subscribes to.

This model is illustrated below:

Fig 50: User event bus

Tip 5: Separate error-handling out into a different mechanism and don't
overload the User Event Bus with error messages

We have noticed that in most cases, errors in processing user events are
because of (transient) problems in the local system and not because of
errors in the actual message. In rare cases, they may be because of errors in
systems upstream of IAM, such as the HR system. It is simplest for such
processing errors to be recorded and reported on locally. The administrators
of downstream systems are usually best placed to understand why
processing failed and to fix it.

Handle these errors using a separate mechanism altogether rather than
clutter the User Event Bus with error messages. Define a suitable error
message format (Error UUID, User Event UUID, Status Code, Description,
Timestamp, Original Message, etc.)

All listeners should log errors to a separate error queue. An administration
interface to this queue should be able to provide alerts and reports as well
as a query view into the contents of the queue. Sending such error messages
back to IAM is usually not of much use, although in practice, the same users
who administer the IAM module may also monitor the error queue. In any
case, it's not a good idea to tightly couple these two roles through the

123

design. Better keep error-handling logically separate from the user
administration function, and grant a user access to both functions if
required.

Tip 6: Don't design the user provisioning model as a distributed transaction

The failure of any one downstream system to process a user event does not
mean that the change must be rolled back on all other systems. Such a
requirement not only makes this system overly complex and tightly-coupled,
it is also not warranted.

124

Designing User Provisioning Messages

The basic idea is to keep things simple. Provisioning-related messages are of
the following types:

1. User events (that IAM publishes to associated systems)
2. User event acknowledgements (used only when some data has to be

returned from associated systems to IAM)
3. User event processing errors (to be handled separately)

The actual format of data is up to the preference of an individual
organisation. Some prefer XML, while others may choose JSON. We're
agnostic about this level of design detail, because it's more important to get
the higher level right. At this higher level, there are perhaps two major
message data models that can be used to transport user events.

1. Ideal Model (exploiting the User UUID and the property of idempotence):

In the ideal case, all downstream systems understand the User UUID as a
candidate key for a user within their own data stores. This facilitates a very
simple model of user event propagation.

On any user event that occurs within IAM (i.e., user creation, user deletion,
change of user attributes, provisioning or de-provisioning on an associated
system), a simple snapshot of the user's profile is all that needs to be
broadcast on the User Event Bus. Here's what this looks like:

Fig 51: Simple user event

125

There are only three top-level elements of this message – the User UUID, a
composite “User Attributes” element comprised of individual elements (e.g.,
first name, last name), and an optional repeating element called “Associated
System”, which contains the ID of each associated system where that user's
data is to be held, along with the local User ID of the user within that system.

The semantics of such a message are simple.

If an associated system is referenced in the message through its ID, then the
requirement is for that system to “create or update” the user and to record
whichever user attributes are required by that system. This message can
even be used to modify the Local User ID on a system.

If an associated system is not referenced anywhere in the message, then the
requirement is for that system to “delete or ignore” the user. If the user is
currently held in the system, the record is to be deleted (or marked deleted).
If the user is not currently held in the system, the message is to be ignored.

The idempotence property ensures that repeated receipt of a message by a
system will have no additional effect after the first one.

This is therefore the simplest user provisioning model, and the one we
recommend.

The only complication here is with systems that need to generate their own
Local User ID and cannot accept one supplied by IAM. In such cases, IAM
would simply leave the Local User ID field blank. The associated system will
generate this ID, then send back a User Event Acknowledgement message
with the mapping of this ID to the User UUID, so that IAM can update its
“User-Associated System” table.

The User Event Acknowledgement message may look like this:

Fig 52: User event ack

126

Needless to say, if there is even one system that has to generate its own
Local User IDs, IAM would have to be configured to listen on User Event
Acknowledgement messages. As always, messages are assumed to be
persistent and IAM's subscription to these messages is assumed to be
durable, so no messages will be lost even in the event of a bus crash or IAM
being temporarily offline.

 2. Fallback Model (when the User UUID is not universally supported):

If the User UUID cannot be relied upon to be a candidate key across systems,
then the user provisioning data design expectedly becomes less elegant and
more complex. The Local User ID now has to be relied on as the only
identifying “key” on systems that do not support the User UUID.

We find that instead of sending out a single, standard representation of
current user state, we will need to send four different messages based on
the nature of the user event. These are:

1. Create User
2. Delete User
3. Update User Attributes
4. Change Local User ID

The “Create User” message would look like this:

Fig 53: Create User message

127

This looks just like the standard snapshot message of the ideal model, but
with the “Create User” verb explicitly specified. The implicit “create or
update” and “delete or ignore” semantics are no longer possible to assume,
because the Local User ID is now the only key for some systems, and it may
not be possible for IAM to specify it in case it has to be locally generated.

– When the user already exists and is to be provisioned on an additional
associated system, only that associated system's data need be included in
the “Associated System” attribute. Existing systems need not be referenced
in the message. Only that system will then create the user record, and other
systems will ignore it.

– When the associated system needs to generate the Local User ID, the Local
User ID field may need to carry a special value such as
“LOCALLY_GENERATED”.

The “Delete User” message would look like this:

Fig 54: Delete User message

 The Local User ID attribute need only be provided for those systems that
don't support the User UUID. Those that do can delete (or mark deleted)
a user based on the User UUID.

 When using this message to revoke user provisioning from just a few
associated systems, the Associated System section should only contain
their IDs. Other associated systems that are not referenced will ignore
this message.

The “Update User Attributes” message would resemble the “Create User”
message but with the verb “Update User Attributes” instead. Only those
systems that don't support the User UUID need to be referenced in the
Associated Systems section. Every associated system would be able to
update user attributes based on the candidate key it understands (User
UUID or Local User ID).

128

A special “Change Local User ID” message is now required because for some
systems, there is only one candidate key, so updating the value of that key is
no longer straightforward. This is what this message would look like:

Fig 55: Change local user ID message

As you can see, life gets more complicated when the User UUID is not
universally supported. It may be worth maintaining a “User UUID-to-Local
User ID” mapping behind an associated system's User Event Listener, so that
it appears as if the associated system itself understands the User UUID.

Fig 56: User Event listener

129

Implementing LIMA

The previous sections have given you an idea of what the design of a loosely-
coupled IAM system could look like. However, there are also many logistical
aspects to consider when rolling out such a system, because implementation
comes with its own pitfalls. Finally, even when the IAM system is in “steady
state” with no new functionality enhancements required, there are still
some standard tasks to be performed every time a new application is to be
brought within its ambit. This section looks at all of these aspects.

130

Transitioning to the Target State

You need to plan the development of IAM functionality based on the
requirements of business projects, and take advantage of project budgets to
fund their development. Appendix E shows how you could align the IAM
roadmap to the requirements of business projects to achieve viability
through incremental funding.

There are some specific items you need to pay attention to during this
process.

Harmonising data

You will start with data held redundantly in multiple systems, with
inconsistencies and errors galore. You plan to end with a reasonably
consistent set of user data, with one or more directories holding
authentication credentials, and a user database holding other user
attributes. Upstream sources of truth will populate and refresh these
repositories. Downstream replicas of data will be refreshed through IAM-
generated user events.

Partway along this journey, you will have problems harmonising the data
you have painstakingly marshalled into the IAM repositories with data that is
outside its ambit. There will be people and systems furiously updating what
should rightly be read-only replicas. Upstream sources of truth will have no
way to communicate changes reliably and consistently to the IAM system.
You will need to create mitigating controls, manual processes and temporary
applications and scripts to maintain a semblance of sanity.

As you progress towards the IAM vision, remember that the User UUID is
your friend. If you can push the UUID vision and gain buy-in from owners of
systems, you can start seeding those independent repositories with the data
hooks that you can later use to “reel in” those disparate user records. The
good news is that lots of people can appreciate the value of the UUID when
it is explained to them, and many systems, databases and directories can
support a UUID field.

Managing SSO realms

It may happen that you have rolled IAM out to an intranet application but
have not exploited SPNEGO or Active Directory integration, perhaps because
there were too many changes being introduced and you didn't want to

131

overly complicate things at that stage. The user provisioning is therefore
applied to the IAM directory (not Active Directory) and database. Next, you
plan to roll out IAM to another intranet application, this time exploiting
SPNEGO and Active Directory. Let's say there's an overlap between the two
sets of users, so there are some users who will need to access both these
applications. Let's also say that the LAN user ID for these users is different
from their SSO user ID as stored in the IAM directory

49
. How will you

proceed?

Well, it depends on whether you want these users to have Single Sign-On
across these two applications right away, or whether you would like to keep
the logins separate for a while and provide Single Sign-On only after you
“harmonise” the User ID scheme.

If you want these users to get Single Sign-On rightaway, then you must
ensure that this intersecting group of users has the same UUID within AD
and in the IAM directory. Since both applications use CAS, the first
application they hit will result in a Ticket-Granting Ticket being generated
and stored in a browser cookie against the CAS server's domain name. The
TGT will also be stored in the ticket registry with that user's UUID in the
BLOB attribute. When the user then tries to access the second application
(no matter in which order the two are accessed), the browser will present
the TGT to CAS and CAS will dutifully refrain from challenging them afresh
for their authentication credentials. But here's the rub. The information
about the user that's associated with the TGT in the Service Registry has
been retrieved from the database based on the UUID stored in the directory.
Unless the UUIDs of the user in the two directories are the same, the user
information could be different depending on the order in which the
applications are accessed. This is why users who need to access multiple
applications need to have a consistent UUID across the user repositories
they span.

If, on the other hand, you're content to delay Single Sign-On until all user
authentication data is consistently and non-redundantly stored in one or the
other directory, you will need to maintain two CAS domain names, because
CAS will need to create two TGT cookies, and the only way to do that
without conflict is to store them under two different domain names. You
may use domain names like “sso.myorg.com” and “sso-spnego.myorg.com”,
for example. That way, when the user tries to access the second application,
there will be no TGT cookie corresponding to that CAS domain, so CAS will
challenge the user or browser for their credentials afresh. This is acceptable

49

 E.g., LAN user IDs could be 6-character strings, while SSO User IDs could have a

“firstname.lastname” scheme.

132

as long as the users understand that they will enter their IAM SSO
credentials when trying to access the first application. The second
application will silently use their LAN credentials.

Manual provisioning

User provisioning is a function that is typically carried out by a back-end
Security Operations department. The demand for automation of user
provisioning typically comes from those managing this function as a cost
centre. Business projects and business units typically don't care about this
because the effort is transparent to them. So automated user provisioning is
one of those IAM features that you may find hard to get funded through
project budgets, and the development here may only inch forward unless
you secure some enterprise funding to help out.

The moral of the story is that while new applications will keep coming under
the IAM umbrella from an Access Management perspective (the most visible
and sensitive aspect for auditors), the back-end Identity Management side
will usually lag behind quite badly. You may go for long periods with an
increased manual provisioning load while you cope with the larger number
of users being managed by IAM.

Keep the user provisioning screens as easy to use as possible, so the burden
on the administrators is lessened. And keep lobbying with the powers-that-
be for increased funding for automated user provisioning. Fortunately, the
headcount savings through automation are tangible, so a business case for
this can eventually be made.

133

The BAU of IAM – A “Cookie-Cutter” Implementation

You've almost arrived. You have implemented every feature of IAM your
organisation needs, but there are still some applications out there that need
to be brought under the umbrella of IAM. How easily can you mop them up?
Well, while IAM integration at this stage is still not a no-cost operation, it's
almost certainly a “known cost” one.

Here are some of the things you typically need to do:

Development tasks

1. Implement a CAS interceptor for the application using an appropriate
technology

50
. Disable the application's native authentication mechanism.

Modify it to operate in a trusted mode and accept user attributes passed
into it by the interceptor instead.

2. Disable local user management functions (the parts dealing with user
creation, deletion and the update of common user attributes) and only
retain the fine-grained role mapping and access control rules specific to the
application.

3. Implement a listener to provision and de-provision users, and to update
common user attributes in an automated fashion based on user events
received over the User Event Bus.

4. If required, create a hyperlink on the IAM administration module to
enable an administrator to jump to this application's fine-grained role
mapping screen as soon as a user is provisioned through IAM

51
.

50

 Some examples of interceptors for CAS are a CAS servlet filter, a container
mechanism like WebSphere's Trust Association Interceptor, the Apache web server's
mod_auth_cas module, Spring security or a global authenticating reverse proxy.
51

 Although the user event from IAM is propagated to the application's event listener
through a store-and-forward mechanism (i.e., the User Event Bus), in practice, this
happens extremely fast and the user would most probably have been created within
the application by the time the administrator clicks on the link and opens the
application's fine-grained role assignment screen. IAM's SSO ensures that the
hyperlink navigation will be seamless and the administrator will not have to log into
the application.

134

Provisioning tasks

1. Prepare a mail in advance of the actual roll-out informing users of the
cutover date and their new user IDs (if required) after that date.

2. Based on the list of current application users drawn from its user
database, run batch scripts to do the following:

a) Assign UUIDs to these users

b) If login user IDs need to change to conform to an enterprise
standard or convention, apply these new user IDs.

c) Either batch-load the UUIDs into the application (if it can hold such
references) or batch-load the UUID-application user ID mapping into
IAM's Associated System table.

d) On the cutover day (or night), run a batch script to insert user
records into the IAM directory and database. The batch script will
generate random passwords and create them in the directory as expired
passwords. This will force the user to change their password on first
login.

e) Send out two emails to each user, one with the application's URL
and the new user ID, and a separate one with their password. Inform
them that they will need to set their password on first login, and it will
need to conform to the organisation's password policy.

These are the same operations you would perform each time a new
application is to be “onboarded” to the IAM ecosystem. They are fairly
standard (although each application will require special tweaks) and are
consequently easy to estimate. The costs are likely to be low enough to
justify funding from a project bucket rather than require enterprise
intervention.

With each such roll-out, you would be taking your organisation a step closer
to its IAM nirvana.

135

Conclusion

We have covered the design of an Identity and Access Management system
in fairly great detail in this paper.

The core philosophy of the LIMA approach is loose coupling between the
various functional components of IAM. In most cases, the loose coupling is
from the use of appropriate data design, specifically a meaning-free
identifier. Other elements of loose coupling are replicated data using master
data management principles, event notification and idempotent messages.

We have also provided tips to aid the design of the user data stores, user
administration functions and a simple service interface.

The LIMA approach obviates the need for expensive and complex
commercial IAM products, yet avoids reinventing the wheel (especially for
security-sensitive processes) by leveraging commodity components like CAS
and Shibboleth for access management. It also allows you to design the
bespoke parts of an IAM system based on some simple foundations and
extend it as required using technologies and tools familiar to your
organisation.

In spite of its simplicity, the LIMA approach adheres to security principles (as
enunciated in an early section), so it is not a naïve oversimplification of IAM.

We have not spelt out the many wrong turns we took in our own
implementation, but rest assured there were many. We have told you only
the successful design decisions we finally arrived at, and also the decisions
that we know we should have made, even if we didn't. So this document
contains many hundreds of thousands of dollars worth of hard experience,
corresponding to the amount of money you will save compared to either a
proprietary commercial IAM product roll-out or a completely independent
in-house development with its inevitable missteps and suboptimal choices.
Of course, you may also discover some simplifications and optimisations of
your own, so this document is by no means the last word on IAM. In any
case, we hope our experience as documented here will illuminate your path
and make your IAM implementation even more successful than ours. (Don't
forget to have an independent security audit done of your system before
you go live!)

Good luck, and good hunting!

136

Appendix A – Typical Security Requirements from an IAM

System

Security/audit staff tend to expect certain core features in an IAM system, as
listed below. While the LIMA approach supports them, you must ensure that
your design actually meets them.

52
Table 3: Access Management Requirements

52

 Examples of password characteristics are minimum length, combinations of
alphanumeric, numeric and special characters, expiry period, uniqueness history,
change on first login or reset, etc.

137

Table 4: Identity Management Requirements

138

Appendix B – Mapping the LIMA Design to the OASIS Model of IAM

Fig 57: Mapping LIMA to the OASIS model

139

Appendix C – Special Case Example 1 (Multiplexing User

IDs)

Here is a problem that not every organisation would face, hence it is unlikely
to be addressed out-of-the-box by any commercial IAM product. The
bespoke solution (multiplexing) is interesting and may be more widely
applicable.

Let's say your organisation has a product system running on an old
mainframe. You are now required to open up the functionality of this system
to the web, to be accessed by B2C users (customers) through a pass-through
web application. (Notice that in LIMA terminology, the pass-through web
application is your protected application, while your mainframe is your
associated system. The mainframe is not directly exposed.)

Fig 58: Multiplexing User IDs

Your auditors demand that the activities of each individual customer be
tracked as they transact on this sensitive product system. However, the
mainframe-based system was never designed to deal with the hundreds of
thousands of online customers that are expected. It has severe restrictions
on the number of User IDs it can support, perhaps because the User ID field
only supports 4 numeric digits. It would cost too much to re-engineer this
legacy system to support a much larger number of users. What do you do?

One approach is to think about the number of concurrent users that are
expected to access the system. Perhaps this would be in the range of a few
thousand, compared to the hundreds of thousands of customers overall. The
solution then is to just provision this smaller number of users on the
mainframe, and record these as “temporary User IDs” within IAM, to be
treated as “access tokens” to the mainframe, handed out to B2C users as
they pass through the IAM gauntlet. When users complete their session or
log out (however you may define “logout” in a Single Sign-On environment),
you release these temporary User IDs back into the “pool” to be reissued to

140

other B2C users. Keep track of which user was granted which access token,
and the timestamps between when they held the token, by recording these
in a User ID allocation log table. The mainframe only logs the activities of the
“temporary User IDs” that it sees. You need to reconcile these IDs with the
actual User IDs (UUIDs) that identify physical users, by consulting the User ID
allocation log table.

There's a complication, though. Timestamps on IAM and the mainframe may
differ, so you may fail to authoritatively establish that it was User A who
executed a certain transaction and not the next user, User B. You can
sidestep it by passing both the UUID and the temporary User ID to the
mainframe through an intermediary integration component, which can log
each business transaction request into a transaction log table. This would be
a more authoritative way to establish the identity of the physical user who
performed a particular transaction on the mainframe.

The following diagram illustrates different ways to map user identity, to
enable the tracking of user activity to the satisfaction of your auditors.

141

Fig 59: User activity tracking

142

Appendix D – Special Case Example 2 (Resetting LAN

Passwords)

We talked about your organisation's Active Directory setup and the
desirability of letting it coexist with the minimalist IAM directory, with
neither replacing the other. That approach solves the access management
and provisioning problems, but a requirement to support self-service
password resets in the Windows LAN environment could also arise. Self-
service is important for password resets because the predominant SOS call
that hits a corporate helpdesk is a password reset request, and helpdesks
are expensive to run.

There are several native Windows products available in the market to do
this, but they aren't universally applicable. Remote users who log in through
a mechanism like Citrix, for example, may be unable to use such products.
The simplest solution would be a web-based application that challenges the
user with an alternate set of credentials (e.g., the personal security
questions they have previously specified), then sets them up with a one-time
password on Active Directory and displays it to them on the screen. They
would be forced to change this on their next LAN login. There are many
advantages to a web-based application, mainly that the user can use any
computer or device to access it and reset their password, most often a
neighbouring colleague's workstation. Clearly, there are IAM components
that can be reused to provide this functionality, and Active Directory only
needs to hold a UUID (GUID) that corresponds to the user in the IAM
database.

The solution could look like the following diagram.

143

Fig 60: Resetting LAN passwords

Of course, all password reset requests are sensitive from an audit/security
perspective, so they should be logged and monitored.

This is another example of how decoupling user identity with a UUID/GUID
makes it really simple to integrate components and develop inexpensive
solutions to potentially tricky problems. Commercial off-the-shelf solutions
tend to be more expensive and yet have limitations that a bespoke solution
based on a loosely-coupled architecture does not suffer from.

144

Appendix E – A Sample Phased Roll-out Plan

Here's a sample plan for rolling out IAM piecemeal using multiple business
projects as funding vehicles:

Table 5: Sample phased rollout plan

145

About the Authors

Ganesh Prasad (g.c.prasad@gmail.com) has been an
architect in the Shared Services space for many years
and has convinced himself that his brand of pedantry
is in fact a long-term and enterprise-wide
perspective. He provides nuisance value to project
teams that just want to get the job done.

 Umesh Rajbhandari (u.rajbhandari@gmail.com) is a
Java / Web developer who likes to keep abreast of
the latest technologies. He has worked in Singapore
and Nepal, and is currently based in Sydney.

mailto:g.c.prasad@gmail.com
mailto:u.rajbhandari@gmail.com

