
Introduction to Jython, Part 2:
Programming essentials

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Object-oriented programming in Jython 5
3. Advanced object-oriented programming 12
4. Debugging Jython.. 23
5. Java support in Jython .. 27
6. Java thread support in Jython.. 31
7. Interfacing with Java services.. 36
8. Jython string processing .. 41
9. Processing regular expressions 49
10. File I/O in Jython.. 53
11. A simple Swing GUI .. 61
12. Wrap-up and resources.. 67
13. Feedback... 69
14. Appendices .. 70

Introduction to Jython, Part 2: Programming essentials Page 1 of 92

Section 1. About this tutorial

What is this tutorial about?

This is the second installment in a two-part tutorial designed to introduce you to the
Jython scripting language. Jython is an implementation of Python that has been
seamlessly integrated with the Java platform. Python is a powerful object-oriented
scripting language used primarily in UNIX environments.

In Part 1 of this tutorial, you learned the basics of Jython, including installation and
setup, access options and file compilation, syntax and data types, program structure,
procedural statements, and functions. In Part 2 we will delve into some of the more
advanced aspects of working with this powerful scripting language, starting with an
in-depth introduction to object-oriented programming with Jython. We'll also discuss
topics essential to the mechanics of application development in any language,
including debugging, string processing, and file I/O.

By the time you have completed this second half of the two-part introduction to Jython,
you will be able to write and implement complete functions, classes, and programs in
Jython.

Should I take this tutorial?

This tutorial is designed as a progressive introduction to Jython. If you have not
completed Part 1 of the tutorial, you should do so before proceeding to Part 2. Both the
conceptual discussion and many of the code examples presented here will be difficult
to follow without reference to Part 1.

In this second half of the tutorial,we will cover the following aspects of scripting with
Jython:

• Object-oriented programming with Jython

• Debugging

• Java support

• String processing

• File I/O

• Building a Swing GUI application in Jython

To benefit from the discussion, you should be familiar with at least one procedural
programming language and the basic concepts of computer programming, including
command-line processing. To fully utilize Jython's features you should also be familiar
with the basic concepts of object-oriented programming. To fully understand the GUI
application example at the end of the tutorial you should have prior experience with
Swing GUI programming, although you will be able to glean a lot from the preceding
discussion and examples. It will also be helpful to have a working knowledge of the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 92 Introduction to Jython, Part 2: Programming essentials

http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html

Java platform, because Jython runs on a JVM; although this is not a requirement of the
tutorial.

Note that this tutorial is oriented towards Windows systems. All command examples
will employ Windows syntax. In most cases similar commands perform the same
functions on UNIX systems, although these commands will not be demonstrated.

Tools, code, and installation requirements

You must have Jython 2.1 or higher installed on your development system to complete
this tutorial. Your development system may be any ASCII text editor (such as Windows
Notepad) combined with the command prompt. The tutorial includes detailed
instructions for getting and installing Jython on your system.

To use Jython you must also have a Java Runtime Environment (JRE) installed on
your system. It is recommended that you use the latest JRE available (1.4.2 at the time
of writing), but any version at or beyond Java 1.2 should work fine. If you are going to
use Jython from a browser (that is, as an applet), you must have at least a JRE 1.1
available to the browser. See the Resources on page 67 section to download the latest
version of the JDK.

All code examples in this tutorial have been tested on Jython running on the Sun Java
1.4.1 JRE on Windows 2000. Examples should work without change on any similar
configuration on other operating systems.

Included with the tutorial is a set of appendices detailing all of the code examples you
will use to learn about Jython. All code examples have been tested on Jython running
on the Sun Java 1.4.1 JRE on Windows 2000. Examples should work without change
on any similar configuration on other operating systems.

About the author

Dr. Barry Feigenbaum is a member of the IBM Worldwide Accessibility Center, where
he is part of team that helps IBM make its own products accessible to people with
disabilities. Dr. Feigenbaum has published several books and articles, holds several
patents, and has spoken at industry conferences such as JavaOne. He serves as an
Adjunct Assistant Professor of Computer Science at the University of Texas, Austin.

Dr. Feigenbaum has more than 10 years of experience using object-oriented
languages like C++, Smalltalk, the Java programming language, and Jython. He uses
the Java language and Jython frequently in his work. Dr. Feigenbaum is a Sun Certified
Java Programmer, Developer, and Architect. You can reach him at
feigenba@us.ibm.com.

Acknowledgements

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 3 of 92

mailto:feigenba@us.ibm.com

I would like to acknowledge Mike Squillace and Roy Feigel for their excellent technical
reviews of this tutorial.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 92 Introduction to Jython, Part 2: Programming essentials

Section 2. Object-oriented programming in Jython

A conceptual overview

Object-oriented programming (OOP) represents the state-of-the-art in software
programming technique. OOP is based on the notion of creating a model (or
simulation) of the target problem in your programs. Properly using OOP techniques
reduces programming errors, speeds up software development, and facilitates the
reuse of existing code. Jython fully supports the concepts and practice of OOP.

In the following sections I will introduce OOP and describe how it is achieved in Jython.
In the next section I will discuss some of the more advanced features of object-oriented
programming in Jython.

Objects in Jython

Jython is an object-oriented language that completely supports object-oriented
programming. Objects defined by Jython have the following features:

• Identity: Each object must be distinct and this must be testable. Jython supports the
is and is not tests for this purpose.

• State: Each object must be able to store state. Jython provides attributes (a.k.a.
fields or instance variables) for this purpose.

• Behavior: Each object must be able to manipulate its state. Jython provides
methods for this purpose.

Note that the id(object) built-in function returns a unique integer identity value. So,
the expression x is y is equivalent to id(x) == id(y).

OOP support in Jython

In its support for object-oriented programming, Jython includes the following features:

• Class-based object creation: Jython classes are templates for the creation of
objects. Objects are data structures with associated behavior.

• Inheritance with polymorphism: Jython supports single- and multiple-inheritance .
All Jython instance methods are polymorphic (or virtual) and may be overridden by
subclasses.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 5 of 92

• Encapsulation with data hiding: Jython allows (but does not require) attributes to
be hidden, thus permitting access outside the class itself only through methods of
the class. Classes implement functions (called methods) to modify the data.

Defining a class

Defining a class is a lot like defining a module in that both variables and functions can
be defined. Unlike the Java language, Jython allows the definition of any number of
public classes per source file (or module). Thus, a module in Jython is much like a
package in the Java language.

We use the class statement to define classes in Jython. The class statement has
the following form:

class name (superclasses): statement

-- or --

class name (superclasses):
assignment
:

function
:

When you define a class, you have the option to provide zero or more assignment
statements. These create class attributes that are shared by all instances of the class.
You can also provide zero or more function definitions. These create methods. The
superclasses list is optional. We'll discuss superclasses a little later in the tutorial.

The class name should be unique in the same scope (module, function, or class). The
class name is really a variable bound to the class body (similar to any other
assignment). In fact, you can define multiple variables to reference the same class.

Creating a class instance

Classes are used to hold class (or shared) attributes or to create class instances. To
create an instance of a class you call the class as if it were a function. There is no need
to use a new operator like in C++ or the Java language. For example, with the class

class MyClass:
pass

the following statement creates an instance:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 92 Introduction to Jython, Part 2: Programming essentials

x = MyClass()

Adding attributes to a class instance

In Jython (unlike in the Java language) clients can add fields (also known as attributes)
to an instance. Only the one instance is changed. To add fields to an instance (x) just
set new values on that instance, as shown below:

x.attr1 = 1
x.attr2 = 2
:

x.attrN = n

Defining class attributes and methods

Any variable bound in a class is a class attribute (or variable). Any function defined
within a class is a method. Methods receive an instance of the class, conventionally
called self, as the first (perhaps only) argument. For example, to define some class
attributes and methods, you might enter:

class MyClass:
attr1 = 10 # class attributes
attr2 = "hello"

def method1(self):
print MyClass.attr1 # reference the class attribute

def method2(self, p1, p2):
print MyClass.attr2 # reference the class attribute

def method3(self, text):
self.text = text # instance attribute
print text, self.text # print my argument and my attribute

method4 = method3 # make an alias for method3

Note that inside a class, you should qualify all references to class attributes with the
class name (for example, MyClass.attr1) and all references to instance attributes
with the self variable (for example, self.text). Outside the class, you should
qualify all references to class attributes with the class name (for example,
MyClass.attr1) or an instance (for example, x.attr1) and all references to
instance attributes with an instance (for example, x.text, where x is an instance of
the class).

Hidden variables

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 7 of 92

To achieve data hiding, it is often desirable to create "private" variables, which can be
accessed only by the class itself. Jython provides a naming convention that makes
accessing attributes and methods outside the class difficult. If you declare names of the
form: __xxx or __xxx_yyy (that's two leading underscores), the Jython parser will
automatically mangle (that is, add the class name to) the declared name, in effect
creating hidden variables. For example:

class MyClass:
__attr = 10 # private class attribute

def method1(self):
pass

def method2(self, p1, p2):
pass

def __privateMethod(self, text):
self.__text = text # private attribute

Note that unlike C++ and the Java language, all references to instance variables must
be qualified with self; there is no implied use of this.

The init method

The __init__ method serves the role of an instance constructor. It is called whenever
an instance is created. This method should be defined for all classes. Method
__init__ may take arguments. In Jython, and unlike in C++ or the Java language, all
instance variables (also known as attributes or fields) are created dynamically by
assignment. They should be defined (that is, assigned to) inside __init__. This
ensures they are defined for subsequent methods to use. Some examples are as
follows:

class Class1:
def __init__ (self): # no arguments

self.data = [] # set implicit data

class Class2:
def __init__ (self, v1, v2): # 2 required arguments

self.v1 = v1 # set data from parameters
self.v2 = v2

class Class3:
def __init__ (self, values=None): # 1 optional argument

if values is None: values = []
self.values = values # set data from parameter

The del method

If you allocate any resources in the __init__ method (or any other method), you

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 92 Introduction to Jython, Part 2: Programming essentials

need to ensure they are released before the object is deallocated. The best way to do
this is by using the __del__ method. The __del__ method is called just before the
garbage collector deallocates the object. You should also provide a cleanup method
(typically named close, destroy, or dispose) that can be called directly. Here's an
example:

class Class:
def __init__ (self, db):

self.connection = db.getConnection() # establish a connection
self.connection.open()

def __del__ (self): # cleanup at death
self.close()

def close(self): # cleanup
if not self.connection is None and self.connection.isOpen():

self.connection.close() # release connection
self.connection = None

Using classes as values

Classes can also be assigned to variables (including function arguments). This makes
writing dynamic code based on classes quite easy, as you can see from the following
generic class instance factory:

def instanceMaker(xclass, *args):
return apply(xclass, args)

:

x = instanceMaker(MyClass) # same as: x = MyClass()

Inheritance

The ability to inherit from classes is a fundamental to object-oriented programming.
Jython supports both single and multiple-inheritance. Single inheritance means there
can be only one superclass; multiple inheritance means there can be more than one
superclass.

Inheritance is implemented by subclassing other classes. These classes can be either
other Jython classes or Java classes. Any number of pure-Jython classes or Java
interfaces can be superclasses but only one Java class can be (directly or indirectly)
inherited from. You are not required to supply a superclass.

Any attribute or method in a superclass is also in any subclass and may be used by the
class itself or any client (assuming it is publicly visible). Any instance of a subclass can
be used wherever an instance of the superclass can be used -- this is an example of
polymorphism. These features enable reuse, rapid development, and ease of

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 9 of 92

extension.

Below are some examples of inheritance:

class Class1: pass # no inheritance

class Class2: pass

class Class3(Class1): pass # single inheritance

class Class4(Class3,Class2): pass # multiple inheritance

from java import awt
from java import io

inherit a Java class and interface and a Jython class
class MyPanel(awt.Panel, io.Serializable, Class2):

:

The init method with inheritance

The __init__ method of a subclass must call any __init__ method defined for its
superclass; this is not automatic. The two examples below demonstrate how the
__init__ method can be used with inheritance.

class Class1(SuperClass):
def __init__ (self): # no arguments

SuperClass.__init__(self) # init my super-class
self.data = [] # set implicit data

class Class2(SuperClass):
def __init__ (self, v1, v2): # 2 required arguments

SuperClass.__init__(self, v1) # init my super-class with v1
self.v2 = v2

And here are some examples of initializing with multiple inheritance:

class Class1(Super1, Super2):
def __init__ (self): # no arguments

Super1.__init__(self) # init each super-class
Super2.__init__(self)
self.data = [] # set implicit data

class Class2(Super1, Super2):
def __init__ (self, v1, v2, v3): # 3 required arguments

note you may do work before calling the super __init__ methods
self.v3 = v3 # set data from parameter
Super1.__init__(self, v1) # init each super-class
Super2.__init__(self, v2)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 92 Introduction to Jython, Part 2: Programming essentials

Calling superclass methods

You can call any superclass method by qualifying it with the class name, as shown
here:

class Class1:
def method1 (self):

:

class Class2(Class1):
def method1 (self): # override method1

:
Class1.method1(self) # call my super-class method
:

def method2 (self):
:

class Class3(Class2):
def method1 (self): # override method1

:
Class2.method1(self) # call my super-class method
:

def method3 (self):
:

Note that the secondary method definitions (in Class2 and Class3) override the
superclass definitions. There is no requirement that the subclass method call its
superclass method; however, if it doesn't, then it must completely replace the function
of the superclass method.

Calling methods

There are two syntaxes for calling methods (assuming you have an instance of
MyClass referenced by variable mci):

• mci.someMethod(...)

• MyClass.someMethod(mci, ...)

The first form typically is used in class client coding while the second one is used more
often in subclasses to call superclass methods.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 11 of 92

Section 3. Advanced object-oriented programming

From theory to practice

In this section, we'll move from a conceptual overview of object-oriented programming
in Jython to a more advanced discussion, incorporating topics such as operator
overloading, special attributes, and introspection.

Special attributes

Jython classes provide support for several special attributes. The most significant are
shown below:

Name Role Comment(s)

__dict__ The object's writeable
attributes

Can be used to introspect the attributes
of an object

__class__ The class of an object Access the class of the object (similar
to x.getClass() in Java coding)

__bases__ A tuple of the
immediate superclasses
of the object

Can be used to introspect the
superclasses of the object

Changing the class of an existing instance

In Jython, unlike most other languages, you can change the class of an existing
instance. Doing this changes the methods you can then use on the instance to the
methods of the new class but not any of its pre-existing fields. For example, to change
the class of an instance, assign the new class to the __class__ special attribute (see
Special attributes on page 12), as shown below:

x = SomeClass()
print isinstance(x, SomeClass) # prints: 1 (true)
print isinstance(x, SomeOtherClass) # prints: 0 (false)
:
change the class (that is, the type) of the instance here
x.__class__ = SomeOtherClass
print isinstance(x, SomeClass) # prints: 0 (false)
print isinstance(x, SomeOtherClass) # prints: 1 (true)

y = SomeOtherClass()
print x.__class__ == y.__class__ # prints: 1 (true)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 92 Introduction to Jython, Part 2: Programming essentials

After this change, the x instance will support the methods of SomeOtherClass, not
SomeClass as it did previously. Take care when changing the class of an object that
the instance has the right attributes for the new class.

Introspecting attributes example

Here's a practical example using special attributes (see Special attributes on page 12).
The module printclass.py can introspect classes and instances to display their
attributes and methods. I'll talk about introspection a little later, or you can check
Introspection on page 15 . You can also seeString operations and functions on page 41
and Appendix K: Built-in functions on page 88 to learn more about the functions used
below. For right now, just focus on the use of the callable function, the vars
function (which implicitly uses the __dict__ attribute) and the __bases__ attribute.

__any__ = ['getMembers', 'printObject']

def addMember (list, item):
if not item in list:

list.append(item)

def getMembers (obj, memtype="attrs"):
""" Get all the members (of memtype) of the object. """
members = []
for name, value in vars(obj).items():

try:
item = obj.__name__, name, value

except:
item = "<instance>", name, value

if memtype.lower().startswith("attr"):
if not callable(value):

addMember(members, item)
elif memtype.lower().startswith("meth"):

if callable(value):
addMember(members, item)

elif memtype.lower() == "all":
addMember(members, item)

try:
for base in obj.__bases__:

members.extend(getMembers(base, memtype))
except:

pass
return members

import sys

def printObject (obj, stream=sys.stdout):
""" Print all the members of the object. """
members = getMembers(obj, "attrs")
members.sort()
print >>stream, "Attributes:"
for objname, memname, value in members:

print >>stream, " %s.%s" % (objname, memname)

members = getMembers(obj, "methods")
members.sort()
print >>stream, "Methods:"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 13 of 92

for objname, memname, value in members:
print >>stream, " %s.%s" % (objname, memname)

Introspecting attributes example testcase

The following code uses the functions in the previous panel to introspect the
UserList class. See Operator overloading on page 19 for the definition of the
UserList class.

if __name__ == "__main__":

from UserList import UserList

class MyClass(UserList):
def __init__ (self, x, y):

UserList.__init__(self)
self.__x = x
self.__y = y

def method1 (self):
return self.x + self.y

def method2 (self, x, y):
return self.x + self.y + x + y

print "For class:", `MyClass`
printObject(MyClass)
print

aMyClass = MyClass(1, 2)
aMyClass.extend([1,2,3,4])
print "For instance:", `aMyClass`
printObject(aMyClass)

Output of get members

The following output (reformatted into multiple columns to save space) is the result of
running the main code from the above module. Notice that the private fields and
methods (see Hidden variables on page 7) have mangled names.

For class: <class __main__.MyClass at 28921555>
Attributes: Methods:
MyClass.__doc__ MyClass.__init__ UserList.__len__
MyClass.__module__ MyClass.method1 UserList.__lt__
UserList.__doc__ MyClass.method2 UserList.__mul__
UserList.__module__ UserList._UserList__cast UserList.__ne__

UserList.__add__ UserList.__radd__
UserList.__cmp__ UserList.__repr__
UserList.__contains__ UserList.__rmul__
UserList.__delitem__ UserList.__setitem__
UserList.__delslice__ UserList.__setslice__

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 92 Introduction to Jython, Part 2: Programming essentials

UserList.__eq__ UserList.append
UserList.__ge__ UserList.count
UserList.__getitem__ UserList.extend
UserList.__getslice__ UserList.index
UserList.__gt__ UserList.insert
UserList.__iadd__ UserList.pop
UserList.__imul__ UserList.remove
UserList.__init__ UserList.reverse
UserList.__le__ UserList.sort

For instance: [1, 2, 3, 4]
Attributes:
<instance>._MyClass__x
<instance>._MyClass__y
<instance>.data

Methods:

Note that methods and class attributes reside with classes and instance attributes
reside with instances. Yet all the class's methods can be applied to each instance.

Introspection

You will often need to determine, at runtime, the characteristics of an object. We call
this introspecting the object. The Java platform offers introspection services via the
java.lang.Class class and classes in the java.lang.reflect package. While
powerful, these APIs are somewhat difficult to use. As you probably already suspected,
Jython offers a simpler approach to introspection.

In Jython, we can use the dir and vars functions to examine the bindings for any
object, such as modules, functions, classes, sequences, maps, and more. To better
understand how this works, consider the following example. The output has been
inserted (and reformatted) after the print statements prefixed with "..." for easier
reading. The dir function returns only the binding names, while the vars function
returns the names and values; thus, when the same names are returned by both
functions, we need use only the vars function, as shown below:

#-- empty start --
print "vars:", vars()
...vars: {'__doc__': None, '__name__': '__main__'}

x = 1
y = 2
z = 3
l = [x, y, z]
d = {x:"xxxx", y:"yyyy", z:"zzzz"}

#-- locals variables --
print x, y, z, l, d
...1 2 3 [1, 2, 3] {3: 'zzzz', 2: 'yyyy', 1: 'xxxx'}

#-- plus locals variables --
print "vars:", vars()
...vars: {'__name__': '__main__', 'x': 1, \
... 'd': {3: 'zzzz', 2: 'yyyy', 1: 'xxxx'}, '__doc__': None, \

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 15 of 92

... 'y': 2, 'l': [1, 2, 3], 'z': 3}

import sys

#-- plus import --
print "vars:", vars()
...vars: {'__name__': '__main__', 'z': 3, 'l': [1, 2, 3], \
... '__doc__': None, 'y': 2, 'x': 1, 'sys': sys module, \
... 'd': {3: 'zzzz', 2: 'yyyy', 1: 'xxxx'}}

#-- sys import --
print "vars sys:", vars(sys)
...vars sys: {'classLoader': \
... <beanProperty classLoader type: java.lang.ClassLoader at 31845755>,
... ... many values removed ...,
... 'warnoptions': <reflected field public static \
... org.python.core.PyList \
... org.python.core.PySystemState.warnoptions at 1024901>}

del x, y, z

#-- post delete --
print "vars:", vars()
...vars: {'__name__': '__main__', 'l': [1, 2, 3], '__doc__': None, \
... 'sys': sys module, 'd': {3: 'zzzz', 2: 'yyyy', 1: 'xxxx'}}

def func (x, y):
return x, y

class MyClass ():
def __init__ (self, x, y):

self.__x = x
self.__y = y

def method1 (self):
return self.x + self.y

def method2 (self, x, y):
return self.x + self.y + x + y

#-- plus function and class --
print "vars:", vars()
....vars: {'func': <function func at 21569784>, '__name__': '__main__', \
... 'l': [1, 2, 3], '__doc__': None, \
.... 'MyClass': <class __main__.MyClass at 1279942>, \
... 'sys': sys module, 'd': {3: 'zzzz', 2: 'yyyy', 1: 'xxxx'}}

#-- function --
print "dir: ", dir(func) # **** dir and vars different here ****
print "vars:", vars(func)
...dir: ['__dict__', '__doc__', '__name__', 'func_closure', \
... 'func_code', 'func_defaults', 'func_doc', 'func_globals', 'func_name']
...vars: None

#-- class --
print "vars:", vars(MyClass)
...vars: {'__doc__': None, '__init__': <function __init__ at 17404503>, \
... 'method2': <function method2 at 23511968>, '__module__': '__main__', \
... 'method1': <function method1 at 28670096>}

myclass = MyClass(1, 2)

#-- instance --
print "myclass:", myclass

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 92 Introduction to Jython, Part 2: Programming essentials

print "vars:", vars(myclass)
...myclass: <__main__.MyClass instance at 19014134>
...vars: {'_MyClass__y': 2, '_MyClass__x': 1}

Note that dir(x) is generally equivalent to x.__dict__.keys() and vars(x) is
generally equivalent to x.__dict__.

Additional functions for introspection

The attributes described in Special attributes on page 12 allow additional introspection
of classes. In particular you can use the __dict__ attribute to determine the methods
in a class and the fields in an instance.

In addition to dir and vars, Jython provides several more functions for introspecting
classes and instances, as follows:

Function Comment(s)

hasattr(obj, name) Tests to see if the named attribute exists

getattr(obj, name {,
default})

Gets the named attribute if it exists; else default is
returned (or an exception is raised if no default is
provided)

setattr(obj, name,
value)

Sets the named attribute's value

delattr(obj, name) Removes the named attribute

See Appendix K: Built-in functions on page 88 to learn more about these functions.

Abstract classes

Abstract classes are classes in which some or all of the methods are missing or have
incomplete definitions. A subclass must be created to provide or complete these
method definitions. Concrete classes are not abstract (that is, all the methods are
complete). So far we have been working only with concrete classes. Abstract classes
are created to facilitate reuse. They provide a partial implementation of a design that
you can complete or extend by subclassing them.

To get a better understanding of how this works, we will create a simple abstract
command framework that supports command do, undo, and redo actions. Commands
are defined in (sub)classes and can be added easily by creating new do_... and
undo_... methods. We access these methods via introspection, as discussed in the
previous panels.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 17 of 92

An abstract command framework

Here's the example abstract command framework:

class CommandProcessor: # an abstract class
""" Process Commands. """

def __init__ (self):
self.__history = []
self.__redo = []

def execute (self, cmdName, *args):
""" Do some command """
self.__history.append((cmdName, args))
processor = getattr(self, "do_%s" % cmdName, None)
if processor:

return processor(*args)
else:

raise NameError, "cannot find do_%s" % cmdName

def undo (self, count=1):
""" Undo some (or all) commands in LIFO order """
self.__redo = []
while count > 0 and len(self.__history) > 0:

cmdName, args = self.__history.pop()
count -= 1
processor = getattr(self, "undo_%s" % cmdName, None)
if processor:

self.__redo.append((cmdName, args))
processor(*args)

else:
raise NameError, "cannot find undo_%s" % cmdName

def redo (self, count=1):
""" Redo some (or all) undone commands """
while count > 0 and len(self.__redo) > 0:

cmdName, args = self.__redo.pop()
count -= 1
processor = getattr(self, "do_%s" % cmdName, None)
if processor:

processor(*args)
else:

raise NameError, "cannot find do_%s" % cmdName

Note:This example is based on code from Jython Essentials by Samuele Pedroni and
Noel Rappin (see Resources on page 67 for more information).

A test case for the example framework

Here's a test case for the example abstract command framework:

class MyProcessor (CommandProcessor): # a concrete subclass
def __init__ (self):

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 92 Introduction to Jython, Part 2: Programming essentials

CommandProcessor.__init__(self)

def do_Cmd1 (self, args):
print "Do Command 1:", args

def do_Cmd2 (self, args):
print "Do Command 2:", args

def do_Cmd3 (self, args):
print "Do Command 3:", args

def undo_Cmd1 (self, args):
print "Undo Command 1:", args

def undo_Cmd2 (self, args):
print "Undo Command 2:", args

def undo_Cmd3 (self, args):
print "Undo Command 3:", args

mp = MyProcessor()

print "execute:" ; mp.execute("Cmd1", None)
print "execute:" ; mp.execute("Cmd2", (1,2,3))
print "execute:" ; mp.execute("Cmd3", "Hello")
print "undo: " ; mp.undo(2)
print "redo: " ; mp.redo(2)

print "execute:", ;mp.execute("BadCmd", "Hello")

The framework with the given test case produces the following output:

execute:
Do Command 1: None
execute:
Do Command 2: (1, 2, 3)
execute:
Do Command 3: Hello
undo:
Undo Command 3: Hello
Undo Command 2: (1, 2, 3)
redo:
Do Command 2: (1, 2, 3)
Do Command 3: Hello
execute:
Traceback (innermost last):
File "cmdproc.py", line 63, in ?
File "cmdproc.py", line 15, in execute

NameError: cannot find do_BadCmd

Operator overloading

Like C++, but unlike the Java language, Jython allows many of the standard language
operators to be overloaded by classes. This means classes can define a specific
meaning for the language operators. Jython also allows classes to emulate built-in
types like numbers, sequences, and maps. To learn more about emulation see
Appendix B: Common overloaded operators and methods on page 70 .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 19 of 92

In the example that follows, we'll use the standard Jython UserList class definition to
show an example of operator overloading in practice. UserList is a class that wraps
a list and behaves as a list does. Most of its function is delegated (passed on to) its
contained list, called data. In a more realistic example, these overloaded functions
would be implemented to access some other store, such as a disk file or a database.

class UserList:
def __init__(self, initlist=None):

self.data = []
if initlist is not None:

if type(initlist) == type(self.data):
self.data[:] = initlist

elif isinstance(initlist, UserList):
self.data[:] = initlist.data[:]

else:
self.data = list(initlist)

def __cast(self, other):
if isinstance(other, UserList): return other.data
else: return other

`self`, repr(self)
def __repr__(self): return repr(self.data)

self < other
def __lt__(self, other): return self.data < self.__cast(other)

self <= other
def __le__(self, other): return self.data <= self.__cast(other)

self == other
def __eq__(self, other): return self.data == self.__cast(other)

self != other, self <> other
def __ne__(self, other): return self.data != self.__cast(other)

self > other
def __gt__(self, other): return self.data > self.__cast(other)

self >= other
def __ge__(self, other): return self.data >= self.__cast(other)

cmp(self, other)
def __cmp__(self, other):

raise RuntimeError, "UserList.__cmp__() is obsolete"

item in self
def __contains__(self, item): return item in self.data

len(self)
def __len__(self): return len(self.data)

self[i]
def __getitem__(self, i): return self.data[i]

self[i] = item
def __setitem__(self, i, item): self.data[i] = item

del self[i]
def __delitem__(self, i): del self.data[i]

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 92 Introduction to Jython, Part 2: Programming essentials

self[i:j]
def __getslice__(self, i, j):

i = max(i, 0); j = max(j, 0)
return self.__class__(self.data[i:j])

self[i:j] = other
def __setslice__(self, i, j, other):

i = max(i, 0); j = max(j, 0)
if isinstance(other, UserList):

self.data[i:j] = other.data
elif isinstance(other, type(self.data)):

self.data[i:j] = other
else:

self.data[i:j] = list(other)

del self[i:j]
def __delslice__(self, i, j):

i = max(i, 0); j = max(j, 0)
del self.data[i:j]

self + other (join)
def __add__(self, other):

if isinstance(other, UserList):
return self.__class__(self.data + other.data)

elif isinstance(other, type(self.data)):
return self.__class__(self.data + other)

else:
return self.__class__(self.data + list(other))

other + self (join)
def __radd__(self, other):

if isinstance(other, UserList):
return self.__class__(other.data + self.data)

elif isinstance(other, type(self.data)):
return self.__class__(other + self.data)

else:
return self.__class__(list(other) + self.data)

self += other (join)
def __iadd__(self, other):

if isinstance(other, UserList):
self.data += other.data

elif isinstance(other, type(self.data)):
self.data += other

else:
self.data += list(other)

return self

self * other (repeat)
def __mul__(self, n):

return self.__class__(self.data*n)
__rmul__ = __mul__

self *= other (repeat)
def __imul__(self, n):

self.data *= n
return self

implement "List" functions below:

def append(self, item): self.data.append(item)

def insert(self, i, item): self.data.insert(i, item)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 21 of 92

def pop(self, i=-1): return self.data.pop(i)

def remove(self, item): self.data.remove(item)

def count(self, item): return self.data.count(item)

def index(self, item): return self.data.index(item)

def reverse(self): self.data.reverse()

def sort(self, *args): apply(self.data.sort, args)

def extend(self, other):
if isinstance(other, UserList):

self.data.extend(other.data)
else:

self.data.extend(other)

Nested classes

Like functions, classes can be nested. Nested classes in Jython work similarly to static
inner classes in the Java language. Here's an example:

class MyDataWrapper:
class Data: pass # inner data structure class

def __init__ (self):
self.data = Data()

def set (self, name, value):
setattr(self.data, name, value)

def get (self, name, default=None):
return getattr(self.data, name, default)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 92 Introduction to Jython, Part 2: Programming essentials

Section 4. Debugging Jython

Using print statements for debugging

Like any programming language, Jython supports the use of print statements for
debugging. To implement this debugging solution, we simply add a print statement to
a program, run the program, and examine the generated output for clues to the bugs.
While very basic, this debugging solution is in many cases completely satisfactory.

Here's an example print statement for debugging.

:
def myFunc(x):

print "x at entry:", x
:

print "x at exit:", x
return x

:

z = myFunc(20)

The Jython debugger

For the times when the print-statement solution isn't sufficient for your debugging
needs, Jython provides a simple, command-line debugger similar to the jdb debugger
for the Java platform. The Jython debugger is written entirely in Jython and can thus be
easily examined or extended. In addition, Jython provides a set of abstract base
debugging classes to allow other debuggers, such as a GUI debugger, to be built on
this framework.

To launch the debugger run the following command:

c:\>jython c:\jython-2.1\lib\pdb.py <test_module>.py

An example Jython debugging session

Debugger commands are enterred after the debugger prompt "(Pdb)." Here's an
example debugging session using the factor.py module (see The factorial engine:
factor.py on page 61):

C:\Articles>jython \jython-2.1\lib\pdb.py factor.py
> C:\Articles\<string>(0)?()
(Pdb) step

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 23 of 92

> C:\Articles\<string>(1)?()
(Pdb) step
> C:\Articles\factor.py(0)?()
(Pdb) list 67
62 try:
63 print "For", value, "result =",
fac.calculate(value)
64 except ValueError, e:
65 print "Exception -", e
66
67 doFac(-1)
68 doFac(0)
69 doFac(1)
70 doFac(10)
71 doFac(100)
72 doFac(1000)
(Pdb) tbreak 67
Breakpoint 1 at C:\Articles\factor.py:67
(Pdb) continue
factor.py running...
Deleted breakpoint 1
> C:\Articles\factor.py(67)?()
-> doFac(-1)
(Pdb) next
For -1 result = Exception - only positive integers supported: -1
> C:\Articles\factor.py(68)?()
-> doFac(0)
(Pdb) next
For 0 result = 1
> C:\Articles\factor.py(69)?()
-> doFac(1)
(Pdb) next
For 1 result = 1
> C:\Articles\factor.py(70)?()
-> doFac(10)
(Pdb) next
For 10 result = 3628800
> C:\Articles\factor.py(71)?()
-> doFac(100)
(Pdb) next
For 100 result =
93326215443944152681699238856266700490715968264381621468592963895217599
99322991560894146397615651828625
3697920827223758251185210916864000000000000000000000000
> C:\Articles\factor.py(72)?()
-> doFac(1000)
(Pdb) next
For 1000 result = 402387260077 ... many other digits deleted ...
0000000000000000000000
--Return--
> C:\Articles\factor.py(72)?()->None
-> doFac(1000)
(Pdb) next
--Return--
> C:\Articles\<string>(1)?()->None
(Pdb) next
C:\Articles>

To learn more about debugging with the Jython debugger, see Appendix C: Jython
debugger commands on page 73 .

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 92 Introduction to Jython, Part 2: Programming essentials

Jython profiler

Sometimes you may notice that a Jython program runs longer than you expect. You
can use the Jython profiler to find out what sections of the program take the longest
time and optimize them. The profiler will let you profile entire programs or just individual
functions.

Here's an example run, profiling the factor.py program (see The factorial engine:
factor.py on page 61):

c:\>jython \jython-2.1\lib\profile.py \articles\factor.py

\articles\factor.py running...
For -1 result = Exception - only positive integers supported: -1
For 0 result = 1
For 1 result = 1
For 10 result = 3628800
For 100 result =
93326215443944152681699238856266700490715968264381621468592963895217599
99322991560894146397615651828625369792082722375825118521091686400000000
0000000000000000
For 1000 result = 402387260077 ... many other digits deleted ...
0000000000000000000000

237 function calls (232 primitive calls) in 0.250 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.130 0.130 0.240 0.240 <string>:0(?)
1 0.000 0.000 0.110 0.110 factor.py:0(?)

220 0.010 0.000 0.010 0.000 \
factor.py:27(fireListeners)

6 0.060 0.010 0.070 0.012 factor.py:34(calculate)
1 0.000 0.000 0.000 0.000 factor.py:5(Factorial)
1 0.000 0.000 0.000 0.000 factor.py:6(__init__)

6/1 0.040 0.007 0.110 0.110 factor.py:61(doFac)
1 0.010 0.010 0.250 0.250 \

profile:0(execfile('\\articles\\factor.py'))
0 0.000 0.000 profile:0(profiler)

From this run you can see that (besides the initial startup code) most of the program
time is being used by the calculate function. For more information on profiling
Jython see the Python Reference Manual, available in Resources on page 67 .

Assertions

Like C and the Java language (as of version 1.4), Jython supports assertions.
Assertions are conditions that must be true for the program to work correctly; if they are
not true the program may behave unpredictably. Often they are used to validate input
values to functions. Jython's support for assertions comes in the form of the following
assert statement:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 25 of 92

assert expression {, message}

Note that expression is any Jython expression; if it is false an
exceptions.AssertionError exception is raised. If message is provided, it
becomes the message associated with the exception. For example:

:
def myFunc(x):

assert x >= 0, "argument %r must be >= 0" % x
return fac(x)

:
z = myFunc(20) # no exception raised

z = myFunc(-1) # AssertionError raised

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 92 Introduction to Jython, Part 2: Programming essentials

Section 5. Java support in Jython

Using Java services in Jython code

One of Jython's most powerful features is its ability to interface with Java code. A
Jython program can create instances of any Java class and call any method on any
Java instance. Jython can also subclass Java classes, allowing Java code to call
Jython code. Jython makes calling Java methods very easy by making strong but
transparent use of the Java Reflection API (package java.lang.reflect).

To complete this section of the tutorial, you need to be familiar with the Java language
and select Java runtime APIs. You should understand the basic notions of
object-oriented programming on the Java platform, as well as being familiar with the
Java data types, classes, threads, and the services in the java.lang, java.util,
java.io and javax.swing packages.

Note:Because the reflection APIs have been highly optimized in version 1.4, Jython
runs much faster on Java version 1.4 and above.

Calling Jython from Java code

As shown in Inheritance on page 9 , a Jython class can subclass Java classes.
Subclassing makes it very easy to extend Java classes (such as GUI components).
This allows Java code to call Jython code without realizing it is Jython code. It also
makes it possible to implement in Jython classes used by other Java code, as shown in
the following example:

from java import util
class MyArray(util.ArrayList): # subclass a Java class

:
def get (self, index): # override the get method

"@sig public java.lang.Object get(int index)"
if 0 <= index < self.size:

return util.ArrayList.get(self, index)
return None # OutOfBounds now returns null

After being compiled by jythonc the above class can be used in Java code anywhere
an java.util.ArrayList instance can be used. Note that when calling a
superclass method, the self value is passed as an argument.

Calling Java classes from Jython

In addition to subclassing Java classes it is also possible to access Java classes
directly in Jython. For example, this code sequence:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 27 of 92

from java.util import Date

:

d = Date() # now
print d, d.time, d.getTime()

will produce the following output:

Tue Dec 02 14:44:02 CST 2003 1070397842496 1070397842496

Using JavaBean properties from Jython

In the example from Calling Java classes from Jython on page 27 you may have
noticed that the expressions d.time and d.getTime() produce the same result. This
is because they do the same thing. Jython has a very convenient feature that makes
JavaBean properties appear as Jython attributes. JavaBean properties are defined by
(typically) matching pairs of Java methods of the following form, where <type> is the
type of the property and <name> is the name of the property.:

<type> get<name>()

-- and --

void set<name>(<type> value)

For example the Java methods long getTime() { ... } and void
setTime(long t) { ... } define the long property time. Thus a Jython reference
d.time is automatically and dynamically converted into the Java expression
d.getTime().

Jython can also set properties, thus d.time = 1000000L is allowed. The Jython
reference d.time = value is automatically and dynamically converted into the Java
expression d.setTime(value). Once this change is applied, the print statement
from Calling Java classes from Jython on page 27 results in the following:

Wed Dec 31 18:01:40 CST 1969 100000 100000

Calling methods on Java objects

It is very easy to call methods on Java objects; just call them like they are Jython
methods. Jython automatically maps parameter and return values to and from Jython
and Java types. For example, here is a short sequence of Jython that uses Java
classes and methods extensively:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 92 Introduction to Jython, Part 2: Programming essentials

1: from javax import swing
2: import sys
3:
4: f = swing.JFrame(sys.argv[1], size=(200,200),
5: defaultCloseOperation=swing.JFrame.EXIT_ON_CLOSE)
6: f.contentPane.add(swing.JLabel(sys.argv[2]))
7: f.visible = 1

This code sequence creates and shows a GUI frame window. The script's first
command-line argument becomes the title and the second the content text. Line 4
creates the frame, passing in the title, the desired size, and a close action. The size
and defaultCloseOperation parameters are properties as described above and,
as such, may be (quite conveniently) set in the JFrame's constructor when invoked
from a Jython program. The title is set as a parameter of the JFrame's equivalent of
the __init__ method. Line 6 accesses the JFrame's contentPane property and
calls its add method to add a JLabel to show the second argument. Line 7 makes the
frame visible by setting its visible property to 1 (true).

A sample of this GUI is shown below:

Overriding Java methods and properties

As shown in Calling Jython from Java code on page 27 , when overriding Java
methods in classes that can be called from the Java language, you need to provide
signature information. This is done via documentation comments. The first line of the
comment, if it starts with "@sig", is used as a directive to the jythonc program
(discussed in Part 1) to generate a Java-compatible method signature. For example,
the comment below describes the get method using the Java language's declaration
syntax. In signatures types must be fully qualified.

"@sig public java.lang.Object get(int index)"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 29 of 92

Jython does not support overloaded methods, which are methods with the same name
but with differing number and/or types of arguments. Instead, Jython supports
defaulted arguments and variable number of arguments, which can create a problem if
you inherit from a Java class that uses overloading and you want to override the
overloaded methods. In Jython, you must define the base method and accept a varying
number of arguments. Consider the (rather impractical) example of an InputStream
that always returns a blank:

from java import io

class AlwaysBlank(io.InputStream):
covers all forms of read(...)
def read(self, *args):

if len(args) > 0:
covers forms: int read(byte[])
int read(byte[], int off, int len)
return apply(io.InputStream.read, (self,) + args)

else:
covers form: int read()
return ord(' ')

This code is based on an example from the Jython home page.

Java arrays from Jython

Jython supports the creation of Java-style array objects. Arrays are used primarily to
pass arrays to and return arrays from Java methods, but they are general purpose and
can be used in pure Jython code. Array elements are typed using Java base and class
types. Arrays act much like Jython lists but they cannot change length.

Array support is provided by the jarray module. The two functions in the jarray
module, zeros and array, are used to create arrays. The array function maps a
Jython sequence to a Java array. Some examples are as follows:

from jarray import zeros, array
from java import util
from javax import swing

a1 = zeros(100, 'i') # an array of 100 int 0s
a2 = array([1,2,10,-5,7], 'i') # an array of ints as listed

an array of doubles 0.0 to 49.0
a3 = array([i * 1.0 for i in range(50)], 'd')

a4 = zeros(10, util.Map) # an array of 10 null Maps
a5 = array((swing.JFrame("F1"), # an array of 3 JFrames

swing.JFrame("F2"),
swing.JFrame("F3")), swing.JFrame)

a6 = array("Hello", 'c') # an array of characters

See Appendix A: Character codes for array types on page 70 for a listing of character
codes for array types.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 92 Introduction to Jython, Part 2: Programming essentials

Section 6. Java thread support in Jython

Java threads

The Java runtime makes extensive use of threads, which it uses to handle GUI events,
to perform asynchronous I/O, to implement asynchronous processing, and so on.

It's easy to create Java threads in Jython: just create instances of
java.lang.Thread and subclasses of java.lang.Runnable. For an example, see
The GUI: fgui.py on page 63 . You can also create threads out of Jython functions by
using the thread module and functions of the following form:

start_new_thread(function, args)

-- and --

exit()

The start_new_thread function runs the function argument in a new Java thread,
passing the args tuple value to the function. The exit function can be used in the
thread to end it (generally as the target of an if statement).

Java synchronization

When developing multithreaded programs using Java or Jython threads, it is
sometimes necessary to create synchronized functions (or methods). Synchronized
functions are functions that can only be called from one thread at a time; meaning that
other threads are prevented from entering the function until the first thread exits. Jython
provides the synchronized module and two functions to create synchronized
functions. The functions are of the following form:

make_synchronized(function)

-- and --

apply_synchronized(syncobj, function, pargs {, kwargs})

The make_synchronized function permanently synchronizes the function
argument. The apply_synchronized function temporarily synchronizes on syncobj
and then calls the function argument.

Example: Using make_synchronized

Using make_synchronized to signal events is quite straightforward, as shown below:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 31 of 92

from synchronize import *
from java import lang

define synchronization helpers

def waitForSignal (monitor):
""" Wait until the monitor is signaled. """
lang.Object.wait(monitor)

replace with synchronized version; syncs on 1st argument
waitForSignal = make_synchronized(waitForSignal)

def notifySignal (monitor):
""" Signal monitor. """
lang.Object.notifyAll(monitor)

replace with synchronized version; syncs on 1st argument
notifySignal = make_synchronized(notifySignal)

class Gui: # GUI support
:
def doExit (self):

self.visible = 0
notifySignal(self)

if __name__ == "__main__": # main code
:
gui = Gui()
:
print "Waiting until GUI exit requested..."
waitForSignal(gui)
print "Done"

A Jython threading example

Here's an example of the use of Jython threads. The example shows a set of producer
and consumer threads sharing access to a common buffer. We'll start with the
definition of the shared buffer, as shown below.

""" A Jython Thread Example. """

from java import lang
from synchronize import *
from thread import start_new_thread
from sys import stdout

def __waitForSignal (monitor):
apply_synchronized(monitor, lang.Object.wait, (monitor,))

def __signal (monitor):
apply_synchronized(monitor, lang.Object.notifyAll, (monitor,))

def __xprint (stream, msg):
print >>stream, msg

def xprint (msg, stream=stdout):
""" Synchronized print. """
apply_synchronized(stream, __xprint, (stream, msg))

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 92 Introduction to Jython, Part 2: Programming essentials

class Buffer:
""" A thread-safe buffer. """

def __init__ (self, limit=-1):
self.__limit = limit # the max size of the buffer
self.__data = []
self.__added = () # used to signal data added
self.__removed = () # used to signal data removed

def __str__ (self):
return "Buffer(%s,%i)" % (self.__data, self.__limit)

def __len__ (self):
return len(self.__data)

def add (self, item):
""" Add an item. Wait if full. """
if self.__limit >= 0:

while len(self.__data) > self.__limit:
__waitForSignal(self.__removed)

self.__data.append(item);
xprint("Added: %s" % item)
__signal(self.__added)

def __get (self):
item = self.__data.pop(0)
__signal(self.__removed)
return item

def get (self, wait=1):
""" Remove an item. Wait if empty. """
item = None
if wait:

while len(self.__data) == 0:
__waitForSignal(self.__added)

item = self.__get()
else:

if len(self.__data) > 0: item = self.__get()
xprint("Removed: %s" % item)
return item

get = make_synchronized(get)

Producer and consumer definitions

The next step in the example is to take a look at the producer and consumer
definitions, shown here:

class Producer:
def __init__ (self, name, buffer):

self.__name = name
self.__buffer = buffer

def __add (self, item):
self.__buffer.add(item)

def __produce (self, *args):

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 33 of 92

for item in args:
self.__add(item)

def produce (self, items):
start_new_thread(self.__produce, tuple(items))

class Consumer:
def __init__ (self, name, buffer):

self.__name = name
self.__buffer = buffer

def __remove (self):
item = self.__buffer.get()
return item

def __consume (self, count):
for i in range(count):

self.__remove()

def consume (self, count=1):
start_new_thread(self.__consume, (count,))

An trial run of the threading example

And finally, here's a trial run of the example code:

all producers and consumer share this one
buf = Buffer(5)

p1 = Producer("P1", buf)
p2 = Producer("P2", buf)
p3 = Producer("P3", buf)
p4 = Producer("P4", buf)
c1 = Consumer("C1", buf)
c2 = Consumer("C2", buf)

create 6 items
p1.produce(["P1 Message " + str(i) for i in range(3)])
p2.produce(["P2 Message " + str(i) for i in range(3)])

consume 20 items
for i in range(5):

c1.consume(2)
c2.consume(2)

create 20 more items
p3.produce(["P3 Message " + str(i) for i in range(10)])
p4.produce(["P4 Message " + str(i) for i in range(10)])

consume 4 items
c1.consume(2)
c2.consume(2)

let other threads run
lang.Thread.currentThread().sleep(5000)

xprint("Buffer has %i item(s)left" % len(buf))

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 92 Introduction to Jython, Part 2: Programming essentials

Output of the example

The producer consumer example produces the following results (wrapped to two
columns to save space):

Added: P1 Message 0 Added: P3 Message 7
Added: P1 Message 1 Removed: P3 Message 7
Added: P1 Message 2 Added: P3 Message 8
Added: P2 Message 0 Removed: P3 Message 8
Added: P2 Message 1 Added: P3 Message 9
Added: P2 Message 2 Removed: P3 Message 9
Removed: P1 Message 0 Added: P4 Message 0
Removed: P1 Message 1 Removed: P4 Message 0
Removed: P1 Message 2 Added: P4 Message 1
Removed: P2 Message 0 Removed: P4 Message 1
Removed: P2 Message 1 Added: P4 Message 2
Removed: P2 Message 2 Removed: P4 Message 2
Added: P3 Message 0 Added: P4 Message 3
Removed: P3 Message 0 Removed: P4 Message 3
Added: P3 Message 1 Added: P4 Message 4
Removed: P3 Message 1 Added: P4 Message 5
Added: P3 Message 2 Added: P4 Message 6
Removed: P3 Message 2 Added: P4 Message 7
Added: P3 Message 3 Added: P4 Message 8
Removed: P3 Message 3 Added: P4 Message 9
Added: P3 Message 4 Removed: P4 Message 4
Removed: P3 Message 4 Removed: P4 Message 5
Added: P3 Message 5 Removed: P4 Message 6
Removed: P3 Message 5 Removed: P4 Message 7
Added: P3 Message 6 Buffer has 2 item(s)left
Removed: P3 Message 6

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 35 of 92

Section 7. Interfacing with Java services

Creating the interface

Often you will need to use Java services from within Jython code. In these cases, you
can either do it openly each time you need to use a given service, or you can wrap the
Java services in a Jython library function and use that function in your Jython code.

The second option is recommended because it encapsulates and abstracts the Java
code.

Wrapping Java services in Jython

As an example of how you might wrap a Java service in a Jython library function, we'll
take a look at the JavaUtils.py module excerpts. The JavaUtils module is
introduced by the code below. See Part 1 of this tutorial to refresh your memory about
modules.

""" This module defines several functions to ease interfacing with Java code."""

from types import *

from java import lang
from java import util
from java import io

only expose these
__all__ = ['loadProperties', 'getProperty',

'mapToJava', 'mapFromJava', 'parseArgs']

Accessing Java properties files

You will often need to access Java properties files to get configuration information.
Jython lets you use the loadProperties and getProperty functions for this, as
shown below:

def loadProperties (source):
""" Load a Java properties file into a Dictionary. """
result = {}
if type(source) == type(''): # name provided, use file

source = io.FileInputStream(source)
bis = io.BufferedInputStream(source)
props = util.Properties()
props.load(bis)
bis.close()

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 92 Introduction to Jython, Part 2: Programming essentials

http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html

for key in props.keySet().iterator():
result[key] = props.get(key)

return result

def getProperty (properties, name, default=None):
""" Gets a property. """
return properties.get(name, default)

Properties file example

So, for example, if you were to use the functions from Accessing Java properties files
on page 36 as shown below

import sys
file = sys.argv[1]
props = loadProperties(file)
print "Properties file: %s, contents:" % file
print props
print "Property %s = %i" % ('debug', int(getProperty(props, 'debug', '0')))

with the properties file content of

This is a test properties file
debug = 1
error.level = ERROR
now.is.the.time = false

then the resulting output would be:

Properties file: test.properties, contents:
{'error.level': 'ERROR', 'debug': '1', 'now.is.the.time': 'false'}
Property debug = 1

Mapping Java types

Sometimes you need to create pure-Java objects in Jython (for example, when you
need to create objects to send across a network to a Java-based server, or when you
need to pass the object to a type-sensitive Java service, such as with Swing table cell
values). To convert Jython built-in types to Java types (and vice versa) use the
functions in the following example (a continuation of the JavaUtils.py module
excerpt from Wrapping Java services in Jython on page 36):

def mapMapFromJava (map):
""" Convert a Map to a Dictionary. """
result = {}
iter = map.keySet().iterator()
while iter.hasNext():

key = iter.next()

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 37 of 92

result[mapFromJava(key)] = mapFromJava(map.get(key))
return result

def mapCollectionFromJava (coll):
""" Convert a Collection to a List. """
result = []
iter = coll.iterator();
while iter.hasNext():

result.append(mapFromJava(iter.next()))
return result

def mapFromJava (object):
""" Convert a Java type to a Jython type. """
if object is None: return object
if isinstance(object, util.Map):

result = mapMapFromJava(object)
elif isinstance(object, util.Collection):

result = mapCollectionFromJava(object)
else:

result = object
return result

def mapSeqToJava (seq):
""" Convert a sequence to a Java ArrayList. """
result = util.ArrayList(len(seq))
for e in seq:

result.add(mapToJava(e));
return result

def mapDictToJava (dict):
""" Convert a Dictionary to a Java HashMap. """
result = util.HashMap()
for key, value in dict.items():

result.put(mapToJava(key), mapToJava(value))
return result

def mapToJava (object):
""" Convert a Jython type to a Java type. """
if object is None: return object
t = type(object)
if t == TupleType or t == ListType:

result = mapSeqToJava(object)
elif t == DictType:

result = mapDictToJava(object)
else:

result = object
return result

After using mapToJava, these types can be written to a
java.io.ObjectOutputStream. After reading an object from a
java.io.ObjectInputStream, you can use mapFromJava to convert the object
back to a Jython type.

Note that these methods support a limited but broadly used set of built-in Jython types.
Jython automatically converts value-like types such as numbers and strings. User
defined classes are not supported.

Mapping Java types, continued

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 92 Introduction to Jython, Part 2: Programming essentials

To continue the example, the following usage of the mapping functions discussed on
the previous panel as shown here:

data = (1,2,3, [1,2,3], [c for c in "Hello!"], "Hello!", {1:'one', 2:'two'})
print "data:", data
toJava = mapToJava(data)
print "toJava:", toJava
fromJava = mapFromJava(toJava)
print "fromJava:", fromJava

print

print "type(%s)=%s" % ("data", type(data))
print "type(%s)=%s" % ("toJava", type(toJava))
print "type(%s)=%s" % ("fromJava", type(fromJava))

prints:

data: (1, 2, 3, [1, 2, 3], ['H', 'e', 'l', 'l', 'o', '!'], 'Hello!', \
{2: 'two', 1: 'one'})

toJava: [1, 2, 3, [1, 2, 3], [H, e, l, l, o, !], Hello!, {2=two, 1=one}]
fromJava: [1, 2, 3, [1, 2, 3], ['H', 'e', 'l', 'l', 'o', '!'], 'Hello!', \

{2: 'two', 1: 'one'}]

type(data)=org.python.core.PyTuple
type(toJava)=org.python.core.PyJavaInstance
type(fromJava)=org.python.core.PyList

Notice that the PyTuple became a PyJavaInstance and then a PyList. Also notice
that the toJava form formats differently. This is because it is a Java object and it's
being printed by the Java toString() method, not Jython repr() function.
PyJavaInstance is a type Jython will pass as is to a Java API. Finally, notice that the
data and fromJava values are the same except that the tuple is now an equivalent
list. For more about Jython types see Appendix L: Jython types summary on page 91 .

Parsing command lines

Frequently you need to extract command parameters with more processing than simple
use of sys.argv provides. The parseArgs function can be used to get any
command line arguments as a (tuple of) sequence of positional arguments and a
dictionary of switches.

So, continuing the JavaUtils.py module excerpt (from Wrapping Java services in
Jython on page 36 and Mapping Java types on page 37 , respectively), we see this:

def parseArgs (args, validNames, nameMap=None):
""" Do some simple command line parsing. """
validNames is a dictionary of valid switch names -
the value (if any) is a conversion function
switches = {}
positionals = []
for arg in args:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 39 of 92

if arg[0] == '-': # a switch
text = arg[1:]
name = text; value = None
posn = text.find(':') # any value comes after a :
if posn >= 0:

name = text[:posn]
value = text[posn + 1:]

if nameMap is not None: # a map of valid switch names
name = nameMap.get(name, name)

if validNames.has_key(name): # or - if name in validNames:
mapper = validNames[name]
if mapper is None: switches[name] = value
else: switches[name] = mapper(value)

else:
print "Unknown switch ignored -", name

else: # a positional argument
positionals.append(arg)

return positionals, switches

This function could be used as follows (in file parsearg.py):

from sys import argv
from JavaUtils import parseArgs

switchDefs = {'s1':None, 's2':int, 's3':float, 's4':int}
args, switches = parseArgs(argv[1:], switchDefs)
print "args:", args
print "switches:", switches

For the command c:\>jython parsearg.py 1 2 3 -s1 -s2:1 ss -s4:2, it
prints:

args: ['1', '2', '3', 'ss']
switches: {'s4': 2, 's2': 1, 's1': None}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 92 Introduction to Jython, Part 2: Programming essentials

Section 8. Jython string processing

String operations and functions

Like most scripting languages, such as Perl and Rexx, Jython has extensive support
for manipulating strings. This support is generally similar to the support provide by the
Java language but it is often simpler and easier to use. In this section, we will talk
about some of the more commonly used string operations and functions. See Part 1 of
this tutorial and the Python Library Reference to learn more about string methods.

In the examples in the next few sections I will use the following values:

name ="Barry Feigenbaum"
addr = '12345 Any Street"
v1 = 100; v2 = v1 * 1.5; v3 = -v2; v4 = 1 / v2
s1 = "String 1"; s2 = "String 2"
sent = "The rain in Spain falls mainly on the plain."

Getting string forms of objects

To get a string representation of any value or expression (that is, object) use one of the
following functions:

• str(expr) creates a human-oriented string.

• repr(expr) or `expr` creates (where possible) a computer-oriented string from which
the eval function can re-create the value.

Note that for many types, including basic types, str(x) and repr(x) generate the
same (or very similar) strings.

Basic string operations

A string is a built-in type, acting both as a value and as an object with methods. Strings
support the basic operations of concatenation, indexing, containment, and formatting,
as well as the other operations of immutable sequences. We'll go over the basic string
operations, starting with concatenation.

We use the plus (+) operator to concatenate two strings. For example, the following
line:

print "abc" + "xyz"

prints: abcxyz.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 41 of 92

To select a character or characters (that is, a substring) from a string you use indexing.
For example: "abcxwy"[2] yields c, while "abcxwy"[2:4] yields cx.

Many of the string functions test conditions, thus they are often used in conjunction with
the if and while statements. Here's an example of how we could use containment
testing to see if a character were contained in a string:

if ' ' in name: print "space found"

-- or --

if 'q' not in sent: print "q not found"

In addition to testing conditions, strings also support methods to test the nature of the
string. These are islower, isupper, isalnum, isnum, isalpha, isspace, and
istitle. These methods test to see if all the characters in the strings meet these
conditions.

Additional methods

Strings support several methods that allow you to find and edit sub-strings, change
case, and a host of other actions. To find a string in another string use the find/rfind
or startswith/endswidth methods. For example:

if name.find(' ') >= 0: print "space found"

-- or --

if name.find("Jones") < 0: print "Jones not in name"

Sometimes you need to edit the content of a string, for example to change its case or
insert or remove text from it. Jython supplies several methods to do this. To change
case, Jython has the lower, upper, swapcase, title, and capitalize methods.
To change the text of a string, use the replace method. For example, to match strings
often you want to ignore case or you may want to replace sub-strings:

if s1.lower() == s2.lower(): print "equal"

-- or --

newaddr = addr.replace("Street", "St.")

Often strings have extra blanks around them that are not important, such as when the
string is entered by a user. To remove these extra blanks use the lstrip, rstrip, or
strip methods. For example, to match a command entered by a user:

cmd = raw_input("Enter a command")
if cmd.lstrip.startswith("run "):

print "run command found"

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 92 Introduction to Jython, Part 2: Programming essentials

Often you need to break strings into parts, such as the words in a sentence or join
multiple strings into one string. Jython supports the split, splitlines, and join
functions to do this. The split method splits a line into words, while splitlines
splits a file of lines into separate lines. The join method reverses split. You can
also join strings by concatenation as discussed above. For example, to extract the
words from a sentence and then rebuild the sentence use:

words = sent.split(' ') # use space to separate words
sent2 = ' '.join(words) # use space between words

Formatting program variables

It is very easy to format local or global variables using the modulus (%) operator. The
locals and globals functions return dictionaries for all the local and global
(respectively) variables. For example:

fname = "Barry"; lname = "Feigenbaum"
address = "1234 any St."
city = "Anytown"; state = "TX"; zip = "12345"
age = 30
children = 3
:

print "Hello %(fname)s from %(city)s, %(state)s." % locals()

prints Hello Barry from Anytown, TX.

See Appendix J: Formatting strings and values on page 86 for more about formatting
program variables.

Format operator examples

Below are some format (%) operator examples. See Appendix J: Formatting strings
and values on page 86 for more examples.

Expression Result

"Hello %s" % "Barry" Hello Barry

"Count: %i, " "Avg Cost:
$%.2f; " "Max Cost: $%.2f" %
(10, 10.5, 50.25)

Count: 10, Avg Cost: $10.50; Max
Cost: $50.25

"This is %i%%" % 10 This is 10%

"My name is %(first)s
%(last)s!" %
{'last':'Feigenbaum',

My name is Barry Feigenbaum!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 43 of 92

'first':'Barry', 'mi':'A'}

Using C-style printf

For those familiar with C's printf("... %x ...", v1, ..., vN) function, a
similar but enhanced service can be added in Jython, as shown here:

def printf(stream, format, *pargs, **kwargs):
see Printing to files on page 57 for more information
if pargs:

print >>stream, format % pargs
elif kwargs:

print >>stream, format % kwargs
else:

print >>stream, format

Using the above printf function definition, the following examples:

from sys import stdout

printf(stdout, "%s is %.1f years old and has %i children",
fname, age, children)

printf(stdout, "The %(name)s building has %(floors)d floors",
floors=105, name="Empire State")

printf(stdout, "Hello World!")

print:

Barry is 30.0 years old and has 3 children
The Empire State building has 105 floors
Hello World!

Pretty printing

You can use the pprint module functions, in particular the pformat function, to print
complex data structures in a formatted form. For example, this code:

data = [[1,2,3], [4,5,6],{'1':'one', '2':'two'},
"jsdlkjdlkadlkad", [i for i in xrange(10)]]

print "Unformatted:"; print data

print

from pprint import pformat
print "Formatted:"; print pformat(data)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 92 Introduction to Jython, Part 2: Programming essentials

prints the following:

Unformatted:
[[1, 2, 3], [4, 5, 6], {'2': 'two', '1': 'one'}, \

'jsdlkjdlkadlkad', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]

Formatted:
[[1, 2, 3],
[4, 5, 6],
{'2': 'two', '1': 'one'},
'jsdlkjdlkadlkad',
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]

Using string functions

As an example of using the string operations from String operations and functions on
page 41 , the justify.py program (listed below) takes paragraphs of input and
formats them into pages. The text may be left-, center-, right-aligned, or justified. Page
margins may be specified. Header and/or footer text may be supplied.

See Resources on page 67 for some sample results of using this program.

import sys

def stripLines (lines):
""" Removed extra whitespace (that is, newlines). """
newlines = []
for line in lines:

line = line.strip()
newlines.append(line)

return newlines

def splitParagraphs (lines):
""" Splits a set of lines into paragraphs. """
paras = []
para = ""
for line in lines:

if len(line) > 0: # in paragraph
para += ' ' + line

else: # between paragraphs
para = para.strip()
if len(para) > 0:

paras.append(para)
para = ""

return paras

class Formatter:
""" Formats and prints paragraphs. """

def __init__ (self, stream, pagelen=66, linewidth=85,
lmargin=10, rmargin=10, pindent=5,
alignment="justify",
headers=None, footers=None):

self.stream = stream # stream to print on

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 45 of 92

format settings
self.pagelen = pagelen
self.pindent = pindent
self.linewidth = linewidth
self.lmargin = lmargin
self.rmargin = rmargin
self.headers = headers
self.footers = footers
self.alignment = alignment

self.pagecount = 1 # current page
self.linecount = 0 # current line

def genLine (self, line):
print >>self.stream, line
self.linecount += 1

def outputLine (self, line):
self.testEndPage()
if not (self.linecount == 0 and len(line) == 0):

self.genLine(line)

def newPage (self):
if self.headers:

self.outputHeader()

def padPage (self):
while self.linecount < self.pagelen:

self.genLine("")

def endPage (self):
if self.footers:

if len(self.footers) + self.linecount < self.pagelen:
self.padPage()

self.outputFooter()
else:

if self.linecount < self.pagelen:
self.padPage()

self.linecount = 0
self.pagecount += 1
self.genLine('-' * 20)

def testEndPage (self):
if self.footers:

if len(self.footers) + 1 + self.linecount >= self.pagelen:
self.endPage()
self.newPage()

else:
if self.linecount >= self.pagelen:

self.endPage()
self.newPage()

def padLine (self, line, firstline=0, lastline=0):
""" Add spaces as needed by alignment mode. """

if self.alignment == "left":
adjust = firstline * self.pindent
#line = line

elif self.alignment == "center":
adjust = 0
pad = self.linewidth - adjust - len(line)
line = ' ' * (pad / 2) + line

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 46 of 92 Introduction to Jython, Part 2: Programming essentials

elif self.alignment == "right":
adjust = 0
pad = self.linewidth - adjust - len(line)
line = ' ' * pad + line

elif self.alignment == "justify":
adjust = firstline * self.pindent
pad = self.linewidth - adjust - len(line)
line = ""

add 1+ spaces between words to extend line
words = line.split()
xpad = pad
for word in words:

line += word + ' '
if not lastline and xpad > 0:

line += ' ' * (pad / len(words) + 1)
xpad -= 1

line = line.strip()

return ' ' * adjust + line

def format (self, line, firstline=0, lastline=0):
indent by left margin
return ' ' * self.lmargin + \

self.padLine(line.strip(), firstline, lastline)

def formatParagraph (self, para):
lcount = 0
adjust = self.pindent
line = ""

process by words
words = para.split(' ')
for word in words:

line += ' '
about to get too long
if len(line) + len(word) > self.linewidth - adjust:

line = self.format(line, lcount == 0, 0)
self.outputLine(line)
line = ""
lcount += 1
adjust = 0

line += word
output last (only) line
if len(line) > 0:

line = self.format(line, lcount == 0, 1)
self.outputLine(line)

def outputHeader (self):
for line in self.headers:

self.genLine(' ' * self.lmargin + line.center(self.linewidth))
self.genLine("")

def outputFooter (self):
self.genLine("")
for line in self.footers:

self.genLine(' ' * self.lmargin + line.center(self.linewidth))

def outputPages (self, paras):
""" Format and print the paragraphs. """
self.newPage()
for para in paras:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 47 of 92

self.formatParagraph(para)
self.outputLine("")

self.endPage()

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 48 of 92 Introduction to Jython, Part 2: Programming essentials

Section 9. Processing regular expressions

About regular expressions

As an extension to the find and replace functions described in String operations and
functions on page 41 , Jython supports regular expressions. Regular expressions (RE)
are strings that contain plain match text and control characters and provide an
extremely powerful string search and replace facility. Jython supports (at least) the
following forms of regular expressions:

• re module is a built-in part of Jython.

• Java works if you're running Jython on Java 1.4 or above.

• Apache ORO works if you add the ORO package to your CLASSPATH.

Regular expression formats

The simplest RE is an exact string to match. More complex REs include special control
characters. The control characters allow you to create patterns of matching strings. For
more information on RE syntax and options see Appendix H: Regular expression
control characters on page 78 and thePython Library Reference.

Below are some example REs and the strings they match:

Control character Regular
expression

Matches Does not
match

-- none -- abc abc ab

aabc

abcc

. - any character a.c abc

axc

a c

ac

abbc

* - optional repeating
subpattern

a.*c abc

axc

a c

ac

axxxxc

abcd

? - optional subpattern a.?c abc ac

aabc

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 49 of 92

+ - required repeating
subpattern

a.+c abc

abbc

axxc

ac

abcd

...|... - choice of subpattern abc|def abcef

abdef

abef

abcdef

(...) - grouping a(xx)|(yy)c axxc

ayyc

axxyyc

axc

ayc

(...)* - repeating grouping a(xx)*c ac

axxc

axxxxc

axxbxxc

(...)+ - required repeating
grouping

a(xx)+c axxc

axxxxc

ac

axxbxxc

\c - match a special
character

\.\?*\+ .?*+ ?.*+

abcd

\s - matches white space a\s*z az

a z

a z

za

z a

abyz

Regular expressions functions

The Jython re module provides support for regular expressions. re's primary functions
are findall, match, and search to find strings, and sub and subn to edit them. The
match function looks at the start of a string, the search function looks anywhere in a
string, and the findall function repeats search for each possible match in the
string. search is (by far) the most used of the regular expression functions.

Here are some of the most common RE functions:

Function Comment(s)

match(pattern, string {,
options})

Matches pattern at the string start

search(pattern, string {,
options})

Matches pattern somewhere in the
string

findall(pattern, string) Matches all occurrences of pattern in
the string

split(pattern, string {, Splits the string at matching points and

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 50 of 92 Introduction to Jython, Part 2: Programming essentials

max}) returns the results in a list

sub(pattern, repl, string {,
max})

Substitutes the match with repl for max
or all occurrences; returns the result

subn(pattern, repl, string {,
max})

Substitutes the match with repl for max
or all occurrences; returns the tuple
(result, count)

Note that the matching functions return None if no match is found. Otherwise the
match functions will return a Match object from which details of the match can be
found. See the Python Library Reference for more information on Match objects.

Two function examples

Let's take a look at some examples of regular expressions functions in action:

import re

do a fancy string match
if re.search(r"^\s*barry\s+feigenbaum\s*$", name, re.I):

print "It's Barry alright"

replace the first name with an initial
name2 = re.sub(r"(B|b)arry", "B.", name)

If you are going to use the same pattern repeatedly, such as in a loop, you can speed
up execution by using the compile function to compile the regular expression into a
Pattern object and then using that object's methods, as shown here:

import re
patstr = r"\s*abc\s*"
pat = re.compile(patstr)
print all lines matching patstr
for s in stringList:

if pat.match(s, re.I): print "%r matches %r" % (s, patstr)

Regular expression example: Grep

The following simplified version of the Grep utility (from grep.py) offers a more
complete example of a Jython string function.

""" A simplified form of Grep. """

import sys, re

if len(sys.argv) != 3:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 51 of 92

print "Usage: jython grep.py <pattern> <file>"
else:

process the arguments
pgm, patstr, filestr = sys.argv
print "Grep - pattern: %r file: %s" % (patstr, filestr)
pat = re.compile(patstr) # prepare the pattern

see File I/O in Jython on page 53 for more information
file = open(filestr) # access file for read
lines = file.readlines() # get the file
file.close()

count = 0
process each line
for line in lines:

match = pat.search(line) # try a match
if match: # got a match

print line
print "Matching groups: " + str(match.groups())
count += 1

print "%i match(es)" % count

When run on the words.txt file from File I/O in Jython on page 53 , the program produces
the following result:

C:\Articles>jython grep.py "(\w*)!" words.txt
Grep - pattern: '(\\w*)!' file: words.txt
How many times must I say it; Again! again! and again!

Matched on: ('Again',)
Singing in the rain! I'm singing in the rain! \

Just singing, just singing, in the rain!

Matched on: ('rain',)
2 match(es)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 52 of 92 Introduction to Jython, Part 2: Programming essentials

Section 10. File I/O in Jython

Using files

In addition to the Java platform's file-related APIs (packages java.io and, in Java
1.4, java.nio), Jython provides simple yet powerful access to files using the File
type and services in the os, os.path, and sys modules. (See Appendix F: The os
module on page 76 ,Appendix G: The os.path module on page 77 ,Appendix E: The sys
module on page 75 and thePython Reference Manual for more details on the os and
os.path packages.)

We'll start with a look at some basic file-access operations. A File object is created
using the built-in open function, shown below, where path is the path to the file, mode
is the access mode string, and size is the suggested buffer size:

file = open(path {, mode {, size}})

The mode string has the following syntax: (r|w|a){+}{b}; the default mode is r.
Here is a listing of all the available access mode strings:
• r: read

• w: write

• a: append to the end of the file

• +: update

• b: binary (vs. text)

The name of the file is accessed through the name attribute. The mode of the file is
accessed through the mode attribute.

File access methods

Files support the following methods:

Method Comment(s)

close() Flush and close an open file

flush() Outputs any buffered data

read({size}) Reads up to size (or the whole file)

readline({size}) Read a line (including ending '\n') up to size

readlines() Reads the file and returns a list of lines (including
ending '\n')

seek(offset {, mode}) Seek to a position, mode: 0 - start of file, 1 -
current offset, 2 - end of file

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 53 of 92

tell() Return the current offset

truncate({size}) Truncate (delete extra content) to current offset or
specified size

write(string) Write the string to a file. To write lines, end the
string in '\n'

writelines(lines) Write the list as a set of strings. To write lines,
end each string in '\n'

Simple file processing examples

We'll look at a couple of simple file processing examples, starting with the file copy
program below:

import sys

f = open(sys.argv[1], "rb") # open binary for reading
bin = f.read()
f.close()
f = open(sys.argv[2], "wb") # open binary (truncated) for write
f.write(bin)
f.close()

And here is a text file sort procedure:

import sys

f = open(sys.argv[1], "r") # read the file by lines
lines = f.readlines()
f.close()
lines.sort() # sort and print the lines
print "File %s sorted" % f.name
print lines

A word-counting program in Jython

As a more complete example of file processing, study the following word-counting
program:

import sys

def clean (word):
""" Remove any punctuation and map to a common case. """
word = word.lower()
remove any special characters
while word and word[-1] in ".,;!": word = word[:-1]
while word and word[0] in ".,;!": word = word[1:]

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 54 of 92 Introduction to Jython, Part 2: Programming essentials

return word

words = {} # set of unique words and counts

if len(sys.argv) != 2:
print "Usage: jython wcount.py <file>"

else:
file = open(sys.argv[1]) # access file for read
lines = file.readlines() # get the file
file.close()

process each line
for line in lines:

process each word in the line
for word in line.split():

word = clean(word)
words[word] = words.get(word, 0) + 1 # update the count

report the results
keys = words.keys()
keys.sort()
for word in keys:

print "%-5i %s" % (words[word], word)

Output of words.txt

Given the following input file (words.txt)

Now is the time for all good men to come to the aid of their country.
The rain in Spain falls mainly on the plain.
How many times must I say it; Again! again! and again!
Singing in the rain! I'm singing in the rain! \

Just singing, just singing, in the rain!

the word-counting program (from A word-counting program in Jython on page 54)
would return the following results (wrapped into two columns to save space):

3 again 1 many
1 aid 1 men
1 all 1 must
1 and 1 now
1 come 1 of
1 country 1 on
1 falls 1 plain
1 for 4 rain
1 good 1 say
1 how 4 singing
1 i 1 spain
1 i'm 7 the
4 in 1 their
1 is 1 time
1 it 1 times
2 just 2 to
1 mainly

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 55 of 92

The word-counting program in Java code

Let's take a look at the word-counting script re-implemented in the Java language.
Notice the extensive use of types in declarations and type-casts in the assignment
statements. As you can see, the Java code is significantly larger (approximately two
times) and arguably far more cryptic.

import java.io.*;
import java.util.*;
import java.text.*;

public class WordCounter
{

protected static final String specials = ".,;!";

/** Remove any punctuation and map to a common case. */
protected static String clean(String word) {

word = word.toLowerCase();
// remove any special characters
while (word.length() > 0 &&

specials.indexOf(word.charAt(word.length() - 1)) >= 0) {
word = word.substring(0, word.length() - 1);

}
while (word.length() > 0 &&

specials.indexOf(word.charAt(0)) >= 0) {
word = word.substring(1);

}
return word;

}

protected static Map words = new HashMap();

public static void main(String[] args) throws IOException {
if (args.length != 1) {

System.out.println("Usage: java WordCounter <file>");
}
else {

// access file for read
FileInputStream fis = new FileInputStream(args[0]);
DataInputStream dis = new DataInputStream(fis);
List lines = new ArrayList();
// get the file
for (String line = dis.readLine();

line != null;
line = dis.readLine()) {
lines.add(line);

}
dis.close();

// process each line
for (int i = 0; i < lines.size(); i++) {

String line = (String)lines.get(i);
System.out.println("Processing: " + line);
String[] xwords = line.split("\\s+");
for (int w = 0; w < xwords.length; w++) {

String word = clean(xwords[w]);
if (word.length() > 0) {

Integer count = (Integer)words.get(word);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 56 of 92 Introduction to Jython, Part 2: Programming essentials

if (count == null) {
count = new Integer(0);

}
// update the count
words.put(word,

new Integer(count.intValue() + 1));
}

}
}

// report the results
String[] keys = (String[])words.keySet().

toArray(new String[words.size()]);
Arrays.sort(keys);

MessageFormat form = new MessageFormat(
"{0,number, #########0} {1}");

for (int i = 0; i < keys.length; i++) {
System.out.println(form.format(

new Object[] {words.get(keys[i]), keys[i]}));
}

}
}

}

Printing to files

The print statement can print to a file by use of the ">>" operator. By default it prints
to the console (actually the value of sys.stdout). For example, the following
commands are equivalent:

print "Hello World!"

import sys
print >>sys.stdout, "Hello world!"

Jython allows alternate target files. For example, to print to the standard error stream
use:

print >>sys.stderr, "Hello world!"

To print to a file use:

f = open("myfile", "w")
for i in range(10):

print >>f, "Line", i
f.close()

And to add to the end of a file use:

f = open("myfile", "a")
print >>f, "Added line"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 57 of 92

f.close()

Saving objects persistently

Sometimes you may want to save an object persistently (beyond the lifetime of the
program that creates it) or send it to another application. To do this you need to
serialize (or pickle) the object so it can be placed in a file or on a stream. You then
need to de-serialize (or un-pickle) the object to use it again. Jython provides a
module, pickle, that makes this very easy. The pickle module contains the
following useful functions:

Function Comment(s)

load(file) Returns an object re-created from a previously
created image in a file.

loads(string) Returns an object recreated from a previously
created image in a string.

dump(object, file {,
bin})

Stores an object image into a file. If bin is
omitted or false, use a text representation; else a
binary representation (which is typically smaller).

dumps(object{, bin}) Returns a string containing the image of the
object. If bin is omitted or false, use a text
representation; else a binary representation
(which is typically smaller).

A pickling example

Here's an example of pickle at work. The following code sequence

import pickle

class Data:
def __init__ (self, x, y):

self.__x = x
self.__y = y

def __str__ (self):
return "Data(%s,%s)" % (self.__x, self.__y)

def __eq__ (self, other):
return self.__x == other.__x and self.__y == other.__y

data = Data(10, "hello")

file = open("data.pic", 'w')
pickle.dump(data, file)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 58 of 92 Introduction to Jython, Part 2: Programming essentials

file.close()

file = open("data.pic", 'r')
newdata = pickle.load(file)
file.close()

print "data:", data
print "newdata:", newdata
print "data is newdata:", data is newdata
print "data == newdata:", data == newdata

prints this:

data: Data(10,hello)
newdata: Data(10,hello)
data is newdata: 0 (false)
data == newdata: 1 (true)

The file created is in (semi-)readable plain text. For example, the above code created
the file data.pic:

(i__main__
Data
p0
(dp1
S'_Data__y'
p2
S'hello'
p3
sS'_Data__x'
p4
I10
sb.

Note that Jython cannot pickle objects that are Java objects, reference Java objects, or
subclass Java classes. To do this you need to use the
java.io.ObjectOutputStream and java.io.ObjectInputStream classes.

Object shelves

As shown in the previous panel, Jython can store objects into a file. Using a file per
object can cause problems (that is, it can waste space and you will need to name each
file). Jython supports a file that can hold multiple objects, called a shelf. A shelf acts
much like a persistent dictionary. To create shelves, use the open function of module
shelve. For example, the following code:

import shelve, sys

def printshelf (shelf, stream=sys.stdout): # print the entries in a shelf
for k in shelf.keys():

print >>stream, k, '=', shelf[k]

def clearshelf (shelf): # remove all keys in the shelf

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 59 of 92

for k in shelf.keys():
del shelf[k]

create shelf
shelf = shelve.open("test.shelf")
clearshelf(shelf)
shelf["x"] = [1,2,3,4]
shelf["y"] = {'a':1, 'b':2, 'c':3}
printshelf(shelf)
shelf.close()

print
update shelf
shelf = shelve.open("test.shelf")
printshelf(shelf)
print
shelf["z"] = sys.argv[1]
printshelf(shelf)
shelf.close()

print
verify shelf persistent
shelf = shelve.open("test.shelf")
printshelf(shelf)
shelf.close()

produces this output (with argument "This is a test string"):

x = [1, 2, 3, 4]
y = {'b': 2, 'a': 1, 'c': 3}

x = [1, 2, 3, 4]
y = {'b': 2, 'a': 1, 'c': 3}

x = [1, 2, 3, 4]
z = This is a test string
y = {'b': 2, 'a': 1, 'c': 3}

x = [1, 2, 3, 4]
z = This is a test string
y = {'b': 2, 'a': 1, 'c': 3}

Note that the open function produces two files based on the file name passed to open:

• <filename>.dir is a directory into the persistent data

• <filename>.dat is the saved persistent object data

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 60 of 92 Introduction to Jython, Part 2: Programming essentials

Section 11. A simple Swing GUI

The Factorial Calculator

We'll close this second installment of the "Introduction to Jython" tutorial with a
complete program that encompasses many of the details we have so far discussed.
The Factorial Calculator is a GUI application written entirely in Jython. It calculates the
value of x! (x factorial) for any positive integer value. Because x! can be very large, this
example takes advantage of Jython's ability to process very large integers.
Calculations for large values of x (say, > 10000) can take several minutes, so the user
interface includes a progress bar and a Cancel button to interrupt a calculation.

In the panels that follow, you can see the two most essential components of the
Factorial Calculator: the class that supplies the factorial calculation engine, and the set
of classes that comprise the GUI. The complete, runnable code for the Factorial
Calculator is available for download in Resources on page 67 . Note that in order to
completely understand the GUI code you should have some experience with creating
Swing GUIs. Even without this prior knowledge, you should be able to discern many
elements of the code from our prior discussion throughout this tutorial.

To get started, let's see what our GUI application looks like. Here's a screenshot of the
GUI showing the result of calculating 100! (that is, 100 factorial).

The factorial engine: factor.py

Factorial is the class that supplies the factorial calculation engine. It consists of a
sequence of code with additional explanation lines (identified by --) added.

-- import the needed modules
import sys
import exceptions

-- create the Factorial class, a general purpose factorial calculation engine
class Factorial:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 61 of 92

"""A general purpose factorial calculation engine"""

-- define the constructor
def __init__ (self):

self.__listeners = []
self.__cancelled = 0

-- allow other classes to register event listeners;
--- used to track calculation progress
-- A "listener" is a function that takes an integer % argument

def addListener (self, listener):
if listener not in self.__listeners:

self.__listeners.append(listener)

def addListeners (self, listeners):
for l in listeners:

self.addListener(l)

def removeListener (self, listener):
self.__listeners.remove(listener)

def removeListeners (self, listeners):
for l in listeners:

self.removeListener(l)

def fireListeners (self, value): # notify all listeners
for func in self.__listeners:

func(value)

-- allow others to cancel a long running calculation
def cancel (self):

self.__cancelled = 1

-- perform the factorial calculation;
-- may take a long time (many minutes) for big numbers

def calculate (self, value):
if type(value) != type(0) or value < 0:

raise ValueError, \
"only positive integers supported: " + str(value)

self.__cancelled = 0
result = 1L
self.fireListeners(0) # 0% done
calculate factorial -- may take quite a while
if value > 1: # need to do calculation

last = 0
using iteration (vs. recursion) to increase performance
and eliminate any stack overflow possibility
for x in xrange(1, value + 1):

if self.__cancelled: break # early abort requested
result = result * x # calc next value
next = x * 100 / value
if next != last: # signal progress

self.fireListeners(next)
last = next

self.fireListeners(100) # 100% done
if self.__cancelled: result = -1
return result

test case
if __name__ == "__main__":

print sys.argv[0], "running..."
fac = Factorial()

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 62 of 92 Introduction to Jython, Part 2: Programming essentials

def doFac (value):
try:

print "For", value, "result =", fac.calculate(value)
except ValueError, e:

print "Exception -", e

doFac(-1)
doFac(0)
doFac(1)
doFac(10)
doFac(100)
doFac(1000)

The GUI: fgui.py

Here you can see the set of classes that supplies the factorial GUI. The set consists of
a sequence of code with additional explanation lines (identified by --) added.

-- import the needed modules
import sys
import string
from types import *

from java import lang
from java import awt
from java.awt import event as awtevent
from javax import swing

from factor import Factorial

-- PromptedValueLayout is a customized Java LayoutManager not discussed here
-- but included with the resources
from com.ibm.articles import PromptedValueLayout as ValueLayout

-- support asynchronous processing
class LongRunningTask(lang.Thread):

def __init__ (self, runner, param=None):
self.__runner = runner # function to run
self.__param = param # function parameter (if any)
self.complete = 0
self.running = 0

-- Java thread body
def run (self):

self.complete = 0; self.running = 1
if self.__param is not None:

self.result = self.__runner(self.__param)
else:

self.result = self.__runner()
self.complete = 1; self.running = 0

-- start a long running activity
def doAsync (func, param):

LongRunningTask(func, param).start()

-- Swing GUI services must be called only on the AWT event thread,
class SwingNotifier(lang.Runnable):

def __init__ (self, processor, param=None):

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 63 of 92

self.__runner = processor # function to do GUI updates
self.__param = param # function parameter (if any)

-- Java thread body
def run (self):

if self.__param is not None: self.__runner(self.__param)
else: self.__runner()

def execute (self):
swing.SwingUtilities.invokeLater(self)

-- define and construct a GUI for factorial calculation
class FactorialGui(swing.JPanel):

"""Create and process the GUI."""

def __init__ (self, engine):
swing.JPanel.__init__(self)
self.__engine = engine
engine.addListener(self.update)
self.createGui()

def update (self, value): # do on AWT thread
SwingNotifier(self.updateProgress, value).execute()

def updateProgress (self, value): # display progress updates
self.__progressBar.value = value

-- Calculate button press handler
def doCalc (self, event): # request a factorial

self.__outputArea.text = ""
ivalue = self.__inputField.text # get value to calculate
value = -1
try: value = int(ivalue) # convert it
except: pass
if value < 0: # verify it

self.__statusLabel.text = \
"Cannot make into a positive integer value: " + ivalue

else:
self.__calcButton.enabled = 0
self.__cancelButton.enabled = 1
msg = "Calculating factorial of %i..." % value
if value > 25000: msg += \

"; May take a very long time to complete!"
self.__statusLabel.text = msg # tell user we're busy
doAsync(self.calcFac, value) # do the calculation

-- main calculation worker
def calcFac (self, value):

stime = lang.System.currentTimeMillis()
fac = self.__engine.calculate(value) # time calculation
etime = lang.System.currentTimeMillis()
svalue = ""; order = 0
if fac >= 0: # we have a result, not cancelled

svalue = str(fac); order = len(svalue) - 1
formatted = ""
while len(svalue) > 100: # wrap long numbers

formatted += svalue[0:100] + '\n'
svalue = svalue[100:]

formatted += svalue
svalue = formatted

ftime = lang.System.currentTimeMillis()

SwingNotifier(self.setResult, \
(svalue, order, ftime - stime, etime - stime)).execute()

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 64 of 92 Introduction to Jython, Part 2: Programming essentials

-- display the result
def setResult (self, values):

svalue, order, ttime, ftime = values
self.__cancelButton.enabled = 0
if len(svalue) > 0:

self.__statusLabel.text = \
"Setting result - Order: 10**%i" % order

self.__outputArea.text = svalue
self.__statusLabel.text = \

"Total time: %ims, Calc time: %ims, Order: 10**%i" % \
(ttime, ftime, order)

else:
self.__statusLabel.text = "Cancelled"

self.__calcButton.enabled = 1

-- Cancel button press handler
def doCancel (self, event): # request a cancel

self.__cancelButton.enabled = 0
self.__engine.cancel()

-- create (layout) the GUI
def createGui (self): # build the GUI

self.layout = awt.BorderLayout()

progB = self.__progressBar = \
swing.JProgressBar(0, 100, stringPainted=1);

inf = self.__inputField = swing.JTextField(5)
inl = swing.JLabel("Calculate value of:", swing.JLabel.RIGHT)
inl.labelFor = inf

outf = self.__outputArea = swing.JTextArea()
outl = swing.JLabel("Result:", swing.JLabel.RIGHT)
outl.labelFor = outf

calcb = self.__calcButton = \
swing.JButton("Calculate", actionPerformed=self.doCalc,

enabled=1, mnemonic=awtevent.KeyEvent.VK_C)
cancelb = self.__cancelButton = \

swing.JButton("Cancel", actionPerformed=self.doCancel,
enabled=0, mnemonic=awtevent.KeyEvent.VK_L)

vl = ValueLayout(5, 5)
inp = swing.JPanel(vl)
vl.setLayoutAlignmentX(inp, 0.2)
inp.add(inl); inp.add(inf, inl)
self.add(inp, awt.BorderLayout.NORTH)

vl = ValueLayout(5, 5)
outp = swing.JPanel(vl)
vl.setLayoutAlignmentX(outp, 0.2)
outp.add(outl); outp.add(swing.JScrollPane(outf), outl)

xoutp = swing.JPanel(awt.BorderLayout())
xoutp.add(progB, awt.BorderLayout.NORTH)
xoutp.add(outp, awt.BorderLayout.CENTER)

self.add(xoutp, awt.BorderLayout.CENTER)

sp = swing.JPanel(awt.BorderLayout())

bp = swing.JPanel()

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 65 of 92

bp.add(calcb)
bp.add(cancelb)
sp.add(bp, awt.BorderLayout.NORTH)

sl = self.__statusLabel = swing.JLabel(" ")
sp.add(sl, awt.BorderLayout.SOUTH)
self.add(sp, awt.BorderLayout.SOUTH)

-- main entry point; launches the GUI in a frame
if __name__ == "__main__":

print sys.argv[0], "running..."
frame = swing.JFrame("Factorial Calculator",

defaultCloseOperation=swing.JFrame.EXIT_ON_CLOSE)
cp = frame.contentPane
cp.layout = awt.BorderLayout()
cp.add(FactorialGui(Factorial()))
frame.size = 900, 500
frame.visible = 1

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 66 of 92 Introduction to Jython, Part 2: Programming essentials

Section 12. Wrap-up and resources

Summary

This completes the two-part "Introduction to Jython" tutorial. While much of the tutorial
functions as an overview, I hope I have provided you with enough advanced
discussion, code examples, and incentive to proceed into more hands-on learning,
specifically by developing your own programs in Jython.

In my opinion, Jython does for the Java platform what Visual Basic does for Microsoft's
.NET: It provides much easier access to a complex development and execution
environment. While easy to use, Jython improves upon the Java language by
incorporating features the Java language lacks (some of which are also available today
in .NET languages such as C#) without sacrificing any of the Java platform's capability
(unless you count compile-time-type checking or a small reduction in effective
performance).

We've discussed many of Jython's enhancements in this tutorial -- including for each
iteration, property methods accessible as attributes, collection literals, generic
collections that hold basic types (such as integers), generic functions, first-class
functions, overloadable operators, C-like printf formatting, functions as event
handlers, and dynamic code execution. Some of these features are so compelling that
they will be included in the next version of the Java platform (that is, 1.5). Of course,
with Jython you don't have to wait -- you can begin using them today!

Resources

• Download the jython2-source.zip for this tutorial.

• Visit the Jython home page to download Jython.

• Take the first part of this tutorial "Introduction to Jython, Part 1: Java programming
made easier" (developerWorks, April 2004).

• Jython modules and packages enable reuse of the extensive standard Java libraries.
Learn more about the Java libraries (and download the current version of the JDK)
on the Sun Microsystems Java technology homepage.

• You'll find an entire collection of Python docs and tutorials (including the Python
Library Reference) and more information about regular expressions on the Python
home page.

• You can also learn more about regular expressions from the tutorial "Using regular
expressions" (developerWorks, September 2000).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 67 of 92

jython2-source.zip
http://www.jython.org
http://www.jython.org
http://www.jython.org
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-jython1-i.html
http://java.sun.com
http://java.sun.com
http://java.sun.com
http://www.python.org
http://www.python.org
http://www.python.org
http://www-106.ibm.com/developerworks/linux/edu/l-dw-linuxregexp-i.html
http://www-106.ibm.com/developerworks/linux/edu/l-dw-linuxregexp-i.html
http://www-106.ibm.com/developerworks/linux/edu/l-dw-linuxregexp-i.html
http://www-106.ibm.com/developerworks/linux/edu/l-dw-linuxregexp-i.html

• Greg Travis's "Getting started with NIO" (developerWorks, July 2003) is a good,
hands-on introduction to the Java platform's new I/O.

• In "Charming Jython" (developerWorks, May 2003) regular developerWorks
contributor Uche Ogbuji offers a short introduction to Jython.

• Try your hand at using Jython to build a read-eval-print-loop, with Eric Allen's "Repls
provide interactive evaluation" (developerWorks, March 2002).

• Charming Python is regular developerWorks column devoted to programming with
Python.

• Jeffrey Friedl's Mastering Regular Expressions, Second Edition (O'Reilly, July 2002)
is a comprehensive introduction to regular expressions.

• For a solid introduction to Jython, see Samuele Pedroni and Noel Rappin's Jython
Essentials (O'Reilly, March 2002).

• Jython for Java Programmers focuses on application development, deployment, and
optimization with Jython (Robert W. Bill, New Riders, December 2001).

• Python Programming with the Java Class Libraries is a good introduction to building
Web and enterprise applications with Jython (Richard Hightower, Addison Wesley,
2003).

• You'll find articles about every aspect of Java programming in the developerWorks
Java technology zone.

• Visit the Developer Bookstore for a comprehensive listing of technical books,
including hundreds of Java-related titles .

• Also see the Java technology zone tutorials page for a complete listing of free
Java-focused tutorials from developerWorks.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 68 of 92 Introduction to Jython, Part 2: Programming essentials

http://www-106.ibm.com/developerworks/java/edu/j-dw-java-nio-i.html
http://www-106.ibm.com/developerworks/java/edu/j-dw-java-nio-i.html
http://www-106.ibm.com/developerworks/java/edu/j-dw-java-nio-i.html
http://www-106.ibm.com/developerworks/java/edu/j-dw-java-nio-i.html
http://www-106.ibm.com/developerworks/java/edu/j-dw-java-nio-i.html
http://www-106.ibm.com/developerworks/java/library/j-jython/
http://www-106.ibm.com/developerworks/java/library/j-jython/
http://www-106.ibm.com/developerworks/java/library/j-jython/
http://www-106.ibm.com/developerworks/java/library/j-diag0312/
http://www-106.ibm.com/developerworks/java/library/j-diag0312/
http://www-106.ibm.com/developerworks/java/library/j-diag0312/
http://www-106.ibm.com/developerworks/java/library/j-diag0312/
http://www-106.ibm.com/developerworks/java/library/j-diag0312/
http://www-106.ibm.com/developerworks/linux/library/l-cpycol.html
http://www-106.ibm.com/developerworks/linux/library/l-cpycol.html
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0596002890
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0596002890
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0596002890
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0596002890
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0596002890
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0596002475
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0596002475
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0735711119
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0735711119
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0735711119
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0735711119
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://devworks.krcinfo.com/WebForms/ProductDetails.aspx?ProductID=0201616165
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://devworks.krcinfo.com/
http://devworks.krcinfo.com/
http://devworks.krcinfo.com/WebForms/ProductList.aspx?Search=Category&id=200&parent=Java
http://devworks.krcinfo.com/WebForms/ProductList.aspx?Search=Category&id=200&parent=Java
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www.ibm.com/developerWorks/

Section 13. Feedback

Feedback

Please send us your feedback on this tutorial!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 69 of 92

Section 14. Appendices

Appendix A: Character codes for array types

The table below lists the character codes for Jython array types (see Java arrays from
Jython on page 30).

Character type code Corresponding Java type

'z' Boolean

'c' char

'b' byte

'h' short

'i' int

'l' long

'f' float

'd' double

Note: The above table is from www.jython.org.

Appendix B: Common overloaded operators and
methods

The following are the operators that are commonly (additional operators can be)
overloaded:

Operator Function to override Comment(s)

x + y

x += y

+x

__add__(self, other)

__radd__ (self, other)

__iadd__(self, other)

__pos__ self)

Implements + operator

x - y

x -= y

-x

__sub__(self, other)

__rsub__(self, other)

__isub__(self, other)

__neg__(self)

Implements - operator

x * y __mul__(self, other) Implements * operator

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 70 of 92 Introduction to Jython, Part 2: Programming essentials

x *= y __rmul__(self, other)

__imul__(self, other)

x / y

x /= y

__div__(self, other)

__rdiv__(self, other)

__idiv__(self, other)

Implements / operator

x % y

x %= y

__mod__(self, other)

__rmod__(self, other)

__imod__(self, other)

Implements % operator

x & y

x &= y

__and__(self, other)

__rand__(self, other)

__iand__(self, other)

Implements & operator

x | y

x |= y

__or__(self, other)

__ror__(self, other)

__ior__(self, other)

Implements | operator

x ^ y

x ^= y

__xor__(self, other)

__rxor__(self, other)

__ixor__(self, other)

Implements ^ operator

~ x __invert__(self) Implements ~ operator

x << y

x <<= y

__lshift__(self, other)

__rlshift__(self, other)

__ilshift__(self, other)

Implements << operator

x >> y

x >>= y

__rshift__(self, other)

__ rrshift__(self, other)

__ irshift__(self, other)

Implements >> operator

x ** y

x **= y

__pow__(self, other)

__rpow__(self, other)

__ipow__(self, other)

Implements ** operator

divmod(x,y) __divmod__(self, other)

__rdivmod__(self, other)

Implements divmod()

x < y __lt__(self, other) Implements < operator. This should
return the opposite value returned by
__ge__.

x <= y __le__(self, other) Implements <= operator. This should
return the opposite value returned by
__gt__.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 71 of 92

x > y __gt__(self, other) Implements > operator. This should
return the opposite value returned by
__le__.

x >= y __ge__(self, other) Implements >= operator. This should
return the opposite value returned by
__lt__.

x == y __eq__(self, other) Implements == operator. This should
return the opposite value returned by
__ne__.

x != y

x <> y

__ne__(self, other) Implements != operator. This should
return the opposite value returned by
__eq__.

cmp(x,y) __cmp__(self, other) Implements cmp(); also used for
relational tests if above specific
overrides are not defined. This should
return a < 0, 0 or > 0 value (say -1, 0 or
1).

x __nonzero__(self) Implements logical tests. This should
return 0 or 1.

hash(x) __hash__(self) Implements hash(). Returns an
integer value. Instances that are equal
(that is, __eq__ returns true) should
return the same __hash__ value (that
is, (x == y) and (hash(x) ==
hash(y)) should be true. Similar to
java.lang.Object.hashCode().

abs(x) __abs__(self) Implements abs()

int(x) __int__(self) Implements int()

long(x) __long__(self) Implements long()

float(x) __float__(self) Implements float()

complex(x) __complex__(self) Implements complex()

oct(x) __oct__(self) Implements oct()

hex(x) __hex__(self) Implements hex()

coerce(x,y) __coerce__(self, other) Implements coerce()

y = x.name __getattr__ (self, name) Implements attribute lookup

x.name = y __setattr__ (self, name) Implements attribute creation/update

del x.name __delattr__ (self, name) Implements attribute removal

y = c[i] __getitem_ (self, i) Implements item lookup

c[i] = y __setitem__ (self, i) Implements item creation/update

del c[i] __delitem__ (self, i) Implements item removal

x(arg, ...) __call__ (self, arg, ...) Implements the call operator

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 72 of 92 Introduction to Jython, Part 2: Programming essentials

len(c) __len__ (self) Implements len()

x in c

x not in c

__contains__ (self, other) Implements in operator

class() __init__ (self, ...) Instance constructor; called when the
class is created

del x __del__ (self) Instance destructor; called just before
being deallocated

repr(x)

-- or --

`x`

__repr__(self) Implements repr() on this class

str(x) __str__(self) Implements str() on this class;
Jython uses __repr__ if __str__ is not
defined. str() is used like
x.toString() in Java

Note: For the binary operators, the __xxx__ form is used when the left (or both)
argument implements the function; the __rxxx__ form is used only if the right argument
implements the function and the left argument does not; the __ixxx__ form is used to
implement the augmented assignment (x ?= y) operation. See the Python Reference
Manual for more details and overload-able functions.

Appendix C: Jython debugger commands

The debugger provides the following functions/features:

Command Arguments Function

h, help -- none -- List the available commands

w, where -- none -- Shows the current stack trace

d, down -- none -- Move down one stack frame

u, up -- none -- Move up one stack frame

b, break line# | function,
condition_expr

Set a breakpoint at a line number or
function with an optional expression to
evaluate - stop only if true

tbreak line# | function,
condition_expr

Set a breakpoint at a line number or
function with an optional expression to
evaluate - stop only if true; the
breakpoint is automatically cleared
when hit

cl, clear bpid... Clears all or listed breakpoints

enable bpid... Enables breakpoints

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 73 of 92

disable bpid... Disabled breakpoints

ignore bpid, count Sets the breakpoint ignore
(auto-resume) count

condition bpid, condition_expr Sets the breakpoint condition
expression

s, step -- none -- Steps over the next line, possibly into a
function

n, next -- none -- Resume until the next line is reached

r, return -- none -- Resume until the current function
returns

c, cont,
continue

-- none -- Resume execution

j, jump line# Set a new current line

l, list line#1, line#1 Lists source from line#1 to line#2, if
omitted, then list the lines around the
current line

a, args -- none -- Show the arguments of the current
function

p, pp expr Evaluate the expression and print its
result; pp formats the result

print expr Do the print statement, that is, - !print
expr

alias name, expr Create a named expression to simplify
printing of repeated values

unalias name Delete an alias

q, quit -- none -- End the debugging session

! statement Execute the Jython statement

Note: entering a blank line repeats the prior command.

Appendix D: Jython to/from Java type mapping

Jython uses these rules to map parameter types:

Java Parameter Types Allowed Python Types

char String (must have length 1)

Boolean Integer (true = nonzero)

byte, short, int, long Integer

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 74 of 92 Introduction to Jython, Part 2: Programming essentials

float, double Float

java.lang.String, byte[], char[] String

java.lang.Class Class or JavaClass

Foobar[] Array (must contain objects of class or
subclass of Foobar)

java.lang.Object String->java.lang.String, all others
unchanged

org.python.core.PyObject All unchanged

Foobar Instance --> Foobar (if Instance is
subclass of Foobar); JavaInstance -->
Foobar (if JavaInstance is instance of
Foobar or subclass)

Jython uses these rules to map return value types:

Java Return Type Returned Python Type

char String (of length 1)

Boolean Integer (true = 1, false = 0)

byte, short, int, long Integer

float, double Float

java.lang.String String

java.lang.Class JavaClass which represents given Java
class

Foobar[] Array (containing objects of class or
subclass of Foobar)

org.python.core.PyObject (or
subclass)

Unchanged

Foobar JavaInstance which represents the
Java Class Foobar

Note: the above two tables are from the www.jython.org site.

Appendix E: The sys module

The sys module has some important variables:

Variable Comment(s)

argv The arguments supplied to the main module.
argv[0] is the program name, argv[1] is the first

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 75 of 92

argument and so on

maxint

minint

Largest/smallest integer value

platform The version of Java Jython is running on

path The module search path

stdin

stdout

stderr

Standard input, output and error streams

modules List of currently loaded modules

version

version_info

Jython version and details

The sys module has some important functions:

Function Comment(s)

exit(int) Exits the program

exc_info() Get information on the most recent exception

See the Python Library Reference for more information.

Appendix F: The os module

The os module has some important variables:

Variable Comment(s)

name Type of host

curdir String to represent the current directory

pardir String to represent the parent directory

sep String to separate directories in a path

pathsep String to separate paths in a path set string

linesep String to separate text lines

environ The current environment string

The sys module has some important functions:

Function Comment(s)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 76 of 92 Introduction to Jython, Part 2: Programming essentials

getcwd() Get the current directory

mkdir(path)

makedirs(path)

rmdir(path)

Create/delete a directory

remove(path)

-- or --

unlink(path)

Delete a file

listdir(path) List the files in a path

rename(path, new) Renames a file/directory to new

system(command) Run a shell command

See the Python Library Reference for more information.

Appendix G: The os.path module

The os.path module has some important functions:

Function Comment(s)

exists(path) True is path exists

abspath(path)

normpath(path)

normcase(path)

Returns the absolute form of the path

Returns the normalized form of the path

Returns the path in the normal case

basename(path)

dirname(path)

Returns the file part of path

Returns the directory part of path

commonprefix(list) Returns the longest common prefix of the paths in
the list

gethome() Gets the home directory

getsize(path) Gets the size of the path file

isabs(path)

isfile(path)

isdir(path)

Tests to see if path is absolute

Tests to see if path is a file

Tests to see if path is a dir

samepath(path1, path2) True if path1 and path2 represent the same file

join(list) Joins the path elements in the list

split(path) Returns (path, last_element)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 77 of 92

splitdrive(path)

splitext(path)

Returns (drive, rest_of_path)

Returns (root, extension)

See the Python Library Reference for more information.

Appendix H: Regular expression control characters

The most useful Regular Expression special characters are:

Special Notation Comment(s)

Any character except those
below

Matches that character

. Matches any character

^ Matches the start of the string

$ Matches the end of the string

?

??

Matches longest 0 or 1 of the proceeding

Matches shortest 0 or 1 of the proceeding

+

+?

Matches longest 1 or more of the proceeding

Matches shortest 1 or more of the proceeding

*

*?

Matches longest 0 or more of the proceeding

Matches shortest 0 or more of the proceeding

{m,n}

{m,n}?

Matches longest m to n of the proceeding

Matches shortest m to n of the proceeding

[...]

[^...]

Defines the set of enclosed characters

Defines the set of non-enclosed characters

...|... Matches a choice (or)

(...)

(?...)

Matches the sequence (or group) ...; groups are
ordered from left to right with origin 1

Matches a sequence but does not define a group

(?P<name>...)

(?P=name)

Matches a sequence (or group) ... giving it a
name

Matches the sequence defined with the name

(?=...)

(?!...)

Matches ... but does not consume the test

Matches not ... but does not consume the test

\c Special characters:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 78 of 92 Introduction to Jython, Part 2: Programming essentials

\c literal escapes: .?*+&^$|()[]

\c function escapes: see below

See the Python Library Reference for more information.

Function escapes:

Function Escapes Comment(s)

\A

\Z

Matches at start of line

Matches at end of line

\B

\b

Matches not at beginning or end of a word

Matches at beginning or end of a word

\D

\d

Matches not any decimal digit (0..9)

Matches any decimal digit (0..9)

\S

\s

Matches not any white space

Matches any white space

\W

\w

Matches not any alpha-numeric characters

Matches any alpha-numeric characters

\# Matches group #

Several options exist to modify how regular expression are processed. Options are bit
flags and may be combined by OR-ing (|) them together. Some of the more useful
options are:

Option Comment(s)

IGNORECASE

-- or --

I

Match ignoring case

MULTILINE

-- or --

M

Causes '^' and '$' to match internal line
boundaries (vs. just the start and end of the
string)

DOTALL

-- or --

S

Causes '.' to match a newline

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 79 of 92

Appendix I: Generated factor.java

The following is the code generated by jythonc compiler for the factor.py file of The
factorial engine: factor.py on page 61 .

import org.python.core.*;

public class factor extends java.lang.Object {
static String[] jpy$mainProperties =

new String[] {"python.modules.builtin",
"exceptions:org.python.core.exceptions"};

static String[] jpy$proxyProperties =
new String[] {"python.modules.builtin",

"exceptions:org.python.core.exceptions",
"python.options.showJavaExceptions",
"true"};

static String[] jpy$packages = new String[] {};

public static class _PyInner extends PyFunctionTable
implements PyRunnable {

private static PyObject i$0;
private static PyObject i$1;
private static PyObject s$2;
private static PyObject l$3;
private static PyObject i$4;
private static PyObject s$5;
private static PyObject s$6;
private static PyObject s$7;
private static PyObject s$8;
private static PyObject s$9;
private static PyObject i$10;
private static PyObject i$11;
private static PyObject s$12;
private static PyFunctionTable funcTable;
private static PyCode c$0___init__;
private static PyCode c$1_addListener;
private static PyCode c$2_addListeners;
private static PyCode c$3_removeListener;
private static PyCode c$4_removeListeners;
private static PyCode c$5_fireListeners;
private static PyCode c$6_cancel;
private static PyCode c$7_calculate;
private static PyCode c$8_Factorial;
private static PyCode c$9_doFac;
private static PyCode c$10_main;
private static void initConstants() {

i$0 = Py.newInteger(0);
i$1 = Py.newInteger(1);
s$2 = Py.newString("only positive integers supported: ");
l$3 = Py.newLong("1");
i$4 = Py.newInteger(100);
s$5 = Py.newString("__main__");
s$6 = Py.newString("running...");
s$7 = Py.newString("For");
s$8 = Py.newString("result =");
s$9 = Py.newString("Exception -");
i$10 = Py.newInteger(10);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 80 of 92 Introduction to Jython, Part 2: Programming essentials

i$11 = Py.newInteger(1000);
s$12 = Py.newString("C:\\Articles\\factor.py");
funcTable = new _PyInner();
c$0___init__ = Py.newCode(1, new String[] {"self"},

"C:\\Articles\\factor.py",
"__init__", false, false,
funcTable, 0,
null, null, 0, 1);

c$1_addListener = Py.newCode(2,
new String[]
{"self", "listener", "ll"},
"C:\\Articles\\factor.py",
"addListener", false,
false, funcTable, 1,
null, null, 0, 1);

c$2_addListeners = Py.newCode(2,
new String[]
{"self", "listeners", "l"},
"C:\\Articles\\factor.py",
"addListeners", false,
false, funcTable, 2,
null, null, 0, 1);

c$3_removeListener = Py.newCode(2,
new String[]
{"self", "listener", "ll"},
"C:\\Articles\\factor.py",
"removeListener", false,
false, funcTable, 3,
null, null, 0, 1);

c$4_removeListeners = Py.newCode(2,
new String[]
{"self", "listeners", "l"},
"C:\\Articles\\factor.py",
"removeListeners", false,
false, funcTable, 4,
null, null, 0, 1);

c$5_fireListeners = Py.newCode(2,
new String[]
{"self", "value", "func"},
"C:\\Articles\\factor.py",
"fireListeners", false,
false, funcTable, 5,
null, null, 0, 1);

c$6_cancel = Py.newCode(1,
new String[]
{"self"},
"C:\\Articles\\factor.py",
"cancel", false,
false, funcTable, 6,
null, null, 0, 1);

c$7_calculate = Py.newCode(2,
new String[]
{"self", "value", "next",
"x", "last", "result"},
"C:\\Articles\\factor.py",
"calculate", false,
false, funcTable, 7,
null, null, 0, 1);

c$8_Factorial = Py.newCode(0,
new String[]
{},
"C:\\Articles\\factor.py",
"Factorial", false,
false, funcTable, 8,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 81 of 92

null, null, 0, 0);
c$9_doFac = Py.newCode(1,

new String[]
{"value", "e"},
"C:\\Articles\\factor.py",
"doFac", false,
false, funcTable, 9,
null, null, 0, 1);

c$10_main = Py.newCode(0,
new String[] {},
"C:\\Articles\\factor.py",
"main", false,
false, funcTable, 10,
null, null, 0, 0);

}

public PyCode getMain() {
if (c$10_main == null) _PyInner.initConstants();
return c$10_main;

}

public PyObject call_function(int index, PyFrame frame) {
switch (index){

case 0:
return _PyInner.__init__$1(frame);
case 1:
return _PyInner.addListener$2(frame);
case 2:
return _PyInner.addListeners$3(frame);
case 3:
return _PyInner.removeListener$4(frame);
case 4:
return _PyInner.removeListeners$5(frame);
case 5:
return _PyInner.fireListeners$6(frame);
case 6:
return _PyInner.cancel$7(frame);
case 7:
return _PyInner.calculate$8(frame);
case 8:
return _PyInner.Factorial$9(frame);
case 9:
return _PyInner.doFac$10(frame);
case 10:
return _PyInner.main$11(frame);
default:
return null;

}
}

private static PyObject __init__$1(PyFrame frame) {
frame.getlocal(0).__setattr__("_Factorial__listeners",

new PyList(new PyObject[] {}));
frame.getlocal(0).__setattr__("_Factorial__cancelled", i$0);
return Py.None;

}

private static PyObject addListener$2(PyFrame frame) {
frame.setlocal(2,

frame.getlocal(0).__getattr__("_Factorial__listeners"));
if (frame.getlocal(1)._notin(

frame.getlocal(2)).__nonzero__()) {
frame.getlocal(2).invoke("append", frame.getlocal(1));

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 82 of 92 Introduction to Jython, Part 2: Programming essentials

}
return Py.None;

}

private static PyObject addListeners$3(PyFrame frame) {
// Temporary Variables
int t0int;
PyObject t0PyObject, t1PyObject;

// Code
t0int = 0;
t1PyObject = frame.getlocal(1);
while ((t0PyObject =

t1PyObject.__finditem__(t0int++)) != null) {
frame.setlocal(2, t0PyObject);
frame.getlocal(0).invoke("addListener",

frame.getlocal(2));
}
return Py.None;

}

private static PyObject removeListener$4(PyFrame frame) {
frame.setlocal(2,

frame.getlocal(0).__getattr__("_Factorial__listeners"));
frame.getlocal(2).invoke("remove", frame.getlocal(1));
return Py.None;

}

private static PyObject removeListeners$5(PyFrame frame) {
// Temporary Variables
int t0int;
PyObject t0PyObject, t1PyObject;

// Code
t0int = 0;
t1PyObject = frame.getlocal(1);
while ((t0PyObject =

t1PyObject.__finditem__(t0int++)) != null) {
frame.setlocal(2, t0PyObject);
frame.getlocal(0).invoke("removeListener",

frame.getlocal(2));
}
return Py.None;

}

private static PyObject fireListeners$6(PyFrame frame) {
// Temporary Variables
int t0int;
PyObject t0PyObject, t1PyObject;

// Code
t0int = 0;
t1PyObject =

frame.getlocal(0).__getattr__("_Factorial__listeners");
while ((t0PyObject =

t1PyObject.__finditem__(t0int++)) != null) {
frame.setlocal(2, t0PyObject);
frame.getlocal(2).__call__(frame.getlocal(1));

}
return Py.None;

}

private static PyObject cancel$7(PyFrame frame) {
frame.getlocal(0).__setattr__("_Factorial__cancelled", i$1);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 83 of 92

return Py.None;
}

private static PyObject calculate$8(PyFrame frame) {
// Temporary Variables
int t0int;
PyObject t0PyObject, t1PyObject;

// Code
if (((t0PyObject = frame.getglobal("type").

__call__(frame.getlocal(1)).
_ne(frame.getglobal("types").
__getattr__("IntType"))).__nonzero__()

? t0PyObject
: frame.getlocal(1)._lt(i$0)).__nonzero__()) {
throw Py.makeException(

frame.getglobal("ValueError"),
s$2._add(frame.getglobal("str").

__call__(frame.getlocal(1))));
}
frame.getlocal(0).__setattr__("_Factorial__cancelled", i$0);
frame.setlocal(5, l$3);
frame.getlocal(0).invoke("fireListeners", i$0);
if (frame.getlocal(1)._le(i$1).__nonzero__()) {

frame.setlocal(5, l$3);
}
else {

frame.setlocal(4, i$0);
t0int = 0;
t1PyObject = frame.getglobal("range").
__call__(i$1,frame.getlocal(1)._add(i$1));

while ((t0PyObject = t1PyObject.
__finditem__(t0int++)) != null) {

frame.setlocal(3, t0PyObject);
if (frame.getlocal(0).

__getattr__("_Factorial__cancelled").__nonzero__()) {
break;

}
frame.setlocal(5,

frame.getlocal(5)._mul(frame.getlocal(3)));
frame.setlocal(2,

frame.getlocal(3)._mul(i$4)._div(frame.getlocal(1)));
if

(frame.getlocal(2)._ne(frame.getlocal(4)).__nonzero__()) {
frame.getlocal(0).invoke("fireListeners",

frame.getlocal(2));
frame.setlocal(4, frame.getlocal(2));

}
}

}
frame.getlocal(0).invoke("fireListeners", i$4);
if (frame.getlocal(0).

__getattr__("_Factorial__cancelled").__nonzero__()) {
frame.setlocal(5, i$1.__neg__());

}
return frame.getlocal(5);

}

private static PyObject Factorial$9(PyFrame frame) {
frame.setlocal("__init__",

new PyFunction(frame.f_globals,
new PyObject[] {}, c$0___init__));

frame.setlocal("addListener",
new PyFunction(frame.f_globals,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 84 of 92 Introduction to Jython, Part 2: Programming essentials

new PyObject[] {}, c$1_addListener));
frame.setlocal("addListeners",

new PyFunction(frame.f_globals,
new PyObject[] {}, c$2_addListeners));

frame.setlocal("removeListener",
new PyFunction(frame.f_globals,

new PyObject[] {}, c$3_removeListener));
frame.setlocal("removeListeners",

new PyFunction(frame.f_globals,
new PyObject[] {}, c$4_removeListeners));

frame.setlocal("fireListeners",
new PyFunction(frame.f_globals,

new PyObject[] {}, c$5_fireListeners));
frame.setlocal("cancel",

new PyFunction(frame.f_globals,
new PyObject[] {}, c$6_cancel));

frame.setlocal("calculate",
new PyFunction(frame.f_globals,

new PyObject[] {}, c$7_calculate));
return frame.getf_locals();

}

private static PyObject doFac$10(PyFrame frame) {
// Temporary Variables
PyException t0PyException;

// Code
try {

Py.printComma(s$7);
Py.printComma(frame.getlocal(0));
Py.printComma(s$8);
Py.println(frame.getglobal("fac").

invoke("calculate", frame.getlocal(0)));
}
catch (Throwable x$0) {

t0PyException = Py.setException(x$0, frame);
if (Py.matchException(t0PyException,

frame.getglobal("ValueError"))) {
frame.setlocal(1, t0PyException.value);
Py.printComma(s$9);
Py.println(frame.getlocal(1));

}
else throw t0PyException;

}
return Py.None;

}

private static PyObject main$11(PyFrame frame) {
frame.setglobal("__file__", s$12);

frame.setlocal("sys",
org.python.core.imp.importOne("sys", frame));

frame.setlocal("types",
org.python.core.imp.importOne("types", frame));

frame.setlocal("exceptions",
org.python.core.imp.importOne("exceptions", frame));

frame.setlocal("Factorial",
Py.makeClass("Factorial",

new PyObject[] {},
c$8_Factorial, null));

if (frame.getname("__name__")._eq(s$5).__nonzero__()) {
Py.printComma(frame.getname("sys").

__getattr__("argv").__getitem__(i$0));
Py.println(s$6);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 85 of 92

frame.setlocal("fac",
frame.getname("Factorial").__call__());

frame.setlocal("doFac",
new PyFunction(frame.f_globals,

new PyObject[] {}, c$9_doFac));
frame.getname("doFac").__call__(i$1.__neg__());
frame.getname("doFac").__call__(i$0);
frame.getname("doFac").__call__(i$1);
frame.getname("doFac").__call__(i$10);
frame.getname("doFac").__call__(i$4);
frame.getname("doFac").__call__(i$11);

}
return Py.None;

}

}
public static void moduleDictInit(PyObject dict) {

dict.__setitem__("__name__", new PyString("factor"));
Py.runCode(new _PyInner().getMain(), dict, dict);

}

public static void main(String[] args) throws java.lang.Exception {
String[] newargs = new String[args.length+1];
newargs[0] = "factor";
System.arraycopy(args, 0, newargs, 1, args.length);
Py.runMain(factor._PyInner.class, newargs,

factor.jpy$packages,
factor.jpy$mainProperties, null,
new String[] {"factor"});

}

}

Note: The above code has been reformatted for line length.

Appendix J: Formatting strings and values

Note that a simplified form of Appendix J originally appeared as multiple panels in Part
1 of this tutorial.

Jython strings support a special formating operation similar to C's printf, but using
the modulo ("%") operator. The right-hand set of items is substituted into the left-hand
string at the matching %x locations in the string. The set value is usually a single value,
a tuple of values, or a dictionary of values.

The general format of the format specification is

%{(key)}{flag}...{width}{.precision}x

Here's a guide to the format items:
• key: Optional key to lookup in a supplied dictionary

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 86 of 92 Introduction to Jython, Part 2: Programming essentials

• flag: Optional flags (reasonable combinations supported)
• #: Display any special format prefix (for example, "0" for octal, "0x" for hex)

• +: Display a "+" on positive numbers

• blank: Display a leading space on positive numbers

• -: Left (vs. right) justify the value in the width

• 0: Left pad with "0" (vs. spaces)

• width: Minimum width of the field (will be longer for large values)

• precision: Number of digits after any decimal point

• x: Format code as described below

The format operator supports the following format characters:

Character(s) Result Format Comment(s)

%s, %r String %s does str(x), %r does repr(x)

%i, %d Integer Decimal Basically the same format

%o, %u, %x, %X Unsigned Value In octal, unsigned decimal,
hexadecimal

%f, %F Floating Decimal Shows fraction after decimal point

%e, %E, %g, %G Exponential %g is %f unless the value is small; else
%e

%c Character Must be a single character or integer

%% Character The % character

Note: more details on the structure and options of the format item can be found in the
Python Library Reference (Resources on page 67). Use of case in format characters
(for example, X vs x causes the symbol to show in matching case.

For example

print "%s is %i %s %s than %s!" % ("John", 5, "years", "older", "Mark")

print "Name: %(last)s, %(first)s" % \
{'first':"Barry", 'last':"Feigenbaum", 'age':18}

prints

John is 5 years older than Mark!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 87 of 92

Name: Feigenbaum, Barry

Appendix K: Built-in functions

Note that Appendix K appeared in Part 1 of this tutorial.

Jython provides very useful built-in functions that can be used without any imports. The
most commonly used ones are summarized below:

Syntax Use/Comment(s) Example(s)

abs(x) Absolute value abs(-1) --> 1

apply(func, pargs
{, kargs})

-- or --

func(*pargs {,
**kargs})

Execute the function with the
supplied positional arguments
and optional keyword
arguments

apply(lambda x, y: x * y, (10, 20)) -->
200

callable(x) Tests to see if the object is
callable (i.e, is a function, class
or implements __call__)

callable(MyClass) --> 1

chr(x) Converts the integer (0 -
65535) to a 1-character string

chr(9) --> "\t"

cmp(x, y) Compares x to y: returns:
negative if x < y; 0 if x == y;
positive if x > y

cmp("Hello", "Goodbye") --> > 0

coerce(x, y) Returns the tuple of x and y
coerced to a common type

coerce(-1, 10.2) --> (-1.0, 10.2)

compile(text,
name, kind)

Compile the text string from the
source name. Kind is: "exec",
"eval" or "single"

x = 2
c = compile("x * 2",

"<string>", "eval")
eval(c) --> 4

complex(r, i) Create a complex number complex(1, 2) --> 1.0+2.0j

complex("1.0-0.1j") --> 1.0-0.1j

dir({namespace}) Returns a list of the keys in a
namespace (local if omitted)

dir() --> [n1, ..., nN]

vars({namespace}) Returns the namespace (local
if omitted); do not change it

vars() --> {n1:v1, ..., nN:vN}

divmod(x, y) Returns the tuple (x /y, x % y) divmod(100, 33) --> (3, 1)

eval(expr {, globals
{, locals}})

Evaluate the expression in the
supplied namespaces myvalues = {'x':1, 'y':2}

eval("x + y", myvalues) --> 3

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 88 of 92 Introduction to Jython, Part 2: Programming essentials

execfile(name
{,globals {,
locals}})

Read and execute the named
file in the supplied
namespaces

execfile("myfile.py")

filter(func, list) Creates a list of items for which
func returns true

filter(lambda x: x > 0, [-1, 0, 1, -5, 10])
--> [1, 10]

float(x) Converts x to a float float(10) --> 10.0

float("10.3") --> 10.3

getattr(object,
name {, default})

Gets the value of the object's
attribute; if not defined return
default (or an exception if no
default)

getattr(myObj, "size", 0) --> 0

setattr(object,
name, value)

Creates/sets the value of the
object's attribute

setattr(myObj, "size", 10)

hasattr(object,
name)

Test to see if the object has an
attribute

hasattr(myObj, "size") --> 0

globals() Returns the current global
namespace dictionary

{n1:v1, ..., nN:vN}

locals() Returns the current local
namespace dictionary

{n1:v1, ..., nN:vN}

hash(object) Returns the object's hash
value. Similar to
java.lang.Object.hashCode()

hash(x) --> 10030939

hex(x) Returns a hex string of x hex(-2) --> "FFFFFFFE"

id(object) Returns a unique stable integer
id for the object

id(myObj) --> 39839888

input(prompt) Prompts and evaluates the
supplied input expression;
equivalent to
eval(raw_input(prompt))

input("Enter expression:")

with "1 + 2" --> 3

raw_input(prompt) Prompts for and inputs a string raw_input("Enter value:")

with "1 + 2" --> "1 + 2"

int(x{, radix}) Converts to an integer; radix:
0, 2..36; 0 implies guess

int(10.2) --> 10

int("10") --> 10

int("1ff", 16) --> 511

isinstance(object,
class)

Tests to see if object is an
instance of class or a subclass
of class; class may be a tuple
of classes to test multiple types

isinstance(myObj, MyObject) --> 0

isinstance(x, (Class1, Class2)) --> 1

issubclass(xclass,
clsss)

Tests to see if xclass is a
sub-(or same) class of class;
class may be a tuple of classes
to test multiple types

issubclass(MyObject, (Class1, Class2))
--> 0

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 89 of 92

len(x) Returns the length (number of
items) in the sequence or map

len("Hello") --> 5

list(seq) Converts the sequence into a
list

list((1, 2, 3)) --> [1,2,3]

list("Hello") --> ['H','e','l','l','o']

tuple(seq) Converts the sequence into a
tuple

tuple((1, 2, 3)) --> (1,2,3)
tuple("Hello")--> ('H','e','l','l','o')

long(x {, radix}) Converts to a long integer;
radix: 0, 2..36; 0 implies guess

long(10) --> 10L

long("10000000000") -->

10000000000L

map(func, list, ...) Creates a new list from the
results of applying func to each
element of each list

map(lambda x,y: x+y, [1,2],[3,4]) -->
[4,6]

map(None, [1,2],[3,4]) --> [[1,3],[2,4]]

max(x) Returns the maximum value max(1,2,3) --> 3

max([1,2,3]) --> 3

min(x) Returns the minimum value min(1,2,3) --> 1

min([1,2,3]) --> 1

oct(x) Converts to an octal string oct(10) --> "012

oct(-1) --> "037777777777"

open(name, mode
{, bufsize})

Returns an open file. Mode
is:(r|w|a){+}{b}

open("useful.dat", "wb", 2048)

ord(x) Returns the integer value of
the character

ord('\t') --> 9

pow(x,y)

pow(x,y,z)

Computes x ** y

Computes x ** y % z

pow(2,3) --> 8

range({start,} stop
{, inc})

xrange({start,} stop
{, inc})

Returns a sequence ranging
from start to stop in steps of
inc; start defaults to 0; inc
defaults to 1. Use xrange for
large sequences (say more
than 20 items)

range(10) --> [0,1,2,3,4,5,6,7,8,9]

range(9,-1,-1) --> [9,8,7,6,5,4,3,2,1,0]

reduce(func, list {,
init})

Applies func to each pair of
items in turn accumulating a
result

reduce(lambda x,y:x+y, [1,2,3,4],5) -->
15

reduce(lambda x,y:x&y, [1,0,1]) --> 0

reduce(None, [], 1) --> 1

repr(object)

-- or --

`object`

Convert to a string from which
it can be recreated, if possible

repr(10 * 2) --> "'20'"

repr('xxx') --> "'xxx'"

x = 10; `x` --> "10'"

round(x {, digits}) Rounds the number round(10.009, 2) --> 10.01

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 90 of 92 Introduction to Jython, Part 2: Programming essentials

round(1.5) --> 2

str(object) Converts to human-friendly
string

str(10 * 2) --> "20"

str('xxx') --> 'xxx'

type(object) Returns the type (not the same
as class) of the object. To get
the class use
object.__class__. Module
types has symbolic names for
all Jython types

x = "1"; type(x) is type('') --> 1

zip(seq, ...) Zips sequences together;
results is only as long as the
shortest input sequence

zip([1,2,3],"abc") --> [(1,'a'),(2,'b'),(3,'c')]

Appendix L: Jython types summary

Note that Appendix L appeared in Part 1 of this tutorial.

Jython supports many object types. The module types defines symbols for these types.
The function type gets the type of any object. The type value can be tested (see on
page). The table below summarizes the most often used types.

Type symbol Jython runtime type Comment(s)

ArrayType PyArray Any array object

BuiltinFunctionType PyReflectedFunction Any built-in function object

BuiltinMethodType PyMethod Any built-in method object

ClassType PyClass Any Jython class object

ComplexType PyComplex Any complex object

DictType

-- or --

DictionaryType

PyDictionary Any dictionary object

FileType PyFile Any file object

FloatType PyFloat Any float object

FunctionType PyFunction Any function object

InstanceType PyInstance Any class instance object

-- none -- PyJavaInstance Any Java class instance
object

IntType PyInteger Any integer object

LambdaType PyFunction Any lambda function

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Jython, Part 2: Programming essentials Page 91 of 92

expression object

ListType PyList Any list object

LongType PyLong Any long object

MethodType PyMethod Any non-built-in method
object

ModuleType PyModule Any module object

NoneType PyNone Any None (only one) object

StringType PyString Any ASCII string object

TracebackType PyTraceback Any exception traceback
object

TupleType PyTuple Any tuple object

TypeType PyJavaClass Any type object

UnboundMethodType PyMethod Any method (without a
bound instancee) object

UnicodeType PyString Any Unicode string object

XRangeType PyXRange Any extended range object

Note: several types map to the same Java runtime type. For more information on types
see the Python Library Reference (Resources on page 67).

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 92 of 92 Introduction to Jython, Part 2: Programming essentials

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	Tools, code, and installation requirements
	About the author

	Object-oriented programming in Jython
	A conceptual overview
	Objects in Jython
	OOP support in Jython
	Defining a class
	Creating a class instance
	Adding attributes to a class instance
	Defining class attributes and methods
	Hidden variables
	The init method
	The del method
	Using classes as values
	Inheritance
	The init method with inheritance
	Calling superclass methods
	Calling methods

	Advanced object-oriented programming
	From theory to practice
	Special attributes
	Changing the class of an existing instance
	Introspecting attributes example
	Introspecting attributes example testcase
	Output of get members
	Introspection
	Additional functions for introspection
	Abstract classes
	An abstract command framework
	A test case for the example framework
	Operator overloading
	Nested classes

	Debugging Jython
	Using print statements for debugging
	The Jython debugger
	An example Jython debugging session
	Jython profiler
	Assertions

	Java support in Jython
	Using Java services in Jython code
	Calling Jython from Java code
	Calling Java classes from Jython
	Using JavaBean properties from Jython
	Calling methods on Java objects
	Overriding Java methods and properties
	Java arrays from Jython

	Java thread support in Jython
	Java threads
	Java synchronization
	Example: Using make_synchronized
	A Jython threading example
	Producer and consumer definitions
	An trial run of the threading example
	Output of the example

	Interfacing with Java services
	Creating the interface
	Wrapping Java services in Jython
	Accessing Java properties files
	Properties file example
	Mapping Java types
	Mapping Java types, continued
	Parsing command lines

	Jython string processing
	String operations and functions
	Getting string forms of objects
	Basic string operations
	Additional methods
	Formatting program variables
	Format operator examples
	Using C-style printf
	Pretty printing
	Using string functions

	Processing regular expressions
	About regular expressions
	Regular expression formats
	Regular expressions functions
	Two function examples
	Regular expression example: Grep

	File I/O in Jython
	Using files
	File access methods
	Simple file processing examples
	A word-counting program in Jython
	Output of words.txt
	The word-counting program in Java code
	Printing to files
	Saving objects persistently
	A pickling example
	Object shelves

	A simple Swing GUI
	The Factorial Calculator
	The factorial engine: factor.py
	The GUI: fgui.py

	Wrap-up and resources
	Summary
	Resources

	Feedback
	Feedback

	Appendices
	Appendix A: Character codes for array types
	Appendix B: Common overloaded operators and methods
	Appendix C: Jython debugger commands
	Appendix D: Jython to/from Java type mapping
	Appendix E: The sys module
	Appendix F: The os module
	Appendix G: The os.path module
	Appendix H: Regular expression control characters
	Appendix I: Generated factor.java
	Appendix J: Formatting strings and values
	Appendix K: Built-in functions
	Appendix L: Jython types summary

