
Deep connections with microcontroller

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Introduction.. 2

2. Communications options for embedded devices 5

3. Application design: IrBot .. 9

4. Building the embedded application.................................. 12

5. Building the Palm OS remote controller 17

6. Test flight .. 21

7. Summary .. 22

Deep connections with microcontroller Page 1 of 23

Section 1. Introduction

Roadmap
The aim of this tutorial is to tie together concepts conveyed in earlier tutorials into a
cohesive and interesting communications project. This tutorial introduces
microcontroller programming topics and techniques useful for a variety of embedded
applications. The final product of this tutorial is a prototype navigation subsystem for a
wireless robot, affectionately named IrBot. The tutorial includes three significant areas
of wireless design: hardware, embedded software, and a remote control application
running on a Palm OS device. Full source code and circuit diagrams are presented and
discussed.

This tutorial is organized into the following sections:

* Introduction & motivation
* Communications options for embedded devices
* Application design: IrBot
* Building the embedded application
* Creating the PalmOS Project: IrBotPilot
* Test flight
* Summary

Who should take this tutorial?
The material presented builds upon lessons learned in the introductory tutorials on
Microcontroller application development and the Palm OS tutorial series. The
introductory tutorials are considered prerequisites for getting the most out of this
tutorial. In particular, the skills and background necessary for getting the most out of
this tutorial include:

* C programming experience, with exposure to both Palm OS and serial
communications.

* Comfort level with reading schematics and circuit diagrams.
* Familiarity with both serial communications theory and IrDA physical layer

protocol. For more information on IrDA, refer to the IrDA links in Resources on
page 22 .

Source code map
This tutorial briefly covers the high points of the IrBot's circuit design, with most
attention paid to the software portions of the project, including both the IrBot's routines
and the Palm OS IrBotPilot's code. The source code presented in the tutorial
reflects key design considerations and programming techniques for working with
embedded devices and infrared communications.

The following functions are found in the IrBotPilot remote control application

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 2 of 23

http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/78D64E10D25E61DD86256B8F00757B9B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/78D64E10D25E61DD86256B8F00757B9B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/78D64E10D25E61DD86256B8F00757B9B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/78D64E10D25E61DD86256B8F00757B9B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/78D64E10D25E61DD86256B8F00757B9B?OpenDocument
http://www-106.ibm.com/developerworks/wireless/library/wi-edpick.html
http://www-106.ibm.com/developerworks/wireless/library/wi-edpick.html
http://www-106.ibm.com/developerworks/wireless/library/wi-edpick.html
http://www-106.ibm.com/developerworks/wireless/library/wi-edpick.html

running on a Palm OS device.

* StartApplication -- This function initializes the Palm OS application, including
the communications resources.

* ButtonHandling -- Each button press in the IrBotPilot application invokes a
specific command. This function is one of five functions responsible for routing the
navigation commands accordingly.

* ProcessCommand -- This function interprets the requested command and
translates it into action via data transmission to IrBot.

* StopApplication -- This function runs just prior to the Palm OS application
termination, releasing resources.

The following functions are found in the IrBot embedded application running in the
microcontroller.

* Initializeports -- Upon startup, IrBot takes care of some initialization,
preparing for communication with IrBotPilot.

* Feeback -- This code displays a pattern on IrBot's LEDs. Without a display or
other feedback mechanism, it is important to make the most use out of IrBot's few
resources.

* GetCommand -- This routine receives commands sent by the IrBotPilot
application.

* ProcessCommand -- This code validates received commands and processes
them appropriately.

* Main -- The main function governs the overall operation of IrBot.

Tools
The following resources are required to complete this tutorial.

* Palm OS application development environment including Palm OS SDK 3.5 or
later. For more information on available Palm OS development environments, see
http://www.palmos.com/dev/tools/.

* Access to a Microchip application development environment. MPLAB is a
downloadable software package available from Microchip. In addition to the
MPLAB, a MPLAB compatible C compiler is used to construct IrBot's embedded
application. See Resources on page 22 for a link to Microchip's Web site.

* Access to IrBot's required bill of materials (available in Part selection on page 10).

Some helpful terms
* Signal Ground -- Communication signals are often sent as voltages on two or

more connected wires. The signal ground pin on a communications device
provides a reference signal used to measure voltages.

* Transceiver -- A transceiver chip provides both transmitting and receiving data
services according to a specific protocol. Transceivers are available for a variety
of protocols including serial, Ethernet, Universal Serial Bus, Infrared, Bluetooth
and others.

* Communications Medium -- A transport for communications signals. Common

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 3 of 23

http://www.palmos.com/dev/tools/

examples include copper wire, fiber optic cable, radio frequency spectrum, and
infrared light.

* Infrared -- A term used to describe light beyond "red" in the spectrum of light
frequencies. Infrared is invisible to the human eye and is used in many
communications and imaging applications. The most popular infrared application
is in the form of a remote control for home consumer goods such as VCRs and
televisions.

* Bluetooth -- A radio frequency technology aimed at short haul connections and
mini networks known as pico-nets.

* Integrated Circuit -- Commonly referred to as simply an "IC", the integrated circuit
is a set of pre-packaged electronic circuitry with a specific purpose. For example,
there are integrated circuits available for data conversion, complex timing
sequences, or even voice recording/playback.

About the author
After his college basketball career came to an end without a multiyear contract to play
for the L.A. Lakers, Frank Ableson shifted his focus to computer software design. He
enjoys solving complex problems, particularly in the areas of communications and
hardware interfacing. When not working, he can be found spending time with his wife
Nikki and their children. You can reach Frank at frank@cfgsolutions.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 4 of 23

mailto:frank@cfgsolutions.com

Section 2. Communications options for embedded
devices

Microcontroller communications
Communications capabilities are an attractive functionality for an embedded device.
The ability to communicate affords the device opportunities for interaction with other
devices, data collection, data polling, remote access, or even field programming for
software updates. This tutorial demonstrates communications between an embedded
device and a portable computer, namely a Palm OS powered device. The Palm OS
device sends navigation instructions to the embedded device that are subsequently
carried out by the embedded device. Before diving into the specifics of the sample
application, this section explores some popular communications options for embedded
devices.

RS-232 communications, part 1
Most embedded device communications fall into the category of point-to-point . In the
point-to-point scenario, exactly two devices engage in a "private" conversation." A
point-to-point conversation entails a single, logical "connection" between two devices
with an organized series of messages going back and forth. By far the most widely
deployed of these protocols is known as RS-232 communications. RS-232 is the
protocol governing the communications across the "COM port" on virtually every
modern computer.

RS-232, also referred to as simply serial communications, is often considered the least
common denominator in communications options. RS-232 communications requires a
simple configuration, consisting of just a few wires between the devices. In fact,
communications can be accomplished with as few as two copper wires. This
configuration allows one device to communicate with a second device, or vice versa.
The transmitting device converts data messages into bits. These bits are combined into
a series of voltage pulses across the wires connecting the devices. The diagram below
describes common RS-232 signals.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 5 of 23

RS-232 communications, part 2
The voltage pulses discussed in RS-232 communications, part 1 on page 5 are
measured relative to a ground signal shared by both nodes. The receiving system
collects these pulses and recombines them into the original message.

When only one device may transmit a message at any given point in time, the link is
characterized as half-duplex . A traditional, fully-wired RS-232 connection permits data
transfer in both directions, simultaneously. When a link communicates in both
directions, it is called full-duplex . Additional signals provide hardware handshaking.
Handshaking lines coordinate medium access in half-duplex links as well as assist in
providing controls allowing higher data rates between the devices. Common data rates
in an RS-232 link range from 110 bits per second to 115,200 bits per second. For more
information on the RS-232 standard, refer to the link in Resources on page 22 .

Multinode networks
There are environments and applications where more than two devices must
communicate with one another. These generally fall into two categories: a master/slave
network, or a peer-to-peer network. In a master/slave network there is one device
controlling the conversation, known as the master device. The master device is
responsible for initiating and coordinating all communications in the "network."
Typically, the master device sends a message to one of the slave devices by
transmitting a message with the target device's "address" as the first portion of the
message. All slaves on the network monitor every message, ignoring those with
destination addresses other than their own. The slave device with the matching target
address is permitted to respond to the request from the master. The query/response
mechanism controls access to the data channel and permits many devices to share the
same physical "connection."

Peer-to-peer networks
In a peer-to-peer network, each node cooperates with others when communicating
across a shared medium or data channel. Coordinating access to the medium in a
peer-to-peer network can be a challenging task. The topic of collision detection and
collision avoidance comes to the forefront of protocol design. Due to the complexities of
collision detection and avoidance associated with peer-to-peer networks, the
master/slave approach is much more common for embedded applications.

The RS-485 network protocol
RS-485 is a common multinode network protocol. The RS-485 network connects
multiple devices or nodes via the bus architecture. To participate in the network, each
device taps into a pair of wires representing the RS-485 bus. Data is conveyed along
the RS-485 network by a voltage differential between the two wires of the bus. This
voltage-differential characteristic, known as a balanced line, permits RS-485 networks

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 6 of 23

to communicate at much higher data rates and over longer distances than an RS-232
link. The data rate is reduced for very long rates; however, data rates of 10 million bits
per second over a short distance or a link distance of up to 4000 feet are achievable.
Jan Axelson's book, Serial Port Complete, provides an excellent description of RS-485
networks. See Resources on page 22 for more information on the book.

Transceivers, or bit banging
Just how does a microcontroller communicate on a serial data link or network? There
are two options generally available to an embedded device. Some microcontroller parts
come equipped with special circuitry specifically designed to support serial
communications. This circuitry is known as a USART, which stands for Universal
Synchronous Asynchronous Receiver Transmitter (see Sidebar: USART on page 7).
The USART simplifies the action of sending and receiving data on a serial link. Sending
and receiving information on the serial data channel is as simple as writing/reading a
register or memory location; very little knowledge of the underlying serial protocol is
necessary. The downsides are the additional cost associated with the USART and the
potential limitation of staying within the bounds of a predefined communications
standard. While this may seem odd to worry about, there are scenarios where an
application requires non-traditional communications and features a USART does not
permit.

In the cases where a USART is either not available or not desired, the alternative is a
programming practice known as bit banging. Bit banging requires an intimate
knowledge of the serial communications protocol. To send information, a particular pin
on the microcontroller is set to a high or low state for a period of time. After the
appropriate period of time, known as a bit-time , has elapsed, the next bit is
transmitted. Again, a pin is either raised or lowered to transmit the next bit. Each bit is
collected and re-combined into the original message. Obviously, there is more involved
in bit banging than in employing a USART, but it is a common and useful approach for
adding communications to embedded applications.

Sidebar: USART
A quick note about the "S" in USART. The microcontroller's USART is capable of
transmitting both synchronously and asynchronously. Synchronous transfer is usually
meant for "in-circuit" communications, while asynchronous communications are used
for interacting between devices. The communications port on Palm OS devices and
personal computers are not capable of transmitting synchronously. Those devices have
a UART, i.e., no synchronous capability. This tutorial is an example of inter-device
communications and thus uses asynchronous communications protocols exclusively.

Communications chips
Microcontrollers operate in terms of on and off, or 1s and 0s (ones and zeros). When
an application intends to send a bit, either via a USART or the bit-bang method, a pin

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 7 of 23

on the microcontroller transitions from high to low and back repeatedly to transmit that
message. However, the communications protocols themselves define voltage levels
that do not coincide with the voltage levels employed by the microcontroller. The
microcontroller must be insulated from these incompatible voltages; thus it is common
practice to employ specialized integrated circuits (IC) in the design. The IC provides
voltage conversions and protections to the microcontroller. Additionally, designing
around a proven IC affords the designer some confidence that the resulting application
complies with the appropriate communications standard. ICs for this purpose are
available from Maxim, Linear, Dallas National, and others. For more information, refer
to Resources on page 22 . Jan Axelson's book covers this topic very thoroughly. In
particular, she discusses some interesting alternatives to using these chips under
special circumstances.

Beyond the voltage differences found in various communications protocols, the
signaling semantics of the protocols themselves are often best handled by a specialty
integrated circuit. For example, there are chipsets dedicated to the RS-232, RS-485,
900 Mhz, infrared and other protocol specifications. The circuit design in this tutorial
leverages a specialty chip known as the MCP 2120. The 2120 is used for infrared
communication.

With or without wires
Copper wires are not the only option for short-range communications. Other options
include infrared and radio frequency links. The Infrared Data Association (IrDA) and the
Bluetooth Special Interest Group (BSIG) have specified standards for short-range
communications without wires. These technologies are of particular interest and
function to embedded applications as they offer "cable replacement" opportunities.
Allowing an embedded device to operate without a physical tether permits a reduction
in design real estate by eliminating a DB-9 or modular jack and replacing it with either
an internal antenna or small infrared LEDs.

Saving physical space may or may not be crucial to a particular device design;
however, employing a wireless connection introduces some flexibility for servicing a
device or collecting data in the field. Most popular PDAs support these wireless
technologies, allowing a new breed of device interactions in the field. For more
information on PDA data collection approaches, refer to the developerWorks tutorials
available on the Palm OS (see Resources on page 22).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 8 of 23

Section 3. Application design: IrBot

High level design of navigation system
The focus of this tutorial is a navigation subsystem for a robot or similar device. The
tutorial does not cover the mechanical or the power aspects of such a device's
locomotion or other features. The sample applications and circuit discussed in this
tutorial are concerned with the logical control of the device. The device needs to handle
instructions for moving forward, backward, stopping, and turning left or right, although
actually getting the device to move is an exercise left for another day. The IrBot
acknowledges the received command via illumination of a series of LEDs. IrBot is
directed via an application running on a Palm OS powered device. The link between
the devices employs infrared communications.

Navigation system flowchart
The image below depicts the states and possible action from each state for the IrBot.

Once IrBot is initialized, it continuously attempts to read a command over the infrared
channel. When a command is received, IrBot validates it and carries it out via
illumination of the appropriate LEDs. IrBot then returns to retrieving commands via the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 9 of 23

infrared channel. Note that the application is strictly unidirectional. IrBot does not send
any feedback to the IrBotPilot application running on the Palm OS device.

Part selection
IrBot's circuit is built around a popular Microchip 8-bit microcontroller, model 16F84.
This chip is one of the most common Microchip parts and was introduced in the first
microcontroller tutorial. The 16F84 is considered a low-end device, and as such, does
not contain a USART; therefore a bit-banging approach is required. While this adds
some complexity to IrBot's application code, it does keep the hardware costs down and
provides an opportunity to explore this concept of bit banging.

Microchip's 2120 chip provides an encoding/decoding service, converting IrDA pulses
into signals easily recognized by the 16F84. The 2120 acts as a "middle-man,"
interpreting signals from both the infrared domain and the traditional serial
communications domain. Interestingly, the 2120 is itself a specialized microcontroller.

The infrared transceiver is the TFDS 4500 from Vishay (see Resources on page 22).
This package receives the infrared pulses from the Palm OS device and sends them
along to the 2120 part for decoding.

A bill of materials is presented in the table below:

Item Quantity
MCHP 16F84 microcontroller 1
MCHP 2120 IrDA converter 1
TDFS 4500 IrDA transceiver 1
7.3728 crystal 1
LED bank 8
Misc. resistors & capacitors, jumper wires handful

As an alternative to building the circuit from scratch, a MCP2120 developer's kit is
available from Microchip (see Resources on page 22). This kit is prewired for the
infrared portions and provides jumper blocks for connecting to another circuit
containing a 16F84 part.

Circuit layout
The IrBot's circuit consists of two primary chips. The MCHP 16F84 microcontroller
drives LED indicators and interacts with the MCHP 2120 infrared decoder. The 16F84
is responsible for initializing the circuit, interpreting signals from the 2120, and
displaying results on the LEDs. There are many connections in this circuit; the few
pertinent ones are described here.

Pin two of the TDFS4500 infrared transceiver is the transceiver's "output." This is
connected to pin RXIR (this stands for receive, infrared) on the 2120. Once the 2120
has decoded the pulses from the transceiver, the signal is converted into pulses on the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 10 of 23

2120's RX pin. This pin is connected to an input port on the 16F84. Software in the
16F84 interprets the pattern of pulses on this input port, and acts on the data received.

Another key connection in this circuit is the crystal (XTAL) used for timing. Note that a
connection exists from pin OSC2 (oscillator, pin 2) on the 16F84 and OSC1/CLKIN on
the 2120 part. (CLKIN stands for "clock in".) The two devices share the same clock
signal. The XTAL provides timing to the 16F84, which in turn "shares" its clock signal
with the 2120.

PORTB on the 16F84 controls the LED bank.

The IrBot application is concerned only with receiving data. As such, the transmit pin
on the 2120 part should be "pulled up" to +5v for proper operation. Failure to do so can
cause unpredictable results. Please refer to the circuit diagram for more information.

The next section begins the actual construction of the embedded application software.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 11 of 23

Section 4. Building the embedded application

Creating the microcontroller project
The MPLAB environment supports multiple tool options. In the introductory
Microcontroller tutorial, the sample application was written in assembly language. For
this tutorial, IrBot's embedded application is written in the C programming language. C
is easier to read and maintain than assembly language. The compiler used for IrBot is
PICC lite, a free version of Hi-Tech's C compiler shipped with the PicPlus kit. PICC lite
is limited to working with only the 16F84 device and is essentially an evaluation version
of Hi-Tech's full featured C compiler. For more information on the Hi-Tech compilers,
see Resources on page 22 .

Create a new project in MPLAB using the Project menus. The settings here are similar
to the settings used in an assembler project; however, some of the tool settings are
different to reflect the installatin path of the C compiler. The best resource for setting up
a C project is the tutorial that ships with the PICC lite compiler. See the previous
Microcontroller tutorial in Resources on page 22 for more information on setting up a
new project in MPLAB.

Here are the pertinent Node Property settings for the C compiler:

* Language Tool: PIC-C Compiler
* Use error file, providing a name in the Data field. For example, ibmdw_c.error
* Use map file, providing a name in the Data field. For example, ibmdw_c.map
* Use assembler list file.
* Set the include path setting to c:\picclite\include (or wherever the PICC

compiler's include files are installed)

Initialization of the device
The first activity performed by the IrBot application is the initialization of the I/O ports.
The function initializeports() does the requisite housekeeping on the ports to
enable IrBot to both read incoming data from the MCP 2120 IrDA chip and control the
bank of LEDs. Here is the source to the function:

void initializeports()
{

TRISA = 0xff; // set port A to input
TRISB = 0x00; // set port B to output

}

Feedback functions
IrBot has no video monitor or textual output. It has only eight light emitting diodes
(LEDs). The state of each LED is controlled through changing the value of the
microcontroller's port B. To turn all of the LEDs off, the value 0xff is assigned to the
port. The binary equivalent of 0xff is 11111111. This value raises the voltage level to

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 12 of 23

+5v on each pin, preventing current from flowing through each of the LEDs. To
illuminate a particular LED, the appropriate bit in the port must be cleared, or put
another way, the bit must be set to zero. Setting a bit to zero has the effect of lowering
the voltage on the pin to ground. This creates a voltage potential between the led and
the pin allowing electrical current to flow through the LED, thus illuminating it. The
dorollover() function first turns off all of the leds. Then, one by one, it illuminates
an LED, and then turns it back off and illuminates the next LED in the bank of eight.

void dorollover()
{

PORTB = 0xff - 0x00;
delay();
PORTB = 0xff - 0x01;
delay();
PORTB = 0xff - 0x02;
delay();
PORTB = 0xff - 0x04;
delay();
PORTB = 0xff - 0x08;
delay();
PORTB = 0xff - 0x10;
delay();
PORTB = 0xff - 0x20;
delay();
PORTB = 0xff - 0x40;
delay();
PORTB = 0xff - 0x80;
delay();
PORTB = 0xff;

}

flash() feedback function
The other useful feedback function is called flash(). The flash function takes two
parameters. The first is a value representing a bit mask, or a list of LEDs to illuminate.
The second parameter tells the function how many times to flash the LEDs. Here is the
function:

void flash(char x,unsigned int j)
{
unsigned int i;

for (i=0;i<j;i++)
{

PORTB = 0xff; // turn off leds
delay();
PORTB = 0xff - x;
delay();

}
PORTB = 0xff; // turn off leds

}

Here is an example of using the flash function. This line of C code causes IrBot to flash
the first and last LED three times:

flash(0x81,3);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 13 of 23

The binary equivalent of 0x81 is: 1000 0001. The binary pattern coincides with the
bank of LEDs.

Main program loop
Once initialized, IrBot continuously looks for incoming data from the infrared circuitry.
When a command is read, the value is passed to another function for evaluation. When
the command has been handled, IrBot resumes listening:

void main()
{

initializeports();
dorollover();
while (1)
{

processcommand(getcommand());
}

}

Serial communications routine -- GetCommand
IrBot receives data by monitoring the state of a pin on the microcontroller. This PORT
A.0 pin is connected to the output of the MCP2120 IrDA chip. Data received by the
2120 chip is converted into signals on its pin number 11. Thus, pin 11 of the 2120 is
connected to PORTA.0 on the 16F84 microcontroller. For more information, refer to the
circuit diagram above.

The communication protocol between the two chips can be characterized as
asynchronous start, and synchronous between bits. This means that the start bit, or the
indicator that data is available, can occur at any point in time. However, once this start
bit has been received, the subsequent bits are expected within a strict timing
sequence. The getcommand() function continuously waits for the start bit, and then
methodically records the remaining bits in each message. If the stop bit is not detected,
an error is message is displayed via the flash function. Note that the data is transmitted
least significant bit first, or LSB. The following listing contains the code:

unsigned char getcommand()
{
unsigned char readbyte;
unsigned char bitcount;
unsigned char mask;

while (1)
{

// look for start bit
if (lookforbit())
{

// a bit has been found
readbyte = 0x00;
bitcount = 8;
mask = 1;
// we should be at the leading edge of the start bit..

// let's reposition ourselves
// to the "middle" of this bit

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 14 of 23

// sleep for a 1/2 bit time,then sample each bit time moving forward
// byte asynchronous, bit syncrhonous
delayhalfbitlength();
if (!lookforbit())
{

// we checked to see if we were still on the start bit and were not...
false alarm

flash(0xc3,3);
return 0x00;

}
while (bitcount)
{

delaybitlength();
if (lookforbit())
{

readbyte = readbyte | mask;
}
bitcount--;
mask = mask * 2;

}
// look for stop bit
if (lookforbit())
{

// framing error
flash(0x81,3);
return readbyte;

}
}

}
// should never reach here... put this in to keep compiler from complaining
return 0x00;

}

Robot "actions" -- ProcessCommand
Once a command has been interpreted by IrBot, the processcommand() function is
called upon to carry out the appropriate action. For this tutorial application of IrBot, the
command is simply displayed upon the LED bank for a moment and then the LEDs are
cycled to indicate IrBot's readiness to receive an additional command.

A real navigation system would interpret the commands to actuate the device in the
proper manner. For example, a "left turn" command would result in a stepper motor
moving the steering apparatus to the left. Here is the code for simulating the directional
commands:

void processcommand(unsigned char command)
{

switch (command)
{

case 0x00:
PORTB = 0xff;
break;

case 'A': // stop
PORTB = 0xff;
break;

case 'B': // forward
PORTB = 0xff - 0x01;
break;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 15 of 23

case 'D': // back
PORTB = 0xff - 0x02;
break;

case 'E': // left
PORTB = 0xff - 0x04;
break;

case 'I': // right
PORTB = 0xff - 0x08;
break;

default:
// display value on LEDs
PORTB = 0xff - command;
break;

}
delay();
delay();
delay();
delay();
delay();
dorollover();

}

Building and testing the project
Once the code is successfully compiled, load the application into the 16F84 part via the
PicPlus (or equivalent) programmer. For more information on flashing the device, refer
to the introductory microcontroller tutorial found in Resources on page 22 . When power
is applied to the circuit, IrBot should cycle the LEDs. This is an indication that the
output portion of the circuit is wired correctly.

The next step is to build the IrBotPilot application to provide a "remote control" for
IrBot.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 16 of 23

Section 5. Building the Palm OS remote controller

Design considerations
The remote control application running on a Palm OS device is named IrBotPilot.
This application's sole purpose is communication with the IrBot circuitry. The focus is
on function and not form. As such, the application is simply a series of buttons, each
indicating a direction or stop. As each button is pressed, a single byte is sent to the
embedded IrBot application. To simplify testing, the commands are designated as
easily readable characters; this way the application may be tested against another
infrared target, such as a PC with an infrared-dongle attachment. Here are the valid
commands for IrBotPilot:

Command Command Data Description
A 0x00 Stop
B 0x01 Forward
D 0x02 Back
E 0x04 Left
I 0x08 Right

While the IrBotPilot application contains only five buttons, note the Command Data
for each command. The commands are organized in a bit mask fashion. This command
set allows for commands to be sent in combination. For example, if the operator
desired for the IrBot to move forward and to the left, the Command Data evaluates to
0x05, or F. Of course, some care should be taken to not send contradictory commands
such as forward and back at the same time.

Creating the Palm OS project
The IrBotPilot project is easy to construct. Begin by creating a new project in
Falch.net Developer Studio, or an equivalent Palm OS development environment. See
Tools on page 3 for information on obtaining Palm OS development tools. The key
ingredient to this application is the ability to interact with a series of Palm OS SDK
functions known as the New Serial Manager. For more information on Palm OS
development and New Serial Manager, refer to the IBM developerWorks series on
Palm OS data collection applications (see Resources on page 22).

This tutorial's sample, IrBotPilot, contains a single form, namely frmMain. This
form presents each of the navigation controls to the user. Here is a snapshot from the
main IrBotPilot interface:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 17 of 23

StartApplication
The first function discussed in the sample code is StartApplication, which is
invoked during the application's initialization. This function opens the communications
port on the Palm OS device, sets the data rate to 9600 baud, and switches it into "IrDA"
mode. By switching into IrDA mode, the Palm OS device's UART sends IrDA
compatible pulses instead of the traditional RS-232 compatible mark and space on the
device's physical serial port. For more information regarding the specifics of IrDA
Physical layer protocol, refer to the Infrared Data Association for which a link is
provided in Resources on page 22 .

static int StartApplication(void)
{

// initialize communications port
Err e;
UInt32 flags;
UInt16 flagssize = sizeof(flags);
e = SrmOpen(0x8000,9600,&portid);
if (e)
{

FrmCustomAlert(Info,"Unable to Open Communications Port",NULL,NULL);
return 0;

}
// now set the mode to ir enabled
flags = 0;
e = SrmControl(portid,srmCtlIrDAEnable,&flags,&lagssize);
FrmGotoForm(frmMain);
return 0;

}

The variable portid is a global variable holding an identifier for the valid
communications port. This value is used in subsequent communications actions.

Button handling
When a button is tapped on the Palm OS device screen, the application handles the
event by sending a navigation message to IrBot. Here is the code for the "Move to the
Right" button handler and the list of enumerated values available for IrBotPilot.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 18 of 23

static Boolean frmMain_btnRight_OnSelect(EventPtr event)
{

// Insert code for btnRight
ProcessCommand(IrBotRight);
return true;

}
typedef enum
{

IrBotStop = 0,
IrBotForward = 1,
IrBotBack = 2,
IrBotLeft = 4,
IrBotRight = 8

}IrBotEnum;

Note the bit-mask values of IrBotEnum. Using a bit mask affords IrBotPilot a
future option of allowing multiple, simultaneous navigational choices.

ProcessCommand
The ProcessCommand function is responsible for issuing the appropriate value to the
IrBot device. Here is the code:

static void ProcessCommand(IrBotEnum command)
{

UInt8 buf[2];
Err e;

#if TRACENAVIGATION
switch (command)
{

case IrBotStop:
FrmCustomAlert(Info,"You hit Stop",NULL,NULL);
break;

case IrBotForward:
FrmCustomAlert(Info,"You hit Up",NULL,NULL);
break;

case IrBotBack:
FrmCustomAlert(Info,"You hit Down",NULL,NULL);
break;

case IrBotLeft:
FrmCustomAlert(Info,"You hit Left",NULL,NULL);
break;

case IrBotRight:
FrmCustomAlert(Info,"You hit Right",NULL,NULL);
break;

}
#endif

buf[0] = 'A' + command;
SrmSend(portid,buf,1,&e);

}

Note that this function has a C preprocessor directive (#ifTRACENAVIGATION). If this
value is set to 1 during compilation, the user receives an informative message during
use of IrBotPilot. This is convenient for testing but quickly becomes annoying once
all of the buttons' functionality is confirmed.

Also, observe the technique of adding the command value to the letter 'A'. This allows

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 19 of 23

testing of the IrBotPilot application against a simple terminal package. It is easier
to read an uppercase letter than a hex value such as 02. In fact, some terminal
programs do not support the display of such "non-printable" characters. The IrBot
software essentially "subtracts" the 'A' from the message, leaving it with just the
desired command.

StopApplication
Every resource should be released upon termination of the program. One of the last
tasks handled by IrBotPilot is closing down the communications port.

static void StopApplication(void)
{

SrmClose(portid);
FrmCloseAllForms();

}

Building and testing the remote control application
For the first round of testing, it is recommended that the instructions for enabling the
infrared functionality be commented out of the code. By doing so, IrBotPilot's
output goes directly to the normal serial port of the Palm OS device. Compile the
IrBotPilot application and install it on the Palm OS device. It is now ready for
testing.

Place the device in its sync cradle and run a serial terminal package on the desktop.
Be sure that the sync software is disabled to avoid a "port in use" conflict on the
desktop. Start IrBotPilot and press any of the navigation buttons. Commands
should appear on the terminal program's window. In addition, if the
TRACENAVIGATION definition is set in the source file (frmMain.c in the sample
code), informational alerts display on each button press.

If text does not appear on the terminal window, double check that port speeds match
and that all cables are properly connected.

Once the application is running satisfactorily, be sure to restore the commands in
StartApplication to enable the IrDA mode.

The next section brings IrBot and the IrBotPilot application together for testing and
troubleshooting as necessary.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 20 of 23

Section 6. Test flight

Controller and device integration testing
Now that both IrBot and IrBotPilot are completed and tested on their own, it is time
to perform the integration testing. Power up IrBot and initiate IrBotPilot on the Palm
OS device. If IrBot is operating properly, it responds to each button press with the
appropriate LED illuminating. IrBot won't actually move, but it should at least
acknowledge the navigation request. Keep in mind that use of the communications port
imposes a relatively significant drain on Palm OS device power resources, so don't
take IrBot on too long a walk without some extra batteries available.

Troubleshooting
If IrBot fails to respond, check the following:

* Is there power to the IrBot circuit?
* Did IrBot perform the startup routine (cycling thru the LEDs)?
* Did IrBot respond at all, or just not properly?

Double check that the commands issued by IrBotPilot are correct by using a
desktop terminal program and infrared serial dongle if available. If the commands
received by IrBot and illuminated in the LED bank are not the expected values, the
timing sequence of the bit banging delay routines may need adjustment. This is
particularly true with the use of different crystal speed or baud rate.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 21 of 23

Section 7. Summary

Summary
This tutorial examined wireless microcontroller application design by reaching beyond
traditional wireless discussions of Internet access and efficient handheld user interface
design. IrBot and its companion, IrBotPilot, provide an interesting and functional
foundation upon which to build other embedded devices and portable applications. One
thing to try with IrBot is to upgrade it to BtBot, by Bluetooth-enabling it. A simple
change to the IrBotPilot software running on the latest model Palm OS devices
makes it Bluetooth-enabled. The Resources section provides a wealth of further
information on embedded design topics, including Bluetooth and infrared.

Resources
* Sample source code is available at http://www.cfgsolutions.com. Follow the links

to the left for the IBM developerWorks sample code page.
* Jan Axelson's Serial Port Complete provides an excellent resource on RS-232

and RS-485 networks. Information on how to obtain this book is available at:
http://www.lvr.com/.

* The Infrared Data Association has a wealth of information about the latest IrDA
protocols.

* For more information on Bluetooth, visit http://www.bluetooth.com and/or
http://www.bluetooth.org.

* Maxim manufactures a series of communications integrated circuits. They can be
found at http://www.maxim-ic.com .

* The first microcontroller tutorial can be found at:
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/78D64E10D25E61DD86256B8F00757B9B?OpenDocument

* Previous Palm OS tutorials (IBM) are available at:
http://www-106.ibm.com/developerworks/wireless/library/wi-edpick.html

* Learn more about Palm's Bluetooth offering at
http://www.palmos.com/dev/tech/bluetooth.

* Microchip is the maker of the integrated circuits used in the IrBot project. Their
Web site can be found at http://www.microchip.com. Microchip's development
tool, MPLAB, can be found at
http://www.microchip.com/1000/pline/tools/picmicro/devenv/mplabi/index.htm.

* Darrick Addison's developerWorks article on Robotics provides some insight into
the use of microcontrollers in automation:
http://www-106.ibm.com/developerworks/library/l-rob.html .

* Aegis Technology's Steve Schlanger provided essential assistance on the
hardware design of IrBot. Steve's Web site can be found at
http://www.aegisweb.net.

* Myke Predko's book, Programming and Customizing PICmicro Microcontrollers
(McGraw Hill), provides a wealth of information on programming PIC devices.

* Roger Stevens' book, Serial Pic'n: PIC Microcontroller Serial Communications
(Square 1 Electronics), goes in depth on the topic of bit-banging communications.

* The most up to date list of Palm OS development tools can be found at
http://www.palmos.com/dev/tools/

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 22 of 23

http://www.cfgsolutions.com/
http://www.lvr.com/
http://www.irda.com/
http://www.irda.com/
http://www.irda.com/
http://www.bluetooth.com/
http://www.bluetooth.org/
http://www.maxim-ic.com/
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/78D64E10D25E61DD86256B8F00757B9B?OpenDocument
http://www-106.ibm.com/developerworks/wireless/library/wi-edpick.html
http://www.palmos.com/dev/tech/bluetooth
http://www.microchip.com/
http://www.microchip.com/1000/pline/tools/picmicro/devenv/mplabi/index.htm
http://www-106.ibm.com/developerworks/library/l-rob.html
http://www.aegisweb.net
http://www.amazon.com/exec/obidos/ASIN/0071361758/qid=1020444799/sr=2-2/ref=sr_2_2/002-0967669-5414439
http://www.amazon.com/exec/obidos/ASIN/0071361758/qid=1020444799/sr=2-2/ref=sr_2_2/002-0967669-5414439
http://www.amazon.com/exec/obidos/ASIN/0071361758/qid=1020444799/sr=2-2/ref=sr_2_2/002-0967669-5414439
http://www.amazon.com/exec/obidos/ASIN/0071361758/qid=1020444799/sr=2-2/ref=sr_2_2/002-0967669-5414439
http://www.amazon.com/exec/obidos/ASIN/0071361758/qid=1020444799/sr=2-2/ref=sr_2_2/002-0967669-5414439
http://www.amazon.com/exec/obidos/ASIN/0965416224/ref=pd_sim_books/002-0967669-5414439
http://www.amazon.com/exec/obidos/ASIN/0965416224/ref=pd_sim_books/002-0967669-5414439
http://www.amazon.com/exec/obidos/ASIN/0965416224/ref=pd_sim_books/002-0967669-5414439
http://www.amazon.com/exec/obidos/ASIN/0965416224/ref=pd_sim_books/002-0967669-5414439
http://www.amazon.com/exec/obidos/ASIN/0965416224/ref=pd_sim_books/002-0967669-5414439
http://www.amazon.com/exec/obidos/ASIN/0965416224/ref=pd_sim_books/002-0967669-5414439
http://www.palmos.com/dev/tools/

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Deep connections with microcontroller Page 23 of 23

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Introduction
	Roadmap
	Who should take this tutorial?
	Source code map
	Tools
	Some helpful terms
	About the author

	Communications options for embedded devices
	Microcontroller communications
	RS-232 communications, part 1
	RS-232 communications, part 2
	Multinode networks
	Peer-to-peer networks
	The RS-485 network protocol
	Transceivers, or bit banging
	Sidebar: USART
	Communications chips
	With or without wires

	Application design: IrBot
	High level design of navigation system
	Navigation system flowchart
	Part selection
	Circuit layout

	Building the embedded application
	Creating the microcontroller project
	Initialization of the device
	Feedback functions
	flash() feedback function
	Main program loop
	Serial communications routine -- GetCommand
	Robot "actions" -- ProcessCommand
	Building and testing the project

	Building the Palm OS remote controller
	Design considerations
	Creating the Palm OS project
	StartApplication
	Button handling
	ProcessCommand
	StopApplication
	Building and testing the remote control application

	Test flight
	Controller and device integration testing
	Troubleshooting

	Summary
	Summary
	Resources
	Feedback

