
Adapt Programming for
More Complex Machines

Ulrich Drepper

.

Performance and Scalability

#CPUs

#Machines

RAM Size

System Components

Ethernet
Infiniband .

Processor Changes

 Processor Features
● Process Reduction
● Pipelining
● Out-Of-Order execution
● Code and Data Caches

Good News: CPU handles it by itself

Although Cache-Aware Programming Can Help

Easy Timers for Programmers Are Over

 Moore's Law seems still be in full swing

1974 1988 1992 1996 1999 2000 2002 2003 2005 2006 2007
0

10000

20000

30000

40000

50000

60000

Processor Performance

Time

M
IP

S

Easy Timers for Programmers Are Over

 If it only were so simple...

1974 1988 1992 1996 1999 2000 2002 2003 2005 2006 2007
0

10000

20000

30000

40000

50000

60000

Processor Performance

Single Core MIPS Multi Core MIPS

Time

M
IP

S

We have to work for
this!

SIMD

 Single-Instruction/Multiple Data
● Normal Arithmetic:

32 32

 32

SIMD

 Single-Instruction/Multiple Data
● Intel: MMX

64 64

 64

SIMD

 Single-Instruction/Multiple Data
● Intel: SSE

128 128

 128

SIMD

 Single-Instruction/Multiple Data
● Intel: AVX

 256 256

 256

SIMD

 Auto-vectorization:
● Research for 30 years
● Somewhat working
● Pattern matching in compiler

● Slight changes might
mean miss

 Better approach:
● Compiler intrinsics
● Special, hand-coded

assembler

Processor Changes

 Symmetric Multi-Processor (SMP)
 Expensive cache domain transfer

 Multiple of single-socket memory bandwidth

SMP Usage

 Ideal usage:
● Multiple processes

● Unix model: many small programs
● Multi-process application

● Use IPC or explicit shared memory
 Instead:

● Multi-threaded, share-everything model
● Problems:

● False sharing
● More synchronization requirements
● Inadvertent changes
● Not robust (one thread dies → entire process dies)

Multi-Core

1 2

3 4

Multi-Core Programming

:
 Shared caches
 Faster cache line transfer between domains
 Deeper cache hierarchy
 Advantages:

● Faster sharing of cache lines
● Can be of advantage in closely collaborating code

 Disadvantages:
● Cache size split between processes and threads with non-

overlapping working set
● Shared bandwidth to RAM

Memory Bandwidth

. MCH

FSBFSB

NOT 2x FSB

Memory Bandwidth

.

MCH

 Non Uniform Memory Architecture (NUMA)

 Memory Controller in CPU
 High-Speed Interconnect between CPUs
 Increased total capacity

.

Intel: QPI
AMD: Hypertransport

MC MC

Aside from General Purpose CPUs

 Co-processors are coming back
● Intel Geneseo, AMD Torrenza
● IBM Cell, Intel Larrabee, AMD Fusion

 Huge performance advantage through specialization:
● All purpose CPU: 50-60 GFLOPS
● Cell: 210 GFLOPS
● NVidia GPU: 500 GFLOPS

 Better energy efficiency:
● FPGA: 1/10th of the energy, potentially 100x faster
● With appropriate power control:

● GPGPUs: 100% to 300% of energy
● Translates to 10% to 50% of cost per GFLOPS

Connecting Co-Processors

.

MCH

.

Machine Interconnects

?

 How to connect?
 Direct connections?
 Overhead?

Machine Interconnects

 Requirement:
● High bandwidth and low latency

 Uses:
● Traditional network (socket, network filesystem)
● Message passing (MPI, AMQP)

 Ideal: zero-copy
 Solutions:

● RDMA over Infiniband
● Soon: RDMA over Ethernet

 Red Hat solutions using RDMA for
● MPI, AMQP
● Future: NFS

Problems of HPC Programming

 Wide range of hardware features to exploit
● Not likely to be smaller in future

 Different hardware in same environment
 Working sets growing
 Per-core performance not growing (as much)
 Cache and memory hierarchy getting deeper

Expertise needed for high performance

More than ever

 Structuring program important
● Recognize building blocks
● Implement in library functions
● Optimize, if necessary, by experts

Function Hot Code

More than ever

 Structuring program important
● Recognize building blocks
● Implement in library functions
● Optimize, if necessary, by experts

Function

Hot Code

C
all

R
et

ur
n

More than ever

 Structuring program important
● Recognize building blocks
● Implement in library functions
● Optimize, if necessary, by experts

Function

Hot Code 1

Call

Ret
ur

n

Hot Code 2 Hot Code 3

Dispatch

Dispatching

 Explicit:

● e.g., using cpuid instruction
● efficient using STT_IFUNC (indirection function)

● Overhead only during first call
 Implicit

● Separate symbol table for hardware configurations
● Different (sub-)shared objects

Dispatch:
 if (feature1) hotcode1()
 else if (feature2) hotcode2()
 else hotcode3()

Problems with Hot Code Isolation

 Code has to be kept minimal
● Isolate from program logic
● Increase reusability

 But not too small

 Result:
● Loss of abstraction
● Additional overhead

 Ideal
● Algorithms and data structures defined independently

What is “too small”?

Unavoidable?

Example: Too Small

 Matrix: represented as array of arrays
 Multiplication: L x M ⊙ M x N

● Represent transposed M x N matrix
● Compute L x N vector product
● Optimize vector products

 Problem:
● Horrible cache locality
● Factor 10 slower than necessary

 Correct:
● Matrix data structure continuous 2-dimensional array
● Optimize matrix multiplication as a whole
● Exception: sparse matrix

Loss of Abstraction?

 Necessary to think memory representation all the time?
● Allocation and deallocation of temporaries sloooow
● Possible vector arithmetic:

vec1 = allocfillvec(n, file1);
vec2 = allocfillvec(n, file2);
multscalar(vec1, sc);
addvec(vec1, vec2);
output(vec1)

● Not as readable as
cout << vec1 * sc + vec2

Loss of Abstraction?

 ISO C++0x (ehm, ISO C++1x) has solution:
● rvalue references

vec &&operator+(vec &&l, vec &r) {

for (size_t i=0; i<N; ++i) l.e[i] += r.e[i];

return l;

}

vec &&operator*(vec &&l, float f) {

for (size_t i=0; i<N; ++i) l.e[i] *= f;

return l;

} Reuse of
temporary
Reuse of
temporary

Loss of Abstraction?

 Data structures design
● Most cache efficient or
● Most compact

 Algorithm design
● Take execution unit operations into account
● “Complicate” algorithm if of advantage for hardware
● API should remain unchanged

Algorithm Design

 Example: use fused multiply-add
 Solution: delay operation

scaledvec &&operator*(vec &v, float f) {

return new scaledvec(vm f);

}

vec &&operator+(scaledvec &&sc, vec &&r) {

for (size_t i=0; i<N; ++i)

 r.e[i] = fma(sc.v.e[i], sc.f, r.e[i]);

return r;

}

vec &&operator+(vec &&l, vec &r) { ... }

Additional Overhead?

 Can be avoided for memory handling
 How about introduction of parallelism?

● Before:
① create N threads
 multiply matrix A and B, producing C

split work in N pieces, each executed in one thread
 multiply matix C and D, producing E

split work in N pieces, each executed in one thread
 dispose of threads

● When matrix multiplication algorithm used, the implementation
must create and dispose threads

● Result: overhead

Additional Overhead?

 Not necessarily: use OpenMP
● After:

① start parallel region
 C = A * B
 E = C * D
 end parallel region

● operator*() uses OpenMP parallel construct

OpenMP Parallelism

 Parallel region
● Introduces pool of parallelism
● By default automatically throttled

 Parallel operation
● for loops (integers or random-access iterators)
● Parallel sections

 Parallel operations use up parallelism from dynamically enclosing
parallel region

 Parallelism of parallel region kept around in thread pool

Advantages of OpenMP Parallelism

 Amount of parallelism throttled process-wide
● As opposed to explicit threads (nested thread creation)

 Use of parallelism independent of creation
● Parallel matrix multiplication used in non-OpenMP code

(without enclosing parallel region) causes one thread to be
used

 Fine grained parallelism realistic
● Amortization of thread creation cost
● On Linux: very low synchronization costs

 Nice use: automatic parallelization of ISO C++ library (gcc 4.3)
● Even better with C++0x concepts

Pervasive Parallelism

 Multi-core and/or SMP require parallelism everywhere
 OpenMP drastically reduces complexity

● Programmer focus is expressing parallelism, not implementing
● Compiler can help locating problems

 Problem with parallel programming (Amdahl's Law):

P: parallelizable fraction, S: number execution units
 P is reduced due to synchronization requirements

T=
1

1−P
P
S

The Synchronization Problem

 Foremost:: needed for correctness
● Often insurmountable problem for novices
● Hard to debug

 Two extreme approaches:
● Coarse grained: easy to use, little overhead, potentially large

reduction of P
● Fine grained: hard to get right, high(er) overhead

 And anything in between

Different approach needed

Transactional Memory

 Inspiration: database programming
● Read and write access to multiple tables atomic

 Transferred to C/C++ programming:
● Read and assignments of memory locations atomic

 Language extension:

__tm_atomic {

 if (a > b) { a -= b; ++c; }

}
● Compiler recognizes memory accesses
● Optimistic execution, rollback on failure

Transactional Memory

 Significantly simplifies synchronization
 Can utilize upcoming hardware support
 Slowdown manageable in many/most cases

● Still research topic (Red Hat actively participating)
 Ideally increases parallelism (dramatically)

● Example: hash table
● Coarse grained severe limitation (hashes meant to spread

accesses)
● Fine grained locking: high overhead (time and space)
● TM: optimistic execution mostly succeeds

● No significant overhead, no limit in parallelism

Parallelization Models

Dataset
size

#Shared
items

Use MPI

gigantic

else

OpenMP
manageable

Use multi-
process

 no

Use multi-
thread

else yes

Dependency
in computation

Use grid

yes

no

Multi-Process

 Similar to multi-thread
 No automatically shared address space
 POSIX shared memory to explicitly share data
 Advantages:

● No inadvertent sharing, corruption
● No accidental false sharing
● Better suited for execution on different sockets
● Fault isolation (only one process dies)

● Robust mutexes can help recovering

MPI

 De-facto standard
 Library support for synchronization and data exchange
 Highly optimized implementations available

● Optimized intra-socket communication/syncronization
● Use of advanced network technology

● Special interconnects
● Infiniband, Quadrics, ...

● RDMA
● In future over Ethernet as well

 Given good network hardware
● High bandwidth, low latency communication/synchronization

Grid

 Schedule execution for potentially huge number of execution units
 Tasks require not much communication for run

● Input, process, output
 Can use unreliable resources

● Just restart task
 Different programs can be executed and controlled in parallel
 Grid scheduler responsible for operation of entire grid

● Highly customizable (Condor part of Red Hat's MRG product)

Summary

1. Select best suited parallelization model

2. Design data structures

1. Ideally reusable

3. Design operators for data structures

1. Learn functional programming

2. Use Haskell, Ocaml, or…

3. Program functional in C++
1.ISO C++ library a good start
2.C++0x introduces lambda etc

4. Meta programming for reusability
1.Concepts allow expressing optimization possibilities

4. Profile

1. Call in expert to write optimized version of algorithm

Questions?

drepperl@redhat.com | people.redhat.com/drepper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

