
Introduction to Scalable Vector
Graphics

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Introduction.. 2
2. What is SVG?... 4
3. Basic shapes.. 10
4. Definitions and groups... 16
5. Painting .. 21
6. Coordinates and transformations.................................... 32
7. Paths ... 38
8. Text ... 46
9. Animation and interactivity.. 51
10. Summary ... 55

Introduction to Scalable Vector Graphics Page 1 of 56

Section 1. Introduction

Should I take this tutorial?

This tutorial assists developers who want to understand the concepts behind Scalable
Vector Graphics (SVG) in order to build them, either as static documents, or as
dynamically generated content.

XML experience is not required, but a familiarity with at least one tagging language
(such as HTML) will be useful. For basic XML information, see the Introduction to XML
tutorial. JavaScript is used for a single scripting example at the end of the tutorial, but is
kept fairly simple.

What is this tutorial about?

Scalable Vector Graphics (SVG) makes it possible to specify, using text, graphical
images that appear on the page. For example, where a traditional graphic would need
to specify every pixel of a rectangle, an SVG simply states that the rectangle exists,
and specifies its size, position, and other properties.

The advantages are many, including the ability to easily generate graphics (such as
graphs and charts) from database information, and the ability to add animation and
interactivity to graphics.

This tutorial demonstrates the concepts necessary for building SVG documents, such
as basic shapes, paths, text, and painting models, and also animation and scripting.

Tools

The tutorial demonstrates the building of several SVG documents. To follow along, you
will need an editor and a viewer:

• A plain text editor, such as Notepad, is all you need to create SVG files. Editors
specifically geared toward SVG do exist, and are listed in the Resources on page 55 .
This tutorial assumes you are using a text editor.

• An SVG viewer: The most up-to-date SVG viewer as of the time of this writing is
Adobe's SVGViewer, version 3.0, available free from Adobe at
http://www.adobe.com/svg/viewer/install/main.html. Other SVG viewers, such as
IBM's SVGView, are listed in the Resources on page 55 .

• A browser: The Adobe viewer works with most current browsers, such as Netscape
Navigator 4.x (available at
http://home.netscape.com/computing/download/index.html?cp=hophb2 -- Netscape 6
is not supported) and Microsoft Internet Explorer 5.x and above (available at

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 56 Introduction to Scalable Vector Graphics

http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www.adobe.com/svg/viewer/install/main.html
http://home.netscape.com/computing/download/index.html?cp=hophb2

http://www.microsoft.com/downloads/release.asp?releaseid=32210&area=t
op&ordinal=1).

To see the examples in action, download the examples and uncompress them. Open a
new browser window and use it to read the readme.html file.

About the author

Nicholas Chase has been involved in Web site development for companies such as
Lucent Technologies, Sun Microsystems, Oracle, and the Tampa Bay Buccaneers.
Nick has been a high school physics teacher, a low-level radioactive waste facility
manager, an online science fiction magazine editor, a multimedia engineer, and an
Oracle instructor. More recently, he was the Chief Technology Officer of Site Dynamics
Interactive Communications in Clearwater, Fla., and is the author of three books on
Web development, including Java and XML From Scratch (Que). He loves to hear from
readers and can be reached at nicholas@nicholaschase.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 3 of 56

http://www.microsoft.com/downloads/release.asp?releaseid=32210&area=top& ;ordinal=1
http://www.microsoft.com/downloads/release.asp?releaseid=32210&area=top& ;ordinal=1
http://www.microsoft.com/downloads/release.asp?releaseid=32210&area=top& ;ordinal=1
http://www.microsoft.com/downloads/release.asp?releaseid=32210&area=top& ;ordinal=1
http://www.microsoft.com/downloads/release.asp?releaseid=32210&area=top& ;ordinal=1
http://www.microsoft.com/downloads/release.asp?releaseid=32210&area=top& ;ordinal=1
http://www.microsoft.com/downloads/release.asp?releaseid=32210&area=top& ;ordinal=1
http://www.microsoft.com/downloads/release.asp?releaseid=32210&area=top& ;ordinal=1
svgexsamples.zip
mailto:nicholas@nicholaschase.com

Section 2. What is SVG?

Vector vs. rasterized graphics

For most of the history of the World Wide Web, graphics displayed by browsers were
rasterized. In a rasterized image, such as a GIF or JPEG image, the file contains a
color value for each and every pixel in the image. The browser reads these values and
acts accordingly. It has knowledge only of the individual parts, and no concept of the
whole.

Overall, this system has its strengths, such as the ability to faithfully recreate
photographic images, but there are certain situations where it falls short. For example,
while browsers can display an image at different sizes, this usually results in jagged
edges where it has had to interpolate or guess at values for pixels that don't exist in the
original image. Also, the binary nature of rasterized file formats make it difficult (though
certainly not impossible) to dynamically create images based on database information,
and animation is mostly limited to "flip book" type animations, with individual images
displayed in rapid succession.

Vector graphics overcome some of these difficulties by specifying the instructions
needed to determine the values for each pixel, instead of the values themselves. For
example, rather than providing the pixel values for a circle one inch in diameter, a
vector graphic instead tells the browser to create a circle one inch in diameter, and lets
the browser (or plug-in) do the rest.

This eliminates many of the limitations of rasterized graphics; using vector graphics the
browser simply knows that it has to produce a circle. If the image needs to be displayed
at three times its normal size, the browser produces a circle of the proper size without
having to perform the normal interpolations of a rasterized image. Similarly, the
instructions the browser receives are more easily tied into external sources such as
applications and databases; to animate the image, the browser simply receives
instructions on how to manipulate properties such as the radius or color.

Vector images on the Web

The first vector images on the Web were probably Virtual Reality Markup Language
(VRML) images. VRML sought to bring the ease of HTML to image creation, but
despite some impressive examples, it was intended for 3D modeling and was so
complex that it never really caught on.

Next came Macromedia's entry into the fray, Flash. Flash movies are created using
Macromedia's Flash application, which allows fairly complex animations to be built, and
tied to sound and interactivity. Because Flash files primarily contain instructions on how
to create images, they are much smaller than traditional Web movies (for example,
QuickTime movies) -- plus they can be scaled.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 56 Introduction to Scalable Vector Graphics

However, Flash files are still binary files, which makes it difficult (though not
impossible) to create them dynamically. There are also limitations to the scripting that
can be done from a browser.

Defining images using text

Scalable Vector Graphics solve many of these problems by defining images,
animations, and interactivity using XML. These text-based instructions are read by the
browser (or more specifically, by a plug-in to the browser), which then carries out the
instructions. For example, a simple SVG image of a rectangle might look like the
following:

<?xml version="1.0" standalone="no" ?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="300" height="100" xmlns="http://www.w3.org/2000/svg">

<rect x="25" y="10" width="280" height="50"
fill="red" stroke="blue" stroke-width="3"/>

</svg>

The document instructs the browser to create a rectangle, and provides property
information such as position (x, y), size (height, width), colors (fill, stroke), and
line width (stroke-width). (The overall document is discussed in The basic SVG
document on page 10 .)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 5 of 56

Animation and interactivity

Because of this structure, SVG is well suited to animation and interactivity. To change
the size, position, or color of a graphic element, a script simply adjusts the relevant
property.

In fact, SVG has properties specifically designed for event handling (much like HTML),
and even elements specifically geared toward animation. For example, this document
creates a stick figure that traverses a specific path over a period of 8 seconds,
repeated indefinitely:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="500" height="300" xmlns="http://www.w3.org/2000/svg">

<!-- Box around the image -->
<rect x="1" y="1" width="498" height="298"

fill="none" stroke="blue" stroke-width="2" />

<!-- Visible path -->
<path d="M0,300 S150,100 200,200 S400,400 500,0"

fill="none" stroke="red" stroke-width="2" />

<!-- Group of elements to animate -->
<g stroke-width="5" stroke="black">

<!-- Stick figure pieces -->
<circle cx="0" cy="-45" r="10" fill="black"/>
<line x1="-20" y1="-30" x2="0" y2="-25"/>
<line x1="20" y1="-30" x2="0" y2="-25"/>
<line x1="-20" y1="0" x2="0" y2="-10"/>
<line x1="20" y1="0" x2="0" y2="-10"/>
<line x1="0" y1="-10" x2="0" y2="-45"/>

<!-- Animation controls -->
<animateMotion path="M0,300 S150,100 200,200 S400,400 500,0"

dur="8s" repeatCount="indefinite"
rotate="auto" />

</g>
</svg>

Because this is all based in instructions, even a non-artist (such as the author of this
tutorial) can create basic graphics and animations, if not actual art.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 56 Introduction to Scalable Vector Graphics

Dynamically created graphics

The text-based nature of SVG also allows for easy creation of graphics "on the fly,"
because generating them is simply a matter of outputting the proper values to the
page. For example, just as a Java servlet, ASP page, or CGI script can output values
from a database, it can output a chart or graph. The image below shows an HTML
page with both the plain data in an HTML table, and an SVG version:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 7 of 56

The server-side application that creates the SVG is the same as that which created the
HTML table, and uses the same data (scaled by a factor of 1000 to make it fit on the
page):

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="500" height="300" xmlns="http://www.w3.org/2000/svg">

<!-- Box around the image -->
<rect x="0" y="25" width="450" height="120"

fill="none" stroke="blue" stroke-width="2" />

<!-- Headers -->
<text x="15" y="50">Home page</text>
<text x="15" y="75">Product info</text>
<text x="15" y="100">Contact us</text>
<text x="15" y="125">Technical support</text>

<!-- Chart elements -->
<g fill="yellow" stroke="red" stroke-width="3">

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 56 Introduction to Scalable Vector Graphics

<rect x="150" y="40" height="15" width="273.993"/>
<rect x="150" y="65" height="15" width="99.932"/>
<rect x="150" y="90" height="15" width="3.228"/>
<rect x="150" y="115" height="15" width="25.242"/>

</g>

</svg>

This is just one example of SVG's capabilities. SVG makes creating dynamic images
as simple as creating dynamic HTML. Also, because SVG is based in XML, it can be
easily created using Extensible Stylesheet Language (XSL) transformations.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 9 of 56

Section 3. Basic shapes

The basic SVG document

An SVG document is, at its core, an XML document. That means that SVG documents
have certain basic attributes:

• All tags must have a start and end tag, or must be noted as an empty tag. Empty
tags are closed with a backslash, as in <rect />.

• Tags must be nested properly. If a tag is opened within another tag, it must be
closed within that same tag. For example, <g><text>Hello there!</text></g> is
correct, but <g><text>Hello there!</g></text> is not.

• The document must have a single root. Just as a single <html></html> element
contains all content for an HTML page, a single <svg></svg> element contains all
content for an SVG document.

• The document should start with the XML declaration, <?xml version="1.0"?>.

• The document should contain a DOCTYPE declaration, which points to a list of
allowed elements. The DOCTYPE declaration for an SVG 1.0 document is:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg width="200" height="200" xmlns="http://www.w3.org/2000/svg">

<desc>All SVG documents should have a description</desc>

<defs>
<!-- Items can be defined for later use -->

</defs>

<g>
<circle cx="100" cy="100" r="75" fill="green"/>

</g>
</svg>

Including SVG on an HTML page

SVG documents are useful in and of themselves, but at this point in their development
they are most useful when added to a Web page. Adding them to a Web page also
makes it easier to display them in a browser; depending on how the user's system has
file name associations set up, some browsers will refuse to open a *.svg file, but will
have no problems displaying the SVG image as part of a Web page.

Adding the SVG image to an HTML page is straightforward: Simply add an
<object></object> element with the appropriate attributes:

<html>
<head><title>SVG Demonstration</title></head>
<body>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 56 Introduction to Scalable Vector Graphics

<h2 style="text-align: center">SVG Demonstration</h2>

<p>A page may have other code besides the SVG image.</p>

<object type="image/svg+xml" data="MySVG.svg"
width="300" height="200">

</object>

<p>Using objects allows the browser to decide what to display.</p>

</body>
</html>

Pay particular attention to the height and width attributes on the <object></object>
tag. If they are not specified, some browsers will not display the image properly. Also,
the browser takes these values into account when performing certain calculations
(most notably Scaling with viewBox on page 35), so if they are not specified correctly
(such as simply using large values to display whatever may be present) they may
interfere with proper display of the image.

Basic SVG shapes

SVG defines six basic shapes that, along with paths (discussed in What is a path? on
page 38), may be combined to form any possible image. Each of these shapes carries
properties that specify its position and size. Their colors and outlines are determined by
their fill and stroke properties, respectively. These shapes are:

• circle: Displays a perfect circle of the specified radius, with the center at the
specified point.

• ellipse: Displays an ellipse with the center at the specified point and the major
and minor radii as specified.

• rect: Displays rectangles (including squares) with the upper-left corner at the point
specified, and the height and width as specified. Rectangles can also be drawn with
rounded corners by specifying the x and y radii for the corner circles.

• line: Displays a line between two coordinates.

• polyline: Displays a series of lines with vertices at the specified points.

• polygon: Similar to polyline, but adds a line from the last point back to the first,
creating a closed shape.

The following example demonstrates these shapes:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg">

<desc>Basic shapes</desc>

<g>
<circle cx="50" cy="50" r="25" />

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 11 of 56

<ellipse cx="75" cy="125" rx="50" ry="25" />

<rect x="155" y="5" width="75" height="100"/>
<rect x="250" y="5" width="75" height="100" rx="30" ry="20" />

<line x1="0" y1="150" x2="400" y2="150"
stroke-width="2" stroke="blue"/>

<polyline points="50,175 150,175 150,125 250,200" />
<polygon points="350,75 379,175 355,175 355,200 345,200

345,175 321,175" />

<rect x="0" y="0" width="400" height="200"
fill="none" stroke="red" stroke-width="3" />

</g>
</svg>

Adding text

In addition to shapes, SVG images may also contain text. SVG gives designers and

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 56 Introduction to Scalable Vector Graphics

developers a great deal of control over text, allowing for significant graphic effects
without resorting to an image that loses the actual textual information, as often
happens with a *.gif or *.jpg image, or even a Flash movie.

SVG's text and font capabilities are discussed in the Text section starting with Adding
text on page 46 , but for now it's important to understand that all of the effects available
via Cascading Style Sheets in a traditional HTML page are also available in text
elements within an SVG image. For example:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="125" xmlns="http://www.w3.org/2000/svg">

<desc>Basic text</desc>

<g>
<rect x="0" y="0" width="400" height="125" fill="none"

stroke="blue" stroke-width="3"/>

<text x="10" y="50" font-size="30">Welcome to the world of</text>
<text x="10" y="100" font-size="40"

font-family="Monotype Corsiva"
fill="yellow" stroke="red">Scalable Vector Graphics!</text>

</g>
</svg>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 13 of 56

Rendering order

When compositing a number of different elements, as is the case with an SVG image,
it's important to keep in mind the order in which items are laid down on the page,
because this affects which ones appear "on top." On an HTML page, this layering
effect is controlled using the z-index property, but with an SVG image, items are laid
down in strict order. Each successive layer is placed "on top of" those that have
already been laid down.

If an element has been specified as having no fill (using fill="none"), the items
below it show through, as seen here:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg">

<desc>Overlapping shapes</desc>

<g>
<ellipse cx="125" cy="50" rx="50" ry="25"

fill="none" stroke="black" />
<circle cx="125" cy="50" r="25" fill="dodgerblue" />
<circle cx="125" cy="50" r="10" fill="black" />

<ellipse cx="250" cy="50" rx="50" ry="25"
fill="none" stroke="black" />

<circle cx="250" cy="50" r="25" fill="dodgerblue" />
<circle cx="250" cy="50" r="10" fill="black" />

<polygon points="65,50 185,50 185,75, 150,100
100,100 65,75"

fill="none" stroke="purple" stroke-width="4"/>
<polygon points="190,50 310,50 310,75, 275,100

225,100 190,75"
fill="none" stroke="purple" stroke-width="4"/>

<line x1="65" y1="50" x2="310" y2="50"
stroke="plum" stroke-width="2"/>

</g>
</svg>

Notice that each element overlaps those that came before it.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 56 Introduction to Scalable Vector Graphics

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 15 of 56

Section 4. Definitions and groups

Defining reusable parts

Often in the building of an SVG image, pieces are either re-used or inconvenient to
define within the body of an image. In such cases, it is often convenient to create these
sections within the definition section of the document (as part of the <defs></defs>
element) by assigning them an identifier that can then be called within the body of the
image.

For example, the image shown in the previous panel shows two eyes, each rimmed by
a reading-class lens. Rather than creating the lens twice, the document can define one
lens in the definitions section, and call it twice within the document as the next panel
shows. Similarly, the eyes themselves can contain a gradient, which should also be
defined for later reference. (Gradients are covered more fully in Gradients on page 25 .)

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg">

<desc>Referenced items</desc>
<defs>

<polygon id="lens" points="65,50 185,50 185,75, 150,100
100,100 65,75"

fill="none" stroke="purple" stroke-width="4"/>

<radialGradient id="irisGradient">
<stop offset="25%" stop-color="green" />
<stop offset="100%" stop-color="dodgerblue" />

</radialGradient>

</defs>

<g>
. . .

Using defined items as attributes

The actual use of a pre-defined item, such as the polygon and gradients defined in the
previous panel, generally takes two forms.

In both cases, the defined item is referred to via its local URL, or URI. As with HTML
pages, the id attribute creates a reference point within the document. This means that,
for example, the URI #irisGradient refers to the section of the document identified
as irisGradient, or the gradient definition. This means that it can be referenced
from within the fill attribute of the circle element:

<circle cx="125" cy="50" r="25" fill="url(#irisGradient)"/>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 56 Introduction to Scalable Vector Graphics

Note the use of the url() function.

The final code is shown in the last panel of this section. Note that a gradient is now
applied to the irises of the eyes:

Using defined items as elements

The second means for referencing pre-defined items is by linking them into the
document with the <use/> element. For example:

<use xlink:href="#lens" />

places the polygon on the page using the coordinates supplied within the definition.

Two important items should be emphasized here. First, note the use of the xlink
namespace. While most viewers will display this item properly without it, for
conformance the xlink namespace should be defined on the <svg></svg> element,
as shown on the next panel.

Second, note that when used in this way the <use/>; element becomes a container
that can have its own coordinate system. Coordinate systems are covered in the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 17 of 56

Coordinate systems and the initial viewport on page 32 section, but to look at a concrete
example, the second lens was originally created with an initial coordinate of (190, 50)
for an offset of 125 pixels from the first one. The element

<use xlink:href="#lens" x="125"/>

creates the second lens in its original position because its "container" is offset by 125
pixels.

Grouping elements

Finally, it is not simply single elements that can be defined, as might be guessed from
the <radialGradient></radialGradient> element discussed earlier.

For both readability and convenience, it is often a good idea to group elements
together. For this purpose, SVG provides the <g></g> element, which creates a
container for the elements within. This container can be used to identify the elements,
or to provide a common attribute which will be overridden by a locally defined attribute.
For example the code

. . .
<g stroke="red" stroke-width="3">
<ellipse cx="125" cy="50" rx="50" ry="25"

fill="none" stroke="black" />
<circle cx="125" cy="50" r="25" fill="url(#irisGradient)" />
<circle cx="125" cy="50" r="10" fill="black" />

</g>
. . .

creates an eye where all strokes are 3 pixels wide (because none of the elements
defines a stroke-width) but where all but the outside stroke are red (because the ellipse
defines the stroke color).

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 56 Introduction to Scalable Vector Graphics

Putting it all together

The final document shows how each piece is added:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">

<desc>Reusing items</desc>
<defs>

<polygon id="lens" points="65,50 185,50 185,75, 150,100
100,100 65,75"

fill="none" stroke="purple" stroke-width="4"/>

<radialGradient id="irisGradient">
<stop offset="25%" stop-color="green" />
<stop offset="100%" stop-color="dodgerblue" />

</radialGradient>

<g id="eye">
<ellipse cy="50" rx="50" ry="25"

fill="none" stroke="black"/>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 19 of 56

<circle cy="50" r="25"/>
<circle cy="50" r="10" fill="black"/>

</g>

</defs>

<g>

<use xlink:href="#eye" x="125" fill="url(#irisGradient)"/>
<use xlink:href="#eye" x="250" fill="dodgerblue"/>

<use xlink:href="#lens"/>
<use xlink:href="#lens" x="125"/>

<line x1="65" y1="50" x2="310" y2="50"
stroke="plum" stroke-width="2"/>

</g>
</svg>

Note that reusable elements also allow for different attribute values for each use, as
shown above with the fill on the irises.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 56 Introduction to Scalable Vector Graphics

Section 5. Painting

Stroke and fill

Throughout the tutorial so far, examples have shown the stroke, or line, around an
object, and the fill -- the area within the object. These properties actually have
sub-properties that can also be set to create various effects. These properties include:

• fill: This property specifies the paint used to fill the inside of an object. In most
cases this will simply be a color, but it can also be a gradient or a pattern (which is
covered in Patterns on page 27). The value is typically a keyword, color specification,
or URI pointing to a predefined element.

• fill-opacity: This property specifies the transparency of an element. Values
range from completely transparent (0) to completely opaque (1).

• stroke: This property specifies the appearance of the line that borders the outside
of an element. Like fill, it refers to a paint, although it is normally specified as a
simple color.

• stroke-width: This property specifies the width of the stroke line.

• stroke-linecap: This property, which may take the values butt (the default),
round, and square, determines the shape of the end of the line.

• stroke-linejoin: This property determines the appearance of the corners of an
object. Allowable values are miter (the default), round, and bevel, which "clips" the
edges off of acute angles as seen in the example.

• stroke-dasharray: This property is a series of integers (such as
3,2,3,2,4,2,3,2,3) that allows control over the relative lengths of dashes in a dashed
line.

• stroke-opacity: Similar to fill-opacity, this property determines the relative
transparency of an element's stroke line.

Some examples of these properties can be seen below:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">

<desc>Stroke and fill</desc>
<defs>

<linearGradient id="lineGradient">
<stop offset="0%" stop-color="red" />
<stop offset="100%" stop-color="yellow" />

</linearGradient>

<polygon id="lens" points="65,50 185,50 185,75, 150,100
100,100 65,75"

fill="pink" stroke="purple" stroke-width="4"
fill-opacity=".5"/>

. . .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 21 of 56

</defs>

<g>

. . .

<line x1="65" y1="50" x2="310" y2="50"
stroke="plum" stroke-width="2"/>

<!-- Box with gradient along the outside -->
<rect x="50" y="125" width="275" height="40" fill="orange"

stroke-width="6" stroke="url(#lineGradient)" />

<!-- Purple line with rounded edges -->
<line x1="65" y1="190" x2="310" y2="190"

stroke="purple" stroke-width="20"
stroke-linecap="round"/>

<!-- Blue polygon with beveled corners -->
<polygon points="50,250 100,225 300,225 200,275" stroke="blue"

fill="none" stroke-width="10" stroke-linejoin="bevel" />

</g>
</svg>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 56 Introduction to Scalable Vector Graphics

Colors

Color is crucial to an SVG image. Individual colors may be specified directly using their
RGB values, or indirectly using one of almost 150 color keywords that refer back to
RGB values.

RGB values specify the relative intensity of a color's red, green, and blue components
on a scale of 0 to 255. For example:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 23 of 56

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg">

<desc>Colors</desc>
<defs>
</defs>

<g>

<text x="20" y="50" font-size="30">Colors can be specified</text>
<text x="20" y="100" font-size="30">by their

<tspan fill="rgb(255,0,0)">R</tspan>
<tspan fill="rgb(0,255,0)">G</tspan>
<tspan fill="rgb(0,0,255)">B</tspan>

values</text>
<text x="20" y="150" font-size="30">or by keywords such as</text>
<text x="20" y="200" font-size="30">

<tspan fill="lightsteelblue">lightsteelblue</tspan>,
</text>
<text x="20" y="250" font-size="30">

<tspan fill="mediumseagreen">mediumseagreen</tspan>,
</text>
<text x="20" y="300" font-size="30">and

<tspan fill="darkorchid">darkorchid</tspan>.
</text>

</g>
</svg>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 56 Introduction to Scalable Vector Graphics

A complete list of color keywords can be found as part of the SVG recommendation at
http://www.w3.org/TR/SVG/types.html#ColorKeywords.

Gradients

Gradients, as seen in previous examples, provide the ability to blend colors together.
They come in two varieties. In each case, the code specifies color "stops," or points
along the gradient vector at which the gradient reaches a certain color. For example, a
gradient that specifies a red stop at 0%, a white stop at 50%, and a blue stop at 100%

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 25 of 56

http://www.w3.org/TR/SVG/types.html#ColorKeywords

will gradually change from red to white to blue, with white in the center of the gradient
vector.

The gradient vector can be inferred, or it can be specified directly. In the case of a
linear gradient, it is assumed to start at the left edge of the area to be filled and end at
the right edge. This vector can be changed using the x1, y1, x2, and y2 attributes. The
vector can also be transformed (according to Transformations on page 33) using the
gradientTransform attribute.

In the case of radial gradients, which are based on a circle, the center and radius of the
outer circle (at which the gradient vector ends) can be adjusted using the cx, cy and r
attributes. The focal point (at which the gradient vector starts) can be adjusted using
the fx and fy attributes.

Consider these examples of linear and radial gradients:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg">

<desc>Colors</desc>
<defs>

<linearGradient id="linear1">
<stop offset="0%" stop-color="red"/>
<stop offset="50%" stop-color="white"/>
<stop offset="100%" stop-color="blue"/>

</linearGradient>
<linearGradient id="linear2" x1="100%" y1="0%" x2="0%"

y2="100%">
. . .

</linearGradient>
<linearGradient id="linear3" gradientTransform="rotate(90)">

. . .
</linearGradient>
<radialGradient id="radial1">

. . .
</radialGradient>
<radialGradient id="radial2" fx="225" fy="225">

. . .
</radialGradient>
<radialGradient id="radial3" cx="25%" cy="25%" r="75%">

. . .
</radialGradient>

</defs>

<g>

<!-- First row -->
<rect x="10" y="10" height="100" width="100" stroke="black"

fill="url(#linear1)"/>
<rect x="125" y="10" height="100" width="100" stroke="black"

fill="url(#linear2)"/>
<rect x="240" y="10" height="100" width="100" stroke="black"

fill="url(#linear3)"/>

<!-- Second row -->
<rect x="10" y="125" height="100" width="100" stroke="black"

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 56 Introduction to Scalable Vector Graphics

fill="url(#radial1)"/>
<rect x="125" y="125" height="100" width="100" stroke="black"

fill="url(#radial2)"/>
<rect x="240" y="125" height="100" width="100" stroke="black"

fill="url(#radial3)"/>

</g>
</svg>

Patterns

Filling an object with a pattern is, in many ways, similar to filling it with a gradient. In
both cases, the fill is defined and then called from within the fill attribute.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 27 of 56

Defining a pattern is similar to defining any other object that appears as part of an SVG
image. It has a position, a height and width, and, typically, one or more included
objects. Whether the position is based on the overall document or on the object being
filled is determined by the patternUnits attribute, which may be set to
objectBoundingBox or userSpaceOnUse; these attributes set the coordinates
based on the object and the document, respectively. Similar to gradients, patterns may
be transformed (using the patternTransform attribute).

Consider the following example:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg">

<desc>Patterns</desc>
<defs>

<pattern id="notes" x="0" y="0" width="50" height="75"
patternTransform="rotate(15)"
patternUnits="userSpaceOnUse">

<ellipse cx="10" cy="30" rx="10" ry="5"/>
<line x1="20" y1="30" x2="20" y2="0"

stroke-width="3" stroke="black"/>
<line x1="20" y1="0" x2="30" y2="5"

stroke-width="3" stroke="black"/>

</pattern>
</defs>

<g>
<ellipse cx="175" cy="100" rx="125" ry="60"

fill="url(#notes)" stroke="black" stroke-width="5"/>
</g>

</svg>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 56 Introduction to Scalable Vector Graphics

Filters

Perhaps one of the most powerful capabilities of SVG is the ability to add filter effects
to an image. These effects duplicate many of the effects found in expensive graphics
manipulation programs, such as lighting effects and Gaussian blurs. A complete
discussion of these filters is well beyond the scope of this tutorial, but this panel
discusses the basics.

Filtering an SVG image involves creating a series of filter primitives, each of which has
its own purpose. For example, the offset filter moves the source image to the left or
right, and up or down, as specified. The Gaussian blur primitive blurs the source image
as requested.

The source image doesn't have to be the actual SVG image. For example, it could be
the result of a previous primitive. The following code applies several filters to the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 29 of 56

pattern displayed in the previous panel.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">

<desc>Filters</desc>
<defs>

<filter id="dropShadow" filterUnits="userSpaceOnUse"
x="0" y="0" width="400" height="200">

<feOffset in="SourceAlpha" dx="5" dy="5" result="offset"/>
<feGaussianBlur in="offset" stdDeviation="5" result="blur"/>
<feMerge>
<feMergeNode in="blur"/>
<feMergeNode in="SourceGraphic"/>

</feMerge>
</filter>

. . .
</defs>

<g>
<ellipse filter="url(#dropShadow)" cx="175" cy="100"

rx="125" ry="60"
fill="url(#notes)" stroke="black" stroke-width="5"/>

</g>
</svg>

First, the offset filter takes as its source (using the in attribute) the alpha channel of
the original ellipse and its pattern. The alpha channel consists of a black pixel for each
non-white pixel in the image, and is specified using the SourceAlpha keyword. The
offset primitive does its work and outputs the result to a buffer called, in this case,
offset, as specified by the result attribute.

Next, the blur primitive takes over. It takes as its source the contents of the offset
buffer, as specified by the in parameter. It outputs its result to a buffer called blur, as
specified by the result attribute.

At this point, the filter consists only of the offset, blurred image. If the filter were left
as-is, only this blur would appear on the page. The merge primitive takes the contents
of the blur buffer and merges it with the original source graphic, as specified when the
in attribute references the SourceGraphic keyword.

The result of all this is the original image with the drop-shadow:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 56 Introduction to Scalable Vector Graphics

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 31 of 56

Section 6. Coordinates and transformations

Coordinate systems and the initial viewport

Throughout this tutorial, elements have been positioned via coordinates. Now it is time
to discuss the system into which those coordinates fit.

When a document is first accessed, the user agent (in most cases, the browser)
determines the viewport for the image. The viewport is the portion of the document that
is actually visible, and consists of a coordinate system that starts with the point 0,0 in
the upper left-hand corner, with the positive x-axis running to the right, and the positive
y-axis running downwards. One pixel in the coordinate system corresponds with one
pixel in the viewport.

Several actions can create a new coordinate system. Transformations, which are
covered next, create a new coordinate system within the transformed element, but a
new coordinate system can be created directly by adding another <svg></svg>
element to the document. Consider the following example, where the same element,
with the same x and y attributes, is displayed in different locations because the second
actually belongs to another coordinate system, offset from the first by 100 pixels:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg">

<desc>Coordinates</desc>
<g>

<ellipse cx="100" cy="100" rx="75" ry="60"
fill="pink" stroke="purple" stroke-width="5"
fill-opacity=".5"/>

<svg x="100" y="0">
<ellipse cx="100" cy="100" rx="75" ry="60"

fill="pink" stroke="purple" stroke-width="5"
fill-opacity=".5"/>

</svg>
</g>

</svg>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 56 Introduction to Scalable Vector Graphics

Transformations

Performing transformation alters the coordinate system in which an element lives,
changing its appearance. Transformations can be used to alter the appearance of
elements in several ways:

• translate(x,y): This transformation offsets the element by the amounts
specified.

• scale(x, y): This transformation changes the size of the element. The amount of
scaling in the x and y directions can be controlled separately, but if only one value is
specified, it will be used for both.

• rotate(n): This transformation rotates the element by the specified number of
degrees.

• skewX(n)/ skewY(n) : These transformations skew the element by the specified
number of pixels, with respect to the appropriate axis.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 33 of 56

Transformations can also be specified using a matrix, but this is well beyond the scope
of this tutorial.

Transformations are cumulative, and may be specified either as part of a single
transform attribute or as part of nested elements as shown below:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">

<desc>Coordinates</desc>
<defs>

<rect id="refBox" x="0" y="0" height="100" width="100"
stroke="purple" stroke-width="3" fill="none"/>

</defs>
<g>

<!-- Top lines -->
<g transform="scale(1, .5) translate(0, 50)">

<path stroke="purple" stroke-width="3"
d="M25 50 L 125 5 L 225 50" fill="none"/>

</g>

<!-- Left box -->
<use xlink:href="#refBox"

transform="translate(25, 50) skewY(15)"/>

<!-- Right box -->
<g transform="translate(25,25)">

<g transform="skewY(-15)">
<g transform="translate(100, 79)">

<use xlink:href="#refBox"/>
</g>

</g>
</g>

<!-- Text along the side -->
<g transform="rotate(90) translate(0, -250)">

<text font-size="35">Transform!</text>
</g>

</g>
</svg>

Possibly the most important thing to note in this example is that it is the actual
coordinate system that is being transformed. The object itself is not actually
transformed, but the change in the coordinate system in which it lives makes it appear
to change. Consider the "Transform!" text. It is being translated by a negative 250
pixels in the y direction, so it stands to reason that the text should disappear, being
rendered above the top of the viewport. Before the translation takes place, however,
the coordinate system is rotated 90 degrees, so a negative y value actually moves the
text 250 pixels to the right.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 56 Introduction to Scalable Vector Graphics

Scaling with viewBox

In the absence of any changes, the initial viewport specifies a size where the upper
left-hand coordinate is 0,0, and the lower right-hand coordinate is equal to the number
of pixels between it and 0,0. There are times, however, when the desired effect is
instead for the image to scale to the available size, no matter what that size is. That's
where the viewBox attribute comes in.

The viewBox attribute re-maps the viewport, specifying the new values to appear in
the upper left-hand corner and the lower right-hand corners of the viewport.
Remember: When placing an SVG graphic on a Web page, the dimensions of the
<object></object> tag determine the size of the viewport.

For example, if the eyes and glasses had a viewBox attribute added, as in:

<?xml version="1.0" standalone="no"?>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 35 of 56

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="300px" height="200px"
viewBox="50 0 350 200" preserveAspectRatio="xMinYMin"
xmlns="http://www.w3.org/2000/svg">

<desc>ViewBox</desc>
<defs>

<linearGradient id="lineGradient">
<stop offset="0%" stop-color="red" />
<stop offset="100%" stop-color="yellow" />

</linearGradient>
. . .

the page would display the image in whatever box was allotted to it, scaling
appropriately. So a Web page of:

<html>
<head><title>SVG Demonstration</title></head>
<body>

<object type="image/svg+xml" data="test.svg"
height="100" width="300">

</object>

<object type="image/svg+xml" data="test.svg"
height="100" width="100">

</object>

<object type="image/svg+xml" data="test.svg"
height="300" width="300">

</object>

</body>
</html>

displays the image three times, at various sizes:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 56 Introduction to Scalable Vector Graphics

The preserveAspectRatio attribute determines how the scaling is accomplished. A
value of none will cause the image to stretch to fit the box, even if it's distorted. A value
of xMinYMin, as shown above, aligns the minimum x and y values of the image with
the minimum x and y values of the box. Other possible values are xMinYMid,
xMinYMax, xMidYMin, xMidYMid (the default), xMidYMax, xMaxYMin, xMaxYMid,
and xMaxYMax.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 37 of 56

Section 7. Paths

What is a path?

The predefined shapes that SVG provides are certainly useful, but there comes a time
when they are not sufficient to get the job done. This is particularly true in two cases:
first, when an image requires curves, which can't be created with a polygon or polyline,
and second, when an animation or text needs to proceed along a particular shape on
the page.

Enter paths. A path is a series of commands that are used to create a precisely defined
shape as part of an image. This shape can be open (like a line) or closed (like a
polygon), and can contain one or more lines, curves, and segments.

The most basic paths consist of a few line segments. For example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="400"
xmlns="http://www.w3.org/2000/svg">

<desc>A simple path</desc>
<rect x="1" y="1" width="350" height="350"

fill="none" stroke="blue" />
<path d="M 100 100 L 300 50 L 300 250 L 100 300 Z"

fill="red" stroke="blue" stroke-width="3" />
</svg>

The above code generates a simple polygon according to the instructions provided.
Those instructions are as follows:

1. M 100 100 : Move to the point 100, 100.

2. L 300 50 : Draw a line to the point 300, 50.

3. L 300 250 : Draw a line to the point 300, 250.

4. L 100 300 : Draw a line to the point 100, 300.

5. Z : Close the shape by drawing a line back to the original point. (Or more specifically,
to the point specified by the last "move" command).

The end result is shown here:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 56 Introduction to Scalable Vector Graphics

Note that all commands shown here are uppercase, which specifies that the
coordinates are absolute coordinates with respect to the overall coordinate system.
Using lowercase commands specifies relative coordinates. So the command l 50 50
creates a line from the current point to the point 50 pixels down and to the right,
wherever that may be.

Other commands for simple lines include H (or h) for horizontal lines and V (or v) for
vertical lines.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 39 of 56

Curves

Path commands can create three types of curves:

• Elliptical curves are segments of an ellipse, and are known as arcs. The A (or a)
command creates them by specifying the start point, end point, x and y radii,
rotation, and direction, as shown below.

• Cubic Bezier curves are defined by a start point, an end point, and two control points
that "pull" the curve towards them. The C (or c) command (specifying a start and end
point) and S (or s) command (assuming that the curve picks up where the last
command left off) create them.

• Quadratic Bezier curves are similar to their cubic cousins, but instead have only a
single control point. The Q (or q) and T (ort) commands create them.

The example below shows some sample arcs with text removed for clarity. The arc
command takes the form:

A radiusX, radiusY rotation large arc flag, sweep flag endX, endY

So an arc with radii of 50 and 25, and no rotation, which uses the larger part of the
ellipse and the lower end of the sweep and ends 50 pixels to the right and 25 pixels
down from the start point would use:

a50,25 0 1,0 50,25

Some variations are shown below:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="4cm" height="4cm" viewBox="0 0 400 400"
xmlns="http://www.w3.org/2000/svg">

<desc>Curved paths</desc>
<rect x="1" y="1" width="398" height="300"

fill="none" stroke="blue" />

<!-- First row -->
<text x="25" y="30">Large arc flag=1</text>
<text x="25" y="45">Sweep flag=0</text>
<text x="25" y="60">Rotation=0</text>
<path d="M75,100 a50,25 0 1,0 50,25"

stroke="blue" stroke-width="5" fill="none" />

. . .
<path d="M150,100 a50,25 0 1,1 50,25"

stroke="blue" stroke-width="5" fill="none" />

. . .
<path d="M275,100 a50,25 -45 1,1 50,25"

stroke="blue" stroke-width="5" fill="none" />

<!-- Second row -->
. . .
<path d="M100,225 a50,25 0 0,1 50,25"

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 56 Introduction to Scalable Vector Graphics

stroke="blue" stroke-width="5" fill="none" />

. . .
<path d="M225,225 a50,25 0 0,0 50,25"

stroke="blue" stroke-width="5" fill="none" />
</svg>

Note that all of the arcs have the same start and end points, but not the same shape.

Curves, continued

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 41 of 56

The shape of a bezier curve is determined by the start and end points, as well as the
location of the control points. The commands are formatted as follows:

C control1x, control1y, control2x, control2y, endx, endy
S control2x, control2y, endx, endy
Q controlx, controly, endx, endy
T endx, endy

For the S and T commands, the first control point is assumed to be a reflection of the
second control point of the previous curve. For example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="4cm" height="4cm" viewBox="0 0 400 400"
xmlns="http://www.w3.org/2000/svg">

<desc>Curved paths</desc>
<rect x="1" y="1" width="398" height="300"

fill="none" stroke="blue" />

<!-- First row -->
<path d="M75,100 c25,-75 50,50 100,0 s50,-50 150,50"

stroke="blue" stroke-width="5" fill="none" />

<circle cx="175" cy="100" r="5" fill="red" />
<circle cx="75" cy="100" r="5" fill="red" />
<circle cx="325" cy="150" r="5" fill="red" />

<path d="M75,225 q25,-75 100,0 t150,50"
stroke="blue" stroke-width="5" fill="none" />

<circle cx="175" cy="225" r="5" fill="red" />
<circle cx="75" cy="225" r="5" fill="red" />
<circle cx="325" cy="275" r="5" fill="red" />

</svg>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 56 Introduction to Scalable Vector Graphics

Markers

Markers are a natural complement to paths. They are elements that can be added to
the start, end, and vertices of lines and paths. The most common use is to add arrows
to the end of lines, but any object can be used.

The process is straightforward: Define the marker, then assign it to the relevant
element using the marker-start, marker-end, and marker-mid attributes. For
example:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 43 of 56

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="4cm" height="4cm" viewBox="0 0 400 400"
xmlns="http://www.w3.org/2000/svg">

<desc>Markers</desc>
<defs>

<marker id="arrow"
viewBox="0 0 10 10" refX="0" refY="5"
markerUnits="strokeWidth" markerWidth="3" markerHeight="10"
orient="auto">

<path d="M 0 0 L 10 5 L 0 10 z" fill="yellow" stroke="black"/>

</marker>
</defs>
<rect x="1" y="1" width="398" height="300"

fill="none" stroke="blue" />

<!-- First row -->
<path d="M75,100 c25,-75 50,50 100,0 s50,-50 150,50"

stroke="purple" stroke-width="5" fill="none"
marker-start="url(#arrow)"
marker-mid="url(#arrow)"
marker-end="url(#arrow)" />

<!-- Second row -->
<path d="M75,200 c25,-75 50,50 100,0 s50,-50 150,50"

stroke="purple" stroke-width="3" fill="none"
marker-start="url(#arrow)"
marker-mid="url(#arrow)"
marker-end="url(#arrow)" />

</svg>

The marker itself consists of a simple triangular path, acted upon by the marker
attributes. The viewBox has been set so that the marker itself always fills the entire
box, no matter what that box is. The box itself is affected by the size of the line to which
the marker is applied, because of the value of markerUnits. The markerUnits
attribute can also be set to userSpaceOnUse, which causes the marker to use the
general coordinate system instead. The refX and refY attributes determine the point
within the marker that is "attached" to the line being marked. Finally, the orientation for
the marker is set to auto, causing it to be aligned with the Y-axis perpendicular to the
tangent to the line. (In order to compensate for this orientation, the marker has been
constructed to point along the X-axis.)

Notice that the marker size changes with the stroke size:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 56 Introduction to Scalable Vector Graphics

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 45 of 56

Section 8. Text

Adding text

One of the great strengths of SVG is its ability to control text to a degree unheard-of in
a standard HTML page without having to resort to images or other plug-ins (which can
create accessibility challenges). Any manipulation that can be performed on a shape or
a path, such as painting or filters, can be performed on text.

The one down-side is that SVG does not perform line-wrapping. If text is longer than
the allowed space, it is simply cut off. Creating multiple lines of text requires, in most
cases, multiple text elements.

Text elements can be broken into pieces using the tspan element, allowing each
section to be individually styled. Within text elements, white space is handled similarly
to HTML; line feeds and carriage returns become spaces, and multiple spaces are
collapsed to a single space, as seen in this earlier example:

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">

<desc>Text</desc>
<defs>
</defs>

<g>

<text x="20" y="50" font-size="30">
Colors can be specified

</text>
<text x="20" y="100" font-size="30">by their

<tspan fill="rgb(255,0,0)">R</tspan>
<tspan fill="rgb(0,255,0)">G</tspan>
<tspan fill="rgb(0,0,255)">B</tspan>

values</text>
<text x="20" y="150" font-size="30">

or by keywords such as
</text>
<text x="20" y="200" font-size="30">

<tspan fill="lightsteelblue">lightsteelblue</tspan>,
</text>
<text x="20" y="250" font-size="30">

<tspan fill="mediumseagreen">mediumseagreen</tspan>,
</text>
<text x="20" y="300" font-size="30">and

<tspan fill="darkorchid">darkorchid</tspan>.
</text>

</g>
</svg>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 46 of 56 Introduction to Scalable Vector Graphics

Using CSS properties

In actuality, all properties (for all elements, not just text) can be associated with an
element using Cascading Style Sheets, and all CSS properties for text are available
within an SVG image.

Elements may be styled using the style attribute directly, or using references to a style
sheet. Style sheets should never be parsed (because they occasionally contain
characters that cause problems) so they are included within an XML CDATA section.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 47 of 56

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="200" xmlns="http://www.w3.org/2000/svg">

<desc>Text</desc>
<defs>

<style type="text/css">
<![CDATA[
.abbreviation { text-decoration: underline; }
]]>

</style>
</defs>

<g>

<text x="20" y="50" font-size="30">Colors can be specified</text>
<text x="20" y="100" font-size="30">by their

<tspan fill="rgb(255,0,0)" class="abbreviation">R</tspan>
<tspan fill="rgb(0,255,0)" class="abbreviation">G</tspan>
<tspan fill="rgb(0,0,255)" class="abbreviation">B</tspan>

values</text>
<text x="20" y="150" font-size="30">or by keywords such as</text>
<text x="20" y="200">

<tspan style="fill: lightsteelblue; font-size:30">
lightsteelblue

</tspan>,
</text>

. . .
</g>

</svg>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 48 of 56 Introduction to Scalable Vector Graphics

Text on a path

One SVG capability that is impossible in straight HTML is aligning text along a path. To
accomplish this, create a textPath element that links to pre-defined path information:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="400" height="300" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 49 of 56

<desc>Text on a path</desc>
<defs>

<path id="wavyPath"
d="M75,100 c25,-75 50,50 100,0 s50,-50 150,50"/>

</defs>
<rect x="1" y="1" width="398" height="200"

fill="none" stroke="blue" />

<text x="50" y="50" font-size="14">
<textPath xlink:href="#wavyPath">
Text travels along any path that you define for it.

</textPath>
</text>

</svg>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 50 of 56 Introduction to Scalable Vector Graphics

Section 9. Animation and interactivity

Controlling properties

Even before SVG came about, animation and interactivity were firmly entrenched on
the Web. Although the implementations can get complicated, the concept is simple:
Change the value for the property of an object, and the object itself appears to change.
For example, add 50 pixels to the x coordinate, and the object moves 50 pixels to the
right.

The concept is the same with SVG images, but implementation is much simpler due to
the fact these capabilities have been built into the language from the start. SVG defines
five elements devoted to animation:

animate: This element designates a specific property (via the attributeName
attribute) whose value is changed from the value designated as the from attribute to
the value designated as the to attribute over the amount of time specified in the dur
attribute. The repeatCount attribute designates how many times the animation takes
place. To make the animation run indefinitely, set the value of repeatCount to
indefinite. The animation applies to the element that encloses it, so the code:

<rect x="50" y="50" width="100" height="100"
fill="none" stroke="purple">

<animate attributeType="CSS" attributeName="stroke-width"
from="1" to="50" dur="5s" repeatCount="indefinite" />

</rect>

creates a square with a stroke-width that gradually thickens to 50 pixels, then goes
back to 1 and starts again.

animateMotion: This element provides an easy way to move an element through a
specific path. The path data is the same as the d attribute for a path element, but is
specified using the path element. It can also be linked to the animateMotion element
using xlink:href. The start and end points are determined by the from and to
attributes, and the object can be set to align itself perpendicular to the path by setting
the value of rotate to auto. (The rotate attribute can also be set to
auto-reverse to change this orientation by 180 degrees. Alternatively, a specific
angle can be given.) As seen in Animation and interactivity on page 6 :

<animateMotion path="M0,300 S150,100 200,200 S400,400 500,0"
dur="8s" repeatCount="indefinite" rotate="auto" />

animateColor: This element provides the means for changing the color of an
element over a period of time. For example, to create a circle that changes from red to
blue over a period of 8 seconds:

<circle cx="250" cy="100" r="50" fill="red">
<animateColor attributeType="CSS" attributeName="fill"

from="rgb(255,0,0)" to="rgb(0,0,255)" dur="8s"
repeatCount="indefinite"/>

</circle>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 51 of 56

animateTransform: This element performs transformations over a period of time.
Remember, these transformations affect the overall coordinate system, so simply
scaling a rectangle will also result in the rectangle's position changing. This example
both scales the rectangle and gradually returns it to a similar position:

<rect x="333" y="49" width="50" height="50" fill="none"
stroke="purple">

<animateTransform attributeName="transform" attributeType="XML"
type="scale" from="1" to="3" additive="sum"
begin="3s" dur="6s" fill="freeze" />

<animateTransform attributeName="transform" attributeType="XML"
type="translate" from="0,0" to="-222,-45" additive="sum"
begin="3s" dur="6s" fill="freeze" />

</rect>

set: This remaining element makes it easy to set a particular property on an element
for a specific period of time. For example:

<circle cx="250" cy="100" r="50" fill="red">
<set attributeName="r" to="100" begin="1s" dur="5s" fill="remove" />

</circle>

Scripting events

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 52 of 56 Introduction to Scalable Vector Graphics

Like HTML pages, SVG images are set up to capture certain events, such as
mouse-clicks and rollovers, and use them to fire scripts. In building simple SVG
images, these events are captured via attributes. The most commonly used are
onclick, onactivate, onmousedown, onmouseup, onmouseover, onmousemove,
onmouseout, onload, onresize, onunload, and onrepeat.

When one of these events is triggered, the event object itself can be fed to the script
which can, in turn, use it to determine what object has triggered the event (i.e., what
object was clicked). The script can then manipulate the properties of that object, such
as its attributes.

This example returns to the pattern example, but in this case the fill of the ellipse
alternates from being white to using the pattern as the user clicks on it.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg width="500" height="300" xmlns="http://www.w3.org/2000/svg">
<desc>Scripting the onclick event</desc>
<defs>

<script type="text/ecmascript">
<![CDATA[
function hideReveal(evt) {
var imageTarget = evt.target;
var theFill = imageTarget.getAttribute("fill");
if (theFill == 'white')
imageTarget.setAttribute("fill", "url(#notes)");

else
imageTarget.setAttribute("fill", "white");

}
]]>
</script>

<pattern id="notes" x="0" y="0" width="50" height="75"
patternTransform="rotate(15)"
patternUnits="userSpaceOnUse">

<ellipse cx="10" cy="30" rx="10" ry="5"/>
<line x1="20" y1="30" x2="20" y2="0"

stroke-width="3" stroke="black"/>
<line x1="20" y1="0" x2="30" y2="5"

stroke-width="3" stroke="black"/>

</pattern>
</defs>

<!-- Outline the drawing area with a blue line -->
<rect x="1" y="1" width="350" height="200" fill="none" stroke="blue"/>

<ellipse onclick="hideReveal(evt)" cx="175" cy="100" rx="125" ry="60"
fill="url(#notes)" stroke="black" stroke-width="5"/>

</svg>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 53 of 56

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 54 of 56 Introduction to Scalable Vector Graphics

Section 10. Summary

Scalable Vector Graphics summary

Scalable Vector Graphic (SVG) images are a means for using XML-based text
information to create images. These images can consist of simple shapes, such as
rectangles or circles, or more complex paths that can be mathematically specified.
These images can then be embedded within a Web page, where an SVG viewer
interprets them.

The objects that are part of an SVG image can be manipulated via filters, allowing for
complex imaging effects, and providing a basis for both dynamically created graphics
and animations.

This tutorial has provided an introduction to SVG, including:

• Creating the basic document

• Shapes

• Paths

• Text handling

• Styling

• Colors

• Patterns

• Animation and scripting (briefly)

Resources

Scalable Vector Graphics provide such enormous capabilities that it is impossible to
cover them all in a single tutorial. For more information on SVG and related topics, see
the following resources:

• For an understanding of how XML works, check out the developerWorks tutorial
Introduction to XML.

• For complete listings of SVG capabilities and attributes, read the Scalable Vector
Graphics 1.0 Recommendation from the World Wide Web Consortium.

• One of the advantages of SVG is the ability to create images on a variety of
platforms, including handheld devices. For a look at the likely subsets of SVG to be
used this way, see the W3C's look at versions of SVG for small handheld devices, in
Mobile SVG: SVGTiny and SVGBasic.

• As part of his look at transforming XML using Extensible Stylesheet Language
Transformations, Doug Tidwell discusses the generation of SVG images from other
data in his tutorial, Transforming XML into SVG.

• New SVG tools are rapidly emerging. For an idea of the state of SVG tools as of
November 2001, read Antoine Quint's article, SVG: Where Are We Now?

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Scalable Vector Graphics Page 55 of 56

http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVGMobile
http://www.w3.org/TR/SVGMobile
http://www.w3.org/TR/SVGMobile
http://www.w3.org/TR/SVGMobile
http://www.w3.org/TR/SVGMobile
http://www-106.ibm.com/developerworks/education/transforming-xml/xmltosvg/index.html
http://www-106.ibm.com/developerworks/education/transforming-xml/xmltosvg/index.html
http://www-106.ibm.com/developerworks/education/transforming-xml/xmltosvg/index.html
http://www-106.ibm.com/developerworks/education/transforming-xml/xmltosvg/index.html
http://xml.com/pub/a/2001/11/21/svgtools.html
http://xml.com/pub/a/2001/11/21/svgtools.html
http://xml.com/pub/a/2001/11/21/svgtools.html
http://xml.com/pub/a/2001/11/21/svgtools.html
http://xml.com/pub/a/2001/11/21/svgtools.html

• For another look at the basics of SVG, read An Introduction to Scalable Vector
Graphics by J. David Eisenberg.

• Kip Hampton takes a look at using CGI to generate SVG images in his article
Creating Scalable Vector Graphics with Perl.

• Test drive the new IBM WebSphere Studio development environments that deliver
dynamic e-business applications with ease.

• Real-world SVG by Jackson West discusses some of the less theoretical and more
practical aspects of using SVG.

• Adobe has gathered an impressive array of tutorials and samples in their SVG Zone.

• Get a list of recognized color keywords from the recommendation and save yourself
some time.

Downloads
• Download the IBM prototype SVGView from

http://www.alphaworks.ibm.com/tech/svgview.

• Download the Adobe SVG Viewer (version 3.0) from
http://www.adobe.com/svg/viewer/install/main.html.

• Download the Batik SVG viewer and toolkit from the Apache Project at
http://xml.apache.org/batik/index.html.

• Download an SVG converter from http://www.svgfactory.com.

• Download Jasc's WebDraw from
http://www.jasc.com/products/webdraw/wdrawdl.asp.

Feedback

Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 56 of 56 Introduction to Scalable Vector Graphics

http://www.xml.com/pub/a/2001/03/21/svg.html
http://www.xml.com/pub/a/2001/03/21/svg.html
http://www.xml.com/pub/a/2001/03/21/svg.html
http://www.xml.com/pub/a/2001/03/21/svg.html
http://www.xml.com/pub/a/2001/03/21/svg.html
http://www.xml.com/pub/a/2001/03/21/svg.html
http://www.xml.com/pub/a/2001/07/11/creatingsvg.html
http://www.xml.com/pub/a/2001/07/11/creatingsvg.html
http://www.xml.com/pub/a/2001/07/11/creatingsvg.html
http://www.xml.com/pub/a/2001/07/11/creatingsvg.html
http://www.xml.com/pub/a/2001/07/11/creatingsvg.html
http://www.xml.com/pub/a/2001/07/11/creatingsvg.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/webservers/studio/preregister.html&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/webservers/studio/preregister.html&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/webservers/studio/preregister.html&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/webservers/studio/preregister.html&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/webservers/studio/preregister.html&origin=x
http://builder.cnet.com/webbuilding/0-3883-8-7227629-1.html?tag=st.bl.3883-8-7227629-2.txt.3883-8-7227629-1
http://builder.cnet.com/webbuilding/0-3883-8-7227629-1.html?tag=st.bl.3883-8-7227629-2.txt.3883-8-7227629-1
http://www.adobe.com/svg/basics/intro.html
http://www.adobe.com/svg/basics/intro.html
http://www.w3.org/TR/SVG/types.html#ColorKeywords
http://www.w3.org/TR/SVG/types.html#ColorKeywords
http://www.w3.org/TR/SVG/types.html#ColorKeywords
http://www.alphaworks.ibm.com/tech/svgview
http://www.adobe.com/svg/viewer/install/main.html
http://xml.apache.org/batik/index.html
http://www.svgfactory.com/
http://www.jasc.com/products/webdraw/wdrawdl.asp
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Introduction
	Should I take this tutorial?
	What is this tutorial about?
	Tools
	About the author

	What is SVG?
	Vector vs. rasterized graphics
	Vector images on the Web
	Defining images using text
	Animation and interactivity
	Dynamically created graphics

	Basic shapes
	The basic SVG document
	Including SVG on an HTML page
	Basic SVG shapes
	Adding text
	Rendering order

	Definitions and groups
	Defining reusable parts
	Using defined items as attributes
	Using defined items as elements
	Grouping elements
	Putting it all together

	Painting
	Stroke and fill
	Colors
	Gradients
	Patterns
	Filters

	Coordinates and transformations
	Coordinate systems and the initial viewport
	Transformations
	Scaling with viewBox

	Paths
	What is a path?
	Curves
	Curves, continued
	Markers

	Text
	Adding text
	Using CSS properties
	Text on a path

	Animation and interactivity
	Controlling properties
	Scripting events

	Summary
	Scalable Vector Graphics summary
	Resources
	Feedback

