
 I

HAVi SPECIFICATION Version 1.1

The HAVi Specification

Specification of the Home Audio/Video

Interoperability (HAVi) Architecture

HAVi, Inc.

1. This document is provided “as is” with no warranties, whatsoever, including any warranty of
merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of
any proposal or specification.
2. All liability, including liability for infringement of any proprietary rights, relating to use of information in
this specification is disclaimed.
3. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.
4. This document is allowed to be used only for evaluation purposes and may not be used for the
development, design, production or commercialization of products unless proper licenses are taken from the
owners of Intellectual Property Rights that pertain to this document and the technical content thereof.
5. This document shall not be used as a basis for the development, design, production or commercialization of
any product of for any other purpose other than provided for under item #4 hereabove.
6. This document is protected by copyrights owned by HAVi, Inc. Third party names and brands are the
property of their respective owners. Despite accessibility on the HAVi website of these HAVi documents it is
prohibited to copy and/or distribute the same or any part thereof to third parties.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

Version 1.1
May 15, 2001

 II

HAVi SPECIFICATION Version 1.1

Table of Contents
1 GENERAL..1

1.1 SCOPE ...1
1.2 REFERENCES..1
1.3 TERMINOLOGY..2
1.4 COMPLIANCE..6

2 OVERVIEW..8
2.1 THE HOME NETWORK ...8
2.2 REQUIREMENTS..9
2.3 SYSTEM MODEL..11
2.4 HAVI SOFTWARE ARCHITECTURE...13
2.5 USER INTERFACE SUPPORT ..17
2.6 HOME NETWORK CONFIGURATIONS ..19
2.7 INTEROPERABILITY IN THE HAVI ARCHITECTURE..20
2.8 VERSIONING ...22
2.9 SECURITY...23

3 SOFTWARE ELEMENT DESCRIPTIONS.........................25
3.1 COMMUNICATION MEDIA MANAGER...25
3.2 MESSAGING SYSTEM ..26
3.3 EVENT MANAGER ...48
3.4 REGISTRY...49
3.5 DEVICE CONTROL...53
3.6 DEVICE CONTROL MODULE MANAGER ..63
3.7 STREAM MANAGER...67
3.8 RESOURCE MANAGER ..74
3.9 APPLICATION MODULES..88
3.10 CODE UNIT AUTHENTICATION...88

4 DATA DRIVEN INTERACTION..99
4.1 DATA DRIVEN INTERACTION PROTOCOL ..99
4.2 USER OUTPUT AND INPUT DEVICE MODELS...101
4.3 DDI ELEMENTS ..103
4.4 NAVIGATION OF THE DDI HIERARCHY..106
4.5 NOTIFICATION SCOPE FOR TARGET DDI CHANGES..106

 III

HAVi SPECIFICATION Version 1.1

5 SOFTWARE ELEMENT APIS AND PROTOCOLS108
5.1 HAVI TYPE DEFINITIONS AND API CATEGORIES..108
5.2 COMMUNICATION MEDIA MANAGER...115
5.3 MESSAGING SYSTEM ..124
5.4 EVENT MANAGER ...138
5.5 REGISTRY...146
5.6 DEVICE CONTROL MODULE...156
5.7 FUNCTIONAL COMPONENT MODULE ..186
5.8 DEVICE CONTROL MODULE MANAGER ..200
5.9 STREAM MANAGER...217
5.10 RESOURCE MANAGER ...239
5.11 APPLICATION MODULE...253
5.12 APIS FOR DATA DRIVEN INTERACTION ...256
5.13 APIS FOR VERSIONING...293
5.14 APIS FOR BULK TRANSFER ...294

6 APIS FOR FUNCTIONAL COMPONENT MODULES296
6.1 FCM DATA TYPES..296
6.2 TUNER FCM...299
6.3 VCR FCM ...309
6.4 CLOCK FCM ..321
6.5 CAMERA FCM..328
6.6 AV DISC FCM..337
6.7 AMPLIFIER FCM...352
6.8 DISPLAY FCM..360
6.9 AV DISPLAY FCM..373
6.10 MODEM FCM ..374
6.11 WEB PROXY FCM ...384

7 HAVI JAVA API DESCRIPTION393
7.1 OVERVIEW..393
7.2 PROFILES...393
7.3 MAPPING HAVI IDL TO JAVA..396
7.4 CODE UNITS...414
7.5 ISOCHRONOUS DATA PROCESSING..419
7.6 EXAMPLE: A DCM CODE UNIT AND DCM (INFORMATIVE).................................420

8 HAVI LEVEL 2 USER INTERFACE425
8.1 HAVI USER-INTERFACE DESIGN (INFORMATIVE) ..425

 IV

HAVi SPECIFICATION Version 1.1

8.2 JAVA.AWT SUBSET ...425
8.3 HAVI EXTENSIONS TO AWT ...427
8.4 HAVI WIDGET FRAMEWORK ...441
8.5 HAVI RESIDENT WIDGETS ..447
8.6 PROFILES...448
8.7 GENERAL APPROACH TO ERROR BEHAVIOR..448
8.8 REGISTER OF CONSTANTS ..448

9 SDD DATA...454
9.1 REFERENCES..454
9.2 INTRODUCTION..454
9.3 TEXT ENCODING FORMATS ...454
9.4 HAVI KEY VALUES...454
9.5 MINIMUM REQUIRED DATA..454
9.6 ROM FORMAT ...455
9.7 THE GUID AND THE BUS_INFO_BLOCK..456
9.8 ROOT DIRECTORY...456
9.9 INSTANCE DIRECTORY ..457
9.10 HAVI UNIT DIRECTORY..457
9.11 EXAMPLES (INFORMATIVE) ...461

10 SCENARIOS ...465
10.1 IAV OR FAV BOOTSTRAP ...465
10.2 A BAV OR LAV IS PLUGGED INTO THE NETWORK..466
10.3 AN FAV OR IAV IS PLUGGED INTO THE NETWORK..466
10.4 A BAV OR LAV IS REMOVED FROM THE NETWORK..467
10.5 AN FAV OR IAV IS REMOVED FROM THE NETWORK467
10.6 AN APPLICATION COMMUNICATES WITH AN FCM..468
10.7 TWO APPLICATIONS COMMUNICATE WITH THE SAME DCM469
10.8 A DCM COMMUNICATES WITH ITS TARGET ..469

11 ANNEXES..471
11.1 HAVI PROTOCOL TYPES..471
11.2 HAVI REGISTRY ATTRIBUTES ..471
11.3 HAVI SOFTWARE ELEMENT TYPES ..472
11.4 HAVI SEIDS ...473
11.5 HAVI API CODES..474
11.6 HAVI OPERATION CODES ..475
11.7 HAVI ERROR CODES...482

 V

HAVi SPECIFICATION Version 1.1

11.8 HAVI FCM ATTRIBUTE INDICATORS...488
11.9 HAVI SYSTEM EVENT TYPES ...490
11.10 HAVI MEDIA FORMATS..492
11.11 HAVI STREAM TYPES..493
11.12 HAVI CABLE TRANSMISSION FORMATS...495
11.13 HAVI IMAGE TYPES...496
11.14 HAVI TRANSPORT TYPES..496
11.15 HAVI DDI ELEMENT TYPES...497
11.16 HAVI DDI OPTIONAL ATTRIBUTES...498
11.17 HAVI COMPARISON OPERATORS...499

APPENDIX A: HAVI JAVA APIS

 VI

HAVi SPECIFICATION Version 1.1

List of Figures

Figure 1. A 1394 Network with AV Clusters ..9
Figure 2. DCM Characteristics ... 12
Figure 3. HAVi Architectural Diagram (FAV).. 15
Figure 4. HAVi Controllers .. 19
Figure 5. HAVi Displays... 20
Figure 6. SEID Representation... 26
Figure 7. Example of Message Transfer Supervision .. 28
Figure 8. Typical Reliable Message Sequences.. 30
Figure 9. Reliable Messaging Failing Due to Timer Expiration... 30
Figure 10. General Message Format ... 31
Figure 11. IEC 61883 FCP Packet Structure... 34
Figure 12. IEC 61883 CTS Codes ... 35
Figure 13. TAM_HaviDataPacket Representation ... 35
Figure 14. Function Call Mapping to a Message ... 38
Figure 15. Function Return Mapping to a Message.. 40
Figure 16. Example of Synchronous Message Transfer.. 43
Figure 17. Self-renumeration Strategy.. 44
Figure 18. Havlet Upload ... 55
Figure 19. DCM Installation... 56
Figure 20. Connection Diagram ... 71
Figure 21. Stream Types.. 72
Figure 22. FCM Reservation ... 76
Figure 23. Reservation Protocol .. 79
Figure 24. Resource Manager and Scheduled Actions.. 81
Figure 25. Certificate Tree... 89
Figure 26. Authentication-specific files in a JAR file.. 90
Figure 27. havi.signature format .. 92
Figure 28. havi.cert format .. 93
Figure 29. havi.crl format... 94
Figure 30. DDI Message Sequence Scheme (Typical).. 100
Figure 31. Registry Protocol... 156
Figure 32. DCM Manager Protocol... 213
Figure 33. DCM Manager States... 216
Figure 34. Resource Managers and Bandwidth Checks.. 252
Figure 35. Asynchronous Modem FCM Communication .. 375
Figure 36. Isochronous Modem FCM Communication .. 376
Figure 37. Web Proxy Communication... 384
Figure 38. Web Proxy and a Web Client Communication.. 385
Figure 39. Scene Hierarchy... 438
Figure 40. Scene Hierarchy with Mattes ... 438
Figure 41. Component Mattes .. 439
Figure 42. Visual Composition Examples .. 440
Figure 43. HSwitchable Transitions... 444
Figure 44. HAVi_DCM_Profile Leaf Structure .. 460
Figure 45. HAVi_DCM_Reference Leaf Structure.. 461
Figure 46. Example of HAVi_DCM_Reference Leaf Structure .. 461
Figure 47. Instance_Directory (Root Dependent Directory) .. 463
Figure 48. HAVi_Unit_Directory (Instance Dependent Directory) .. 463
Figure 49. Unit_Directory (IEC 61883) Root Dependent Directory ... 463
Figure 50. Descriptor Parameter Leaf ... 464
Figure 51. User Preferred Name Leaf in a Modifiable Region of Configuration ROM............... 464
Figure 52. Application and FCM Communication ... 469
Figure 53. DCM and Target Communication.. 470

 VII

HAVi SPECIFICATION Version 1.1

List of Tables

Table 1. HAVi Configurations ... 17
Table 2. Message Type Values ... 32
Table 3. msg_reliable_noack Message Body Values ... 32
Table 4. TAM Fragment Type Values... 36
Table 5. Registry Database Structure.. 49
Table 6. Registry Attribute Structure... 51
Table 7. Predefined Registry Attributes.. 52
Table 8. DCM Installation Preferences .. 65
Table 9. Extensions to HAVi Entities... 114
Table 10. Mandatory Attributes of DDI Elements... 268
Table 11. Optional Attributes of DDI Elements .. 269
Table 12. DDI Action Types ... 283
Table 13. DDI Resource Limitations .. 286
Table 14. Version Number Encoding... 293
Table 15. java.awt Classes Available to Interoperable HAVi Applications................................ 426
Table 16. HUI Events .. 441
Table 17. HAVi Unit Directory Key Values .. 454
Table 18. HAVi Configuration ROM Requirements ... 455
Table 19. Non-HAVi Configuration ROM Requirements... 455

 VIII

HAVi SPECIFICATION Version 1.1

Detailed Table of Contents
1 GENERAL..1

1.1 SCOPE ...1
1.2 REFERENCES..1
1.3 TERMINOLOGY..2
1.4 COMPLIANCE..6

2 OVERVIEW..8
2.1 THE HOME NETWORK ...8
2.2 REQUIREMENTS..9

2.2.1 Legacy Device Support..9
2.2.2 Future-Proof Support ...10
2.2.3 Plug-and-Play Support...10
2.2.4 Flexibility..10

2.3 SYSTEM MODEL..11
2.3.1 Control Model..11
2.3.2 Device Model...12
2.3.3 Device Classification..13

2.3.3.1 Full AV Devices...13
2.3.3.2 Intermediate AV Devices ..13
2.3.3.3 Base AV Devices..13
2.3.3.4 Legacy AV Devices...13

2.4 HAVI SOFTWARE ARCHITECTURE...13
2.4.1 Object-Based...13
2.4.2 Software Element Identifiers ...14
2.4.3 Message-Based Communication..14
2.4.4 Software Elements..14

2.5 USER INTERFACE SUPPORT ..17
2.5.1 Level 1 UI ...17

2.5.1.1 Layout Mechanism..18
2.5.1.2 Navigation Mechanism ...18

2.5.2 Level 2 UI ...18
2.5.3 User Notification ...18

2.6 HOME NETWORK CONFIGURATIONS ..19
2.6.1 LAV and BAV Only ...19
2.6.2 IAV or FAV as Controller..19
2.6.3 IAV or FAV as Display ..19
2.6.4 Peer-to-Peer Architecture between FAVs and IAVs20
2.6.5 IAV as Controller and Display ...20

2.7 INTEROPERABILITY IN THE HAVI ARCHITECTURE..20
2.7.1 Level 1 Interoperability...21

 IX

HAVi SPECIFICATION Version 1.1

2.7.2 Level 2 Interoperability...21
2.8 VERSIONING ...22
2.9 SECURITY...23

2.9.1 Access Levels ...23
2.9.2 Signature Verification...24

3 SOFTWARE ELEMENT DESCRIPTIONS.........................25
3.1 COMMUNICATION MEDIA MANAGER...25
3.2 MESSAGING SYSTEM ..26

3.2.1 Description ..26
3.2.1.1 Software Element Identifier Allocation ..26

3.2.1.1.1 Software Element Handle Allocation ... 27
3.2.1.1.2 Well-known Software Element Handles... 27
3.2.1.1.3 Trusted and Untrusted Software Element Handles 27

3.2.1.2 Message Transfer Service..27
3.2.1.2.1 Message Transfer Supervision.. 28
3.2.1.2.2 Message Transfer Modes.. 28
3.2.1.2.3 Acknowledgements .. 29
3.2.1.2.4 General Message Format ... 31
3.2.1.2.5 Ack Message Format... 32
3.2.1.2.6 Noack Message Format .. 32
3.2.1.2.7 HAVi Message Version ... 33
3.2.1.2.8 Outstanding Message.. 33

3.2.2 Transport Adaptation Module (TAM)..33
3.2.2.1 Service Description...33
3.2.2.2 Fragmentation...34
3.2.2.3 Message Ordering ..34
3.2.2.4 Mapping of TAM onto the 1394 Transaction Layer34

3.2.2.4.1 IEC 61883 FCP Packet... 34
3.2.2.4.2 TAM Data Packet Structure.. 35

3.2.2.5 Reliable TAM Packet Transmission..36
3.2.2.6 TAM Sequence Number Synchronization ..37

3.2.3 Mapping of Function Calls into Messages...37
3.2.3.1 Mapping of an IDL Interface into the Messaging System API..............37
3.2.3.2 Mapping of Function Calls into Messages..38
3.2.3.3 Mapping of Function Returns into Messages.......................................39
3.2.3.4 Mapping of IDL Types and Parameters to Bitflows42
3.2.3.5 Synchronous Message Transfer Mode ..42

3.2.4 Implementation Guidelines and Suggestions ...43
3.2.4.1 GUID to phy_id Mapping ..43

3.2.4.1.1 Connection Tree Construction.. 44
3.2.4.1.2 Example ... 45
3.2.4.1.3 Translation Table Construction.. 45

3.2.4.2 Message Size Guidelines ...46
3.2.4.3 Software Element Design ...47
3.2.4.4 Unknown source GUID / node ID (informative)48

3.3 EVENT MANAGER ...48
3.3.1 Mapping IDL Events to the Event Manager API ..49

3.4 REGISTRY...49
3.4.1 Registry Database ..49

 X

HAVi SPECIFICATION Version 1.1

3.4.2 Registry Attributes..51
3.5 DEVICE CONTROL...53

3.5.1 Device Control Modules...56
3.5.1.1 General ...56
3.5.1.2 HAVi Unique Identification ..57
3.5.1.3 User Preferred Name..59
3.5.1.4 Native Commands ..60
3.5.1.5 Connection Management ...60
3.5.1.6 Level 1 User Interaction..60
3.5.1.7 Level 2 User Interaction..60
3.5.1.8 Resource Management ..60

3.5.2 Functional Component Modules...61
3.5.2.1 General ...61
3.5.2.2 Notifications...61
3.5.2.3 Connection Management ...62
3.5.2.4 Resource Management ..62
3.5.2.5 Virtual FCMs ...62

3.5.3 Havlets ...63
3.6 DEVICE CONTROL MODULE MANAGER ..63

3.6.1 DCM Code Unit Installation and Uninstallation...63
3.6.2 Preferences ...65
3.6.3 Interaction between DCM Code Unit and DCM Manager67

3.7 STREAM MANAGER...67
3.7.1 Objectives..67
3.7.2 Design Decisions..67
3.7.3 Definitions ...68
3.7.4 Streams..69
3.7.5 Connections..70

3.7.5.1 Device Connections..70
3.7.5.2 Internal Connections...70
3.7.5.3 External Connections..70
3.7.5.4 Global Connection Map ..70
3.7.5.5 Connection Examples...71

3.7.6 Transport Types..71
3.7.7 Stream Types ..71
3.7.8 Plug Compatibility Checking...72
3.7.9 Connection Restoration: Network Reset ...72
3.7.10 Connection Restoration: Power Off ...73
3.7.11 Connection Dropped..73
3.7.12 Connection Changed ...73
3.7.13 Connection Establishment and Drop Order ..73
3.7.14 Connection Overlay..74

3.8 RESOURCE MANAGER ..74
3.8.1 Resource Reservation..75
3.8.2 Resource Sharing...76
3.8.3 Resource Negotiation and Preemption..77
3.8.4 Scheduled Action Management..79

3.8.4.1 Scheduled Action Data ...80
3.8.4.2 Scheduled Action Model...81

 XI

HAVi SPECIFICATION Version 1.1

3.8.4.2.1 Scheduled Action ... 81
3.8.4.2.2 Schedule Reservation and DCM Checking.. 83
3.8.4.2.3 Bandwidth Checks... 85
3.8.4.2.4 Usage of Timers and Triggers .. 85
3.8.4.2.5 Executing the Scheduled Action.. 85
3.8.4.2.6 Ending the Scheduled Action .. 86

3.8.4.3 Query and Modification of Scheduled Actions......................................86
3.8.4.4 Network Changes ...87

3.9 APPLICATION MODULES..88
3.10 CODE UNIT AUTHENTICATION...88

3.10.1 Outline of digital signature algorithm...88
3.10.1.1 EMSA-PKCS1-v1_5 encoding method in HAVi89

3.10.2 Code Unit Format..90
3.10.2.1 Hash file ..90
3.10.2.2 Signature File..91
3.10.2.3 Certificate File ...92
3.10.2.4 Certificate Revocation List File ...93
3.10.2.5 Implementation note on keys, digest values and signatures
encoding ..94

3.10.3 Certificate Generation Procedure ...95
3.10.4 Code Unit Authentication Procedure ...95

3.10.4.1 DCM code unit install ..95
3.10.4.2 havlet code unit install...96
3.10.4.3 Verifier Implementation Note ..96

3.10.5 Revocation...97
3.10.6 HAVi certification procedures...98

4 DATA DRIVEN INTERACTION..99
4.1 DATA DRIVEN INTERACTION PROTOCOL ..99
4.2 USER OUTPUT AND INPUT DEVICE MODELS...101

4.2.1 Output Device Model..102
4.2.2 Input Device Model...102

4.3 DDI ELEMENTS ..103
4.3.1 Organizational DDI Elements ..103
4.3.2 Uses of Organizational DDI Elements ..104
4.3.3 Non-Organizational DDI Elements..104

4.4 NAVIGATION OF THE DDI HIERARCHY..106
4.4.1 Controller-Driven Navigation...106
4.4.2 User-Driven Navigation..106

4.5 NOTIFICATION SCOPE FOR TARGET DDI CHANGES..106

5 SOFTWARE ELEMENT APIS AND PROTOCOLS108
5.1 HAVI TYPE DEFINITIONS AND API CATEGORIES..108

5.1.1 HAVi API Descriptions ...108
5.1.2 Basic HAVi Types ...109

uint64 109
uint 109
ushort 109

 XII

HAVi SPECIFICATION Version 1.1

uchar ..109
GUID ..110
VendorId ..110
SEID ..110
ApiCode ..110
OperationCode ..110
Status ..110
Version ..110
MediaFormatId ..110
ImageTypeId..111
StreamTypeId..111
CompOperation ...111
DateTime...111

5.1.3 Error Handling...112
5.1.4 Parameter Size and Resource Limitations ..113
5.1.5 Optional APIs ..114
5.1.6 Vendor and Third Party Extensions ...114
5.1.7 Guidelines for API Updates in HAVi Versions...114

5.2 COMMUNICATION MEDIA MANAGER...115
5.2.1 Services Provided...115
5.2.2 CMM1394 API ..115

Cmm1394::GetGuidList...115
Cmm1394::Write..116
Cmm1394::Read ...117
Cmm1394::Lock ..118
Cmm1394::EnrollIndication ...119
Cmm1394::DropIndication...120
<Client>::Cmm1394Indication...120

5.2.3 CMM1394 Private API ...121
Cmm1394::GetBusGenerationNumber...122
Cmm1394::GetSpeedMap ..122
Cmm1394::GetTopologyMap..122

5.2.4 CMM1394 Events ..123
NewDevices...123
GoneDevices...123
NetworkReset..123
GuidListReady...124

5.3 MESSAGING SYSTEM ..124
5.3.1 Services Provided...124
5.3.2 Messaging System Data Structures ...125

TransferMode ..125
ProtocolType ...125

5.3.3 Messaging System API ..125
MsgCallback..125
MsgOpen...126
MsgClose...127
MsgIsTrusted...127
MsgGetSystemSeid...127
MsgWatchOn...128
MsgWatchOff...129
Msg::Ping...130

 XIII

HAVi SPECIFICATION Version 1.1

MsgSendSimple ..130
MsgSendReliable ..131
MsgSendRequest..132
MsgSendResponse...133
MsgSendRequestSync..134

5.3.4 Messaging System Private API ...136
MsgSysOpen...136

5.3.5 Messaging System Events ..137
SystemReady..137
MsgLeave..137
MsgTimeout...137
MsgError..137

5.4 EVENT MANAGER ...138
5.4.1 Services Provided...138
5.4.2 Event Manager Data Structures..138

EventId ..138
5.4.3 Event Manager API ...140

EventManager::Subscribe...140
EventManager::Unsubscribe...140
EventManager::Replace..141
EventManager::AddEvent ...141
EventManager::RemoveEvent ..142
EventManager::PostEvent...142
EventManager::ForwardEvent ..143
<Client>::EventManagerNotification..144

5.4.4 Event Manager Events ...144
5.4.5 Event Manager Protocol ..144

5.5 REGISTRY...146
5.5.1 Services Provided...146
5.5.2 Registry Data Structures..146

Attribute ..146
AttributeName..146
SoftwareElementType...146
VendorId ..147
HUID ..147
TargetId ..147
InterfaceId..147
DeviceClass...148
GuiReq ..148
MediaFormatId ..148
DeviceManufacturer ..149
DeviceModel..149
SoftwareElementManufacturer..149
SoftwareElementVersion...149
AvLanguage ..149
UserPreferredName ..150
SimpleQuery..150
BoolOperation..151
ComplexQuery...152

5.5.3 Registry API...152
Registry::RegisterElement...152
Registry::UnregisterElement..153

 XIV

HAVi SPECIFICATION Version 1.1

Registry::RetrieveAttributes...153
Registry::GetElement ..154
Registry::MultipleGetElement..154

5.5.4 Registry Events...155
NewSoftwareElement..155
GoneSoftwareElement ..155

5.5.5 Registry Protocol..155
5.6 DEVICE CONTROL MODULE...156

5.6.1 Services Provided...156
5.6.2 Device Control Module Data Structures...158

DeviceIcon...158
ContentIcon ...159
TargetId ..159
InterfaceId..161
HUID ..161
ByteRow ..162
NativeProtocol ...162
ContentType..163
ContentIconRef..163
NO_CHANNEL..163
DeviceConnectionDropReason...163
Stream Manager Types...163
Resource Manager Types...163

5.6.3 Device Control Module API..163
Dcm::GetDeviceIcon ...163
Dcm::GetHuid..164
Dcm::GetFcmCount...164
Dcm::GetFcmSeidList ...164
Dcm::GetDeviceClass ...164
Dcm::GetDeviceManufacturer...165
Dcm::GetUserPreferredName...165
Dcm::SetUserPreferredName ...165
Dcm::GetPowerState...166
Dcm::SetPowerState...166
Dcm::NativeCommand..167
Dcm::GetControlCapability..167
Dcm::GetHavletCodeUnitProfile..168
Dcm::GetHavletCodeUnit..168
Dcm::GetPlugCount ..169
Dcm::GetPlugStatus..169
Dcm::Connect..170
Dcm::Disconnect ...170
Dcm::GetConnectionList ...171
Dcm::GetChannelUsage ...172
Dcm::GetPlugUsage..172
Dcm::SetIecBandwidthAllocation ..172
Dcm::IecSprayOut ...173
Dcm::IecTapIn ...174
Dcm::GetSupportedTransmissionFormats..175
Dcm::GetTransmissionFormat ..175
Dcm::SetTransmissionFormat...175
Dcm::GetContentIconList ..176
Dcm::SelectContent...176

 XV

HAVi SPECIFICATION Version 1.1

Dcm::StopContent ...177
Dcm::ScheduleReservation...178
Dcm::UnscheduleReservation...178
Dcm::GetScheduledActionReferences ...179
Dcm::AddVirtualFcm ...179
Dcm::RemoveVirtualFcm ..180
Dcm::GetAvailableStreamTypes...180
Dcm::GetStreamType..180
Dcm::SetStreamTypeId...181

5.6.4 Device Control Module Events..182
UserPreferredNameChanged ...182
PowerStateChanged ...182
PowerFailureImminent ..182
DeviceConnectionAdded...182
DeviceConnectionDropped ...183
DeviceConnectionChanged ..183
TransmissionFormatChanged...184
BandwidthRequirementChanged..184
ContentListChanged..185
InvalidScheduledAction ...185
StreamTypeChanged..185

5.7 FUNCTIONAL COMPONENT MODULE ..186
5.7.1 Services Provided...186
5.7.2 Functional Component Module Data Structures187

FcmAttributeIndicator ..187
FcmAttributeValue...187
NotificationId..187
DCM Types..187
Stream Manager Types...187
Resource Manager Types...187
ClientRecord..188

5.7.3 Functional Component Module API..188
Fcm::GetHuid ..188
Fcm::GetDcmSeid...188
Fcm::GetFcmType...188
Fcm::GetPowerState...189
Fcm::SetPowerState ...189
Fcm::NativeCommand...190
Fcm::SubscribeNotification..190
Fcm::UnsubscribeNotification..191
<Client>::FcmNotification ..191
Fcm::GetPlugCount...192
Fcm::GetSupportedStreamTypes ...192
Fcm::Wink..193
Fcm::Unwink..193
Fcm::CanWink...193
Fcm::Reserve ..193
Fcm::Release ..195
Fcm::GetReservationStatus ..195
Fcm::GetWorstCaseStartupTime..196
Fcm::SetPlugSharing ..196
Fcm::IecAttach...197
Fcm::IecDetach ...197

5.7.4 Functional Component Module Events..198

 XVI

HAVi SPECIFICATION Version 1.1

PowerStateChanged ...198
PowerFailureImminent ..198
ReserveIndication..198
ReleaseIndication..199
PlugSharingChanged ..199

5.8 DEVICE CONTROL MODULE MANAGER ..200
5.8.1 Services Provided...200
5.8.2 DCM Manager Data Structures..200

VMID ..200
GuestId ..200
PreferenceId ..201
PreferenceValue..201
ProfileRecord...201
URLString ..202
DMCommandType..202
DMCommandResult..202
DMGetDcmResult ...202
DcmInstallResult..202
DcmInstallConflict..202
DcmUninstallResult ...202

5.8.3 DCM Manager API...203
DcmManager::SetPreference..203
DcmManager::GetPreference ...203
DcmManager::GetDeviceIcon...204
DcmManager::InstallDcm..204
DcmManager::UninstallDcm ...205
DcmManager::DMInitialization ..205
DcmManager::DMInitialInquiry..206
DcmManager::DMInquiry ..206
DcmManager::DMCommand ..207
DcmManager::DMGetDcm..209

5.8.4 DCM Manager Events...210
DcmInstallIndication ..210
DcmUninstallIndication..211

5.8.5 DCM Management Protocol...211
5.8.5.1 Leader Election...212
5.8.5.2 Autonomous Operation...214
5.8.5.3 Protocol Details...215

5.9 STREAM MANAGER...217
5.9.1 Services Provided...217
5.9.2 Stream Manager Data Structures..217

Direction ..217
OperationalStatus..217
FailureReason ...218
ConnectionState..218
DropReason ..219
ChangeReason ...220
TransportType ...220
Plug ..220
ANY_PLUG ...221
DeviceConnection ...221
TransmissionFormat..221

 XVII

HAVi SPECIFICATION Version 1.1

PlugStatus ...222
Channel ..223
IsocChannel...223
FcmPlug ..223
ConnectionId ...223
ConnectionType ..223
Connection ..224
StreamType...224
Stream ..224
ConnectionHint ..225

5.9.3 Stream Manager API...225
StreamManager::FlowTo...225
StreamManager::SprayOut ...228
StreamManager::TapIn ...230
StreamManager::Drop...232
StreamManager::GetLocalConnectionMap...232
StreamManager::GetGlobalConnectionMap...233
StreamManager::GetConnection ..233
StreamManager::GetStream...234

5.9.4 Stream Manager Events...234
ConnectionAdded..234
ConnectionDropped ..234
ConnectionChanged..235

5.9.5 Stream Manager Procedures...235
5.9.5.1 Stream Type Matching..235
5.9.5.2 Transmission Format Matching ..236
5.9.5.3 NO_SIGNAL Stream Type ...236
5.9.5.4 IEC 61883 Connections..236

5.9.5.4.1 Bandwidth Allocation.. 236
5.9.5.4.2 Static and Dynamic Bandwidth Allocation .. 237
5.9.5.4.3 Overlays... 237
5.9.5.4.4 Usage of Special Channels ... 239

5.10 RESOURCE MANAGER ...239
5.10.1 Services Provided...239
5.10.2 Resource Manager Data Structures ...239

ClientRole ..239
ReservationResult ...240
NegotiationResult ..240
ResourceRequestRecord..240
ResourceStatusRecord ...240
ResourceNegotiateRecord..241
SAReference ...241
Command..241
SAConnection..242
SAPeriod ...242
RMConnection...242

5.10.3 Resource Manager API ..243
ResourceManager::Reserve ...243
ResourceManager::Release ...243
ResourceManager::Negotiate ...244
<Client>::PreemptionRequest ...245
ResourceManager::ScheduleAction..245
ResourceManager::UnscheduleAction ...247

 XVIII

HAVi SPECIFICATION Version 1.1

ResourceManager::GetLocalScheduledActions ...247
ResourceManager::GetScheduledActionData..247
ResourceManager::TriggerNotification..248
<Client>::AwakeNotification...249
ResourceManager::GetScheduledConnections ...249

5.10.4 Resource Manager Events...249
InvalidScheduledAction ...249
AbortedScheduledAction...250
ErroneousScheduledAction...250

5.10.5 Bandwidth Checking Protocol ..251
5.11 APPLICATION MODULE...253

5.11.1 Services Provided...253
5.11.2 Application Module Data Structures ..254

HUID ..254
5.11.3 Application Module API..254

ApplicationModule::GetIcon ..254
ApplicationModule::GetHuid..254
ApplicationModule::GetHavletCodeUnitProfile..254
ApplicationModule::GetHavletCodeUnit..255

5.12 APIS FOR DATA DRIVEN INTERACTION ...256
5.12.1 Services Provided...257
5.12.2 Presentation Requirements and Recommendations for DDI
Controllers ...257

5.12.2.1 General Presentation Requirements for DDI Controllers257
5.12.2.2 General Presentation Recommendations for DDI Controllers258

5.12.2.2.1 Panel Scaling... 258
5.12.2.2.2 Element Scaling... 259

5.12.3 DDI Data Structures Overview...259
5.12.4 Basic DDI Types..260

DdiElementType..260
DdiElementId...260
DdiContentId..261
DdiElementIdList and DdiElementList...261
DdiColor ..261
Bitmap and Sound...262
AudioVideo ..262
Audio ..263
Label ..263
NotificationScope...263
Interactivity...263
InformTarget ..264
Pattern ..264
Fontsize ..265
Position ..265
SafetyAreaPosition..265
FocusNavigation..266
DdiTitle ..266
DdiContentType...266
DdiContent...266

5.12.5 DDI Content Formats..267
5.12.5.1 Text data ...267
5.12.5.2 Image data..267

 XIX

HAVi SPECIFICATION Version 1.1

5.12.5.3 Sound data..268
5.12.6 DDI Mandatory Attributes ..268
5.12.7 DDI Optional Attributes..269

OptAttrType ...270
OptionalAttribute..270
OptAttrList..271

5.12.8 Individual DDI Elements...271
DdiElement ..271
DdiPanel ..272
Help Panels and Alert Panels..273
DdiGroup ...274
DdiPanelLink ...274
DdiButton...275
DdiBasicButton..276
DdiToggle ..276
DdiAnimation ...277
DdiShowRange ...278
DdiSetRange ...279
DdiEntry ..279
DdiChoice ..280
DdiText ..281
DdiStatus ...282
DdiIcon ..282

5.12.9 DDI Action Data Structures..283
ActType ..283
ActButton ...284
ActToggle...284
ActAnimation ...284
ActSetRange ...284
ActEntry ..284
ActChoiceList...284
ActSelected..284
DdiAction ...284

5.12.10 Resource Limitations ...286
5.12.11 Data Driven Interaction API ...286

DdiTarget::Subscribe...286
DdiTarget::Unsubscribe...287
DdiTarget::GetDdiElement ..287
DdiTarget::GetDdiPanel ..288
DdiTarget::GetDdiGroup ...288
DdiTarget::GetDdiElementList...289
DdiTarget::GetDdiContent...289
DdiTarget::ChangeScope..290
DdiTarget::UserAction ...290
<Client>::NotifyDdiChange..291

5.13 APIS FOR VERSIONING...293
5.13.1 Services Provided...293
5.13.2 Version Control API..293

Version::GetVersion ..293
5.14 APIS FOR BULK TRANSFER ...294

6 APIS FOR FUNCTIONAL COMPONENT MODULES296

 XX

HAVi SPECIFICATION Version 1.1

6.1 FCM DATA TYPES..296
ForwardSpeed...296
ReverseSpeed...296
SkipDirection..297
SkipMode...297
TimeCode..298
WriteProtectStatus...298

6.2 TUNER FCM...299
6.2.1 Tuner Services..299
6.2.2 Tuner Data Structures..299

ServiceListType...299
ServiceListInfo ...300
ServiceLocator...300
Service ..301
MuxAction..301
ServiceEvent ...301
ServiceEventType ...302
ServiceEventPeriod...302
TunerCapability ...303

6.2.3 Tuner API ...303
Tuner::GetServiceListInfo..303
Tuner::GetServiceList..303
Tuner::SetServiceList ..304
Tuner::GetService ...305
Tuner::GetServiceComponents...305
Tuner::GetServiceEvents ..306
Tuner::SelectService ...306
Tuner::GetSelectedServices ...307
Tuner::GetCapability..307

6.2.4 Tuner Events ...308
TunerServiceChanged ..308

6.3 VCR FCM ...309
6.3.1 VCR Services ..309
6.3.2 VCR Data Structures ..309

VcrRecordingMode..309
VcrTransportMode...310
VcrTransportState ...310
VcrCounterType ..310
VcrCounterValue ...310
VcrRejectCondition..310
VcrCapability..311

6.3.3 VCR API ...311
Vcr::Play ..311
Vcr::Record..312
Vcr::FastForward...312
Vcr::FastReverse...312
Vcr::VariableForward...312
Vcr::VariableReverse...313
Vcr::Stop..313
Vcr::RecPause...314
Vcr::Skip ..314
Vcr::EjectMedia ...315

 XXI

HAVi SPECIFICATION Version 1.1

Vcr::GetState ...315
Vcr::GetRecordingMode..315
Vcr::SetRecordingMode ..315
Vcr::GetFormat ..316
Vcr::GetPosition...316
Vcr::ClearRTC ...317
Vcr::GetCapability..317
Vcr::GetRejectInfo ...317

6.3.4 VCR Events ...319
VcrStateChanged..319

6.3.5 VCR Notification Attributes ...319
Vcr::currentState..319
Vcr::recordingMode ...319
Vcr::counterSet..319
Vcr::condensation..320

6.4 CLOCK FCM ..321
6.4.1 Clock Services ..321
6.4.2 Clock Data Structures ..321

Timezone...321
ClockCapabilityStatus..322
ClockCapability..322
TimerId ..322

6.4.3 Clock API ...322
Clock::GetDateTime..322
Clock::SetDateTime...323
Clock::GetTimezone..323
Clock::SetTimezone ..324
Clock::EnableAutoDST..324
Clock::IsEnabledAutoDST...324
Clock::GetCapability ..325
Clock::CreateTimer..325
Clock::GetTimerState ..325
Clock::SetTimerState...326
Clock::DeleteTimer..326
<Client>::TimerFired..327

6.4.4 Clock Notification Attributes ...327
Clock::dateTime...327
Clock::timezone ...327
Clock::DSTEnabled...327

6.5 CAMERA FCM..328
6.5.1 Camera Services...328
6.5.2 Camera Data Structures...328

ZoomOperation..328
PanOperation ..329
TiltOperation ..329
StoredImage..329
CameraCapability..329

6.5.3 Camera API..329
Camera::Zoom...329
Camera::Pan ...330
Camera::Tilt ...330
Camera::SetVideoState...331

 XXII

HAVi SPECIFICATION Version 1.1

Camera::GetVideoState ..331
Camera::Shoot ..331
Camera::GetImageList ..332
Camera::OpenImage...333
Camera::ReadImage...333
Camera::CloseImage ..334
Camera::EraseImage ..334
Camera::GetCapability ..335

6.5.4 Camera Events..335
CameraVideoStateChanged ...335

6.5.5 Camera Notification Attributes..335
Camera::videoState...335
Camera::zoom...336
Camera::pan..336
Camera::tilt ..336

6.6 AV DISC FCM..337
6.6.1 AV Disc Services ..337
6.6.2 AV Disc Data Structures ..337

ItemIndex...337
AvDiscPlayMode ...338
AvDiscRecordingMode..338
AvDiscTransportMode...339
AvDiscTransportState..339
AvDiscCounterType ..339
AvDiscCounterValue ...339
AvDiscCapability..339
AvDiscRejectCondition..340
Direction ..340

6.6.3 AV Disc Terminology..340
6.6.4 AV Disc API ...341

AvDisc::GetItemList ...341
AvDisc::Play...341
AvDisc::Record..342
AvDisc::VariableForward...343
AvDisc::VariableReverse...343
AvDisc::Stop..344
AvDisc::RecPause...344
AvDisc::Skip...345
AvDisc::InsertMedia...345
AvDisc::EjectMedia..346
AvDisc::GetState ...346
AvDisc::GetFormat ..346
AvDisc::GetPosition...347
AvDisc::Erase..347
AvDisc::PutItemList ...348
AvDisc::GetCapability..348
AvDisc::GetRejectInfo ...349

6.6.5 AV Disc Events ...350
AvDiscItemListChanged..350
AvDiscStateChanged ..350

6.6.6 AV Disc Notification Attributes ...351
AvDisc::currentState..351

 XXIII

HAVi SPECIFICATION Version 1.1

6.7 AMPLIFIER FCM...352
6.7.1 Amplifier Services...352
6.7.2 Amplifier Data Structures ..352

AmplifierCapability...352
EqualizerFrequency...353
AmplifierPresetMode ...353

6.7.3 Amplifier API ...353
Amplifier::SetVolume...353
Amplifier::GetVolume...354
Amplifier::SetMute ...354
Amplifier::GetMute...354
Amplifier::SetBalance ..354
Amplifier::GetBalance..355
Amplifier::SetLoudness..355
Amplifier::GetLoudness ...355
Amplifier::GetCapability ...356
Amplifier::SetEqualizer ..356
Amplifier::GetEqualizer..356
Amplifier::GetEqualizerCapability..357
Amplifier::SetPresetMode..357
Amplifier::GetPresetMode ...357
Amplifier::GetPresetCapability...358
Amplifier::GetAudioLatency...358

6.7.4 Amplifier Notification Attributes ...358
Amplifier::volume...358
Amplifier::mute...358
Amplifier::balance ..359
Amplifier::loudness ..359
Amplifier::equalizer ..359

6.8 DISPLAY FCM..360
6.8.1 Display Services ...360
6.8.2 Display Data Structures ...361

DisplayCapability ...361
PictureAttribute ..361
ScreenMode ..361
WindowMode...361
DisplayPresetMode ...362

6.8.3 Display API ..362
Display::SetContrast..362
Display::GetContrast ...362
Display::SetTint..363
Display::GetTint ...363
Display::SetColor...363
Display::GetColor ..364
Display::SetBrightness ..364
Display::GetBrightness..364
Display::SetSharpness ..365
Display::GetSharpness..365
Display::GetCapability ...365
Display::GetStandardPictureValue..366
Display::SetPresetMode..366
Display::GetPresetMode ...366
Display::GetPresetCapability...367

 XXIV

HAVi SPECIFICATION Version 1.1

Display::SetScreenMode...367
Display::GetScreenMode ..367
Display::SetWindowMode ...368
Display::GetWindowMode...368
Display::SetActiveWindow...368
Display::GetActiveWindow ..369
Display::GetWindowRectangle..369
Display::AssignPlugToDisplay...370
Display::GetVideoLatency...370

6.8.4 Display Notification Attributes ..371
Display::contrast ..371
Display::tint ..371
Display::color ...371
Display::brightness ..371
Display::sharpness ..371
Display::screenMode...371
Display::windowMode..372
Display::activeWindow...372
Display::presetMode..372
Display::windowRectangle ..372

6.9 AV DISPLAY FCM..373
6.10 MODEM FCM ..374

6.10.1 Modem Protocol..374
6.10.1.1 Asynchronous Connections..374
6.10.1.2 Isochronous Connections ...375

6.10.2 Modem Services ...376
6.10.3 Modem Data Structures ...376

ModemType ..376
CommunicationSetup..377
ModemCapabilities..377
ModemDisconnection..378
ModemCallAccept ...378
FileLoc ..378

6.10.4 Modem API ..379
Modem::AsyncOpen..379
Modem::IsoOpen...379
Modem::Send..380
<Client>::Receive ..381
Modem::Close ...381
Modem::GetCapability...382
Modem::SetConfiguration..382

6.10.5 Modem Notification Attributes ..383
Modem::disconnection ..383
Modem::callAccept ..383

6.11 WEB PROXY FCM ...384
6.11.1 Overview..384

6.11.1.1 The Web Gateway..384
6.11.1.2 The Web Client ...385
6.11.1.3 Web Proxy FCM Protocol ...385

6.11.1.3.1 Multiple Web Transactions... 385
6.11.1.4 Application Protocols ..386
6.11.1.5 Application Protocol Constraints...386

 XXV

HAVi SPECIFICATION Version 1.1

6.11.1.5.1 HTTP Constraints ... 386
6.11.1.5.2 FTP Constraints .. 386
6.11.1.5.3 SMTP Constraints ... 386
6.11.1.5.4 IMAP Constraints.. 387
6.11.1.5.5 POP Constraints.. 387
6.11.1.5.6 NNTP Constraints ... 387

6.11.2 Web Proxy Services ...387
6.11.3 Web Proxy Data Structures ...387

FileLoc ..387
InternetProtocolType ...387
WebAddressType..387
WebAddressTypeIP ..388
WebAddressIP...388
WebAddressName..388
WebAddress..388
WebProxyDisconnection ...389

6.11.4 Web Proxy API ..389
WebProxy::Open...389
WebProxy::Close...390
WebProxy::Send ...390
<Client>::Receive ..391
WebProxy::GetCapability ..391

6.11.5 Web Proxy Notification Attributes ..392
WebProxy::disconnection..392

7 HAVI JAVA API DESCRIPTION393
7.1 OVERVIEW..393
7.2 PROFILES...393

7.2.1 Java API Referencing Rules..393
7.2.2 Profile #1: DCMs and Application Modules...394
7.2.3 Profile #2: Havlets...396

7.3 MAPPING HAVI IDL TO JAVA..396
7.3.1 Introduction...396
7.3.2 const...396
7.3.3 Basic Types...397

7.3.3.1 boolean ...397
7.3.3.2 char, wchar and octet..397
7.3.3.3 string and wstring..397
7.3.3.4 Integers ...397
7.3.3.5 Floating Points ..398

7.3.4 Constructed Types ...398
7.3.4.1 enum...398
7.3.4.2 struct ...399
7.3.4.3 union ...400
7.3.4.4 sequence ..402
7.3.4.5 array..402
7.3.4.6 typedef ..402

7.3.4.6.1 Simple IDL Types .. 402
7.3.4.6.2 Complex IDL Types... 402

7.3.5 Holder Classes..403
7.3.6 Exceptions...405

 XXVI

HAVi SPECIFICATION Version 1.1

7.3.6.1 Exception Throwing and Handling..405
7.3.6.2 States of Instance and Arguments..406

7.3.7 Marshalling and Unmarshalling..407
7.3.7.1 HaviByteArrayInputStream & HaviByteArrayOutputStream...............408

7.3.8 HaviClient and HaviServerHelper..408
7.3.8.1 Client and Server ..408

7.3.8.1.1 Client Classes .. 408
7.3.8.1.2 Server Helper Classes... 410

7.3.8.2 Parameter Passing Modes ...411
7.3.8.3 Error Codes...412
7.3.8.4 Parameter Checking...412

7.3.8.4.1 Parameter Checking Before Sending Messages.................................. 412
7.3.8.4.2 Parameter Checking After Receiving Message 413

7.3.9 SoftwareElement...413
7.4 CODE UNITS...414

7.4.1 DCM Code Units..415
DcmCodeUnit::install ...415
DcmCodeUnit::uninstall...416

7.4.2 Application Module Code Units ..416
AMCodeUnit::install ...417
AMCodeUnit::uninstall...417

7.4.3 Havlet Code Units...418
HavletCodeUnit::install ..418
HavletCodeUnit::uninstall ..418

7.5 ISOCHRONOUS DATA PROCESSING..419
Iec61883InputStream..419
Iec61883OutputStream ...419

7.5.1 An Example ...419
7.5.2 Relationship with the Stream Manager ..420

7.6 EXAMPLE: A DCM CODE UNIT AND DCM (INFORMATIVE).................................420
7.6.1 MyDcm.java ...421
7.6.2 MyDcmListener.java...422
7.6.3 DcmCore.java..422
7.6.4 DcmCodeUnit.java..423

8 HAVI LEVEL 2 USER INTERFACE425
8.1 HAVI USER-INTERFACE DESIGN (INFORMATIVE) ..425

8.1.1 Remote Control...425
8.1.2 Television Specific Support...425

8.2 JAVA.AWT SUBSET ...425
8.2.1 Required Elements from AWT...425
8.2.2 User Input Preference Interfaces ..427

8.3 HAVI EXTENSIONS TO AWT ...427
8.3.1 General API Issues ...427
8.3.2 User Input ..427

8.3.2.1 Remote Control Support...428
8.3.2.1.1 Remote Control Colored Keys.. 428
8.3.2.1.2 Remote Control Dedicated Keys .. 428

 XXVII

HAVi SPECIFICATION Version 1.1

8.3.2.2 Keyboard...428
8.3.2.3 Mouse ...428
8.3.2.4 User Input Capabilities..429
8.3.2.5 User Input Representation..429

8.3.3 Graphics Devices and Configurations ...429
8.3.3.1 Background...429
8.3.3.2 The HAVi Screen Reference Model ...430
8.3.3.3 The HAVi Screen Device Discovery Classes.....................................430

8.3.3.3.1 Querying the Configuration of a Display Device 430
8.3.3.3.2 Compatibility with Existing java.awt Methods 430

8.3.3.4 Detecting Configuration Changes on a Display Device......................431
8.3.3.5 Emulated Display Devices..431

8.3.3.5.1 Mapping from Authoring to Device Coordinates 431
8.3.3.6 Integrating HAVi Video Support into Platforms...................................432
8.3.3.7 Backgrounds...432
8.3.3.8 Control of Screen Configurations..433

8.3.4 Graphics and Video Integration ..434
8.3.4.1 Configurations...434
8.3.4.2 Coordinate Spaces ...434
8.3.4.3 Transparency between Graphics and Video435

8.3.5 HSceneFactory, HSceneTemplate and HScene......................................435
8.3.5.1 Requesting an Area On-screen..435

8.3.5.1.1 HSceneFactory and HSceneTemplate.. 435
8.3.5.1.2 HScene ... 436

8.3.5.2 Modifications to the HScene: Focus and Resize events436
8.3.5.3 Application “user-interface” Lifecycle..437

8.3.6 Effects and Visual Composition using Component Mattes...................438
8.3.6.1 Component Mattes ...438
8.3.6.2 Component Grouping ...439
8.3.6.3 Examples of Mattes and Component Composition............................440
8.3.6.4 Effects ...440
8.3.6.5 Matte Sizes and Offsets..441

8.4 HAVI WIDGET FRAMEWORK ...441
8.4.1 HAVi Event Mechanism..441
8.4.2 Abstraction of “Feel”..442
8.4.3 Framework Class Hierarchy..442

8.4.3.1 HContainer..443
8.4.3.2 HComponent...443
8.4.3.3 HVisible...443
8.4.3.4 HNavigable ...443
8.4.3.5 HActionable...444
8.4.3.6 HSwitchable..444
8.4.3.7 HAdjustmentValue, HItemValue, HTextValue....................................445

8.4.4 Separation of “Look”..445
8.4.5 Pluggable Looks...445
8.4.6 Content Behavior..446

8.5 HAVI RESIDENT WIDGETS ..447
8.5.1 Simple Text/Graphic/Animate Widgets ..447
8.5.2 Buttons ..447
8.5.3 Range Widgets..447
8.5.4 List Widgets...448
8.5.5 Text Entry Widgets ...448

 XXVIII

HAVi SPECIFICATION Version 1.1

8.6 PROFILES...448
8.7 GENERAL APPROACH TO ERROR BEHAVIOR..448
8.8 REGISTER OF CONSTANTS ..448

9 SDD DATA...454
9.1 REFERENCES..454
9.2 INTRODUCTION..454
9.3 TEXT ENCODING FORMATS ...454
9.4 HAVI KEY VALUES...454
9.5 MINIMUM REQUIRED DATA..454
9.6 ROM FORMAT ...455
9.7 THE GUID AND THE BUS_INFO_BLOCK..456
9.8 ROOT DIRECTORY...456

9.8.1 Vendor_ID [2]...456
9.8.2 HAVi_Unit_Directory [1]...456
9.8.3 Other IEC_61883_Unit_Directory [1] [4] ...456
9.8.4 Instance_Directory [2] ..456
9.8.5 Model_ID [2]...456

9.9 INSTANCE DIRECTORY ..457
9.9.1 HAVi_Unit_Directory [1][2]...457

9.10 HAVI UNIT DIRECTORY..457
9.10.1 Specifier_ID [1]..457
9.10.2 Version [1] ...457
9.10.3 HAVi_Message_Version [HAVi] ..457
9.10.4 HAVi_Device_Profile [HAVi] ..458

9.10.4.1 HAVi_Device_Class [Bit0..3] ..458
9.10.4.2 HAVi_DCM_Manager [Bit4]..458
9.10.4.3 HAVi_Stream_Manager [Bit5] ..458
9.10.4.4 HAVi_Resource_Manager [Bit6]...458
9.10.4.5 HAVi_Display_Capability [Bit7]...459
9.10.4.6 HAVi_Device_Status [Bit8] ...459
9.10.4.7 Reserved Bits [Bit9..23] ..459

9.10.5 HAVi_User_Preferred_Name [2][HAVi] ..459
9.10.6 HAVi_DCM [HAVi]...460
9.10.7 HAVi_DCM_Profile [HAVi]..460
9.10.8 HAVi_DCM_Reference [HAVi] ...460
9.10.9 HAVi_Device_Icon_Bitmap [HAVi]..461

9.11 EXAMPLES (INFORMATIVE) ...461
9.11.1 Using Keys in the Range of 3816 to 3F16 ...461
9.11.2 HAVi 1212 ROM Encoding...462

9.11.2.1 Bus_Info_Block and Root Directory..462
9.11.2.2 lnstance_Directory ..462
9.11.2.3 HAVi_Unit_Directory...463
9.11.2.4 Other IEC_61883_Unit_Directory...463
9.11.2.5 Modifiable Descriptor Entries for User Preferred Name464

 XXIX

HAVi SPECIFICATION Version 1.1

10 SCENARIOS ...465
10.1 IAV OR FAV BOOTSTRAP ...465

10.1.1 System Startup & System Ready..465
10.1.2 Local Software Elements Register..465
10.1.3 Interoperation of the Devices within the Network...................................466

10.2 A BAV OR LAV IS PLUGGED INTO THE NETWORK..466
10.3 AN FAV OR IAV IS PLUGGED INTO THE NETWORK..466
10.4 A BAV OR LAV IS REMOVED FROM THE NETWORK..467
10.5 AN FAV OR IAV IS REMOVED FROM THE NETWORK467
10.6 AN APPLICATION COMMUNICATES WITH AN FCM..468

10.6.1 Initialization ...468
10.6.2 An IAV Searches for a Device or Functional Component......................468
10.6.3 An IAV Sends an FCM Command...469
10.6.4 An IAV Receives an FCM Command..469

10.7 TWO APPLICATIONS COMMUNICATE WITH THE SAME DCM469
10.8 A DCM COMMUNICATES WITH ITS TARGET ..469

11 ANNEXES..471
11.1 HAVI PROTOCOL TYPES..471
11.2 HAVI REGISTRY ATTRIBUTES ..471
11.3 HAVI SOFTWARE ELEMENT TYPES ..472
11.4 HAVI SEIDS ...473
11.5 HAVI API CODES..474
11.6 HAVI OPERATION CODES ..475
11.7 HAVI ERROR CODES...482
11.8 HAVI FCM ATTRIBUTE INDICATORS...488
11.9 HAVI SYSTEM EVENT TYPES ...490
11.10 HAVI MEDIA FORMATS..492
11.11 HAVI STREAM TYPES..493
11.12 HAVI CABLE TRANSMISSION FORMATS...495
11.13 HAVI IMAGE TYPES...496
11.14 HAVI TRANSPORT TYPES..496
11.15 HAVI DDI ELEMENT TYPES...497
11.16 HAVI DDI OPTIONAL ATTRIBUTES...498
11.17 HAVI COMPARISON OPERATORS...499

APPENDIX A: HAVI JAVA APIS

 1

HAVi SPECIFICATION Version 1.1

1 General

1.1 Scope

This document provides a specification of the Home Audio/Video Interoperability Architecture
(also called the HAVi Architecture). The HAVi Architecture is intended for implementation on
Consumer Electronics (CE) devices and computing devices; it provides a set of services which
facilitate interoperability and the development of distributed applications on home networks. HAVi
is intended for, but not restricted to, CE devices supporting the IEEE Std 1394-1995 [3] (and future
extensions) and IEC 61883 [4] interface standards.

Since a goal of the HAVi Architecture is to be future-proof, interoperability is more than a common
command set. HAVi is a software architecture that allows new devices to be integrated into the
home network and to offer their services in an open and seamless manner. The HAVi Architecture
provides:

! a set of software elements along with the protocols and APIs needed to achieve
interoperability

! device abstraction and device control models

! an addressing scheme and lookup service for devices and their resources

! an open execution environment supporting visual presentation and control of devices, and
providing runtime support for third party applications

! communication mechanisms for extending the environment dynamically through plug-
and-play capabilities

! a versioning mechanism that preserves interoperability as the architecture evolves

! management of isochronous data streams

This document describes the constructs HAVi implements to support interoperability. Specific
topics covered include: the system and device models of the HAVi Architecture, the APIs and
protocols used by software elements of the HAVi Architecture, and APIs for specific devices. The
types of devices supported by HAVi include: tuner, VCR, clock, camera, AV disc, display,
amplifier, modem, and Web proxy.

1.2 References

[1] ISO/IEC 13213:1994 Control and Status Register (CSR) Architecture for Microcomputer
Buses (IEEE Std 1212-1994).

[2] IEEE P1212 Draft 1.0, Draft Standard for a Control and Status Registers (CSR) Architecture
for Microcomputer Buses, October 18, 1999 (approval pending).

[3] IEEE Std 1394-1995, Standard for a High Performance Serial Bus.

[4] IEC 61883 Parts 1 – 5, Standard for a Consumer-Use Digital Interface.

 2

HAVi SPECIFICATION Version 1.1

[5] CDR: Object Management Group (OMG) CORBA specification 2.41.

[6] The Java Virtual Machine, Tim Lindholm and Frank Yellin, Addison-Wesley, 1997.

[7] The Java Language Specification, James Gosling, Bill Joy, and Guy Steele, Addison-Wesley,
1996.

[8] Java Development Kit (JDK) 1.1 Core API Specification
(http://java.sun.com/products/jdk/1.1/docs/api/packages.html).

[9] PersonalJava 1.1 API Specification (http://java.sun.com/products/personaljava/spec-1-
1/pJavaSpec.html).

[10] Portable Network Graphics (PNG) specification v1.0, IETF RFC 2083.

[11] Audio Interchange File Format, version C, allowing for Compression (AIFF-C), Digital Audio
Visual Council (DAVIC) 1.3 Part 9, Annex B.

[12] UNICODE Standard Version 2.0.

[13] HAVi Test Requirements, The HAVi, Inc., January 2000.

[14] IEEE std 1394a-2000, Standard for a High Performance Serial Bus – Amendment I

[15] TA Document 1999032: Clarification and Implementation Guideline for Isochronous
Connection Management of IEC 61883-1.

[16] HAVi Certification Procedures, The HAVi, Inc. [To be issued]

[17] HAVi Logo Requirements, HAVi, Inc. [To be issued]

[18] JPEG International Standard ISO 10918-1 using JPEG File Interchange Format (JFIF) Version
1.02.

[19] RSA algorithm for digital signature PKCS#1 v2.0, IETF RFC 2437.

[20] SHA-1 Message Digest, specified by National Institute of Standards and Technology (NIST),
"Secure Hash Standard (SHS)." FIPS Publication 180-1, April 17, 1995.

1.3 Terminology

HAVi Acronyms

Acronym Description

BAV Base AV device

DCM Device Control Module

DDI Data Driven Interaction

FAV Full AV device

FCM Functional Component Module

HJA HAVi Java API

HUID HAVi Unique Identifier

 3

HAVi SPECIFICATION Version 1.1

IAV Intermediate AV device

LAV Legacy AV device

SDD Self Describing Device

SEID Software Element Identifier

Other Acronyms

Acronym Description

1394, IEEE 1394 IEEE std 1394-1995

API Application Programming Interface

AV/C-CTS Audio/Video Control Command and Transaction Set
(specified by the 1394 Trade Association)

AV/C Audio/Video Control

CDR Common Data Representation [5]

CE Consumer Electronics

CTS Command and Transaction Set

DTV Digital TV

DV Digital Video, the consumer version of DVC

DVC Digital Video Cassette

DVD Digital Video/Versatile Disc

EPG Electronic Program Guide

FCP Function Control Protocol (IEC 61883.1)

GUI Graphical User Interface

GUID Global Unique Identifier

IR infrared

iPCR input Plug Control Register (IEC 61883.1)

oPCR output Plug Control Register (IEC 61883.1)

PCR Plug Control Register (IEC 61883.1)

RTOS Real-time Operating System

STB Set-top Box

bslbf Bit string leftmost bit first

uimsbf unsigned integer, most significant bit first

UI User Interface

Definitions

Term Description

Application Module An application, of a form defined by HAVi, that may provide
a DDI interface and/or means for obtaining havlets.

Application Module
code unit

A code unit from which an Application Module is obtained.

 4

HAVi SPECIFICATION Version 1.1

attachment A “stage” of an external connection involving resources
within a single device.

base AV device
(BAV)

A HAVi-compliant device containing SDD data but not
running any of the software elements of the HAVi
Architecture.

bytecode Bytecode for the Java™ virtual machine (“Java bytecode”).

client A software element controlling one or more resources (see
also device resource and network resource).

code unit Refers to the executable code from which HAVi software
elements are obtained. Native code units are platform
dependent and typically would include machine code for a
specific processor. Java code units include Java bytecode
and so are platform independent. Embedded code units are
those that are pre-loaded, while uploadable code units are
those that may be dynamically loaded (and unloaded).

connection A unidirectional data transfer path created by a HAVi
Stream Manager. Typically used for streaming content.
Connections originate and/or terminate at functional
components. A connection is either an internal connection
or an external connection. Non-HAVi connections refer to
data transfer paths created by non-HAVi applications or
devices.

controller A device which controls other devices. An IAV or FAV
device.

Data Driven Interaction
(DDI)

A HAVi mechanism allowing control of software elements
(DDI Targets) with access to devices by other software
elements (DDI Controllers) with access to user input/output
facilities. In this interaction, the user interface is described
by a set of data structures (DDI elements) sent between the
DDI Controller and the DDI Target.

DDI Controller A software entity which renders DDI elements and handles
user interaction using its (typically local) input/output
facilities.

DDI element The DDI encoding of a user interface element. For
example, buttons, icons, sliders, text displays and text entry
fields.

DDI protocol The HAVi messages supporting Data Driven Interaction.

DDI Target A software entity (typically a DCM) which supports the DDI
protocol thereby allowing an associated DDI Controller to
use the target’s DDI elements to control a device
associated with the DDI Target.

device A physical entity attached to the home network, examples
are video players/recorders, cameras, CD and DVD
players, set-top boxes, DTV receivers, and PCs.

device connection An internal connection or an attachment.

device control module
(DCM)

A HAVi software element providing an interface for
controlling general functions of a device.

device resource An FCM.

DCM code unit A code unit from which a DCM is obtained. Installation of a
DCM code unit results in one DCM and zero or more FCMs.

embedded code unit See code unit.

embedded DCM A DCM pre-loaded on an FAV or IAV. Embedded DCMs
typically run on IAV devices and are typically implemented
in native code.

 5

HAVi SPECIFICATION Version 1.1

external connection A connection where data is transferred across a device
boundary.

full AV device
(FAV)

A HAVi-compliant device which runs the software elements
of the HAVi Architecture including a Java runtime
environment.

functional component An abstraction within the HAVi Architecture that represents
a group of related functions associated with a device. For
example a DTV receiver may consist of several functional
components: tuner, decoder, audio amplifier etc.

functional component
module
(FCM)

A HAVi software element providing an interface for
controlling a specific functional component of a device.

global unique ID
(GUID)

A 64-bit quantity used to uniquely identify an IEEE 1394
device. Consists of a 24-bit vendor ID (obtained from the
1394 Registration Authority Committee) and a 40-bit serial
number assigned by the device manufacturer. The GUID is
stored in a device’s configuration ROM and is persistent
over 1394 bus resets.

HAVi Architecture The HAVi Architecture comprises the messaging model,
control model, device model, and execution environment
defined in this document.

HAVi-compliant device A device conforming to the HAVi Architecture specification
for an FAV, IAV or BAV device.

HAVi Java API The Java API is defined in this specification.

HAVi Level 1
interoperability

Refers to the features provided by IAVs and embedded
DCMs.

HAVi Level 2
interoperability

Refers to the features provided by FAVs and uploaded
DCMs.

HAVi RMI HAVi defined RMI (Remote Method Invocation) based on
request and response exchanges among HAVi Messaging
Systems.

HAVi unique ID
(HUID)

A unique identification of devices and their functional
components. Persistent over changes in network
configuration (i.e., due to device plug-in or plug-out).

havlet A HAVi Java application that is uploaded on the request of
a controller from a DCM or Application Module.

havlet code unit A code unit from which a havlet is obtained.

home network The home network is the generic name used to define the
communications infrastructure within the home. This name
is used as an abstraction from the physical media and
associated protocols. A home network supports both the
exchange of control information and the exchange of AV
content.

intermediate AV device
(IAV)

A HAVi-compliant device which runs the software elements
of the HAVi Architecture but does not include a Java
runtime environment.

internal connection A connection where data is transferred within a device.

Java code unit See code unit.

legacy AV device
(LAV)

A non HAVi-compliant device.

native code unit See code unit.

network resource IEEE 1394 bandwidth or an IEEE 1394 channel.

scheduled action A set of operations, involving devices on the home network,

 6

HAVi SPECIFICATION Version 1.1

to be performed at a specific time. For example, tuning to
and recording a television program.

SDD data Self Describing Device (SDD) data is stored in the IEEE
1212 Configuration ROM found on 1394 devices. HAVi
specifies Configuration ROM data items that may be used
for uploaded DCMs in the HAVi-specified format or for DDI
elements in a vendor-specific format.

software element A HAVi object. A software element responds to a set of
messages specified by the API for that element.

software element ID
(SEID)

An 80-bit value used to identify software elements. Not
guaranteed to be persistent over changes in network
configuration (i.e., due to device plug-in or plug-out).

system component A software element providing basic system services. The
system components are: 1394 Communication Media
Manager, Messaging System, Event Manager, Registry,
DCM Manager, Stream Manager and Resource Manager.

system software element See system component.

uploaded / uploadable
code unit

See code unit.

uploaded / uploadable
DCM

A DCM dynamically loaded on an FAV or IAV. HAVi
provides support for installing uploadable DCMs
implemented in Java bytecode. Installing other forms of
uploadable DCMs is vendor dependent.

1.4 Compliance

Each HAVi compliant device (FAV, IAV and BAV) shall:

! support the IEEE1394-1995 and the IEEE1394a-2000 amendment specification.
! provide HAVi SDD data in a IEEE 1212 configuration ROM.
! if the device sources or sinks a stream type for which IEC 61883 transmission has

been specified, then the device should support: the PCR and CMP rules for
isochronous connections as defined in IEC 61883.1, the CIP protocol as defined in
IEC 61883.1, the CIP format specific definition in the corresponding part of IEC
61883.

A HAVi compliant BAV device shall:

! comply to the general HAVi compliance rules described above.
! contain in its HAVi SDD either a signed Java code unit plus corresponding profile, or

a reference to a URL containing a signed Java code unit plus corresponding profile.

A HAVi compliant IAV device shall:

! comply to the general HAVi compliance rules described above.
! support IEC 61883.1
! run the following HAVi system components: 1394 Communication Media Manager,

Messaging System, Event Manager, and Registry.
! run a DCM Manager if it can host DCMs for LAV or BAV devices.
! run a Stream Manager if software elements on the device require the establishment of

streaming connections.
! run a Resource Manager if the device hosts or can host DCMs.
! generate a bus reset if it goes into a standby or low power mode for which the HAVi

system is no longer running.
! provide persistent memory for use by HAVi software elements if DCM hosting is

supported.

A HAVi compliant FAV device shall:

 7

HAVi SPECIFICATION Version 1.1

! comply to the general HAVi compliance rules described above.
! support IEC 61883.1
! run the following HAVi system components: 1394 Communication Media Manager,

Messaging System, Event Manager, Registry, DCM Manager, Stream Manager and
Resource Manager.

! generate a bus reset if it goes into a standby or low power mode for which the HAVi
system is no longer running.

! provide persistent memory for use by HAVi software elements.
! run a Java runtime environment.
! implement the HAVi Java APIs as listed in Chapter 7.
! run a DCM representing itself.

A HAVi compliant bytecode DCM shall:

! refer only to classes specified in HAVi FAV profile #1: DCM and Application
Modules, or implemented by the DCM itself.

A HAVi compliant bytecode Application Module shall:

! refer only to classes specified in HAVi FAV profile #1: DCM and Application
Modules, or implemented by the Application Module itself.

A HAVi compliant havlet shall:

! refer only to classes specified in HAVi FAV profile #2: Havlets, or implemented by
the havlet itself.

A set of test requirements for HAVi devices can be found in [13].

 8

HAVi SPECIFICATION Version 1.1

2 Overview

The HAVi Architecture specifies a set of Application Programming Interfaces (APIs) allowing
consumer electronics manufacturers and third parties to develop applications for the home network.
Thus the home network is viewed as a distributed computing platform, and the primary goal of the
HAVi Architecture is to assure that products from different vendors can interoperate – i.e., can
cooperate to perform application tasks.

To explain fully the interoperability aspects of the architecture, it is necessary to begin with an
overview of home networking and identify the requirements addressed by the HAVi Architecture.

2.1 The Home Network

Current CE devices, such as DVD players and DV camcorders, are sophisticated digital processing
and digital storage systems. By connecting these devices in networks, it is possible to share
processing and storage resources – this allows new applications that:

! coordinate the control of several CE devices simultaneously, and

! simplify operation of devices by the user.

For instance one device may initiate recording on a second while accessing EPG (Electronic
Program Guide) information on a third. The home network provides the fabric for connecting CE
devices. It allows connected devices to exchange both control information (one device sending a
command to another) and AV content (one device sending an audio or video stream to another). To
be successful in the consumer electronics domain the home network must meet several
requirements. These include: timely transfer of high-data-rate AV streams, self-configuration and
self-management, hot plug-and-play, and low-cost cabling and interfaces. The HAVi Architecture
is intended for networks based on the IEEE 1394 standard. 1394 is a powerful technology that
meets many of the requirements of home networks. An example of a 1394 network is shown
below:

 9

HAVi SPECIFICATION Version 1.1

IEEE 1394

Figure 1. A 1394 Network with AV Clusters

The underlying structure for the home network consists of interconnected clusters of devices.
Typically, there will be several clusters in the home, with one per floor or one per room. Each
cluster will work as a set of interconnected devices to provide services to users. Often one device
will control other devices. However, the HAVi Architecture is sufficiently flexible to allow home
networks with no single master control device.

2.2 Requirements

The HAVi Architecture is an open, light-weight, platform-independent and architecturally neutral
specification that allows consumer electronics manufacturers to develop interoperable devices, and
independent application developers to write applications for these devices. It can be implemented
on different hardware/software platforms and does not include features that are unique to any one
platform.

The interoperability interfaces of the HAVi Architecture are extensible and can be advanced as
market requirements and technology change. They provide the infrastructure to control the routing
and processing of isochronous and time-sensitive data such as audio and video content.

2.2.1 Legacy Device Support

The HAVi Architecture supports legacy devices, i.e., devices that already exist and are available to
users. This is important since the transition to networked devices is going to be gradual – with
manufacturers not suddenly producing only networked devices and consumers not suddenly
replacing their existing devices.

Legacy devices can also be characterized by the degree to which they support 1394 and industry
standard protocols for 1394 such as IEC 61883. In particular, legacy devices can be divided into the
following categories:

 10

HAVi SPECIFICATION Version 1.1

! non-1394 devices

! 1394 devices not supporting the HAVi Architecture

Most existing CE devices fall into the first category, while existing devices with 1394 interfaces fall
into the second category.

HAVi-compliant devices, as opposed to legacy devices, are those that support the HAVi
Architecture. The various categories of HAVi-compliant devices are described in section 2.3.3.

2.2.2 Future-Proof Support

The CE industry has great concern that new products work with existing products. While currently
this is largely a question of media formats and interconnect standards, the HAVi Architecture
supports future devices and protocols through several software-based mechanisms. These include:

! persistent device-resident information describing capabilities of devices

! a write-once, run-everywhere language (Java), used for software extensions

! a device independent representation of user interface elements

Each HAVi-compliant device may contain persistent data concerning its user interface and device
control capabilities. This information can include Java bytecode that can be uploaded and executed
by other devices on the home network. As manufacturers introduce new models with new features
they can modify the bytecode shipped with the device. The new functionality added to the bytecode
mirrors the new features provided by the device. Similarly new user interface elements can be
added to the stored UI representation on the device.

2.2.3 Plug-and-Play Support

Home network consumer devices are easy to install, and provide a significant portion of their value
to the consumer without any action on the user’s part, beyond physically connecting the cables.
This is in distinction to existing devices that require configuration to provide some major portion of
their functionality. Home networking technology offers “hot” plug-and-play (not requiring the user
to switch off devices), and safe and reliable connections.

In the HAVi Architecture, a device configures itself, and integrates itself into the home network,
without user intervention. Low-level communication services provide notification when a new
device is identified on the network.

While there will often be settings the user may change to suit his or her preferences, the HAVi
Architecture does not require the user to perform any additional installation operations (as
compared to installation for non-networked or stand-alone usage). Frequently, installing a device
on the home network will be simpler than stand-alone installation since new devices can obtain
configuration information from those already on the network. Thus the infamous “flashing clock on
the VCR” can be solved by having the VCR set its clock to that of another device on the network –
for example a DTV receiving time signals via digital broadcast.

2.2.4 Flexibility

The HAVi Architecture allows devices to present multiple user interfaces, adapting to both the

 11

HAVi SPECIFICATION Version 1.1

user’s needs and the manufacturer’s need for brand differentiation. The architecture includes a
flexible device model that scales gracefully from simple CE devices like a CD player or audio
amplifier to resource-rich, intelligent devices such as DTV receivers.

2.3 System Model

2.3.1 Control Model

The home network is considered to consist of a set of AV devices. Each device has, as a minimum,
enough functionality to allow it to communicate with other devices in the system (with the
exception of legacy devices, see section 2.3.3).

During the course of interaction, devices may exchange control information and data in a peer-to-
peer fashion. This ensures that, at the communication level, no one device is required to act as a
master or controller for the system. However, it also allows a logical master or controller to impose
a control structure on the basic peer-to-peer communication model.

The HAVi control model makes a distinction between controllers and controlled devices. A
controller is a device that acts as a host for a controlled device. A controlled device and its
controller may reside on the same physical device or on separate physical devices.

In terms of the HAVi control model, a controller is said to host a Device Control Module (DCM)
for the controlled device. The control interface is exposed via the API of this DCM. This API is the
only access point for applications to control the device.

For instance, an intelligent television in the family room might be the controller for a number of
interconnected devices. A controlled device could contain Java bytecode that constructs a user
interface for the device and allows external control of the device. When these devices are first
connected, the controller obtains the user interface and control code. An icon representing the
device may then appear on the television screen, and manipulating the icon may cause elements of
the control program to actuate the represented device or devices in prescribed ways.

The home network allows a single device, or a group of devices communicating amongst
themselves, to deliver a service to a user or an application. When it is necessary for a device to
interact with a user, a GUI for the device may be presented on a device with display capabilities
(possibly the device in question or possibly a different device).

DCMs are a central concept to the HAVi architecture and the source of flexibility in
accommodating new devices and features. DCMs can be distinguished in several ways (see the
figure below).

 12

HAVi SPECIFICATION Version 1.1

embedded

native bytecode

standard

proprietary

uploaded

How Obtained
How Implemented

Functionality

Figure 2. DCM Characteristics

The first DCM characteristic is how the DCM is obtained by the controller:

! embedded DCM – a DCM that is part of the resident software on a controller.

! uploaded DCM – a DCM that is obtained from some source external to the controller and
dynamically added to the software on the controller.

The second characteristic is whether a DCM is platform (controller) dependent or platform
independent:

! native DCM – a DCM that is implemented for a specific platform, it may include machine
code for a specific processor or access platform specific APIs.

! bytecode DCM – a DCM that is implemented in Java bytecode.

Finally, DCMs can be distinguished by their functionality (or, conversely, their range of use):

! standard DCM – a DCM that provides the standard HAVi APIs. Such a DCM provides
basic functionality but is able to control a wide range of devices.

! proprietary DCM – a DCM that provides vendor-specific APIs (in addition to the
standard HAVi APIs). Such a DCM would offer additional features and capabilities over
a standard DCM but could control a narrower range of devices, perhaps only a specific
device or model.

HAVi provides support for uploaded DCMs written in Java bytecode so, in the remainder of this
document, “uploadable DCM” implies a bytecode DCM unless indicated otherwise. (Note – native
uploaded DCMs are possible but are beyond the scope of this document since their installation
requires vendor-specific extensions to HAVi.)

2.3.2 Device Model

A distinction is made between devices and functional components. A good example of this
distinction can be found in a normal TV set. Although the TV set is generally one physical box, it
contains several distinct controllable entities, e.g. the tuner, display, audio amplifier, etc. The
controllable entities within a device are called functional components.

 13

HAVi SPECIFICATION Version 1.1

2.3.3 Device Classification

HAVi classifies CE devices into four categories: Full AV devices (FAV), Intermediate AV devices
(IAV), Base AV devices (BAV), and Legacy AV devices (LAV). HAVi-compliant devices are
those in the first three categories, all other CE devices fall into the fourth category. Referring to the
distinction between controllers and controlled devices – FAVs and IAVs are controllers while
BAVs and LAVs are controlled devices. The presentation associated with products of the various
categories in the marketplace is defined in the HAVi Logo Requirements document [17].

2.3.3.1 Full AV Devices

A Full AV device contains a complete set of the software elements comprising the HAVi
Architecture (see section 2.4.4). This device class generally has a rich set of resources and is
capable of supporting a complex software environment. The primary distinguishing feature of an
FAV is the presence of a runtime environment for Java bytecode. This allows an FAV to upload
bytecode from other devices and so provide enhanced capabilities for their control. Likely
candidates for FAV devices would be Set Top Boxes (STB), Digital TV receivers (DTV), general
purpose home control devices, and even Home PC’s.

2.3.3.2 Intermediate AV Devices

Intermediate AV devices are generally lower in cost than FAV devices and more limited in
resources. They do not provide a runtime environment for Java bytecode and so cannot act as
controllers for arbitrary devices within the home network. However an IAV may provide native
support for control of particular devices on the home network.

2.3.3.3 Base AV Devices

These are devices that, for business or resource reasons, choose to implement future-proof behavior
by providing uploadable Java bytecode, but do not host any of the software elements of the HAVi
Architecture. These devices can be controlled by an FAV device via the uploadable bytecode or
from an IAV device via native code. The protocol between the BAV and its controller may or may
not be proprietary. Communication between a FAV or IAV device and a BAV device requires that
HAVi commands be translated to and from the command protocol used by the BAV device.

2.3.3.4 Legacy AV Devices

LAV devices are devices that are not aware of the HAVi Architecture. These devices use
proprietary protocols for their control, and quite frequently have simple control-only protocols.
Such devices can work in the home network but require that FAV or IAV devices act as a gateway.
Communication between a FAV or IAV device and legacy device requires that HAVi commands
be translated to and from the legacy command protocol.

2.4 HAVi Software Architecture

2.4.1 Object-Based

Services in the HAVi Architecture are modeled as objects. Each object is a self-contained entity,
called a software element, accessible through a well-defined interface and executing within a
software execution environment hosted by the device on which the object runs. Note that different

 14

HAVi SPECIFICATION Version 1.1

devices may host different execution environments. Services are accessed, using the
communications infrastructure, via their well-defined interfaces.

Services in the HAVi Architecture can be provided by device manufacturers, or can be added by
third party vendors. The software model makes no distinction between “standard” services and
vendor services; they are both implemented as objects.

2.4.2 Software Element Identifiers

Each object is uniquely named. No distinction is made between objects used to build system
services and those used for application services. Objects make themselves known via a system
wide naming service known as the Registry.

Objects in the system can query the Registry to find other objects and can use the result of that
query to send messages to those objects.

The identifier assigned to an object is created by the Messaging System before an object registers.
These identifiers are referred to as SEIDs – Software Element Identifiers. SEIDs are guaranteed to
be unique, however the SEID assigned to an object may change as a result of reconfiguration of the
home network (for example, device plug-in or removal, or re-initialization of a HAVi device).

2.4.3 Message-Based Communication

All objects communicate using a message passing model. Any object that wishes to use the service
of another object does so by using a general purpose message passing mechanism that delivers the
service request to the target object. The target object is specified using the unique SEID discussed
above.

This general purpose message passing mechanism abstracts from the details of physical location,
i.e. there is no distinction between an object on the same device and one on a remote device. The
actual implementation of the message passing mechanism will differ from device to device and
between vendors. However, the format of HAVi messages, and the protocol used for their delivery,
must be common so that interoperability is assured.

The general intent of the object model and Messaging System is to provide a completely generic
software model that is sufficiently flexible to allow multiple implementations with a variety of
software systems and languages. Details of the binding between messages and the code that
handles them are left to the system implementor.

2.4.4 Software Elements

The software elements of the HAVi Architecture support the basic notions of network
management, device abstraction, inter-device communication, and device user interface (UI)
management. Collectively these software elements expose the Interoperability API, a set of
services for building portable distributed applications on the home network. The software elements
themselves reside above a vendor specific platform such as a real-time operating system (RTOS).
The diagram below depicts the arrangement of software elements on an FAV device. While not
intended as an implementation blueprint, the diagram does highlight how the HAVi software
elements form a middle layer between platform specific APIs and platform independent
applications.

 15

HAVi SPECIFICATION Version 1.1

Platform Specific API

Vendor Specific Platform

Interoperability API

Application
Application

R
eg

is
tr

y

Ev
en

t M
gr

St
re

am
 M

gr DCM
DCM

DCMD
CM

M
gr

havlet

Messaging System

1394 Communication Media Manager
R

es
ou

rc
e

M
gr

havlet

havlet

Figure 3. HAVi Architectural Diagram (FAV)

The software elements comprising the HAVi Architecture and defined in this specification are:

! 1394 Communication Media Manager – allows other software elements to perform
asynchronous and isochronous communication over 1394.

! Messaging System – responsible for passing messages between software elements.

! Registry – serves as a directory service, allows any object to locate another object on the
home network.

! Event Manager – serves as an event delivery service. An event is the change in state of an
object or of the home network.

! Stream Manager – responsible for managing real-time transfer of AV and other media
between functional components.

! Resource Manager – facilitates sharing of resources and scheduling of actions.

! Device Control Module (DCM) – a software element used to control a device. DCMs are
obtained from DCM code units. Within a DCM code unit are code for the DCM itself plus
code for Functional Component Modules (FCMs) for each functional component within
the device. In addition a DCM code unit may include a havlet allowing user control of the
device and its functional components.

! DCM Manager – responsible for installing and removing DCM code units on FAV and
IAV devices.

In addition to the above software elements specified by the HAVi Architecture, devices on the
home network may contain the following:

 16

HAVi SPECIFICATION Version 1.1

! Application Module – The HAVi architecture provides a general platform for several
forms of applications. In general a HAVi application is one that creates software elements
that use other software elements to provide specific services. A HAVi application may be
developed in native code and embedded (resident) on an FAV or IAV. It is also possible
for a HAVi application to be in the form of Java bytecode and obtained from external
sources (i.e., uploaded over the Internet) or from existing software elements using
mechanisms defined by HAVi. In particular, an Application Module is a software element
that may provide a DDI interface and/or a havlet.

! Self Describing Device (SDD) data – HAVi-compliant devices contain descriptive
information about the device and its capabilities. This information, called SDD data,
follows the IEEE 1212 addressing scheme used for Configuration ROM. The SDD data
may include a DCM code unit and vendor-specific data for constructing user interface
elements.

! Java Runtime Environment – provides an execution environment for uploaded DCMs and
applications implemented using Java bytecode.

! DDI Controller – a software element involved with user interaction. The DDI (Data
Driven Interaction) Controller handles user input and interprets (renders) DDI elements.

The following table summarizes which architectural elements are present for the various device
categories, which are absent and which are optional. An optional element is indicated by “[]”, a
“check mark” indicates that the element is present on the device itself with the following
provisions:

! A DDI Controller is required on an IAV or FAV if the device will render DDI elements
according to the DDI protocol. Display-capable IAVs or FAVs must contain DDI
Controllers.

! A Resource Manager is required on an IAV device that hosts or can host DCMs.

! A Stream Manager is required on an IAV if applications on the IAV will make streaming
connections.

! A DCM Manager is required on an IAV device if it can host DCMs for BAVs or LAVs
on the 1394 network.

! For both BAV and LAV devices there must be an associated device control module
somewhere on the home network. For a BAV device, the DCM is typically obtained via
the device’s SDD data. For LAV devices, the DCM may be embedded on the controlling
FAV or IAV.

! For IAV devices it is not necessary that a DCM exists on the home network. (However, if
such a DCM does not exist then interoperable applications cannot control the device.)

! A DCM for an FAV or IAV resides on the device itself – i.e., an IAV (if it has a DCM) or
an FAV hosts its own DCM.

 17

HAVi SPECIFICATION Version 1.1

Table 1. HAVi Configurations

Device Class / Element FAV IAV BAV LAV

Java Runtime ✔

Application Module [✔] [✔]

DDI Controller [✔] [✔]

Resource Manager ✔ [✔]

Stream Manager ✔ [✔]

DCM Manager ✔ [✔]

Registry ✔ ✔

Event Manager ✔ ✔

Messaging System ✔ ✔

1394 Communication Media
Manager

✔ ✔

SDD data ✔ ✔ ✔

DCM ✔ [✔] ✔ ✔

2.5 User Interface Support

The primary goal of the user interface of the home network is to offer users an easy to use operating
environment. The HAVi Architecture allows users to control devices through familiar means, such
as via the front panel or via the buttons of a remote controller. In addition the HAVi Architecture
allows device manufacturers to specify graphical user interfaces (GUIs) which can be rendered on a
range of displays varying from text-only to high-level graphical displays. The GUI need not appear
on the device itself, it may be displayed on another device and the display device may potentially
be from another manufacturer. To support this powerful feature, the HAVi Architecture provides
two mechanisms – the first, the Level 1 UI, is intended for IAVs and is called Data Driven
Interaction (DDI), the second, the Level 2 UI, consists of Java APIs that may be provided by FAVs.

2.5.1 Level 1 UI

In essence, SDD data may include, in a vendor dependent manner, DDI elements – a platform
independent encoding of user interface elements. DDI elements can be loaded from a DDI Target,
typically a DCM, and displayed by a DDI Controller. The DDI Controller retrieves the DDI
elements via the DCM (rather than directly from the SDD data, so it is possible that the DCM itself
is the source of DDI elements). The DDI Controller generates HAVi messages in response to user
input, it also responds to HAVi messages sent by the DCM as a result of changes in device state.
This communication is called the DDI protocol.

It should be emphasized that the DDI Controller does not understand what happens as a result of
issuing or responding to a control message. The DDI protocol involves only abstractions of user
interface elements and user actions and is independent of any particular device semantics.
Therefore, it is possible for a DDI Controller to handle new device functions which were not
known at the time of DDI Controller implementation.

 18

HAVi SPECIFICATION Version 1.1

The DDI Controller cannot provide guarantees over the graphical rendition of DDI elements
actually presented to the user, since their representation may be changed due to lack of display
screen space or other Controller resource limitations. (Furthermore, application software can create
different representations, using the DDI elements as “hints”.) However the DDI Controller is
required to try to preserve the appearance of DDI elements subject to its rendering capabilities.

2.5.1.1 Layout Mechanism

Layout rules of DDI elements are based on geometric coordinates and use x, y values for each DDI
element. DDI elements are arranged in a hierarchy and positioned relative to their parents. The top
level of hierarchy is a DDI panel.

The DDI Target suggests a preferred layout, which is encoded into the DDI data structure.
However, the DDI Controller may tailor the presentation of DDI elements based on its own
limitations, such as screen size, ability to display graphics or text only, etc.

2.5.1.2 Navigation Mechanism

The navigation between DDI elements within the same panel is handled locally by the DDI
Controller. The DDI Target may suggest navigation rules between certain DDI elements. Because
such navigation rules are just suggestions, the controller may tailor the navigation of the display
based on its adjustment of DDI layout.

2.5.2 Level 2 UI

A Level 2 user interface is constructed by bytecode applications running on FAVs. The Java APIs
used for implementing a Level 2 UI are based on a subset of Java AWT 1.1 and the following
extensions specified by HAVi:

! support for different pixel aspect ratios, screen aspect ratios and screen sizes
! support for alpha blending and video / image layering
! support for remote control input
! support for a set of visual interface components patterned after the features offered by the

Level 1 DDI elements

2.5.3 User Notification

There are various events generated by HAVi software elements that must come to the attention of
the users of the HAVi system in order that they may react to the situations signaled by these events.
Examples include the events generated by the Resource Manager, Stream Manager or Registry.
Furthermore, applications and devices on the home network may be presented visually to the user,
and information presented to the user should accurately reflect the state of applications and devices.
Consistent presentation of state is particularly important since: 1) a device may be acted on in
several ways: via its front panel and via a Level 1, Level 2, or arbitrary application accessing its
DCM; and 2) several users may simultaneously access or view the same device. For BAV and
LAV devices an (icon) representation can be presented to the user. Through such a representation, a
user may request to use or manipulate a device or its data.

In order to disseminate information on system state to all users, it is recommended that the
notifications of HAVi events be presented (in a vendor dependent way) on all display-capable FAV
and IAV controllers in the network. There may be (vendor dependent) facilities allowing the user to
disable such notifications. Annex 11.9 lists the events defined by HAVi. Certain events, such as
those generated when installing or uninstalling DCMs can be used to detect the addition or removal

 19

HAVi SPECIFICATION Version 1.1

of devices and so can help provide a global view of the home network. Other events can be used to
relay to the user information concerning the operating state of devices. Still other events can be
used to inform the user of anomalous conditions such as communication failure. And yet other
events can be used to inform the user of the failure to complete a previously scheduled activity
(such as a planned recording at a future date).

2.6 Home Network Configurations

The HAVi Architecture defines how devices are abstracted within the home network and
establishes a framework for device control. It defines APIs and messaging protocols so that
interoperability is assured, and it defines how future devices and services can be integrated into the
architecture. The HAVi Architecture makes no restrictions, however, on what types of devices
must be present in the home network. As a result several configurations are possible – networks
without FAV devices, networks with multiple FAV devices, networks with LAV and BAV devices
only, etc. Depending upon the types of devices on the home network, several different operational
configurations are possible.

2.6.1 LAV and BAV Only

The HAVi Architecture does not provide any support for networks consisting of only BAV and
LAV devices. However with the addition of a HAVi controller (an IAV or FAV) to the network,
these devices can be made available to applications.

2.6.2 IAV or FAV as Controller

IAV and FAV devices act as controllers for the other device classes and provide a platform for the
system services comprising the HAVi Architecture. To achieve this, FAVs may host Java bytecode
DCMs while IAVs may host embedded DCMs. From an interoperability perspective, the primary
role of a controller is to provide a runtime environment for DCMs. Applications use the APIs
provided by the DCM to access the controlled device.

application

IAV or FAV as controller

DCM

IAV or FAV LAV or BAV

HAVi
Messages

proprietary

IAV or FAV

controller controlled
device

1394

Figure 4. HAVi Controllers

2.6.3 IAV or FAV as Display

Generally, IAVs and FAVs will have an associated display device that is used for display of AV
content and GUIs. However, the architecture does not mandate this and an IAV or FAV device

 20

HAVi SPECIFICATION Version 1.1

may be “headless” (without display capability). In this case they will cooperate with other IAV or
FAV devices with display capability. A display capable IAV is required to support a DDI
Controller. A display capable FAV is required to support a DDI Controller and a Level 2 UI.
Proprietary low-level graphic manipulation APIs can be used by the DDI Controller to access the
display itself, but these interfaces are not exposed as part of the Interoperability APIs.

DDI
Controller

IAV or FAV as display device

DCM

IAV or FAV LAV or BAV

DDI
protocol proprietary

IAV or FAV

controller controlled
device

display
device

display

Figure 5. HAVi Displays

2.6.4 Peer-to-Peer Architecture between FAVs and IAVs

In a home network, there may be more than one FAV or more than one IAV. In this case, each
controller (IAV or FAV) cooperates with other controllers to ensure that services are provided to
the user. This allows devices to share resources. An example is described in section 2.6.3 where a
device without display capabilities uses a remote device to display DCM user interfaces. A more
elaborate example could be an FAV device utilizing the services of a data conversion module
located on a remote device to set up a data stream between two AV devices.

2.6.5 IAV as Controller and Display

A home network may contain no FAV devices, in such cases IAVs are the only entities which may
control other devices. Although not equipped with a runtime environment for uploaded DCMs, an
IAV may be shipped with a set of embedded DCMs. Embedded DCMs can be implemented as
native applications on the IAV device and can use native interfaces to access the IAV’s display and
other resources. Embedded DCMs, like DCMs in general, appear in the Registry provided by the
HAVi Architecture and can be accessed from other devices on the home network by sending
messages over the Messaging System. Embedded DCMs, like DCMs in general, may support the
DDI protocol and so may participate in providing a user interface for the controlled device.

2.7 Interoperability in the HAVi Architecture

The first and foremost goal of the HAVi Architecture is to support interoperability between AV
equipment. This includes existing equipment and future equipment. Because of the need to support
existing devices, and because of product cost considerations, the HAVi Architecture supports two
levels of interoperability. These are referred to as Level 1 and Level 2 respectively.

The flexibility of choosing different levels of interoperability is essential in allowing vendors the
freedom to design and build devices at all points on the cost/capability spectrum.

 21

HAVi SPECIFICATION Version 1.1

2.7.1 Level 1 Interoperability

Level 1 interoperability addresses the general need to allow existing devices to communicate. To
achieve this, Level 1 interoperability defines and uses:

! a generic set of control messages (commands) that enable one device to talk to another
device and

! a set of event messages that it should reasonably expect from the device.

To support this approach a basic set of mechanisms are required.

! Device discovery: each device in the home network needs a well-defined method that
allows it to advertise its capabilities to others. The approach the HAVi Architecture has
adopted is to utilize SDD data, required on all FAV, IAV and BAV devices. SDD data
contains information about the device which can be accessed by other devices. The SDD
data contains, as a minimum, enough information to allow instantiation of an embedded
DCM. This results in registration of device capabilities with the HAVi Registry, allowing
applications to infer the basic set of command messages that can be sent to the device.

! Communication: once an application has determined the capabilities of another device,
then it needs to be able to access those capabilities. To achieve this requires a general
communication facility allowing applications to issue requests to devices. This service is
provided by the HAVi Messaging Systems and DCMs. The application sends HAVi
messages to DCMs, the DCM then engages in proprietary communication with the
device.

! HAVi message set: the last mechanism required to support Level 1 interoperability is a
well defined set of messages that must be supported by all devices of a particular class.
This ensures that a device can work with existing as well as future devices, irrespective of
the manufacturer. The HAVi message set includes those messages used for the DDI
protocol and so allows DCMs (and applications) to construct a UI on display-capable
IAVs and FAVs.

These three basic mechanisms support a minimal level of interoperability. Since any application
can query the Registry, any application can determine the message set supported by any DCM.
Since any application has access to the Messaging System, any application can interact with the
DCM of any device.

2.7.2 Level 2 Interoperability

As described in the previous section, Level 1 interoperability ensures that devices can interoperate
at a basic level of functionality. However, a more extensible mechanism is also needed to allow a
device to communicate to other devices any additional functionality not present in embedded
DCMs. For example, embedded DCMs may not support all features of existing products and are
unlikely to support future product categories. Level 2 interoperability provides this mechanism.

To support non-standard features of existing products and to support future products, the HAVi
Architecture allows uploaded DCMs as an alternative to embedded DCMs. The uploaded DCM
may replace an existing DCM on FAV devices. The HAVi Architecture makes no statement about
the source of the uploaded DCM, but a likely technique is to place the uploaded DCM in the SDD
data of the BAV device, and upload from the BAV to the FAV device when the BAV is attached to
the home network. Because the HAVi Architecture is vendor neutral, it is necessary that the

 22

HAVi SPECIFICATION Version 1.1

uploaded DCM will work on a variety of FAV devices all with potentially different hardware
architectures. To achieve this, uploaded DCMs are implemented in Java bytecode. The Java
runtime environment on FAV devices supports the instantiation and execution of uploaded DCMs.

Once loaded and running within an FAV device, the DCM communicates with the LAV and BAV
devices in the same manner as described above in section 2.7.1.

The efficiency of Level 2 interoperability appears when one considers resources needed to access
device functionality. Level 2 allows a device to be controlled via an uploaded DCM that presents
all the capabilities offered by the device. Whereas to achieve similar functionality in Level 1, this
DCM would have to be embedded somewhere in the network. For example when a new device is
added to a network, Level 1 requires that at least one other device contains a DCM suitable for the
new device. In comparison, Level 2 only requires that one device provide a runtime environment
for the uploaded DCM obtained from the new device.

The concept of uploading and executing bytecode also provides the possibility for applications
called havlets. Havlets may be device specific, for example a device manufacturer can provide the
user a way to control special features of a device without the need for standardizing all the features
in HAVi. Havlets can be uploaded and installed by each FAV device on the network. Havlet
uploading can be supplied by DCMs and Application Modules and can offer interaction with the
user via Level 2 UI. Display-capable FAVs will allow a user to upload and execute the havlet of
any DCM or Application Module, providing a havlet, in the home network.

2.8 Versioning

Each HAVi component must support the HAVi version control API. HAVi version control is
intended to maintain interoperability of HAVi components as the specification evolves. Version
control for individual manufacturer’s products is outside of the scope of this API.

Versions are represented by major and minor numbers in the form major.minor. For a given
release of the specification, every system component will be of the same version as that of the
HAVi specification – regardless of whether that component’s API was modified in the latest
release. This simplifies the situation in which a given component’s APIs are built up from different
groups of APIs. The minor version number is intended to indicate small refinements of the HAVi
specification. The intent of the major version number is to reflect important functional
improvements in the overall HAVi architecture.

Given that this specification is Version 1.1, all HAVi components are currently defined to be at
Version 1.1.

As the HAVi specification evolves, it is intended that no APIs will ever be updated or removed (see
section 5.1.7). All changes will be achieved by adding new APIs. This ensures that older
components can always request services from newer components successfully.

All system components on a device shall return a unified version number in response to
GetVersion API calls, and the value shall be identical to HAVi_Message_Version in the SDD of
the device. System components shall verify the version number of their peer system components on
other devices, e.g., by reading the HAVi_Message_Version value from the devices’ SDD (see section
9.10.3). Each system component shall operate at the highest common version number among all
peer system components in the network.

The rules for version control of message passing protocols is somewhat different. Please refer to the
Messaging System section 3.2.1.2.7 for details.

 23

HAVi SPECIFICATION Version 1.1

Client applications are encouraged to interoperate with older software element versions, though this
is not explicitly required. However system elements, DCMs and FCMs as clients shall interoperate
with all older software element versions. This is intended to ensure that interoperability will be
achieved for the life of the HAVi specification. Note that all software elements support a version
number retrieval method (see section 5.13).

2.9 Security

All software elements can in principle send messages and events to each other without any
restriction. However to avoid that applications send, whether accidentally or deliberately, messages
or events to system components that were intended to be used only by other system components, a
protection mechanism is needed.

HAVi specifies, for each defined HAVi message and event, the kinds of software element that are
allowed to use it. The protection mechanism simply implies that a system component will check
whether the message sender (or event poster) is allowed to send this message (or event). This check
is based on an inspection of the SEID of the message sender (event poster).

Protection of a device (and the home network) from hostile or flawed applications is the
responsibility of the vendor of the device. Such protection is particularly crucial for FAV devices
since HAVi specifies an open programming environment for FAVs and arbitrary bytecode
applications may be introduced to FAVs (e.g., via Web download, broadcast download, or
installation from hard media).

2.9.1 Access Levels

HAVi uses a two-level protection scheme. When a software element is created it is assigned an
access level which is one of trusted or untrusted. When one software element sends a request to
another software element the receiver decides whether or not to honor the request by examining the
access level of the requester (and optionally other information associated with the request).

1) System software elements should be thoroughly tested by vendors. They are
assigned the trusted access level and operate with the greatest set of privileges.

2) For non-system software elements that are pre-installed on an IAV or FAV, the
vendor shall test the software element for HAVi compliance. Provided there are
no failures, the software element can be assigned the trusted level.

3) For software elements that are dynamically installed on an IAV or FAV through
an installation mechanism that is proprietary and not publicly exposed, the vendor
shall implement a proprietary verification mechanism and only assign the trusted
level to software elements obtained from secure sources.

4) For software elements that are dynamically installed on an FAV through a public
installation mechanism, the vendor shall implement the signature verification
mechanism defined by HAVi and only assign the trusted level to software
elements obtained from correctly signed sources.

5) If an IAV or FAV has a proprietary mechanism for installing patches to system
elements or replacing system elements, then it is recommended that the vendor
implement a proprietary verification mechanism and only allow patching or
replacement of system software elements from secure sources.

All DCMs and FCMs shall be trusted. Therefore untrusted DCM code units shall not be installed
on FAVs or IAVs.

Since HAVi does not specify a dynamic acquisition and installation mechanism for Application

 24

HAVi SPECIFICATION Version 1.1

Modules, if an IAV or FAV has such a feature then the vendor is responsible to assure only
Application Modules obtained from secure sources are given the trusted level, with a vendor-
dependent verification mechanism.

As for havlets, they are extracted from DCMs or Application Modules through a public method.
Thus, a havlet code unit shall be verified whether it is correctly signed in a HAVi-compliant
manner before it is installed on an FAV. If the verification fails, the FAV shall not assign the
trusted level to the havlet.

It is vendor-dependent whether or not an FAV or IAV allows to install Application Modules or
havlets which failed in the security verification. However, even when installation of such untrusted
software elements is allowed, it is recommended that such an FAV or IAV has a proprietary
mechanism to assure that such an installation is only done with the user’s responsibility.

2.9.2 Signature Verification

The procedure of security verification of code resources used on IAVs is vendor dependent. Also,
even on FAVs, the procedure of security verification for Application Modules is vendor dependent.
However the digital signature algorithm and certification procedures are specified by HAVi, for the
verification of uploadable DCM code units and havlet code units.

The procedure of signature verification on FAVs is as follows:

! Uploadable DCMs, uploadable Application Modules and all havlets are obtained from “code
units” – these are JAR files.

! As for uploadable DCMs, the JAR file shall be signed in the HAVi-compliant manner, and the
signature is verified when the file is loaded into the Java runtime. If there is no signature, or if
signature verification fails, the DCM shall not be installed.

! As for havlets, the JAR file may be signed in the HAVi-compliant manner. In that case the
signature is verified when the file is loaded into the Java runtime. If signature verification
succeeds, then all classes defined in the file are trusted. If there is no signature, or if signature
verification fails, all classes defined in the file are untrusted.

! As for Application Modules, the JAR file may have any information for vendor-dependent
verification. If the verification succeeds, then all classes defined in the file are trusted.
Otherwise, including the case an FAV is not aware of the verification mechanism, all classes
defined in the file are untrusted.

! Only havlets and Application Modules created from trusted classes are trusted.

The digital signature algorithm used for uploadable DCMs and havlets on FAVs, and associated
key management infrastructure, are specified in section 3.10.

 25

HAVi SPECIFICATION Version 1.1

3 Software Element Descriptions

3.1 Communication Media Manager

The Communication Media Manager (CMM) is a network dependent entity in the HAVi
Architecture. It interfaces with the underlying communication media to provide services to other
HAVi components or application programs residing on the same device as the CMM. Each
physical communication medium has its own CMM to serve the above purpose. This section
concentrates only on the CMM for the 1394 bus.

Two types of services are provided by the CMM. One is to provide a transport mechanism to send
requests to and receive indications from remote devices. The other is to abstract the network
activities and present information to the HAVi system. The 1394 bus is a dynamically configurable
network. After each bus reset, a device may have a completely different physical ID than it had
before. If a HAVi component or an application has been communicating with a device in the
network, it may want to continue the communication after a bus reset, though the device may have
a different physical ID. To identify a device uniquely regardless of frequent bus resets, the Global
Unique ID (GUID) is used by CMM and other HAVi entities. A GUID is a 64 bit number that is
composed of 24 bits of node-vendor ID and a 40 bit number assigned by the vendor (these are
described in references [2] and [3]). While a device’s physical ID may change constantly, its GUID
is permanent. The CMM makes device GUID information available for its clients.

One of the advanced features the 1394 bus provides to the HAVi system is its support for dynamic
device actions such as hot plugging and unplugging. To fully support this up to the user level,
HAVi system components or applications need to be aware of these network changes. The CMM
works with the Event Manager to detect and announce such dynamic changes in network
configuration. Since any topology change within the 1394 bus will cause a bus reset to occur, the
CMM can detect topology changes and post an event to the Event Manager about these changes
along with associated information.

Trusted software elements are allowed to use their local CMM to initiate communication with other
devices on the 1394 network, using the Cmm1394::Write, Cmm1394::Read and
Cmm1394::Lock APIs defined in section 5.2.2. These APIs would typically be used by DCMs and
FCMs to control remote 1394 devices, i.e. BAV and LAV devices. Communication between IAVs
and FAVs, devices which support HAVi messaging, is typically accomplished using the HAVi
defined software elements or the Messaging System directly.

For a software element to accept 1394-level communication initiated by a remote device it must
first enroll for indications by calling the Cmm1394::EnrollIndication API. This API enables
the software element to be notified of any write, read or lock operation from a specific device in a
specific address range. This notification is performed by the Cmm1394Indication client API.
The software element can drop previously enrolled indications by calling the
Cmm1394::DropIndication API.

The CMM is intended to allow maximum flexibility so that DCMs and FCMs can individually
control remote 1394 devices with a wide variety of functions and protocols. On a single IAV or
FAV there could be a number of different DCMs and FCMs, each one controlling different remote
1394 devices using various 1394 address ranges. Note that if different 1394 remote devices perform
a read of a given address range, they may receive different results, since each read request may be
processed by an independent DCM or FCM. Also note that the response to such a read request (or
lock request) is provided by the responseData argument of the Cmm1394Indication message,

 26

HAVi SPECIFICATION Version 1.1

rather than by a simple memory mapping.

3.2 Messaging System

3.2.1 Description

The Messaging System provides HAVi software elements with communication facilities. It is
independent of the network and transport layers. A Messaging System is embedded in all FAV and
IAV devices. The Messaging System of a device is in charge of allocating identifiers (SEIDs) for
the software elements of that device. These identifiers are first used by the software elements to
register. They are then used by the software elements to identify each other within the home
network: when a software element (A) wants to send messages to another software element (B) it
has to use the software element identifier of B when invoking the Messaging System API.

The Messaging System is composed of the message layer and the Transport Adaptation Module
(TAM) which provides a basic communication API that is medium dependent. The TAM uses the
services of 1394 and IEC 61883 protocol layers to send and receive data on the network. It gathers
features that are medium dependent. When the medium changes, the TAM has to change as well.
The TAM is described in section 3.2.2.

3.2.1.1 Software Element Identifier Allocation

A software element identifier (SEID) is allocated by the Messaging System when requested by a
software element. A software element must obtain a SEID if it wants to be registered on the home
network, or if it wants to communicate (via HAVi messages) with other software elements.

The software element identifier is 10 bytes long.

Syntax Number of bits Identifier
SEID() {
 GUID
 swHandle
}

64
16

uimsbf
uimsbf

Figure 6. SEID Representation

GUID identifies a device within the home network. It is the 1394 EUI64 value that is available in
the ROM of 1394 devices.

swHandle identifies a software element within one device. swHandle allocation is described in
section 3.2.1.1.1.

SEID, being the concatenation of GUID and swHandle, identifies therefore a software element
within the home network.

From the software element’s point of view, the identifier is an atomic identifier that is 10 bytes
long. Only the HAVi Messaging System and other HAVi system components are aware of the
internal structure of software element identifiers.

 27

HAVi SPECIFICATION Version 1.1

3.2.1.1.1 Software Element Handle Allocation

swHandle is allocated by the Messaging System of a device when a software element requests a
software element identifier. The Messaging System of a device is in charge of allocating unique
handles to the local software elements. It is recommended that the Messaging System avoids reuse
of the handles if possible so as to avoid potential conflict (see section 3.2.1.2).

3.2.1.1.2 Well-known Software Element Handles

There is a need to have well-known software element handles for system components. The handle
values from 0x0 to 0x00ff are reserved for this purpose. These well-known software element
handles are listed in Annex 11.4. To reach a system component the requester must know the SEID
of the component. Usually it will use the Registry service to find SEIDs. Therefore the requester
has to reach the local Registry API and, consequently has to know the local Registry SEID. To
avoid such circularity, the Messaging System API provides a method to find the SEIDs of system
components.

3.2.1.1.3 Trusted and Untrusted Software Element Handles

HAVi defines a set of APIs provided by system components and DCM/FCMs. Some of the API
methods are protected in the sense that only a subset of software elements are authorized to access
the method. Consequently software element are classified into two categories:

! trusted software elements (can access all HAVi APIs)

! untrusted software elements (can access only untrusted APIs)

Each API described in chapters 5 and 6 gives, for each API method, whether it can be used by
trusted and untrusted software elements or just trusted software elements.

To identify whether a software element is trusted or not, two software element handle ranges are
defined :

0x0000 to 0x7fff : trusted software elements

0x8000 to 0xffff : untrusted software elements

The well-known handles (i.e., system component handles – see Annex 11.4) are all in the trusted
range. The Messaging System delivers a trusted SEID or an untrusted SEID to a requester
according to the access level of this requester (see section 2.9).

3.2.1.2 Message Transfer Service

The Messaging System provides a connectionless data transfer service. Before being able to
exchange any kind of information, a software element has to: 1) obtain a software element
identifier (SEID), and 2) indicate a call back function to the Messaging System for receiving
messages. This step is done via the MsgOpen function.

Once a software element has obtained an identifier, and should it want to send messages to another
software element (known through its software element identifier), it must use the message transfer
services of the Messaging System.

 28

HAVi SPECIFICATION Version 1.1

3.2.1.2.1 Message Transfer Supervision

When a software element wants to send data to another software element it may establish a
supervision of that software element via the MsgWatchOn function. The purpose of having a
supervision of a software element is to be told when a software element leaves the network. As
long as a supervision is established, the Messaging System is in charge of detecting when a device
(on which it has established a supervision) disappears from the network. If this occurs it shall close
all its supervisions to the disappeared device by invoking the call back of the source software
elements.

A supervision is always unidirectional: if the destination software element needs to be informed of
the loss of the originating software element, then it must establish its own supervision of that
software element.

After a supervision has been requested, the Messaging System monitors the existence of the
“watched” object using the Msg::Ping facility described in section 5.3.3. The Messaging System
also subscribes to events that allows it to detect: when the device hosting the destination software
element goes down, when the destination software element leaves the network, when the remote
device is initialized (reset), and when the remote HAVi system has entered an anomalous state..

Software
Element A

Messaging
System 1

Software
Element B

Messaging
System 2

Send(Data, B)

Send(Data, B)

Open

WatchOn(B)

Send(Data, B)

Open

Send(Data, A)
Send(Data, A)

Send(Data, A)

Device 2 unplugged

Detection device2 OFF
Disappear(B)

Figure 7. Example of Message Transfer Supervision

3.2.1.2.2 Message Transfer Modes

Data are not protected at the message level (i.e., there is no Messaging System CRC). However it is
assumed that the lower layers provide an error detection service (via a CRC) as well as a good level
of transmission reliability (see section 3.2.2). Therefore there are no error recovery mechanisms at

 29

HAVi SPECIFICATION Version 1.1

the message level (however the TAM provides an error recovery process according to 1394).

The Messaging System provides two modes to transmit a message: simple mode and reliable mode.
The Messaging System API primitives MsgSendReliable, MsgSendRequest and
MsgSendRequestSync use reliable mode, while MsgSendSimple uses simple mode and
MsgSendResponse takes a mode parameter (see section 5.3.3).

Simple mode is very basic: no control is performed by the Messaging System. The message is sent
on the network and that is all. This mode may be used when a software element wants to send a
response to a request. The Messaging System does not check whether its response is received or
not.

Reliable mode is more complicated and expects the destination device to acknowledge the
message. The reliable mode is described through the following example: when a software element
(A) running on a device D1 wants to send a reliable message to another software element (B)
running on device D2, it invokes a Messaging System API with B’s SEID as parameter. The
Messaging System of D1 sends a msg_reliable message (see 3.2.1.2.4) to the Messaging
System of D2. The Messaging System of D2 checks then whether it knows a call back for B. If yes,
it invokes it. If the call back successfully returns (i.e., no error), it sends back a
msg_reliable_ack to D1 (as an acknowledgement). If either no call back is available, or the call
back returns with an error, D2’s Messaging System sends back a msg_reliable_noack message
which indicates an error. When the Messaging System of D1 receives the msg_reliable_ack (or
msg_reliable_noack) message, the Messaging System API function invoked by A returns.
Note that at the originating side, the calling software element is blocked until it gets the
acknowledgement. To avoid blocking a software element indefinitely an acknowledgement timeout
is used. Its value shall be 30 seconds. Expiry of the timer indicates to the Messaging System a
major problem either locally or on the target. The timer is started at the end of transmission of the
last TAM package of the message. In case device D1 detects that device D2 has disappeared before
the msg_reliable_ack has been received, the Messaging System of D1 shall immediately
return from MsgSendReliable with the error code Msg::EACK. In this situation no MsgTimeout
event is generated.

3.2.1.2.3 Acknowledgements

The general message structure includes an 8-bit field called the message number.

The Messaging System maintains a message number counter for each source software element.
When the Messaging System issues a request (reliable or not), the counter is incremented (modulo
256) and the new value is sent within the message. In case of a msg_reliable message, the
Messaging System at the destination node will send back the same counter value within the
msg_reliable_ack (or msg_reliable_noack) message.

The Messaging System checks each incoming msg_reliable_ack or msg_reliable_noack.
If no reliable message of the destination software element with the same message number is
pending, the incoming ack (or noack) is simply discarded.

In the case the response is received prior to the msg_reliable_ack of a request, the Messaging
System may treat the response as a msg_reliable_ack. This may recover from a lost
msg_reliable_ack in the case where the response is received before the acknowledgement
timeout.

The Messaging System that resides on the same node as the software element receiving the request
message shall send msg_reliable_ack and response message in order. Thus, the software
element which receives a callback invocation has to immediately return from the callback.

 30

HAVi SPECIFICATION Version 1.1

Software
Element A

Messaging
System 1

Software
Element B

Messaging
System 2

msg_send_reliable(B) Invocation
msg_ reliable (B)

CallBack(req) Invocation

CallBack(req) Return

msg_ reliable _ack(A)
msg_send_reliable(B) Return : ok

Figure 8. Typical Reliable Message Sequences

Software
Element A

Messaging
System 1

Software
Element B

Messaging
System 2

msg_send_reliable(B) Invocation
msg_ reliable(B)

CallBack(req) Invocation

CallBack(req) Return
Reliable ack lost

msg_send_reliable(B) Return : timeout Timeout

Figure 9. Reliable Messaging Failing Due to Timer Expiration

 31

HAVi SPECIFICATION Version 1.1

3.2.1.2.4 General Message Format

The message format shown in Figure 10 describes a message as it is sent by a Messaging System to
another Messaging System.

Syntax Number of
bits

Identifier

message () {
 DestSEID
 SourceSEID
 ProtocolType
 MessageType
 MessageNumber
 reserved
 MessageLength
for(j=0; j<MessageLength;j++){
 MessageBody[j]
 }
}

80
80
8
8
8
8
32

8

uimsbf
uimsbf
uismbf
uimsbf
uimsbf
uimsbf
uimsbf

uimsbf

Figure 10. General Message Format

DestSEID (10 bytes) is the identifier of the software element to which the message is to be sent.

SourceSEID (10 bytes) is the identifier of the software element that generated the message.

Note – When the message is a msg_reliable_ack or msg_reliable_noack, the DestSEID
field will hold the SourceSEID of the related msg_reliable message.

ProtocolType (1 byte) is the format that MessageBody content must adhere to. The values from
0x00 to 0x7f are reserved for HAVi. The values from 0x80 to 0xff are free for private use. HAVi
defines one particular protocol based on request and response message exchanges, providing
applications with facilities to invoke operations on a given software element (request), and/or to
return the result of an operation to the software element that requested it (response). The
ProtocolType parameter in the general message format corresponding to the HAVi
request/response mechanism has the value 0x00. For this value of ProtocolType, if
MessageType (see below) is msg_simple or msg_reliable then the message body format
must be as specified in section 3.2.3.2.

MessageType (1 byte) indicates the message type:

! One type is defined for the simple mode : the msg_simple message
! Three types are defined for the reliable mode: the msg_reliable message (carrying the

request), the msg_reliable_ack (telling the request has been delivered), and the
msg_reliable_noack (telling the request delivery failed).

MessageNumber (1 byte) is the message number. Its value is incremented according to the rules
described in section 3.2.1.2.3.

reserved (1 byte), this field shall be set to zero.

MessageLength (4 bytes) is the length of the MessageBody. There is no payload for the
msg_reliable_ack, in which case both the MessageLength and MessageBody fields are not

 32

HAVi SPECIFICATION Version 1.1

present.

MessageBody is the message data.

Table 2. Message Type Values

MessageType Value

msg_simple 0x01

msg_reliable 0x02

msg_reliable_ack 0x03

msg_reliable_noack 0x04

3.2.1.2.5 Ack Message Format

The msg_reliable_ack message follows the general message format. It has no
MessageLength and no MessageBody. The layout of an msg_reliable_ack message is
indicated schematically below:

byte 0 byte 1 byte 2 byte 3 byte 4 ... byte 13

0011 rrrr nnnn nnff 0Rnn nnnn 0000 0000 dddd dddd ... dddd dddd

FCPHdr TAMHdr reserved Destination SEID

byte 14 ... byte 23 byte 24 byte 25 byte 26 byte 27

ssss ssss ... ssss ssss PPPP PPPP 0000 0011 NNNN
NNNN

0000 0000

Source SEID ProtType MsgType MsgNo reserved

Destination SEID in the above is the SEID of the software element that sent the corresponding
msg_reliable message. Source SEID is the SEID of the software element that received the
msg_reliable message. The value of protocol type shall be the same as the value of the
corresponding msg_reliable message.

3.2.1.2.6 Noack Message Format

The msg_reliable_noack message follows the general message format. The MessageBody
contains one byte which may take the values shown below:

Table 3. msg_reliable_noack Message Body Values

Name Value

SYSTEM OVERFLOW 0x01

UNKNOWN TARGET OBJECT 0x02

TARGET REJECT 0x03

SYSTEM OVERFLOW – memory allocation for the incoming message failed.

UNKNOWN TARGET OBJECT – the Messaging System cannot find a callback for the destination
SEID embedded in the incoming message, or cannot deliver the response message for the
synchronous function call to the caller software element.

TARGET REJECT – the return value of the callback is not equal to SUCCESS.

 33

HAVi SPECIFICATION Version 1.1

The layout of a msg_reliable_noack message is indicated schematically below:

byte 0 byte 1 byte 2 byte 3 byte 4 ... byte 13

0011 rrrr nnnn nnff 0Rnn nnnn 0000 0000 dddd dddd ... dddd dddd

FCPHdr TAMHdr reserved Destination SEID

byte 14 ... byte 23 byte 24 byte 25 byte 26 byte 27

ssss ssss ... ssss ssss PPPP PPPP 0000 0100 NNNN
NNNN

0000 0000

Source SEID ProtType MsgType MsgNo reserved

byte 28 byte 29 byte 30 byte 31 byte 0

0000 0000 0000 0000 0000 0000 0000 0001 eeee eeee

Message Length Message
Body

Destination SEID in the above is the SEID of the software element that sent the corresponding
msg_reliable message. Source SEID is the SEID of the software element that received the
msg_reliable message. The value of protocol type shall be the same as the value of the
corresponding msg_reliable message.

3.2.1.2.7 HAVi Message Version

The HAVi message version supported by a device is in its HAVi_Message_Version SDD field.
Before the first exchange between two Messaging System modules, the initiator obtains the
message version number from the receiver device. Then the initiator will use the message format
defined in the highest HAVi specification shared by both Messaging Systems.

3.2.1.2.8 Outstanding Message

Outstanding message means that a message is in the midst of a message transfer (for simple mode)
or waiting for a corresponding acknowledgement (for reliable mode), i.e. "outstanding" starts when
the valid message number is given to the message and ends when the message number is retrieved.
If the number of outstanding messages exceeds the outstanding message limit for each Software
element, the messaging system shall return the error code EBUSY. A messaging system
implementation may send multiple messages in parallel as long as it does not exceed the
outstanding message limit for the same source SEID. Outstanding message limit is implementation
dependent and its maximum value is 256.

3.2.2 Transport Adaptation Module (TAM)

3.2.2.1 Service Description

The part of Messaging System which is medium dependent is called the TAM. The TAM manages
message fragmentation, and the message ordering and error recovery process if needed. For these
purposes it defines a packet format and a protocol.

The TAM sends and receives data on the IEEE 1394 bus in the range of the FCP command
register. The TAM is only notified of indications within this range which have the HAVi CTS
code. A Messaging System which has enrolled for indications in the FCP address range does not
influence or block other software elements from using the CMM to enroll for indications in that
address range.

 34

HAVi SPECIFICATION Version 1.1

3.2.2.2 Fragmentation

Fragmentation is performed according to the network capabilities. For IEC 61883/1394 this service
does not exist. Therefore a fragmentation service is used in the TAM to perform fragmentation on
the messages generated by the Messaging System.

The TAM packet header has a part dedicated to fragmentation. If fragmentation is used then the
TAM has to serialize message transmission for a particular destination node (i.e., all TAM packets
for the current message will be sent before processing the next pending message for the same
destination node). The TAM can parallelize message transmissions for different destination nodes.

3.2.2.3 Message Ordering

Message ordering is performed according to the network technology. For IEC 61883/1394 this
service does not exist. Therefore an ordering service is performed by the TAM.

A continuity counter present within the TAM packet header is incremented (modulo 64) before
each TAM packet transmission. On the receiving side, the continuity counter is processed in
relation to the source GUID extracted from the 1394 packet header (and to point to the sender
context).

3.2.2.4 Mapping of TAM onto the 1394 Transaction Layer

TAM packet write requests are mapped into 1394 transaction write requests (possibly via the
CMM). When writing several TAM packets to a single destination a TAM shall not parallelize
transactions: before generating a transaction write request to a destination it has to wait for
completion of the previous transaction (to that destination).

3.2.2.4.1 IEC 61883 FCP Packet

TAM data packets are sent or received according to the IEC 61883 FCP protocol and format (see
[4]).

 TAM packet

4bytes

FCP frame

4bits

CTS

 Zero pad bytes (if necessary)

reserved

4bits

Figure 11. IEC 61883 FCP Packet Structure

A new CTS code is reserved for HAVi message transport. The following four bits after the CTS
code are also reserved by HAVi; they shall be set to 0. Note that Figure 11 shows a generic IEC

 35

HAVi SPECIFICATION Version 1.1

61883 FCP packet that is padded with zero bytes to make the packet size a multiple of 4 bytes. In
compliance with 1394-1995 the TAM layer shall indicate in the length field of the 1394 header
only its own payload. The padding bytes, if any, are not included in this length.

0 000 AV/C
0 100 CAL

1 011 Vendor Unique

1 101 (Reserved)

b7 b4b5b6 CTS

1 111 Extended CTS

CTS code

0 010 EHS

0 110 HAVi

Figure 12. IEC 61883 CTS Codes

Concerning the transmission of messages, only the IEC61883 FCP command register is used to
store a TAM data packet.

3.2.2.4.2 TAM Data Packet Structure

In case of transmission of a HAVi message, the TAM has to provide a mechanism to manage the
fragmentation of messages and to preserve message ordering. For these purposes a TAM packet
contains a header which permits the receiver to assemble the message.

Syntax Number of

bits
Identifier

TAM_HaviDataPacket () {
 SequenceNum
 FragType
 Reserved
 RetryFlag
 OriginalSeqNum
 Reserved
for(j=0; j<FragData size; j++){
 FragData[j]
 }
}

6
2
1
1
6
8
8

uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf

Figure 13. TAM_HaviDataPacket Representation

SequenceNum is used to assemble the various fragments from a message. A TAM sender shall
maintain one SequenceNum for each possible TAM receiver. The sender shall continuously
increment this number after every fragment is transmitted. The number shall not be reset to zero at
the end of transmission of the whole message. Therefore SequenceNum can also be used to

 36

HAVi SPECIFICATION Version 1.1

guarantee message ordering.

FragType (Fragment Type) is a 2 bit value as defined in Table 4.
Reserved is a one bit field that shall be set to zero.
RetryFlag is a one bit field that indicates if the packet is a retry or not. If set to one, the packet is a
“resent” packet. If set to zero, the packet is “fresh”.
OriginalSeqNum is a 6 bit field that indicates the original SequenceNum of the failed original
packet. If RetryFlag is zero, this field shall be set to zero.
Reserved is a one byte field that shall be set to zero

FragData is a variable number of bytes and may be null but shall never exceed a maximum limit,
which is dependent on the target (the device receiving the TAM packet). This maximum limit
derives from the maximum 1394 data payload size the target node accepts. The “max_rec” field of
the configuration ROM Bus_Info_Block defines this value. Thus the maximum size of the
FragData field is computed as follows:

maximum FragData size = “max_rec” – TAM_header_size – FCP_header_size

where TAM_header_size = 3 and the FCP_header_size = 1.

A compliant IAV or FAV must be able to accept block write requests of at least 8 bytes; TAM data
packets shall never exceed 512 bytes. For the “max_rec” Bus_Info_Block field, a value of 0
indicates “Not Specified”, which is interpreted as being able to handle at least 512 bytes. A value of
1 indicates a capacity of 4 bytes, which is not allowed for a compliant IAV of FAV
implementation. Values greater than 8 indicate a capacity of at least 512 bytes.

Table 4. TAM Fragment Type Values

FragType Value Meaning

SFP 0x00 Simple Fragment Packet

BOP 0x01 Begin Of message Packet

COP 0x02 Continuation Of message Packet

EOP 0x03 End of message Packet

3.2.2.5 Reliable TAM Packet Transmission

If a bus reset or a transmission error occurs during a 1394 transaction, the transaction is aborted and
1394 packets may be lost. To recover from lost packets the TAM shall implement the following
mechanism:

A TAM sender increases the continuity counter of the TAM packet header (see sections 3.2.2.3 and
3.2.2.4.2). If the transaction fails (reception of a transaction_conf with an error code), the
TAM shall repeat the packet (without increasing the continuity number). The number of
consecutive retries cannot exceed three. In case of failure the Messaging System returns a
Msg::ESEND error (see section 5.3.3). After a Msg::ESEND error occurs, for the next packet sent
to the same receiver, the sender shall increase the TAM sequence number.

Note that a TAM sender assumes the transaction succeeded as soon as it receives a
transaction_conf (i.e., an acknowledgement from the other side). Finally a TAM sender has to
wait for a transaction_conf from one destination before generating another transaction to that
destination (increasing the continuity number).

If the TAM sender detects a bus reset before receiving a transaction_conf from the 1394
transaction layer, the sender has to repeat the complete message after sending a synchronization

 37

HAVi SPECIFICATION Version 1.1

packet as specified in 3.2.2.6. In case of an interrupted BOP, COP or EOP packet, this requires re-
sending packets beginning with the BOP packet. In case of re-sending , TAM sender shall set
RetryFlag to one and OriginalSeqNum to the corresponding sequence number of the first
resent SFP packet or to the sequence number of the first resent BOP, COP or EOP packet. TAM
receiver shall check if the incoming packet is a “resent “or a “fresh” packet with RetryFlag. If the
packet is a “resent” packet, also check if the packet is already received or not with
OriginalSeqNum. If the packet is already received, the packet shall be discarded.

A TAM receiver checks the continuity number for packet reordering and re-assembly. A 1394
receiver shall not acknowledge a transaction (either in a unified1 or split transaction2) before being
sure the 1394 packet has successfully been received. Once the transaction has been acknowledged
the receiver ensures the packet will not be discarded by any bus reset. (If the TAM uses unified
transactions that are acknowledged by hardware and not by the TAM itself, it shall ensure that once
acknowledged a packet is assumed to be received by the TAM and that it will not be discarded by a
bus reset.) If a TAM receives twice a packet with the same continuity number, it shall discard one.

A receiver shall accept a packet with any sequence number that differs from the sequence number
of the previously received packet from the same sender. If an SFP or BOP packet is received, a
previous sequence of BOP and/or COP packets that has not been concluded by an EOP packet shall
be discarded.

3.2.2.6 TAM Sequence Number Synchronization

The first TAM packet sent from node A to node B after A is powered up, is reset, or has detected a
1394 bus reset event, shall be an SFP packet with a zero payload (a “synchronization packet”).
This SFP packet shall not be passed to a software element, but is used only to synchronize the
TAM sequence numbers of sender (A) and receiver (B). If the synchronization packet carries
sequence number n, then the next packet sent from A to B shall have number n+1 (modulo 64).
Future packets sent from A to B shall have normally increasing sequence numbers. A receiver shall
accept a synchronization packet at anytime.

Consider the situation where A and B are disconnected and reconnected very quickly. A may be a
“slow” device. Thus it never detects the disappearance of B. B may be a fast device. Thus it can
detect the disappearance and the re-appearance of A. The sequence number B expects from A will
be unknown, so B shall expect a synchronization packet from A.

3.2.3 Mapping of Function Calls into Messages

IDL is the basis for mapping software element public APIs into messages.

3.2.3.1 Mapping of an IDL Interface into the Messaging System
API

The APIs of software elements (system services, FCMs and DCMs) are specified as a set of
operations. When a software element wants to invoke a function of another software element, it
maps the function call into a message and it sends the message to that software element.

1 In the case of a unified transaction, the acknowledgement (that ends the transaction) is the acknowledgement of the
unified write.
2 In the case of a split transaction, the acknowledgement (that ends the transaction) is the response subaction of the remote
TAM.

 38

HAVi SPECIFICATION Version 1.1

Afterwards, the called software element may want to send a response (if the IDL operation contains
a return value, inout or out parameters). To do so it sends to the calling software element.

Some general rules are needed for mapping functions into messages. Such rules are described in the
following sections.

As a starting point, consider the following IDL operation:
IDL_Type IDL_operation(
 param_attribute1 param_type1, param_name1,
 param_attribute2 param_type2, param_name2,
 param_attribute3 param_type3, param_name3,
 param_attribute4 param_type4, param_name4 …

3.2.3.2 Mapping of Function Calls into Messages

When a software element A invokes an operation (IDL_operation) on a software element B, the
operation is mapped to a message. The Messaging System shall use the following format:

Syntax Number
of bits

Identifier

msg_function_call () {
 DestSEID
 SourceSEID
 ProtocolType
 MessageType
 MessageNumber
 reserved
 MessageLength
 OperationCode
 ControlFlags
 TransactionId
for (j=0; j<param_number;j++){
 if ((param_attributej == IN) ||
 (param_attributej == INOUT)) {
 param_valuej
 }
 }
}

80
80
8
8
8
8
32
24
8
32

sizej

uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf

uimsbf

Figure 14. Function Call Mapping to a Message

DestSEID (10 bytes) is the identifier of the software element to which the message is to be sent. It
is the software element that shall execute the function.

SourceSEID (10 bytes) is the identifier of the software element that generates the message. It is
the software element that calls the function.

ProtocolType (1 byte) is the format that MessageBody content must adhere to. The possible
values for this field are listed in Annex 11.1. HAVi defines one particular protocol, HAVi_RMI,
based on request and response message exchanges. This protocol allows one software element to
invoke an operation on another (request), and it allows the result of the operation to be returned
(response).

 39

HAVi SPECIFICATION Version 1.1

MessageType as described in Table 2 (shall be msg_reliable).

MessageNumber (1 byte) is the message number. Its value is incremented according to the rules
described in section 3.2.1.2.3.

reserved (1 byte) shall be set to zero.

MessageLength is the number of following bytes. This length includes the OperationCode,
ControlFlags and TransactionId lengths and the parameter loop length.

OperationCode is defined for each software element API. HAVi operation codes are listed in
Annex 11.6.

ControlFlags is an 8-bit field where only the lowest bit is currently used. This bit is called the
RequestFlag and takes the value 0. It indicates that the message is carrying a call operation
request.

TransactionId is provided by the requester. The receiver has to put this TransactionId in its
response message. It allows the requester to match a response with a request in case of multiple
requests to the same object.

param_valuej is the value of the jth IN or INOUT parameter of the operation specified by
OperationCode. The parameter size, sizej, includes any padding added by the conversion to
CDR.

The layout of a message carrying a function call is indicated schematically below:

byte 0 byte 1 byte 2 byte 3 byte 4 ... byte 13

0011 rrrr nnnn nnff 0Rnn nnnn 0000 0000 dddd dddd ... dddd dddd

FCPHdr TAMHdr reserved Destination SEID

byte 14 ... byte 23 byte 24 byte 25 byte 26 byte 27

ssss ssss ... ssss ssss 0000 0000 0000 0010 NNNN
NNNN

0000 0000

Source SEID ProtType MsgType MsgNo reserved

byte 28 byte 29 byte 30 byte 31

LLLL LLLL LLLL LLLL LLLL LLLL LLLL LLLL

Message Length

byte 32 byte 33 byte 34 byte 35

oooo oooo oooo oooo oooo oooo cccc ccc0

OperationCode CtrlFlag

byte 36 byte 37 byte 38 byte 39

TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT
Transaction Id

3.2.3.3 Mapping of Function Returns into Messages

When a software element A invokes a function on another software element B using a request

 40

HAVi SPECIFICATION Version 1.1

message, and if the function gathers INOUT, OUT or a return code, the called software element
shall map the output of the function to a message. The Messaging System shall use the following
format:

Syntax Number
of bits

Identifier

msg_function_response () {
 DestSEID
 SourceSEID
 ProtocolType
 MessageType
 MessageNumber
 reserved
 MessageLength
 OperationCode
 ControlFlags
 TransactionId
 ReturnApiCode
 ReturnErrCode
 reserved
for (j=0; j<param_number;j++){
 if ((param_attributej == OUT) ||
 (param_attributej == INOUT)) {
 param_valuej
 }
 }
}

80
80
8
8
8
8
32
24
8
32
16
16
32

sizej

uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uismbf
uimsbf
uimsbf

uimsbf

Figure 15. Function Return Mapping to a Message

DestSEID (10 bytes) is the identifier of the software element to which the message is to be sent. It
is the software element that calls the function and that will get the function output.

SourceSEID (10 bytes) is the identifier of the software element that generates the message. It is
the software element that has executed the function that sends the output.

ProtocolType (1 byte) is the format that MessageBody content must adhere to. The possible
values for this field are listed in Annex 11.1. HAVi defines one particular protocol, HAVi_RMI,
based on request and response message exchanges. This protocol allows one software element to
invoke an operation on another (request), and it allows the result of the operation to be returned
(response).

MessageType as described in Table 2.

MessageNumber (1 byte) is the message number. Its value is incremented according to the rules
described in section 3.2.1.2.3.

reserved (1 byte) shall be set to zero.

MessageLength is the number of following bytes.

OperationCode is defined for each software element API. HAVi operation codes are listed in
Annex 11.6.

 41

HAVi SPECIFICATION Version 1.1

ControlFlags is an 8-bit field where only the lowest bit is currently used. This bit is called the
ResponseFlag and takes the value 1. It indicates that the message is carrying an operation
response.

TransactionId is provided by the requester. The receiver inserts this TransactionId in its
response message. It allows the requester to match a response with a request in case of multiple
requests to the same object.

OperationReturnCode contains the return code of the IDL operation.

ReturnApiCode and ReturnErrCode together contain the return code (i.e., Status, see 5.1.2)
of the IDL operation.

reserved (4 bytes) shall be set to zero.

param_valuej is the value of the jth OUT or INOUT parameter of the operation specified by
OperationCode. The parameter size, sizej, includes any padding added by the conversion to
CDR.

The layout of a message carrying a function return is indicated schematically below:

byte 0 byte 1 byte 2 byte 3 byte 4 ... byte 13

0011 rrrr nnnn nnff 0000 0000 0Rnn nnnn dddd dddd ... dddd dddd

FCPHdr TAMHdr reserved Destination SEID

byte 14 ... byte 23 byte 24 byte 25 byte 26 byte 27

ssss ssss ... ssss ssss 0000 0000 0000 00tt NNNN
NNNN

0000 0000

Source SEID ProtType MsgType MsgNo reserved

byte 28 byte 29 byte 30 byte 31

LLLL LLLL LLLL LLLL LLLL LLLL LLLL LLLL

Message Length

byte 32 byte 33 byte 34 byte 35

oooo oooo oooo oooo oooo oooo cccc ccc0

OperationCode CtrlFlag

byte 36 byte 37 byte 38 byte 39

TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT

Transaction Id

byte 40 byte 41 byte 42 byte 43

AAAA AAAA AAAA AAAA EEEE
EEEE

EEEE EEEE

ApiCode ErrCode

byte 44 byte 45 byte 46 byte 47

0000 0000 0000 0000 0000 0000 0000 0000

reserved

The field “MsgType” (MessageType) is either 0000 0001 or 0000 0010.

 42

HAVi SPECIFICATION Version 1.1

3.2.3.4 Mapping of IDL Types and Parameters to Bitflows

The mapping uses a subset of CDR (Common Data Representation) from GIOP (General Inter Orb
Protocol) version 1.1 [5] as the transfer syntax for the parameters. Each parameter is byte aligned
according to its natural length, e.g., a parameter of length four bytes should start on a four byte
boundary. The following restrictions are used:

! The byte ordering is BIG ENDIAN: MSB (Most Significant Byte) first.

! Since the types of all parameters in HAVi messages can be unambiguously interpreted,
CDR type codes are not used.

! Concerning the complex types, repository ID, name and member name are not supported.
For example the tk_struct is followed by the list of member types of the structure.

! The fixed size for the wchar IDL type is 2 bytes according to UNICODE UTF-16 and
ISO 10646 UCS-2.

! Padding bytes shall be set to zero.

The starting point of the CDR mapping is the field after MessageLength as described in the
section on “General Message Format” (see 3.2.1.2.4, Figure 10). Specifically, the area where the
CDR mapping is applied is the MessageBody.

3.2.3.5 Synchronous Message Transfer Mode

The message passing API will provide a synchronous service allowing a caller to block until a
response is received. As shown in the following figure, the caller asks to send a function call
through the message passing API. The local Messaging System sends a request message (using
reliable mode) and waits for the response or a timeout condition. The remote Messaging System
receives the request and passes it to the destination software element. The destination element sends
its function response message using a normal send in simple or reliable form. The requester’s
Messaging System receives the response and transmits it to the requester.

Note that the response message is delivered to the caller software element by completing the
msg_send_sync invocation. If the mode of the response message is reliable, the requester’s
Messaging System sends a msg_reliable_ack (success to transmit) or msg_reliable_noack
(failure to transmit) related to the reliable response message, to the remote Messaging System, after
the requester’s Messaging System receives the response message.

 43

HAVi SPECIFICATION Version 1.1

Software
Element A

Messaging
System 1

Software
Element B

Messaging
System 2

msg_send_sync(B, reliable) Invocation
msg_reliable(B)

CallBack(req) Invocation

CallBack(req) Return

msg_reliable _ack(A)

msg_send_sync() Return : ok

msg_send (A, simple) Invocation

msg_simple(A)

Figure 16. Example of Synchronous Message Transfer

Figure 16 shows an example where the response message is sent in simple mode. It is also possible
that the destination element sends the response message in reliable mode.

3.2.4 Implementation Guidelines and Suggestions

3.2.4.1 GUID to phy_id Mapping

The Messaging System uses the GUID (either directly or indirectly through the SEID) to identify a
network device in a stable way. It is the responsibility of the Messaging System (and/or the
CMM1394) to build and maintain the association table between the GUID and the 1394 phy_id.
The building of such a table may be very slow (due to the need to read the GUIDs of all nodes after
the detection of the bus reset). To increase the efficiency of this discovery process, the following
algorithm, which allows the tracing of the 1394 phy_ids based on the self_id packets, may be used.

After a bus reset the physical addresses of 1394 nodes may change. However each node does not
receive information about the addresses other nodes have obtained. HAVi uses a persistent method
of node identification based on the 64-bit node unique identifier (GUID). One method of
determining the new physical address of a node, given its GUID, is to read the GUID on each node
of the network until a match is found. The disadvantage of this method is that it may generate a lot
of traffic (in particular if all the nodes use the same technique) and so may be slow.

The aim of the algorithm described here is to re-identify the nodes after a bus reset by using self_id
packets, and so find the new physical addresses of all nodes. The GUID can then be directly read
on the node to verify the result.

The main principle is to construct the connection tree of the network before and after the reset, and
with this data, to construct a translation table indicating for each node its new number or whether
the node has disappeared or is new.

There are two stages:

 44

HAVi SPECIFICATION Version 1.1

! construction of a connection tree, and

! construction of a translation table.

3.2.4.1.1 Connection Tree Construction

The aim of this stage of the algorithm is to build the connection tree of nodes of a 1394 bus with the
self_id packets.

Note: The 1394 standard assumes a similar procedure to construct the speed map with the topology
map.

Information available initially is:

! the self-renumeration strategy on a 1394 bus,

! for each port of each node, whether there is a node connected to the port and whether it is
a child or the parent.

The following paragraph is just a simplified summary of the 1394 self-re-numeration strategy, for
more information see section 3.7.3.1 of IEEE Std 1394-1995 High Performance Serial Bus, 1996-
08-30.

Schematically, after the root election, the node which is root wants to determine its number. When
a node wants to know its number, it asks the number of each child going from the lower port to the
upper port. The node’s number is then the last self_id packet viewed on the bus plus one. This
number is then sent via a self_id packet on the bus. For example:

0 1 3

112

20

00

40

5

3

1 2

0 1 3

112

20

00

Port number
Node number

Figure 17. Self-renumeration Strategy

To build a connection tree, perform the following steps using the self_id packets generated during
1394 self-renumeration.

1. Build two node sets: one called parent-set containing nodes which have at least one
child and one called child-set containing nodes which have no child.

2. Take the smallest node in the parent-set (let the number be P).

3. The number of children of P is known, their node numbers are the greatest nodes in
the child-set with a number less than P. Their port is also known (the lowest is on
the lowest child port...). Remove the children of P from the child-set.

4. Move P from the parent-set to the child-set.

5. While the parent-set is not empty, go to step 2.

 45

HAVi SPECIFICATION Version 1.1

3.2.4.1.2 Example

Using the network in Figure 17, the known information is:

Node Parent
Port

Child
Ports

Unconnected
Ports

0 2 0,1

1 0 1

2 0

3 1 0,2

4 1 0

5 0,1,3 2

Algorithm actions and results:

Description Parent-set Child-set Result
Beginning 3,5 0,1,2,4

The smallest parent is 3. It
has 2 children. The greatest
children with number less
than 3 are 2 and 1.

5 0,3,4 The node 1 is connected to
the port 0 of the node 3.

The node 2 is connected to
the port 2 of the node 3.

The smallest parent is 5. It
has 3 children. The greatest
children with a number less
than 5 are 4, 3 and 0.

 The node 0 is connected to
the port 0 of the node 5.

The node 3 is connected to
the port 1 of the node 5.

The node 4 is connected to
the port 3 of the node 5.

The parent-set is empty, so
the tree is built.

As this example shows, with just the information contained in the self_id packets one can build the
connection tree.

3.2.4.1.3 Translation Table Construction

The aim of this stage of the algorithm is to build the translation table of the node numbers which
give the new node numbers after the reset.

Information available initially is:

! trees built with the above algorithm before and after the reset but with the current node
(which realizes this process) as root,

! the old number of the current node and its new number,

! normally a node cannot be swapped with another without producing at least 2 resets: so
nodes can only appear or disappear in a network, not move.

We assume that a node will be a child of another node if it is connected to it and it is more distant
than its parent from the root.

 46

HAVi SPECIFICATION Version 1.1

The main principle of the algorithm is that on each port:

! before a reset, there is the node number A, and after the reset there is the node number B,
so the new number of A is B,

! before a reset, there is the node number A, and after the reset there is no node, the node
number A, and all the children of this node, have been removed from the network,

! before a reset, there is no node, and after the reset there is the node number A, the node
number A, and all the children of this node, have been added to the network.

The following steps are performed for all ports of all nodes. It begins with the local node which
serves as a common point in the before and after connection trees.

The basic function is ProcessNode (old, new) which processes the node numbered old before the
reset and new after.

1. if old differs from NONUMBER, go to step 6

2. take the first port

3. if there is a child numbered C on this port, add new to added-node-set and call
ProcessNode(NONUMBER, C)

4. if there is another port, go to step 3

5. go to step 13

6. put the relation between old and new in the translation-table.

7. take the first port

8. if there is no child on this port in the old and in the new tree, go to step 12

9. if there is no child in the new tree, add the old child number (with all its sons) to
removed-node-set and go to step 12

10. if there is no child in the old tree, add the new child number (C) to added-node-set
and call ProcessNode(NONUMBER, C)

11. else call ProcessNode(the old child number, the new child number)

12. if there is a next port, take it and go to step 8

13. end of this node process (all its sons have been processed).

Note: The NONUMBER is used to indicate to the function that the node given in new was not
present before the reset and so has no old number, it allows processing of its children which are
automatically new too.

An improvement for better security can be added before point 6: to help assure that old and new are
the same node, one can verify that their features are the same (number of ports and speed
capability).

3.2.4.2 Message Size Guidelines

Since all TAM packets for the current message will be sent before processing the next pending
message for the same destination node (see section 3.2.2) very large messages should be used with
caution. A very large message will block important global events and/or messages of other software
elements. It may cause a “freezing period” that disrupts the functioning of software elements on the
same node – even software elements that have no relation to the sender of the very large message.

 47

HAVi SPECIFICATION Version 1.1

For example, even in the best case of a message sent by 1394 asynchronous writes of 512 byte
packets on a 100 Mbps network, the full length message (0xffff ffff bytes) will take 343.6 seconds
(5.7 min) to transfer. This time is likely too long to wait for the next message, moreover it breaks
the timeout rule for the Messaging System (30 sec).

In the worst case, when 63 nodes are simultaneously sending full length messages on the 100 Mbps
network with 80% isochronous traffic, the transfer will take 36.7 hours. In this worst case, the
largest possible message size which does not break the timeout is approximately 960 Kbytes.

(Note – these examples are theoretical and the practical performance may be lower.)

For safety, HAVi makes the following recommendations regarding HAVi message sizes:

! to not break the Messaging System timeout, it is recommended to use messages of size
less than 512 Kbytes.

! to ensure tolerable response for users, it is recommended to use messages of size less than
64 Kbytes. (This takes about 2 seconds in the worst case.)

Messages larger than these sizes should be used with caution. The bulk transfer APIs (see section
5.14) are recommended if message size exceeds 64 Kbytes.

Messages larger than 64 Kbytes can be refused or aborted by the Messaging System to avoid a
timeout. The size which is refused or aborted is Messaging System implementation dependent. It is
recommended that the Messaging System makes a best effort to send very large messages.

3.2.4.3 Software Element Design

The basis of a HAVi network is that requests are sent from Software Element to Software Element,
actions are taken, and corresponding responses are returned. How the Software Element handles
these requests, actions and responses is largely up to the designer; however, it is critical that the
designer consider the Software Element's use of HAVi messaging carefully.

Received message requests often trigger various actions. If the actions are implemented in a way
which blocks the thread that receives new messages, no new message will be processed until the
previous action completes. If an action takes a long time to complete, such a design may result in
poor performance. Even worse, if a blocking action includes a request to another software element,
a deadlock condition may occur. An example of deadlock is when two Registries simultaneously
query each other, but cannot receive the queries, since they cannot complete their previous actions
until the queries are answered.

In general there are two solutions to the problem: one is to use one or more additional threads to
send synchronous requests. Another is to send requests asynchronously. A small number of
multiple threads may be acceptable for simple situations, but multiple threads may be costly. Also,
in complex situations, it may be difficult to predict the maximum number of threads needed. By
implementing asynchronous requests a Software Element can handle complex situations efficiently.

When making an asynchronous request, a Software Element must store the transaction ID and
possible other information about the original request in some sort of table. Normally the entries are
removed every time a matching response is received. In the case that a matching response is not
received, the corresponding request information will not be automatically removed from the table,
causing a potential memory leak. Worse yet, if the SE never receives the response, it may not be
able to complete its action, causing parts of the HAVi system to freeze.

 48

HAVi SPECIFICATION Version 1.1

To avoid these problems it is recommended that Software Elements that implement asynchronous
requests also implement some sort of a timeout mechanism. The timeout mechanism would ensure
that actions are completed, and that request data does not build up in tables. (Note that for
synchronous requests, such a timeout mechanism is provided by the Messaging System.)

There are many reasons that may cause responses not to be received. One reason may be that the
destination Software Element, or destination device, is removed during a request. In these cases a
timeout will occur, completing the request. Unfortunately, the timeout may not occur until after a
long delay, resulting in very long response times.

In order to respond more quickly to removed devices or software elements, the Software Element
designer may choose to activate a watch (msgWatchOn) on the target before sending a request
message. Another option would be to detect the disappearance of the target by registering for
events such as NetworkReset, GoneDevices, and GoneSoftwareElement.

3.2.4.4 Unknown source GUID / node ID (informative)

A HAVi device may receive a TAM packet/message with an unknown source GUID and unknown
source node_id (the device has not been detected within the bus or the IEEE1394 bus_ID indicates
that the packet originates from a remote bus).

To allow answering to such a message, the following option may be implemented:

The incoming message will be processed and dispatched by the message system. If the incoming
message is a request, then the GUID-node_ID association is temporarily kept by the target device
in order to be able to send back a response. Once the HAVi response message is sent, the
temporary GUID-node_id association is removed. Note that this temporary GUID/node_id entry is
private to the messaging system and not known to the CMM. For this reason it is not reflected in
the GUID list and no device changed events are posted.

3.3 Event Manager

The Event Manager provides an event delivery service. An event is a change of state of a software
element or of the home network. For example, adding or removing a device implies a change of
state of the network and is likely (but not necessarily) to trigger an appropriate event. The delivery
of an event is done either locally within a single device or globally to all devices in the network;
local or global delivery is selectable by the event poster. To support this service, the Event Manager
functions as an agent to help assure the event posted by a software element will reach all software
elements that care about the event. If a software element wishes to be notified when a particular
event is posted, it must register such intention with its local Event Manager. Each Event Manager
maintains an internal table containing the list of events registered by software elements. When a
software element posts an event, it does so via a service provided by Event Manager. The Event
Manager checks its internal table and notifies those software elements that have registered this
event. Software elements that do not register the event will not receive a notification. If the event is
posted globally, the local Event Manager also relays the event to all remote Event Managers in the
network. Each remote Event Manager performs the same lookup and notifies the registered local
software elements. An Event Manager notifies software elements by using the HAVi Messaging
System; in particular, it sends a notification message to the software element that is to be notified.

An event has an optional buffer that can be used to pass information related to the event. For
example, consider an input device with multiple buttons, a button pressed event could be generated
when the user presses a button. The software element that is notified of this event may also be
interested to know which button was pressed. The event poster can optionally put additional

 49

HAVi SPECIFICATION Version 1.1

information in the buffer and let the Event Manager pass this information to other software
elements. A software element would get the optional information as part of the notification process
and it is the software element’s task to interpret the information.

3.3.1 Mapping IDL Events to the Event Manager API

The specifications of the HAVi software elements contain IDL definitions of events they generate.
Events are described by an IDL procedure with only input parameters and a void return value. In
general they have the following format:
 void EventName(in param_type1 param_name1,…);

When a software element posts an event it has to map the IDL event definition to parameters of the
EventManager::PostEvent API. The rules for mapping IDL event definition are as follows:

! The IDL procedure name EventName should be mapped to the EventId event parameter
of the PostEvent API.

! The global parameter must indicate the distribution of the event as given in Annex 11.9.

! All event parameters must be provided in the eventInfo parameter. They should be
encoded using the Common Data Representation (CDR) standard in the same order they
are given in the event definition. The first byte of eventInfo is considered the “zero
index” for natural boundary alignment.

3.4 Registry

The Registry is a system service whose purpose is to manage a directory of software elements
available within the home network. It provides an API to register and search for software elements.
The Registry service shall be present on each IAV and FAV. Within one device any local software
elements can describe itself through the Registry. If a software element wants to be contacted, it
must register with the Registry. System software elements shall be registered so that they can be
found and contacted by any software element in the network.

The Registry maintains, for each registered object, its identifier (SEID) and its attributes. The
Registry also provides a query interface which software elements can use to search for a target
software element according to a set of criteria.

3.4.1 Registry Database

Each Registry contains tables describing local software elements (software elements within the
same device). The logical database is viewed as the set of all these tables. Each Registry service
offers the possibility to query this database.

Each Registry database has the structure indicated in Table 5:

Table 5. Registry Database Structure

Syntax Number of bits Identifier

Database() {
for (e=0; e<N;e++){
 SEID
for (a=0; a< M; a++){

80

uimsbf

 50

HAVi SPECIFICATION Version 1.1

 attribute()
 }
 }
}

 51

HAVi SPECIFICATION Version 1.1

Element Description

SEID The software element identifier is an 80 bit number representing the
unique identifier of a software element within the home network.

It is provided to the software element by the Messaging System API . Any
software element can send a message to another using this software
element identifier.

Attribute The software element attributes that characterize the software element. All
attributes can be gathered in a table and have the structure indicated in
Table 6.

N The max number of entries (registered software elements) in the
database.

M The max number of attributes for a software element

3.4.2 Registry Attributes

A Registry attribute has the following structure:

Table 6. Registry Attribute Structure

Syntax Number of bits Identifier
Attribute() {
 Class
 Name
 Size
for (j=0; j<Size;j++){
 value[j]
 }
}

1
31
32

8

uimsbf
uimsbf

uimsbf

Element Description

Class The attribute class is private (1) or system (0). In case of a system
attribute the name values (see below) are well defined. In case of private
attributes, the name must be associated with some other attribute like
Device Manufacturer or Software Element Manufacturer. This means that
a query on a private attribute has to contain some other criteria to avoid
private name conflicts.

Name The attribute name indicates the name of an attribute. It is represented by
a number. The next section presents the system attribute list. An IDL type
is associated with each system attribute (see Table 7 below), this type
indicates allowable values for the attribute.

Size The attribute size gives the number of bytes of an attribute value.

 52

HAVi SPECIFICATION Version 1.1

valuej valuej indicates the jth byte of the attribute value. The attribute value is
formatted as specified in the CDR transfer syntax ([5] – chapter 12.3) with
the following restrictions:

(1) The byte ordering is BIG ENDIAN: MSB (Most Significant Byte) first.

(2) Since the types of the arguments are assumed to be known by the
caller, the attributes can be unambiguously interpreted and CDR type
codes are not used.

(3) The fixed size for the wchar IDL type is 2 bytes according to
UNICODE UTF-16 and ISO 10646 UCS-2.

(4) The first byte of the attribute value (value0) is considered the “zero
index” for natural boundary alignment.

 The following table identifies the predefined system attributes.

Table 7. Predefined Registry Attributes

Attribute Name IDL Type Fixed or
Variable
Size

Max
size
(bytes)

Presence SV
or
MV

ATT_SE_TYPE SoftwareElementType F 4 M SV

ATT_VENDOR_ID VendorId F 3 MA SV

ATT_HUID HUID F 28 MA SV

ATT_TARGET_ID TargetId F 18 MA SV

ATT_INTERFACE_ID InterfaceId F 2 MA SV

ATT_DEVICE_CLASS DeviceClass F 4 M* SV

ATT_GUI_REQ GuiReq F 4 O SV

ATT_MEDIA_FORMAT_ID MediaFormatId F 8 O MV

ATT_DEVICE_MANUF DeviceManufacturer 3 V 106 M* SV

ATT_DEVICE_MODEL DeviceModel V 106 O SV

ATT_SE_MANUF SoftwareElementManufacturer V 106 O SV

ATT_SE_VERS SoftwareElementVersion F 4 MS SV

ATT_AV_LANG AvLanguage F 4 O SV

ATT_USER_PREF_NAME UserPreferredName V 38 M* SV

symbol meaning symbol meaning

M Mandatory F Fixed size

M* Mandatory for DCM and FCM V Variable size (up to the maximum size)

MA M* + Application Module MS M* + system components

O Optional SV/MV Single valued/Multi-valued

The set of attributes associated with a software element in the Registry database may contain at
most one occurrence of those attributes that are “single valued” (indicated by SV in the above
table).

3 The size of a wide char (wchar in IDL) will be two bytes (see “Messaging System “chapter).

 53

HAVi SPECIFICATION Version 1.1

3.5 Device Control

In a HAVi network, a DCM (Device Control Module) should exist for each device known in that
network. The DCM provides an interface to the device by presenting it as a software element in the
HAVi architecture. Associated with a DCM are zero or more FCMs (Functional Component
Modules). FCMs are software elements that represent the different functional components
contained within a device. The number of FCMs within a DCM is flexible and may vary over time.
A DCM can be asked for the list of FCMs it currently contains.

A DCM may also use an FCM to represent the functionality of an external legacy device. (Such a
device is one connected via an external plug to the device represented by the DCM itself.) How the
DCM identifies the external device is proprietary to the DCM. It is recommended that DCMs do
not accept connection requests on external plugs that are connected to external legacy devices
“replaced” by FCMs.

Applications can query the Registry to find the devices and functional components available, and to
obtain their software element identifiers. This allows the application to interact with the device via
the DCM and the FCMs. A DCM and its FCMs are obtained from a DCM code unit for the device.
DCM code units are installed by FAVs and IAVs. Installation of a code unit results in the
installation of the DCM and all the associated FCMs. DCM code units can be written in Java
bytecode, in which case they can be installed on any FAV device, or in some native code, in which
case they can be installed only on (and by) some FAV or IAV that can execute that code. More
concretely:

! DCM code unit. A piece of code related to a HAVi device. DCM code units are handled
and installed by FAV and IAV devices. When a DCM code unit is installed, the DCM
code unit will in turn install the DCM for the device; the DCM in its turn will install the
FCMs for the functional components currently available within the device. DCM code
units can be written in Java bytecode or a native code. DCM code units may come from
different sources (e.g., embedded in an IAV, stored in a BAV, or from the Internet). The
format of DCM code units is described in section 7.4.1.

! Device Control Module (DCM). A software abstraction of a device providing device
specific functionality to the HAVi software environment and applications. HAVi
applications will not communicate with a device directly but through the DCM of the
device (or one of the FCMs). A DCM is an HAVi object in the sense that it is registered
in the Registry and it can communicate with other HAVi objects via the HAVi Messaging
System.

! Functional Component Module (FCM). A software abstraction of a functional component
providing the functionality of that functional component to the HAVi software
environment and applications. HAVi applications will not communicate with a functional
component directly but only through the FCM (this is at least the model used to present
the relation, the FCM implementation may communicate with the CMM directly). An
FCM is an HAVi object in the sense that it is registered in the Registry and it can
communicate with other HAVi objects via the HAVi Messaging System.

For the different types of HAVi devices, DCMs play a different role.

! An IAV device may host one DCM representing itself and may host one or more DCMs
representing LAVs (or BAVs operating in LAV mode, see below).

! An FAV device shall host one DCM representing itself and may host one or more DCMs
representing LAV devices and/or BAV devices.

 54

HAVi SPECIFICATION Version 1.1

! An LAV device does not have any notion of DCMs. When attached to a HAVi network
where one or more FAV or IAV devices know how to handle the LAV, one of them has
to provide the DCM code unit to make the LAV available to other HAVi components.
How this is done and how the DCM/FCMs communicate with the LAV device is
completely proprietary to the manufacturer of the FAV or IAV device.

! A BAV device does not host any DCMs, but provides a DCM code unit in Java bytecode.
When attached to a HAVi network with one or more FAVs, one of them uploads and
installs the DCM code unit to make the BAV device available to other HAVi
components. Installation of the DCM code unit results in the installation of the DCM and
all FCMs related to the device. In this situation, the BAV is said to operate in BAV mode.
The IEEE 1394 communication between the DCM/FCMs and the BAV goes via the
standardized CMM1394 API. However the content of the IEEE 1394 messages
interchanged by the DCM/FCMs and the BAV is proprietary to the BAV manufacturer.

! When attached to a HAVi network with no FAV devices but with an IAV device that
knows how to handle that BAV, an IAV device can provide a DCM code unit itself to
make the BAV device available to other HAVi components. The BAV is then said to
operate in LAV mode in which case the situation is the same as for an LAV device.

Besides the APIs to control the device (and its functional components), a DCM may also contain a
device specific application. Through this application, a device manufacturer can provide the user a
way to control any special feature of the device in a way decided by manufacturer, without the need
for standardizing all these features in HAVi. It is provided via the API of the DCM and may be
provided at two different levels. For Level 1 interoperability, the DCM may provide an API for the
Data Driven Interaction mechanism. For Level 2 interoperability, the DCM provides an API for
FAV devices to upload a havlet code unit. Such a code unit consists of bytecode that can be
installed by an FAV device and results in a havlet. The format of havlet code units is described in
section 7.4.3.

A havlet obtained from a DCM is a Level 2 (i.e., Java bytecode) application that provides a user
interface for control of the device associated with the DCM. For the actual control of the device, the
havlet communicates with the DCM (using its standard interface, and possibly, proprietary
extensions). A havlet is a HAVi object in the sense that it can communicate with other HAVi
objects via the HAVi Messaging System.

A havlet code unit is always uploaded and installed on the initiative of an FAV device. An example
scenario is shown in Figure 18.

 55

HAVi SPECIFICATION Version 1.1

IA V-

D C M 1 C o d e
U n it

F C M 1 .1

D C M 1

F A V +

h a v le t1

IA V +

P ro p r ie ta ry
P ro to c o l

C o m m a n d
P ro to c o l

D a ta D r iv e n
In te ra c tio n G e tH a v le tC o d e U n it

Figure 18. Havlet Upload

The figure above shows an IAV- (without a display) that provides a DCM for some device. An
IAV+, with a display, can control that device in the following way. An embedded application on
IAV+ interacts with the Functional Component Module FCM1.1 (or Device Control Module
DCM1) through HAVi messaging. For device specific functionality, IAV+ can allow user
interaction with DCM1 through the Data Driven Interaction mechanism. An FAV+ could handle
the IAV- in the same way. But as shown in the picture, an FAV+ also has the ability to upload a
havlet. Therefore it interacts with DCM1 to get the havlet code unit. After installation of this
bytecode, havlet1 is available. To control the device, the havlet communicates with DCM1 via
HAVi messages, however the content of these messages may be proprietary to the manufacturer of
the DCM and havlet.

DCM Managers are responsible for installing DCM code units for new devices attached to the
HAVi network. A device may consist of more than one functional component; e.g., one device may
consist of a tuner and a VCR. For a BAV or LAV device, the installation of its DCM code unit
always takes place on a per device basis, not for each DCM component separately, so, for a DCM
manager a DCM code unit is a single entity for installation, removal and replacement of DCM
components. Furthermore, one DCM code unit corresponds to a single BAV or LAV device, i.e. it
contains all DCM components for that device.

For BAV devices, DCM code units play a special role. A BAV device provides a single DCM code
unit as a piece of bytecode (as part of the SDD) and a standardized mechanism for communication
with an FAV. An FAV device can upload and install a DCM code unit (by the DCM Manager).
Installation of a DCM code unit results in the instantiation of all DCM components representing
that BAV device.

The communication relation between the components of a BAV DCM code unit and the system
components of its hosting controller are depicted in the figure below. The CMM provides a basic
service for elementary communication with the BAV device. The DCM Manager detects the
attachment of a new device and obtains the GUID of that device; it can then communicate with the
device to obtain basic information about the device and to retrieve the DCM code unit. The DCM
Manager installs (and later removes) the DCM code unit. This installation results in the DCM and
FCM objects that communicate with the device via the CMM. On installation, DCMs and FCMs
make themselves known via the Registry so that they can be used by other applications via the
HAVi Messaging System.

 56

HAVi SPECIFICATION Version 1.1

CMM

DCM Manager

DCM Code Unit

DCM1

Registry

FCM1.1 FCM1.n…

Figure 19. DCM Installation

The communication between the DCM components and the CMM is based on the GUID of the
BAV/LAV device. The CMM requires only the GUID for communication with the device driven
by DCM components. The CMM does not need to have any knowledge about the structure of
functional components within a BAV device. This simplifies the communication between an FAV
and a BAV device, makes the standardization effort smaller, and increases the possibilities for
using proprietary protocols. The DCM components themselves are responsible for the proper use of
the CMM, i.e. for interleaving the communication in a proper way and the distribution of messages
received from the BAV device to the proper DCM components.

The contents of BAV DCM code units must be standardized so that each DCM Manager can
handle DCM code units from arbitrary BAV devices. The DCM code unit is a kind of self-
extracting package in Java bytecode; it provides the DCM Manager with handles for installation
and removal. The DCM Manager just calls the install handle and provides the device’s GUID (for
future communication between the device and the DCM via the CMM). The DCM code unit itself
is responsible for installing all its DCM components. Similarly, the remove handle provides the
DCM Manager with a handle to remove all DCM components within the DCM code unit. This
allows maximum freedom for BAV manufacturers in structuring their DCM code units.

3.5.1 Device Control Modules

A DCM, is a software abstraction of a device providing device specific functionality to the HAVi
software environment and applications. HAVi applications will not communicate with a device
directly but through the DCM of the device or one of its FCMs. A DCM is a HAVi object in the
sense that it is registered in the Registry and can communicate with other HAVi objects via the
HAVi Messaging System. DCMs and FCMs are registered with their type and their HAVi unique
identifier (HUID). The HUID allows applications to find the DCM or FCM after partial system
unavailability (as when the device represented by the DCM is momentarily removed from the
network).

3.5.1.1 General

A DCM provides a set of basic methods for device control and observation. This API can be used
by HAVi system components as well as any application. It includes the following functionalities:

 57

HAVi SPECIFICATION Version 1.1

! Device representation – Provides a (Level 1) visual representation of the device that can
be displayed to the user.

! HUID information – Provides the HUID of the DCM as well as those of the
corresponding FCMs.

! User Preferred Name – Allows assigning and retrieving of a user specified device name.

! Power management – Provides means to turn the power of the device on or off.

! Native Commands – Provides means to control the device in its native command set
(CAL, AV/C, etc).

3.5.1.2 HAVi Unique Identification

In HAVi, it is possible to write applications and system components (like a Resource Manager) that
always use the same functional component or that look for the same functional components used in
a previous session. To support this capability, applications must have a unique and persistent way
to identify the DCM representing a device and to identify the FCMs representing functional
components on that device. This identification is called the HAVi Unique ID, or HUID. Ideally the
HUID would be persistent across bus resets and network reconfigurations, however this is not
guaranteed under all circumstances and a DCM for a certain device may be assigned different
identifiers at different times.

For example, it is possible to write an application that sets up a user preferred configuration for
watching a video: using the small TV set, the upper VCR deck of the 3 deck VCR box and the
special wireless headphone set, all situated in the living room. This configuration would be
indicated by the user once, and each time the application runs, the specified configuration must be
set up.

Note that identification of DCMs and FCMs is subtly different from identification of devices and
functional components. The identification of a DCM/FCM indicates the device as well as the
functionality of that device provided by the DCM/FCM. This difference can be seen by the
following example:

Assume a network with a BAV CD-ROM player, an FAV and an IAV device. The DCM code unit
of the BAV device is uploaded and installed on the FAV device and provides the full functionality
of a CD-ROM player. The DCM code unit gets a HUID based on its 1394 GUID. An application
running on the IAV device stores this HUID and when it wants to use the CD-ROM player it can
retrieve the DCM based on this HUID (when it is available in the network). Now, the FAV device
is removed. The IAV is able to control the CD-ROM player, but has only a DCM that provides the
CD-Player functionality of the CD-ROM. This DCM should not get the same HUID as the BAV’s
DCM since the functionality provided by the DCM is different (although it represents the same
device). This prevents an application from mistaking this DCM for the DCM of the CD-ROM
player. However, instead of getting a CD-ROM, the application now only gets a CD-Player. (In this
situation the difference can be easily detected by the type of the DCM, however, the problem may
be more subtle in general.)

For FAVs, IAVs and BAVs (in BAV mode) and their functional components, the HAVi Unique
Identifiers allows a unique and persistent identification, which means:

Unique – By the HUID, an application is able to detect:

 58

HAVi SPECIFICATION Version 1.1

! Whether a device or functional component is the same as a device or functional
component it has used before: if a software element with HUID H represents the device
or functional component D, then it will always be the case that any software element with
HUID H represents D.

This means that the HUID must be able to identify the device (the black triple deck VCR in the
family room, instead of the VCR in the kitchen); as well as the functional component on that
device (the upper VCR deck instead of the middle or lower one).

! Whether a DCM or FCM is the same as a DCM or FCM it has used before: if a software
element with HUID H has some API A, then it will always be the case that any software
element with HUID H has API A.

This means that it also should be able to identify the specific API corresponding to the device
or functional component. In general, a device can be represented by different DCMs and FCMs
(at different points in time) which may have different APIs; e.g., different proprietary
extensions of the standard command sets.

Note that the type (of device or functional component), Vendor ID (of the device) or GUID or even
a combination of these is not sufficient to uniquely identify an FCM. There may be several identical
(of the same type and vendor) devices in the network containing several identical functional
components (e.g., a double deck cassette player, or a triple deck VCR).

Persistent – The HUID is persistently unique over network resets, device removal, re-attachment as
well as complete network shutdowns: if a device or functional component D is represented by a
software element with HUID H, then it will always be the case that D is represented by a software
element with HUID H.

Consequently, with the HUID, an application is able to look for the FCM of a specific functional
component even when the network configuration has changed, and the functional component may
be represented by another FCM on another FAV/IAV device with a new HAVi SEID.

Unique and persistent identification of FAVs, IAVs and BAVs (in BAV mode) is possible due to
the following facts:

! Each FAV, IAV and BAV device supports IEEE 1394 and IEEE 1212, so the device can
be identified uniquely and persistently by the GUID.

! The DCM code unit and the FAV, IAV, or BAV (in BAV mode) device are always from
the same manufacturer (or at least manufacturer compliant) as the device itself. So, the
device manufacturer can (and has to) take care that each functional component always has
the same tag.

However, for LAV devices (or BAV devices in LAV mode) it may not always be possible to
identify a functional component on an LAV device persistently for the following reasons:

! The device cannot be uniquely and persistently identified. An LAV does not need to
support 1212 (defining the IEEE 1394/1212 GUID) or may even be connected via some
other physical bus (e.g. USB or SCART). So, the GUID cannot be used for their unique
identification. Although it may be the case that there are other ways to identify the device,
it may also be the case that such LAV devices cannot be uniquely identified at all (since
two devices can be completely identical and their location or connection point to a bus
cannot be determined).

 59

HAVi SPECIFICATION Version 1.1

! The device can be uniquely defined, but the DCM representing the device may differ
(after network re-configuration). Then, it might not be possible to determine the proper
FCM of a specific functional component within a DCM. This identification is the
responsibility of the DCM code unit, which is, for an LAV, provided by the IAV/FAV
that hosts the LAV. Since the communication between IAV/FAV devices and the LAV
device is not (HAVi) standardized, different IAV/FAV manufacturers may select
different identifications of FCMs. E.g., for an AV/C-CTS device with a tuner and a VCR,
an IAV of Vendor A might provide a DCM in which the FCM of the tuner is identified by
tag 1 and the FCM of the VCR by 2, while an IAV of Vendor B has a DCM in which the
VCR is identified by 1 and the tuner by 2.

Although it might not always be possible to uniquely and persistently identify FCMs of functional
components of LAV devices in a general way, there are many situations in which it can be done.
For example:

! Assume a network with an IAV and one LAV that can be identified uniquely and
persistently. Since the IAV can identify the LAV each time it installs its DCM code unit,
it can assure that the same DCM code unit is always installed. So, this specific DCM
could be identified by the GUID of the IAV, combined with an identification of the LAV.

! Assume a network with two IAVs and one LAV that can be uniquely identified, all from
the same manufacturer. The manufacturer can assure that the DCMs for that LAV are the
same on both IAVs and that both DCMs (and FCMs) can be identified by a vendor
specific identification.

! Groups of manufacturers making devices for some standard, e.g. AV/C-CTS or CAL,
may agree on how these types of devices should be embedded in HAVi. When DCM
manufacturers follow this embedding, it can be guaranteed that the DCMs (and FCMs)
for these types of devices are similar and obtain the same identification.

So in general, HUIDs for LAVs (and BAVs in LAV mode) are not always unique and persistent.
However, HUIDs will exploit as much as possible the situations described above. Each DCM and
FCM stores its HUID in the Registry. DCMs and FCMs can then be retrieved uniquely from the
Registry. An application can choose to store locally any information, such as attribute values, it
retrieves from the Registry. When the application wants to find a DCM/FCM again, it can query
the Registry with these attributes and retrieve the SEID of the DCM/FCM.

3.5.1.3 User Preferred Name

To allow a more user friendly reference to a device, it is possible to assign a “user preferred name”
to a DCM. This might be something like “John’s VCR”, “The Red Box”, or “The VCR
downstairs”. It is a system wide name that the user can rely on for identifying a thing (e.g. the one
with the smart card slot) with that name. The name of a DCM can be retrieved via the DCM API,
and can also be found in the Registry. The name can be modified via a method of the DCM API.
Quite likely a graphical user interface for the DCM would provide a user friendly way to fill in this
name. On modification of the name, the DCM is responsible for modification of the Registry entry
to keep the naming consistent. For user convenience, it would be best if the DCM could store this
name persistently (e.g. in some non-volatile memory on the device), so that the same name can be
used over time, even if the device is switched off and on. However, this may not be the case. The
user preferred name may be lost in case of a power off, or a DCM reinstallation (after a network
reset) and the user would then need to assign the user preferred name again. Consequently, a DCM
is allowed to provide the empty string as the user preferred name.

 60

HAVi SPECIFICATION Version 1.1

The user preferred name is meant as an aid to the user for identification. Therefore, the consistency
of the usage is also in hands of the user, and HAVi does not provide any means to check or
guarantee these consistencies.

3.5.1.4 Native Commands

HAVi has been designed to support the embedding of non-HAVi devices in the HAVi framework.
To allow extensive control of these devices, HAVi provides a way to pass native commands to the
device. This could be a command native to that specific device, native to the vendor, or native to
other non-HAVi standards (e.g. CAL, AV/C). A native command may have side-effects on the
standard HAVi DCM service or the service of one of its FCMs. It is the responsibility of the DCM
(and its FCMs) to assure that the HAVi standard interface is not violated and to determine whether
this specific native command is accepted or not. E.g., a DCM may receive a AV/C “play” request
for a VCR sub-unit that is controlled by one of the FCMs. It is the decision of the DCM as to
whether the native command is executed when the FCM has been exclusively reserved by another
application.

3.5.1.5 Connection Management

DCMs also provide a high level API to allow other objects to query the state of connections within
the device and to manipulate those connections. This API is used by the Stream Manager. The
connection management part of the API allows device connections to be established, both
internally between functional components, and from functional components to the external
network. Connection status can be queried and connection capabilities (transmission formats) can
also be queried.

A user may directly manipulate a device through a Level 1 or Level 2 interaction. If such an
interaction starts, it is possible that connections within the device already exist. In that case, the
interaction should normally keep these connections in place. Any DCM or device activity
generated by the user interaction may result in certain streaming behavior through these
connections. If no such connections exist, but are required at some time, the DCM can establish
them, possibly through interaction with the user.

3.5.1.6 Level 1 User Interaction

A DCM may provide a Level 1 device specific user interface via a dedicated set of API primitives
as described in section 5.12 on APIs for Data Driven Interaction. The DCM indicates in the
Registry whether this form of user interaction is provided.

3.5.1.7 Level 2 User Interaction

A DCM may also support a Level 2 solution by providing a havlet. FAVs can upload, from the
DCM, the bytecode for the havlet. A DCM that provides a havlet indicates this capability in the
Registry.

3.5.1.8 Resource Management

DCMs can be involved in reservations and scheduled actions. Section 3.8 on Resource
Management describes the consequences of this involvement for DCMs and FCMs. A DCM has to
take care of “dependent FCMs” in the same DCM code unit that are bound to other FCMs for some
reason, and that must always be “internally reserved and released” together with those FCMs.

 61

HAVi SPECIFICATION Version 1.1

If a DCM also supports the DDI protocol, it is the responsibility of the DCM acting as a DDI
Target to ensure that a DdiTarget::UserAction message does not result in reservation
violations. This can be accomplished, for instance, by the DDI Target not “showing” facilities (DDI
elements) that are reserved by other applications. It also indicates that a reservation is not
considered as “part of” the DdiTarget::Subscribe. It is up to the application whether or not it
reserves one or more (or all) FCMs before the subscription. It should be noticed that “unreserved”
FCMs are free for use by any application and thus also via a DDI Controller. If reservations are
done by the subscribing application, the DDI Target of course should take them into account for
allowing UserActions of that application.

3.5.2 Functional Component Modules

An FCM is a software abstraction of a functional component providing the functionality of that
functional component to the HAVi software environment and applications. HAVi applications will
not communicate with a functional component directly but only through the FCM. An FCM is a
HAVi object in the sense that it is registered in the Registry and it can communicate with other
HAVi objects via the HAVi Messaging System.

HAVi has defined the following FCMs: tuner, VCR, clock, camera, AV disc, amplifier, display,
AV display, modem, and Web proxy.

3.5.2.1 General

An FCM provides a set of basic methods for device control and observation. This API can be used
by HAVi system components and applications. It includes the following functionality:

! HUID information – Provides the HUID of the FCM as well as the corresponding DCM.

! Type information – Within HAVi a set of functional component types has been identified,
e.g. VCR, tuner, display, etc. For each HAVi defined type there is a HAVi defined
message set specifying an API for the control and observation of such a device. This API
gives the type of the functional component represented by this FCM and indicates which
HAVi messages are supported by this FCM.

! Power management – Provides means to change the power state of the functional
component from “on” to “stand-by”.

! Native Commands – Provides means to control the device in its native command set
(CAL, AV/C, etc) and is similar to the interface on the DCM.

3.5.2.2 Notifications

For certain events, software elements may like to subscribe directly to the event source since it
knows from which software element the event will be generated and it is only interested in an event
from that source. In the case of a VCR for example, when an application subscribes to an “end-of-
tape” event, it knows exactly from which VCR the event is expected. It is not interested in
receiving end-of-tape” events from a VCR it is not controlling.

Moreover, for some types of events, the event subscription must be flexible enough to allow
conditional event programming: in a large number of cases, it may be interesting to subscribe to a
conditional event (i.e., an event is generated if the condition is matched). Generally, functional
components have a certain number of state variables that they make available via their API. It

 62

HAVi SPECIFICATION Version 1.1

would be restrictive to define a priori which of these variables shall be able to generate events, and
which not. Moreover, it would be nearly impossible to define which state transitions may be
interesting for future applications, and which not. So, proposing a special event for each imaginable
combination would result in a huge and unwieldy API specification.

For this reason, a general mechanism, called “notifications”, is provided. Two methods of the FCM
API allow an application to subscribe and unsubscribe to notification of specific changes of a
specific attribute. By a relational expression (“attribute is bigger than 10”), the application can
indicate what kind of change it is interested in.

The general FCM API only provides the general part of this API, i.e. the methods for subscribing
and unsubscribing. It does not provide the specific sets of attributes. Those should be provided by
the specific functional component APIs.

Although the mechanism of notifications is described as a part of an API for an FCM, this
mechanism could also be a part of the API of any software element capable of generating events.

3.5.2.3 Connection Management

FCMs also provide a high level API to allow other objects to query the state of connection plugs on
the FCM that may be involved in internal or external connections. This API is used by the Stream
Manager. The connection management part of the API allows queries about connection status and
connection capabilities (stream types).

3.5.2.4 Resource Management

FCMs can be involved in reservations and scheduled actions. Section 3.8 on Resource
Management describes the consequences of this involvement for DCMs and FCMs. An FCM is not
obliged to support reservations if it only has non-state changing methods. In this case, a “not
supported” return value will be returned if an application tries to reserve it (and possibly for other
reservation-related methods). However, each FCM with state-changing methods shall support
reservation facilities.

3.5.2.5 Virtual FCMs

HAVi FCMs typically are interfaces to functionality provided directly by hardware. However it is
also possible for an FCM to encapsulate software functionality. This is similar to the idea of a
virtual device, a device realized, at least partially, by software mechanisms. Based on this analogy,
the following two categories of FCM are defined:

! physical FCM – an FCM which controls the operation of a functional component of a
target device. When a HAVi message is sent to a physical FCM it results in
implementation dependent communication between the FCM (or its DCM) and the target
device.

! virtual FCM – an FCM which controls the operation of software-based processes. When a
HAVi message is sent to a virtual FCM, the message is processed internally by the FCM
and does not necessarily involve communication with other devices on the network.

FCMs in general present both a control interface (the set of HAVi messages to which they respond)
and a content interface (a set of plugs). In order to allow virtual FCMs the same range of
functionality as physical FCMs, they must be capable of presenting both control and content
interfaces.

 63

HAVi SPECIFICATION Version 1.1

3.5.3 Havlets

A havlet is a Level 2, device-dependent user application. A havlet is typically a proprietary
application that offers a user interface for the control of a specific target device. For the actual
control of the device, the havlet makes use of the DCM of the target device. A havlet is a HAVi
object in the sense that it is registered in the Registry and can communicate with other HAVi
objects via the HAVi Messaging System. Since a havlet is a Level 2 concept, a havlet only runs on
an FAV device (because that FAV device has uploaded and installed the havlet code unit). A havlet
offers an interface to the user on the FAV device where it resides.

3.6 Device Control Module Manager

The DCM management system is responsible for installing and uninstalling DCM code units for
the control of BAV and LAV devices that are directly connected to a HAVi 1394 network. DCM
management is collectively performed by the DCM Managers on FAV and IAV devices. DCM
code units for FAV and IAV devices are managed by the devices themselves in a proprietary
manner. Non-1394 devices shall be managed by FAV or IAV devices in a proprietary manner.

Each FAV device has a DCM Manager, but for IAV devices a DCM Manager is optional. An IAV
device is not required to participate in the DCM management process if it will not host any BAV or
LAV device on the HAVi 1394 network. (It shall be indicated in an IAV's SDD whether it has a
DCM Manager or not – see section 9.10.4.2.)

In the sequel, a BAV or LAV device will be termed a guest. Each guest shall be facilitated by a
DCM code unit installed on an FAV or IAV device, termed a host.

A DCM code unit may be a Java code unit to be loaded and installed on an FAV device, or a native
code unit to be installed on an FAV or IAV device. Installation of a DCM code unit results in the
installation of DCM and FCMs which shall register themselves.

Each DCM Java code unit is accompanied by a profile, which includes the values of the transfer
and installation size parameters needed by the code unit and its components (see section 9.10.7).
The data in the profile are needed by a host to determine whether it can upload and install the
corresponding DCM Java code unit.

Each DCM Manager offers a number of methods that can be invoked by software elements, and a
number of global events that notify the results of DCM code unit installation and uninstallation.
Most DCM management activities are triggered by a network reset event, which is typically
generated when the network topology changes or a device is (de)activated. The network topology
changes if, e.g., a device is added to or removed from the network, if the network is split, or if two
networks are joined.

3.6.1 DCM Code Unit Installation and Uninstallation

! The actions of the DCM management system as the result of a network reset event are
discussed next. These actions can be fine tuned or overruled by preferences, which can be
set locally on certain DCM Managers (discussed in section 3.6.2).

! For each guest there shall be at most one installed DCM code unit in the entire network.
Due to resource limitations, it may occur that no DCM code unit is installed for some
guest on the network. It may also occur that a DCM code unit uninstalls itself for some
reason. Normally, another host will be selected for a guest’s DCM code unit if the
previous host is removed from the network.

 64

HAVi SPECIFICATION Version 1.1

! A DCM code unit shall be uninstalled if the corresponding guest is no longer available on
the network.

If a DCM code unit is to be installed, it shall be according to the following scheme (assuming no
preferences are set):

! If an uploadable DCM Java code unit for the guest is available, an FAV host shall be
selected to load and install the code unit. If this fails, any host that can install an
embedded DCM code unit for the guest in a proprietary way shall be selected.

! A BAV device may internally store an uploadable DCM Java code unit and/or a URL for
such a unit in its SDD data. If a URL for an uploadable DCM Java code unit is specified
in a BAV device, it shall be loaded from the specified location and installed on an FAV
host, instead of the DCM code unit contained in the BAV device. If this fails, the DCM
code unit contained in the BAV device shall be installed instead. (It is recommended for
BAV devices to contain a DCM code unit. If there is no code unit, a URL for a code unit
should be contained).

! All other conditions being equal, a host with the lowest number of installed DCM code
units is selected.

! If a host rejects the DCM, either before or after installation is attempted, the next most
suitable candidate is attempted until all possible candidates have been tried.

A URL is specified as <scheme>://<host>/<path>. The scheme can be, for example, http or
ftp for IP-based protocols, or file for storage media. For URLs in the configuration ROM of
BAV devices the file scheme shall not be used. The URL shall denote an uploadable DCM Java
code unit and/or its profile on the Internet or on a (persistent) storage medium. The validity of URL
syntaxes is outside the scope of this document. Note that DCM Managers need not have knowledge
of URL syntax and semantics.

A DCM Java code unit and its profile are two separate files, each with their own file name. The
following convention applies:

! DCM Java code units shall have a file name with extension hdc (HAVi DCM Code).

! DCM Java code unit profiles shall have a file name with extension hdp (HAVi DCM
Profile). The format of a “.hdp” file conforms to section 9.10.7.

DCM Java code unit URLs shall be specified without the extensions “.hdc” or “.hdp”. The proper
extension will only be added when either a profile or a code unit is actually retrieved (see also
section 9.10.8).

The DCM management protocol will exploit the URL access capability of devices. A host device
may decide to cache a loaded DCM code unit instead of retrieving it from the URL-designated
location. DCM Managers shall be able to use URL access capable FCMs in the network, but they
can also offer URL access capability in a proprietary manner.

Uploadable DCM Java code units shall be encoded in the format described in section 7.4.1. This
applies both to code units contained in BAV devices and those designated by a URL.

 65

HAVi SPECIFICATION Version 1.1

3.6.2 Preferences

The activities of the DCM management system are guided by preferences, which can be set by
applications. Preferences typically specify deviations from the default installation actions described
in the previous section. Methods are available for setting and retrieving preferences on DCM
Managers in the system. Preferences are optional; DCM management will function without any set
preference. If a preference is set on some DCM Manager, it shall be stored persistently if possible,
so that it does not have to be entered each time a device is powered up. The value of a preference
that is not set on a host is unspecified. Preferences shall be modifiable by the user.

The first three preferences in the following table are associated with either a single guest (by its
Global Unique Identifier, or GUID) or with a guest model (by its Vendor Model Identifier, or
VMID – see section 5.8.2). For an LAV guest, only the GUID variant is possible, since a VMID is
not available for LAV devices. A GUID-based preference for a guest overrules a VMID-based
preference for the guest model, without causing a conflict. The fourth preference is not associated
with a GUID or VMID.

Table 8. DCM Installation Preferences

Preference Type
DCM_PREFER_VENDOR_HOST boolean

DCM_PREFERRED_HOST GUID

DCM_PREFERRED_URL string

DM_PREFERRED_URL_DEVICE GUID

! DCM_PREFER_VENDOR_HOST – Designates whether a host of the same vendor as the
guest is preferred for installing a DCM code unit. If for any guest or guest model the
value is set to True by any DCM Manager, the DCM management system shall give
preference to a host of the same vendor. The value used for DCM code unit installation is
determined by taking the disjunction (logical OR) of all values from the DCM Managers.
If unspecified by a DCM Manager, the value False is assumed. However, a vendor may
return a value of True for any of its own guests if the value is unspecified.

! DCM_PREFERRED_HOST – Designates a specific host that is preferred for installing a
DCM code unit for some guest or guest model. The reason for setting this may be
performance or reliability considerations.

! DCM_PREFERRED_URL – A URL designating the location of an uploadable DCM Java
code unit and its profile for a guest or guest model. For a BAV guest, this preference is
used to specify a DCM code unit to be installed instead of a DCM code unit designated
by a URL in the BAV device or the DCM code unit contained in the BAV device. For an
LAV guest, it is used to specify an uploadable DCM Java code unit that can be installed
on an FAV host. (Note that an uploadable DCM Java code unit cannot be installed for
LAV guests for which this preference is not set.)

 66

HAVi SPECIFICATION Version 1.1

! DM_PREFERRED_URL_DEVICE – Designates a specific host or guest that is preferred for
URL access to retrieve DCM Java code units. For example, the user may designate a
device capable of Internet access or a device that stores DCM code units. If this
preference specifies a host, it should be used to retrieve URL-designated code units. If
this preference specifies a guest, it indicates that a DCM code unit should be installed for
this guest before installing DCM code units for any other guest. The guest should
subsequently be used to retrieve URL-designated code units. Note that the URL access
capability of a device that is not specified by DM_PREFERRED_URL_DEVICE may be
ignored.

For any preference, it may occur that conflicting values have been set at different DCM Managers.
One of the values will be selected arbitrarily. However, for DM_PREFERRED_URL_DEVICE an FAV
device takes preference over an IAV device, and a host takes preference over a guest. Only devices
that exist in the network are taken into account for this preference. DCM-related preference
conflicts are reported in DcmInstallIndication events.

Preferences relating to some guest only take effect when a DCM code unit is to be installed for that
guest, e.g., upon network reset events, and upon invoking (un)installation requests. Setting (or
changing) preferences relating to some guest does not result in the DCM code unit installation, or
re-installation even when a DCM code unit for that guest has already been installed. There is a
priority among the preferences to resolve ambiguities. For installing a DCM code unit the
following steps are taken, in the order listed. The DCM manager will execute each step in turn,
attempting to install the DCM code unit on all hosts valid under the current step, until the DCM
code unit is installed successfully on a host, or all the steps listed have been attempted.

! If <preferred host> is specified and is an FAV device, and <preferred URL> is specified,
try to install the code unit designated by the preferred URL on the preferred host.

! If <preferred host> is specified and is an FAV device, and the guest is a BAV device, try
to install the code unit designated by the SDD URL in the guest on the preferred host.

! If <preferred host> is specified and is an FAV device, and the guest is a BAV device, try
to install the code unit contained in the guest on the preferred host.

! If <preferred host> is specified and is an IAV or FAV device, try to install a code unit on
the preferred host in a proprietary manner.

! If <prefer vendor host> is True, try to install a code unit on a host of the same vendor as
the guest in a proprietary manner.

! If <preferred URL> is specified, try to install the code unit designated by it on any FAV
host.

! If the guest is a BAV device, try to install the code unit designated by the SDD URL in
the guest on an FAV host.

! If the guest is a BAV device, try to install the code unit contained in the guest on an FAV
host.

! Try to install a proprietary code unit on any host.

In case an undesirable DCM code unit installation was performed it is possible to use the DCM
Manager methods for explicit uninstallation and subsequent installation of code units. For example,

 67

HAVi SPECIFICATION Version 1.1

the home network configuration at some time during the network start-up may be incomplete,
leading to premature code unit installations.

3.6.3 Interaction between DCM Code Unit and DCM Manager

A DCM Manager shall only install and uninstall DCM code units on the local device. Once loaded
(if applicable), the DCM Manager controls the DCM code unit through Java DCM code unit
methods. Each loaded DCM code unit shall offer these methods to the DCM Manager. However,
the vendor of a HAVi host device can arrange for interaction between a DCM Manager and an
embedded DCM code unit to take place in a proprietary manner.

The DCM code unit method install(nodeId, listener) is invoked by the DCM Manager to install the
DCM code unit; it is the first method a DCM code unit shall accept. The DCM code unit
components (DCM and FCMs) shall be installed and registered. The DCM code unit method
uninstall() is invoked by the DCM Manager to uninstall a DCM code unit if required; it is the last
method a DCM code unit shall accept.

After a DCM code unit has uninstalled itself, it signals this to the local DCM Manager through the
Java listener method uninstalled(). This call shall only occur after all DCM code unit components
have been uninstalled and unregistered. After this call, a new DCM code unit can be installed for
the guest, if required. A DCM code unit shall uninstall itself if the DCM manager requests it to do
so. However, it can also do this on its own initiative.

The DCM code unit concepts and methods are discussed in section 7.4.1.

3.7 Stream Manager

3.7.1 Objectives

The Stream Manager provides an easy to use API for configuring end-to-end isochronous
(“streaming”) connections. Connections may be point-to-point or utilize “broadcast” sources or
sinks. The responsibilities of the Stream Manager include:

! configuration of both internal connections (within a device) and external connections
(between devices)

! requesting and releasing transport system resources

! providing global connection information

! support of plug compatibility checking

! support for connection restoration after network resets

3.7.2 Design Decisions

! A Stream Manager runs on each FAV device; implementation on IAV devices is required
only if applications on the IAV need Stream Manager services.

! A Stream Manager provides connection creation services only to applications running on
the same device as the Stream Manager itself.

 68

HAVi SPECIFICATION Version 1.1

! The Stream Manager API is based on the IEC 61883 plug model and the HAVi functional
component model.

! IEC 61883 broadcast and point-to-point connections are supported. (Note, due to the
restrictions specified in 61883.1 on broadcast connections, Stream Managers may not be
able to establish broadcast connections for some devices, even though the devices
themselves support broadcast connections.)

! Connections do not cross transport boundaries (i.e, connections have a single “transport
type” – see below).

! Connections originate and terminate at functional components (rather than devices).

! Plugs should satisfy stream type compatibility, i.e. the Stream Manager leaves to the
application the problem of configuring stream format converters (functional components
which sink a stream of one type and then source a stream of a second type).

! The Stream Manager is responsible for requesting and releasing isochronous resources,
this includes: IEC 61883 PCRs (plug control registers), 1394 bandwidth and 1394
channels.

! A standard naming scheme is used for stream types, transport types and transmission
formats. The stream type and transport type naming schemes are specified by HAVi and,
for stream types, the naming scheme may be extended by vendors; transmission formats
are transport type dependent and specified outside of HAVi.

! Implementations of the Stream Manager are required to make efficient use of 1394
resources by using the IEC 61883 “overlay” mechanism whenever possible.

3.7.3 Definitions

connection – a uni-directional data transfer path created by a Stream Manager. Typically used for
streaming content. Connections originate and/or terminate at functional components. A connection
is either an internal connection or an external connection. Non-HAVi connections refer to data
transfer paths created by non-HAVi applications or devices.

internal connection – a connection where data is transferred within a device.

external connection – a connection where data is transferred across a device boundary.

attachment – The segment of a connection which exists between a DCM plug and the plug of one
of its FCMs.

device connection – an internal connection or an attachment.

connection identifier – Stream Managers and applications refer to connections via unique
identifiers. These values persist throughout the lifetime of the connection. Connection identifiers
for connections created by Stream Managers are globally unique and their reuse should be avoided
as much as possible.

stream type – identifies a media representation, this may be a data format (for digital media) or
signal format (for analog media), e.g. CD audio, composite video.

 69

HAVi SPECIFICATION Version 1.1

transport type – identifies a transport system. HAVi compliant implementations of the Stream
Manager must support three transport types: IEC61883 for IEC 61883 connections running over
1394, INTERNAL for connections internal to a device, and CABLE for connections over external
cabling. Support for other transport types may be added to future versions of the HAVi Stream
Manager, or may be provided by proprietary extensions to the Stream Manager.

transmission format – identifies the transmission protocol used to send a stream type over a
transport type. For IEC61883, the transmission format corresponds to the FMT and FDF fields in
the Common Isochronous Packet (CIP) header. For CABLE, the transmission format identifies
forms of signaling used on physical cables. HAVi assigns a 16-bit code to many of the signal
formats commonly used by CE equipment, these are listed in Annex 11.12. For INTERNAL,
transmission formats are not used.

plug – a resource, provided by a device and used to build a connection. A plug is, at least
conceptually, the source or sink of the data carried by a connection. There are two main plug
categories: functional component plugs and device plugs. A device plug is either a PCR or an
external cable plug. Functional component plugs and device plugs are represented by FCM plugs
and DCM plugs respectively. However it should be noted that FCM and DCM plugs are software
abstractions and that when one says, for example, two FCM plugs are connected, this implies that
the underlying functional component plugs are connected. This document also refers to source
plugs and sink plugs, and output plugs and input plugs.

channel – a resource, provided by a transport mechanism (e.g., IEEE 1394) and used to build a
connection.

3.7.4 Streams

The concept of stream as used by the Stream Manager is based on the isochronous data flow
concept of IEC 61883 with two differences: The first difference is that a IEC 61883 data flow starts
at a device source plug and ends at a device sink plug – while a stream typically starts at a
functional component source plug, goes to a device source plug, then a device sink plug, and ends
at a functional component sink plug. The second difference is that streams are typed, i.e. for each
stream there is an associated stream type identifying data representation, bandwidth, and other
attributes of the stream.

 The following summarizes the properties of streams, channels and connections:

! a stream is associated with a single source and a set of connections and their channels

! device plugs can be bound to channels

! channels are either fully bound (bound to a source device plug and a sink device plug) or
partially bound (bound to a source device plug only or to sink device plugs only)

! a channel can be bound to zero or one source device plugs and zero or more sink device
plugs

! a sink device plug can be bound to at most one channel

! a source device plug can be bound to at most one channel

! a channel may have no source device plug, but no data will flow over the channel until a
source device plug has been bound

 70

HAVi SPECIFICATION Version 1.1

3.7.5 Connections

3.7.5.1 Device Connections

A device connection is one of:

! An internal connection from a functional component source plug to a functional
component sink plug.

! An attachment from a functional component source plug to a device source plug.

! An attachment from a device sink plug to a functional component sink plug.

The following rules apply to device connections.

! Functional component sink plugs can have at most one device connection.

! Functional component source plugs can have many device connections.

! Device source plugs can have at most one device connection.

! Device sink plugs can have many device connections.

Stream Managers establish and break device connections via the Dcm::Connect and
Dcm::Disconnect APIs. Stream Managers shall request the DCM to connect even if the device
connection already exists, this allows the DCM to “overlay” device connections and maintain
information about the usage of device connections.

3.7.5.2 Internal Connections

Internal connections are a form of a device connection. Consequently:

! Functional component sink plugs can have at most one internal connection.

! Functional component source plugs can have many internal connections.

Stream Managers establish and break internal connections via Dcm::Connect and
Dcm::Disconnect.

3.7.5.3 External Connections

An external connection will involve attaching functional component plugs to IEC 61883 plug
control registers (transport type is IEC61883) or to external device plugs (transport type is CABLE).
External device plugs are connected, typically, by physical cabling. It is not required that the HAVi
Stream Manager be aware of the configuration of such cabling. If the Stream Manager is asked to
establish a connection for which successful operation would require physical cabling (e.g., analog
audio or video cables), the Stream Manager assumes the user has made the proper connections.

3.7.5.4 Global Connection Map

The Stream Manager is capable of constructing a map of all connections within the home network

 71

HAVi SPECIFICATION Version 1.1

established by HAVi applications. The Stream Manager does not guarantee that the map is built in
one atomic operation.

3.7.5.5 Connection Examples

D1

FC1 FC2

D2
FC3

FC4

transport and
3 channels

Figure 20. Connection Diagram

The diagram above shows several examples of connections. Here D1 and D2 are devices and the
FCi are their functional components, the small dark circles represent plugs. There are four
connections:

! an internal connection between FC1 and FC2

! an external connection between FC2 and FC3

! an external connection originating at FC2 (the channel is partially bound)

! an external connection terminating at FC4 (the channel is partially bound)

Note that, for example, the connection between FC2 and FC3 involves two device connections
(attachment of the FC2 source plug to the D1 source plug, attachment of the D2 sink plug to the
FC3 sink plug) and the binding of the channel to the device source and sink plugs.

Note that for FCMs with source plugs and sink plugs, for example FC2, it is not guaranteed that
such an FCM will or will not pass through the signal from a sink plug to a source plug.

3.7.6 Transport Types

Transport types are represented by 16-bit identifiers. The values assigned to the three transport
types, CABLE, INTERNAL and IEC61883, are listed in 11.14.

3.7.7 Stream Types

Stream types are represented by a stream type identifier – a data structure containing an IEEE 1394
Vendor ID field and a type number field. The Vendor ID of value 0x0 is reserved for use with
HAVi defined stream types. Stream types form a hierarchy, the HAVi stream types are arranged in

 72

HAVi SPECIFICATION Version 1.1

the hierarchy shown below (only the structure of the hierarchy and some representative stream
types are shown, for a complete list of stream types see Annex 11.11):

UNKNOWN_STREAM

UNKNOWN_STREAM

CD_PCM

...

DIGITAL_AUDIO

UNKNOWN_STREAM

YUV_422

...

DIGITAL_VIDEO

UNKNOWN_STREAM

DVB

...

DATA_STREAM

UNKNOWN_STREAM

MPEG2_TS

...

MULTIPLEX

Figure 21. Stream Types

The stream types UNKNOWN_STREAM, DIGITAL_AUDIO__UNKNOWN_STREAM etc. are used for
streams of unknown type. During connection establishment, the Stream Manager reduces stream
type compatibility checks for such plugs. Instead it follows a “connect and test” procedure (i.e., it
attempts to connect and then tests for success or failure).

HAVi reserves VendorId = 0 for stream types. Device manufacturers can define their own stream
type hierarchy using their vendor id. Stream types with different vendor id will not match each
other except for the UNKNOWN case (see 5.9.5.1 Stream Type Matching).

3.7.8 Plug Compatibility Checking

When the Stream Manager attempts to connect plugs it tests whether:

! transport type is compatible (i.e., a common transport type can be determined)

! directionality is compatible (i.e., output plug to input plug)

! stream type is compatible (i.e., the stream type of the source and sink plugs match as
described in section 5.9.5.1)

! bandwidth is compatible (i.e., the required bandwidth of the source is less than or equal to
the bandwidth which the sink is capable of consuming)

! transmission format is compatible (i.e., the transmission format of the source and sink
plugs match as described in section 5.9.5.2)

If any of these tests fail then the connection cannot be established. The compatibility check about
stream type, bandwidth and transmission format is not applied to the CABLE and INTERNAL
connection.

3.7.9 Connection Restoration: Network Reset

After a network reset, the IEC 61883 procedures for restoring connections are invoked by the
Stream Manager for each connection (of the IEC61883 transport type) that it has created. During
connection restoration the Stream Manager builds a new list of connections for which it is
responsible and may post ConnectionDropped events. This event is posted when:

! as a result of a network merge there is insufficient bandwidth available for a connection,

 73

HAVi SPECIFICATION Version 1.1

! as a result of a network partition the source or sink of a stream has been lost.

Stream Managers shall complete IEC 61883 connection restoration during the first 1 second after
network reset (this is the “isoch_resource_delay” period specified by IEEE 1394-1995). Also, the
Stream Managers shall indicate to DCMs the device connections they wish removed by using
Dcm::Disconnect.

3.7.10 Connection Restoration: Power Off

If a device running a Stream Manager powers down then during handling of the subsequent
network reset the connections created by the Stream Manager will not be restored. However, since
a Stream Manager only creates connections for local applications then the applications themselves
will no longer be running so there should be no need for restoration.

3.7.11 Connection Dropped

A connection is dropped under the following circumstances:

! the Stream Manager which created the connection is requested to drop the connection

! the owner of the connection or an FCM for the source or sink leaves

! the Stream Manager receives a PowerStateChanged event indicating loss of power for
the source or sink

! the source or the sink is no longer present after a network reset (as described above)

! the Stream Manager fails to restore the connection after a network reset (as described
above)

! the Stream Manager detects a removal of an device connection (via the DCM
DeviceConnectionDropped event) and determines that a connection the Stream
Manager has established is no longer operable

3.7.12 Connection Changed

Stream Managers subscribe to TransmissionFormatChanged and StreamTypeChanged so
that they can maintain a consistent view of the transmission format and stream type used by a
connection. Stream Managers subscribe to BandwidthRequirementChanged, in order to be
informed of changes (or attempted changes) in bandwidth associated with a connection. Finally
Stream Managers subscribe to DeviceConnectionDropped and DeviceConnectionChanged
in order to respond to changes in internal configuration of the source or sink of a connection.

3.7.13 Connection Establishment and Drop Order

Stream Manager establish connections of transport type IEC61883 by configuring from source to
sink (i.e., first connect source attachment, set source stream type and transmission format, update
the IEC61883 plug control registers, connect sink attachment, then set sink stream type and
transmission format). Oppositely, Stream Manager should drop connections of transport type
IEC61883 from sink to source.

 74

HAVi SPECIFICATION Version 1.1

If Stream Manager fails DCM/FCM API or set IEC61833 plug control register to establish a
connection, Stream Manager does not need to restore these settings to the previous state, but shall
restore the settings of isochronous resources and plug control registers according to IEC61883
CMP.

3.7.14 Connection Overlay

HAVi connections can be overlayed not only for IEC61883 transport type, but also for CABLE and
INTERNAL transport types. Overlay of device connection part of HAVi connections are managed
by DCMs and Stream Managers. DCM maintains a list of Stream Managers that have device
connection on the DCM. Once a Stream Manager calls Dcm::Connect, the Stream Manager is
memorized in the list in the DCM. The DCM will not maintain how many device connection is
owned by each Stream Manager and each Stream Manager shall maintain the count by itself.
(Note: Stream Managers should call the Dcm::connect for each time making overlay for
reservation protection check reason.)

When an SE calls StreamManager::Drop, Stream Manager decrements the counter but does not
call Dcm::Disconnect until no connection on the attach remains. On executing the last drop
process, the Stream Manager calls Dcm::Disconnect, the DCM erases the Stream Manager from
the list. In this way, overlay within a Stream Manager and overlay between Stream Managers are
maintained.

 In case of overlays, when the source and/or sink attachment already have the desired stream type
the Stream Manager should not call Dcm::SetStreamTypeId again. Similarly, in case of
overlays, when the source and/or sink DCM already have the desired transmission format the
Stream Manager should not call Dcm::SetTransmissionFormat again.

3.8 Resource Manager

Applications in the network will typically use a set of FCMs to perform a task on behalf of one or
more users. FCMs are called device resources in this context. Usually, also network resources are
involved in resource management, since these serve to create useful collaborations in audio/video
streaming between DCMs and FCMs in a HAVi network. 1394 bandwidth and channel numbers
are such network resources. The Resource Manager only deals with device resources.

The Stream Manager handles network resources on behalf of clients. Connection and bandwidth
management will typically be requested by applications after the involved device resources have
been reserved for usage. In the following, resources stands for device resources, or FCMs.

Resource management serves to guide software elements competing for and using the set of
resources in the network. Such software elements are called clients in this context. A group of
device resources will be reserved by a client in an all-or-nothing fashion. The resource management
system serves to ensure that clients that have reserved resources can rely on not being disturbed by
other applications that (try to) use these resources. Potential clients that want to reserve resources,
but have not yet done so are called contending clients or contenders.

There is a Resource Manager on each FAV and IAV device that hosts or can host at least one
DCM. The HAVi_Resource_Manager SDD field of an IAV device reveals whether a Resource
Manager is present.

 75

HAVi SPECIFICATION Version 1.1

3.8.1 Resource Reservation

Each Resource Manager offers methods to applications for reserving and releasing resources, as
well arranging scheduled actions. A scheduled action is a reservation and usage of a set of
resources during some future time period. Conflicts in schedules are detected and reported. The
resource management system will perform a number of validations for scheduled actions at
scheduling time.

The resource management model supports a reservation mechanism. Reservation is used to protect
against control commands (“write access”), changing the state of a resource. Reservation is not
needed for observation commands (“read access”). An FCM is not obliged to support reservations
if it only has methods that do not change its state. In this case, FCM methods and events related to
resource management need not be implemented. Other FCMs shall support reservation facilities.

In general, applications can subscribe to resource events. Such event subscriptions are considered
not to change the state of the resource, and therefore belong to the observation category. The FCMs
and Resource Managers offer a number of events that can be subscribed to by interested
applications to learn about the status of resources with respect to reservations.

Two client roles are distinguished and are relevant in negotiations for resources (discussed later):

! User – A client that is able to take part in a resource negotiation with a contender.
Negotiation will typically involve the human user of the client (to give him or her the
opportunity to accept or reject a negotiation). However, it is not required that a human
user be involved for a client to take this role.

! System – A client that is not able to take part in a resource negotiation with a contender.
This will typically be the case if no human user is involved with the client.

A limitation of a system contender is that it can or should not preempt resources from user clients
that reject its preemption request. Resource Managers performing a scheduled action (Action
Schedulers) are such system contenders. An application is free to act as a user or system contender,
although it should choose the correct role in a cooperative situation. User contenders can always
preempt resources from any client.

Note that, for instance, an emergency application would typically be a user contender. Although it
may acquire resources by direct preemption, it may negotiate first to learn whether a current client
has an even higher priority.

A DDI Controller may control a DCM through the DDI protocol. The DDI Controller is
responsible for reserving any FCMs associated with the DCM if it requires exclusive access to the
related device or some of its functional components. See section 3.5.1.8 Resource Management.

The resource management model relies on the following principles:

! Clients are cooperative, i.e., they shall respect the reservation mechanism and their user
(or system) role.

! Before using control commands, an application will normally reserve the needed
resources. It shall release the resources when they are no longer needed.

! With due restrictions, a contender may negotiate through a Resource Manager with other
clients to take over (preempt) their reservation of resources. It may also decide to preempt
resources without negotiation. This process is described later.

 76

HAVi SPECIFICATION Version 1.1

The next figure shows an example of the interaction between clients in a network with FAV or IAV
TV and VCR devices. (In this example, only one resource is reserved. In general, a Resource
Manager will attempt to reserve a group of resources requested by a contender.)

Client1

Registry 1 RM1

FCM
Tuner1

FCM
Decoder

1 2

3

Client2

Registry2RM2

FCM
VCR2

FCM
Tuner2

DCM
TV

DCM
VCR

TV Device VCR Device

negotiation

4

Figure 22. FCM Reservation

Client1 first queries its local registry for VCR resources present in the network (arrow 1) and then
calls a (local) Resource Manager (RM1) in order to reserve the VCR FCM (arrow 2). Next, RM1
attempts to reserve VCR2 (arrow 3).

Assume VCR2 is currently reserved by Client2. Before attempting to reserve it, Client1 may
negotiate through a Resource Manager to preempt the resource from Client2. It will then send a
negotiation request to, say, RM1 (arrow 2). RM1 will send a preemption request to Client2 and
await a preemption reply from it (arrow 4). An acceptance or rejection is forwarded by RM1 to
Client1. Depending on the answer, Client1 may decide to preempt VCR2 (even if Client2 rejected).

There are various types of resources. Some will provide function for producing AV contents like
Tuner. Some other will provide both function for producing or recording AV contents like VCR or
AVDisc. Yet other will provide audio visual interface to the users like Display or Amplifier. HAVi
does not specify which resources to be reserved, but clients are recommended to cooperate
respecting following suggestion; As for FCMs that provide audio visual interface like Display or
Amplifier FCM, the basic usage may be "free to use" model, that means clients will not reserve
FCM without special purposes or reasons. When clients reserve these FCMs, the clients have to
take into account the side effect of the reservation that might cause inconvenience to the user.

3.8.2 Resource Sharing

Device resources can be reserved by an application for exclusive use, but can also be shared by
more than one application. The resource type determines which sharing options are available to
applications.

Any application may change the state of a device resource as long as the resource has not been
reserved. However, resources shall protect applications from unauthorized access by other
applications in case the resource is properly claimed. A resource shall verify for each command
whether the invoker is entitled to perform the command. (It shall check the SEID of the invoker

 77

HAVi SPECIFICATION Version 1.1

with its locally registered primary and secondary SEIDs for control commands.)

A resource may be shared by more than one client. A DCM provider can choose the extent of
sharing that is supported for each FCM, and the restrictions that apply to sharing clients with
respect to each other. Two types of access rights are distinguished:

! Primary access – Full control of the resource without any restriction. There is at most one
primary user per resource.

! Secondary access – Limited control of the resource. The primary client and other
secondary clients should never be hampered in their access rights by a secondary client.

The number of secondary clients allowed is determined by the DCM manufacturer. If a primary
client releases the resource, a secondary client (if any) will not automatically become the primary
client. It may, if desired, attempt to reserve the resource as a primary client. If successful, it will
become a primary client, and loses its secondary client position.

As an example, consider a tuner FCM able to operate in one of several multiplexes, each of which
supports a number of channels. The primary client can change the multiplex of the tuner, but a
secondary client may not. The secondary client can only tune to a channel that happens to be in the
selected multiplex.

Note that any application can use observation commands of a resource at any time. It need not
reserve the resource for such commands. Also note that user and system clients may accept to
operate with either primary or secondary access rights. However, negotiation and a subsequent
preemption (discussed in the next section) only apply for primary access rights.

3.8.3 Resource Negotiation and Preemption

A resource is normally used by an application between the moments it chooses to reserve and
release the resource. However, there are means for competing applications to hand over resource
access rights.

Reserving and releasing resources is always done by a Resource Manager selected by the contender
using the methods ResourceManager::Reserve and ResourceManager::Release. Only
Resource Managers are allowed to directly reserve and release resources through Fcm::Reserve
and Fcm::Release.

A user contender can always become the new client of a group of resources by preempting them
from their current clients. However, in normal circumstances, a contender will first try a so-called
non-intrusive reservation. This is a reservation attempt that does not involve any current client. If
all resources in the requested group can be acquired in this way, they will be acquired; otherwise,
none of them will.

A contender can negotiate with primary clients through a Resource Manager in order to learn
whether they are willing to give up their resource reservations. The method
ResourceManager::Negotiate is used by the contender. The Resource Manager will then
invoke the method <Client>::PreemptionRequest of all primary clients to forward the
request. Each client should respond within a specified timeout with an acceptance or rejection of
the request, and an information string. (PreemptionRequest should be implemented by
applications that take on the user role). Cooperative controllers are advised to follow the following
rules:

 78

HAVi SPECIFICATION Version 1.1

! If all clients accept the preemption request conveyed in the negotiation, the contender
may preempt their resources.

! A system contender shall not preempt resources from clients that have rejected the
preemption request.

! To all clients that have received a preemption request, the contender shall send a
withdrawal notification if it decides not to preempt their resources (through
ResourceManager::Negotiate).

So, normally negotiation precedes preemption. The client should respond within a specified
negotiation timeout. This negotiation may involve a person behind a current primary user client to
agree or disagree with a preemption. However, even if a client disagrees, a user contender can
directly preempt its resources. This prevents any application in the network from monopolizing
resources. If a negotiation times out, the contender may decide not to preempt the resources of that
client, although this is up to its own discretion. This scheme is thought to suffice for home
networks, where applications should cooperate in the usage of resources.

Negotiation, preemption, and reservation are always done for a resource group, although a client
can choose any subset of resources to reserve or release, even after it has already reserved other
resources.

The following scheme describes situations where preemption is recommended or allowed after
negotiations between a contender and a set of clients.

preemption after negotiation user contender system contender

current user client upon accepted negotiated
reservation requests

(preemption always allowed)

upon accepted negotiated
reservation requests

(else preemption not
allowed)

current system client negotiated reservation requests not
accepted

(preemption always allowed)

negotiated reservation
requests not accepted

(preemption not allowed)

For system contenders, preemption is only allowed if the current client is a user client, and has
accepted the request. For system clients, the resource management system shall always reject
reservation requests from system contenders. A system client shall never directly preempt
resources, or do so without the required negotiation acceptance. (Note that a system contender
negotiating with another system client will fail, because system clients are assumed not to support
negotiations.)

If a non-intrusive reservation fails, the contender may analyze why it failed. This can be done by
processing the results of the reservation command returned by the Resource Manager. Any
application can use Fcm::GetReservationStatus to learn about various reservation properties
that hold for the resource. In general, applications should subscribe to ReserveIndication and
ReleaseIndication events if they need to be aware of reservations and releases, including those
related to resources they have reserved themselves.

For a group of resources, it can be specified whether a non-intrusive or preemption approach should
be used in a reservation. However, only if all resources can be reserved, will they indeed be
reserved. Otherwise, none will be reserved.

 79

HAVi SPECIFICATION Version 1.1

Due to other reservations, missing resources, or network partitions, a reservation command may fail
for one or more resources. After invoking ResourceManager::Reserve and
ResourceManager::Negotiate, a contender should always consult the status or negotiation
record for each individual resource.

Application requirements. At any time during a reservation, a primary client can receive one or
more negotiation messages from Resource Managers. A client shall accept and process them
immediately. The client should respond within the specified timeout period. It should receive a
follow-up message from a Resource Manager if the preemption request is withdrawn. It is not
necessary that a current client releases the requested resources; this will be done by the resource
management system. The client can learn about the actual preemption by subscribing to the
ReserveIndication event.

Example. Below is a scenario that sketches how a user and a system client would interact with the
resource management system (abstracted by RM) and the resource (R).

In this scenario, a + after a method denotes an accept response on the command. A + or - on a
dashed arrow denotes an accept or reject response on the earlier command (without + or -). NIR
stands for non-intrusive reservation, GRS stands for GetReservationStatus (an FCM method).

The scenario illustrates that a user client may be using a resource, possibly being unaware of, say,
an Action Scheduler, which operates as a system client. An Action Scheduler shall always attempt
a non-intrusive reservation (NIR) first. If this fails, it will typically negotiate for the resources it
needs. The user client is informed of the scheduled action that was planned. In this case, the user
chooses to accept a preemption of the resource, so that the scheduled action can succeed.

system user RM R

NIR
GRS+

reserve+
+

NIR
GRS+

-

GRS+

negotiate

preemption request+

+

preempt+
reserve+

Figure 23. Reservation Protocol

3.8.4 Scheduled Action Management

The goal of Scheduled Action Management is to allow and secure Scheduled Action programming
by the system. That is:

 80

HAVi SPECIFICATION Version 1.1

! to ensure that at starting time, all the necessary resources (FCM/DCM, bandwidth, …) are
present and thus can be reserved

! to check at scheduling time the feasibility of the action at starting time i.e. to check the
feasibility of the commands planned on the (device) resources and the planned inter-
connections (network resources) between them

! to perform at starting time all the planned reservations and actions

Management of a Scheduled Action involves, apart from the Resource Manager, the following
components:

! An application that specifies the scheduled action (the invoking application). The
invoking application is only involved in the ordering of a Scheduled Action. If it
disappears afterwards, the execution of the Scheduled Action is not affected.

! One or more FCMs or DCMs that are needed to successfully complete the required
scheduled action.

! (Optionally) a trigger (application or FCM) that notifies the Resource Manager to start
the action.

! (Optionally) an application that is involved in the scheduled action in the sense that it
takes control over the involved resources during action time (control application).

Transactions (reservations, etc.) between FCMs, DCMs and applications such as described above
are performed via a Resource Manager in an architectural model discussed below. First an
overview of the data involved in a Scheduled Action will be given.

3.8.4.1 Scheduled Action Data

A Scheduled Action is defined by the following information:

! SEID of Scheduled Action controller (optional)
! SEID of Scheduled Action trigger (optional)
! Start Commands list (in a strict sequential order)
! Stop Commands list (in a strict sequential order)
! Connection list (in a strict sequential order)
! Start and Stop Time information
! Involved Resources HUID List
! User information (optional)

Scheduled Action controller: the application that will be awoken when the Scheduled Action is
executed. This application may control the resources. If the field is absent, the Scheduled Action
will not be controlled during execution but will execute autonomously.

Scheduled Action trigger: this field indicates the trigger (e.g., FCM or DCM) that will generate the
actual notification for starting/stopping the execution of the Scheduled Action. The start/stop times
will not be used in this case to actually start/stop the Scheduled Action’s execution, but will be used
to coordinate the reservation of resources with other schedules.

Start / Stop Commands: these are ordinary HAVi commands (defined by the APIs). They must be
listed in order of execution and it has to be specified which resource must execute them. This
sequential order is needed to ensure that a command cannot be sent to a resource without being sure

 81

HAVi SPECIFICATION Version 1.1

that the previous command has been successfully executed by the relevant resource. Commands
can be either FCM commands or DCM commands.

Connection List: these indicate the network resource allocations needed for the Scheduled Action.
From this list, the FCM plug connections that ultimately will be executed by the Stream Manager,
will be constructed.

Start and StopTime Info: time information needed for scheduling an action (including date, start and
stop time and periodicity data).

Involved Resources HUID List: this list represents the resources that are involved in the Scheduled
Action.

User Information: this optional field can contain a description of the Scheduled Action that
provides useful information in case a scheduled action that was originally accepted can no longer
take place.

3.8.4.2 Scheduled Action Model

Invoking
Application

DCM2

Start/Stop

Commands

DCM1

Trigger
Awake

Notification

Start/Stop
Notification

Resource Manager
(Action Scheduler)

(Un)Schedule
Reservation

GetScheduledActions

(Un)scheduleAction

• All components can be on different nodes
• Dotted lines refer to optional components

Control
Application

Figure 24. Resource Manager and Scheduled Actions

Figure 24 provides an overview of the involved software elements in a Scheduled Action. A
description follows.

3.8.4.2.1 Scheduled Action

The invoking application passes its Scheduled Action (including Scheduled Action parameters as
described above) to a Resource Manager of its own choice. The invoking application might choose
its local Resource Manager, or take into account that the chosen Resource Manager can best be at
the same node as one of the involved DCMs or trigger or control application (to decrease the
chance of problems due to network changes). The Resource Manager chosen will be called Action
Scheduler in the sequel.

The Action Scheduler persistently stores the Scheduled Action from the time the Scheduled Action

 82

HAVi SPECIFICATION Version 1.1

is invoked until the time it is completed and no longer needed. Per Scheduled Action only one
Action Scheduler is involved. In case of network changes (e.g., network re-join after partition), it
will take care that its Scheduled Actions are recovered (see below: Network Changes).

The Action Scheduler will assign a unique (local) index to the Scheduled Action for future
reference. After acceptance of the Scheduled Action this index is eventually returned to the
invoking application. A Resource Manager shall reuse these indexes as little as possible.

 83

HAVi SPECIFICATION Version 1.1

The invoking application is responsible for gathering all information about the involved FCM
HUIDs, time info, connection list, etc. The model does not assume that all involved FCMs in a
Scheduled Action are reservable FCMs: also non-reservable FCMs shall be accepted for Scheduled
Actions.

Data Passed to Action Scheduler
SEID of control application(optional)

SEID of trigger (optional)

Operation code for awake notification message

Start Commands list

Stop Commands list

Connection list

Start time/date

Stop time/date

Periodicity

Involved FCMs HUIDs

User info (optional)

Below is the basic structure of a start or stop commands list (see also section 5.10.2). The format of
the “command to be executed” is exactly the same as the (content of the) message that will take
care of its execution. The Action Scheduler will not interpret the command itself (and considers it
as a sequence of bytes).

Start or Stop Command List
Command to be executed HUID of the FCM or DCM that must execute it

... ...

The structure of the connection list allows the Action Scheduler to defer from it the eventual Stream
Manager commands (FlowTo). The connection list looks as follows (see also API section):

Connection List
Source FCM Plug Sink FCM Plug Stream Type

...

The invoking application might use a slightly different time for “start” then the one that was
specified by the user, in order to take into account that the execution of all the actions can readily be
done beforehand. The application can make use of GetWorstCaseStartupTime of the involved
FCMs for calculating a worst case start-up time.

3.8.4.2.2 Schedule Reservation and DCM Checking

The Action Scheduler contacts the DCMs of each involved resource to distribute Restricted
Scheduled Actions. Restricted Scheduled Actions are restricted versions of an original Scheduled
Action that contain only the data that concern the resources local to each DCM. By this means, the
FCMs local to the DCM can be checked (if the resource is free at scheduled time) and be aware of
the actions (commands and connections) to perform at start or stop signal.

 84

HAVi SPECIFICATION Version 1.1

Data Passed to Involved DCMs
Start Commands list

Stop Commands list

Connection list

Start time/date

Stop time/date

Periodicity

Involved FCM HUIDs

User info (optional)

The start and stop command lists consist of a subset of the original Scheduled Action lists. Only
those commands are gathered that belong to the particular involved DCM (the target DCM). The
connection list is also constructed from the original Scheduled Action list. Only those entries are
copied that refer to an FCM “inside” the target DCM. The same holds for the list of involved
FCMs.

In this way each involved DCM is able to build up an internal agenda for reservations of resources.
The internal agenda allows a DCM to check for schedule overlaps. For doing this the DCM has to
take into account the start/stop time/date attributes and also the periodicity attribute. In case a DCM
detects a schedule overlap, it checks whether it (and its FCMs) will be able to execute
simultaneously the intended actions (start/stop commands and connections) during the
(overlapping) time period.

A DCM shall at least check whether there is a schedule overlap. This can require checking of
several schedules if periodicity was specified. Further checking of the involved actions is highly
recommended because otherwise possible problems will only become apparent at starting time of
the Scheduled Action.

Further notes on checking:

For connections from an internal FCM to an external FCM (internal/external with respect to the
target DCM), only the DCM internal part has to be checked. The other parts are checked by another
DCM and the bandwidth availability is checked separately (see section 3.8.4.2.3).

The Scheduled Action reservation of involved resources can lead to blocking of dependent
resources. Dependent resources are separate resources (FCMs) which can no longer be used freely
because of, e.g., already established connections. This means that different Scheduled Actions
involving different FCMs (within the same DCM) can still be conflicting. The blocking of
dependent resources is “invisible” to resource management: a DCM is responsible for taking into
account the possibly resulting blocking of dependent resources when accepting a scheduled
reservation.

A consequence of the above is that DCM checking can be rather complex. However, DCMs can
also choose to do things rather simply by allowing only restricted reservations (e.g., every
reservation reserves the complete DCM). The “checking complexity” that a DCM wants to deal
with also determines how much information of the Restricted Scheduled Action the DCM has to
store.

After checking, the DCM returns to the Action Scheduler whether it accepted (its part of) the
Scheduled Action.

 85

HAVi SPECIFICATION Version 1.1

3.8.4.2.3 Bandwidth Checks

If all (local) DCM checks are OK, the Action Scheduler will check whether the needed network
resources will be available at starting time. This check has to be performed only for connections
between FCMs on different DCMs. The network resources to be checked for availability are
bandwidth and channel numbers. Since these are global resources, the Action Scheduler that is
responsible for a new schedule has to inquire all other Action Schedulers about already
programmed scheduled actions that will overlap in time with the new schedule.

The checking, which shall be done at scheduling time, can be conceived as taking place in two
steps:

1. The Action Scheduler collects all planned connections corresponding to existing schedules in
the network that overlap in time with the new schedule. It uses the
ResourceManager::GetScheduledConnections API for this purpose. In this way the Action
Scheduler can build up a bandwidth table of needed bandwidth and channels during the period of
the new schedule. (The actual bandwidth calculation method is described in section 5.10.5.)

2. The Action Scheduler then compares the network capacity (total available bandwidth and total
available number of channels) with the information in the table and thus checks if there will be
enough bandwidth (and channel numbers) at execution time of the new schedule.

Note that to perform the bandwidth related calculations the Action Scheduler may utilize already
available Stream Manager facilities. Since all calls to the Stream Manager are local and the Action
Scheduler and the Stream Manager will be from the same vendor, the Stream Manager services
needed to do the calculations are proprietary and not part of this document.

3.8.4.2.4 Usage of Timers and Triggers

If the above bandwidth checking or one of the previous DCM checks failed, the Action Scheduler
will cancel the Scheduled Action. The local scheduled reservations on the DCMs will be undone
via Dcm::UnscheduleReservation.

If all checks are okay and no trigger is specified, the Action Scheduler will use a timer in order to
get notified when the start/stop times happen. When no trigger is specified, the Action Scheduler
will set the start time according to the next valid value of the timer.

The Action Scheduler may use a Clock FCM for setting up the timer start/stop times, however, the
Action Scheduler should be able to complete the Scheduled Action (in a proprietary manner) also
when no Clock FCM is available. For a timer facility used by the Action Scheduler (Clock FCM or
proprietary) a worst case accuracy of one minute is required.

In case a trigger was specified, the possibly needed subscription is not dealt with by the Action
Scheduler. The application is responsible for setting up the trigger notifications. If the trigger start
notification is never sent, for one reason or the other, the Scheduled Action will remain existing
(waiting for the notification). It is up to the user (application) to remove the Scheduled Action. The
same holds if the trigger stop notification is never sent. The reservations done will remain until the
Scheduled Action is removed.

3.8.4.2.5 Executing the Scheduled Action

When the Action Scheduler is notified (either by a timer or by the trigger) that the Scheduled
Action should be executed, it first executes all reservations of the involved FCMs (via
ResourceManager::Reserve). This is a non-intrusive reservation with client role of “system”

 86

HAVi SPECIFICATION Version 1.1

and requesting primary access rights. If the reservations fails the Action Scheduler will start
negotiating as a cooperative controller (via ResourceManager::Negotiate, see section 3.8.3).
Then it uses the connection list to establish FlowTo connections via the Stream Manager. Before
establishing connections, the Action Scheduler turns on the power state of the DCMs, which are
needed to establish the connection, to avoid connection failure. Each FlowTo should use “any”
values for ConnectionHint except for stream type. Initially a FlowTo will be attempted with
dynamicBw equal to False. If this fails, a FlowTo with dynamicBw equal to True will be
attempted. After connections have been established, the Action Scheduler then executes all start
commands. All these are HAVi commands of the format described in 3.2.3.4. The connections and
commands are executed in the order initially given by the (invoking) application. In case the
reservation fails, or a command or connection does not return SUCCESS, the Action Scheduler will
abort the complete Scheduled Action and generate an ErroneousScheduledAction event.

In case a control application was initially specified, this application is awoken by the Action
Scheduler via <Client>::AwakeNotification. Note that such application awaking is optional,
and is not required to complete a Scheduled Action. In this case, the above reservations are not
performed by the Action Scheduler but by the control application itself. This is done in order not to
disturb the owner relationship of the resources. For the same reason the connections and command
executions will be executed by the control application. This means that in case a control application
was initially specified, the start/stop commands etc. of a Scheduled Action are only used for
checking. This also means that the control application has to deal with failing reservations, etc.

If everything has been started, the Action Scheduler will use the specified method (timer or trigger)
for stopping the Scheduled Action. When no trigger is specified, the Action Scheduler will set the
stop time according to the next valid value of the timer.

3.8.4.2.6 Ending the Scheduled Action

When the Action Scheduler is notified (either by timer or trigger) that the Scheduled Action should
be stopped, it executes all stop commands, breaks all connections (via StreamManager::Drop)
and releases the resources (via ResourceManager::Release). Again, these are ordinary,
existing HAVi commands. The commands are executed in the order initially given by the
(invoking) application. If the Scheduled Action was not used with “periodicity”, it will be removed
from the list of Scheduled Actions in the Action Scheduler list and via
Dcm::UnscheduleReservation also from the internal agendas of the involved DCMs. When
the Scheduled Action is used with “periodicity” and no trigger is specified, the Action Scheduler
will set the start time according to the next valid value of the timer. When the Scheduled Action is
used with “periodicity” and a trigger is specified, the Action Scheduler will do nothing.

In case a control application was initially specified, the above actions are not executed: if the
application did not already finish it will continue as in “normal” (unscheduled) operation. The
removal of the Scheduled Action however will take place.

3.8.4.3 Query and Modification of Scheduled Actions

An application can consult the database of Scheduled Actions maintained by the Action
Schedulers. It can use a facility to get an overview of all Scheduled Actions stored in a given
Action Scheduler (ResourceManager::GetLocalScheduledActions), and can inspect
individual Scheduled Actions in detail (ResourceManager::GetScheduledActionData).

Applications can use these facilities for removing no longer needed Scheduled Actions (e.g.
periodic ones) via ResourceManager::UnscheduleAction. The Action Scheduler will then
cancel the Scheduled Action and the scheduled reservations on the involved DCMs will be undone

 87

HAVi SPECIFICATION Version 1.1

via Dcm::UnscheduleReservation. A change in a Scheduled Action can only be performed by
first removing it and then scheduling it again (with appropriate changes).

3.8.4.4 Network Changes

Here is the model showing how the Resource Manager takes into account changes in the HAVi
network. After network change, all scheduled actions are rechecked. This may result in some
warning messages, e.g., while changing the cabling.

The Action Scheduler keeps track (“watch-on”) of all involved DCMs and (if specified) the
trigger and control application. If one of the DCMs disappears due to a network change, the
Action Scheduler will react as in case of an UnscheduleAction, although it will not remove
its own copy of the (complete) Scheduled Action. Instead, it shall ‘remember’ that it is invalid.
However, the Scheduled Action will not be executed as long as the missing resources are not
back on the network. Note that the ResourceManager::UnscheduleAction involves
Dcm::UnscheduleReservation, which might not be feasible for all the involved DCMs
since some may have disappeared. The Action Scheduler shall generate an
InvalidScheduledAction event with the user info of the Scheduled Action as parameter.
In case the specified trigger or control application disappears, the
AbortedScheduledAction event is generated (ErroneousScheduledAction if the
Scheduled Action is executing) and the Scheduled Action is completely removed from the
system (as by ResourceManager::UnscheduleAction). It is therefore recommended that
a Resource Manager is chosen on the same node as at least the controller application.

! For each Scheduled Action, each DCM keeps track (“watch-on”) of the associated
Resource Manager (Action Scheduler). If the Action Scheduler disappears due to a
network change, the DCM will remove the (Restricted) Scheduled Action from its
internal agenda and generate an InvalidScheduledAction event with user info as
parameter. Note that this can also happen when the Scheduled Action is already in
execution.

! If a new DCM is installed on a node, the Action Scheduler is notified of the installation of
the FCMs via NewSoftwareElement events, and it will check if an ‘invalid’ Scheduled
Action is associated with them (by checking the HUIDs). If all resources are available
again, the Action Scheduler will try to restart the Scheduled Action mechanism. If the
restart fails (due to new Scheduled Actions in the mean time), an
AbortedScheduledAction event is generated.

! After a network change the available bandwidth may decrease, and as a result some
scheduled actions may no longer be able to proceed. Each Action Scheduler that has
stored Scheduled Actions is responsible for rechecking the available bandwidth after a
network reset event is received. An Action Scheduler that detects a lack of bandwidth
generates an InvalidScheduledAction event to inform the user and makes the
Scheduled Action invalid. If bandwidth becomes available again the Scheduled Action is
re-installed.

! Even if the resources are still not available at start time, the Scheduled Action is not
removed: it must be possible to launch the Scheduled Action even if it is delayed. Only if
the Scheduled Action is still not feasible at stop time, and only if it is not a triggered
Scheduled Action, the copy of the Scheduled Action in the Action Scheduler is removed
and an event AbortedScheduledAction is generated to inform the user.

 88

HAVi SPECIFICATION Version 1.1

3.9 Application Modules

Application Modules are conceptually similar to DCMs. They provide an interface to a service that
is usually provided by software only. An Application Module is a normal HAVi object in the sense
that it communicates via the HAVi Messaging System. Like DCMs, Application Modules have
HAVi Unique IDs. The HUID allows other applications to find the Application Module after
partial system unavailability.

Since applications typically provide proprietary functionality, the standardized part of the API is
small. It consists of basic identification (HUID) and visual representation (icon) and a means for
providing a user interface. The user interface may be provided in two ways, corresponding to the
two levels of interoperability: via DDI or via an uploadable havlet (similar to a havlet for a DCM).
For an Application Module it is optional whether to support one or both ways of providing a user
interface; what is supported is indicated by the ATT_GUI_REQ attribute in the Registry.

Application Modules can be provided by third-party application writers. Application Modules
written in Java may be handled by arbitrary FAVs, they use the same format as DCM code units.
The way IAVs handle Application Modules is proprietary. Also the way an FAV finds and installs
third-party Application Modules (via a disk, Internet or any other means) is proprietary to the FAV
node.

An FAV or IAV device is responsible for assigning the HUID to any Application Module running
on the device. For Application Modules, two different HUID schemes provide different levels of
persistency.

3.10 Code Unit Authentication

3.10.1 Outline of digital signature algorithm

All uploadable DCM code units shall be signed. Havlet code units may also be signed. HAVi
specifies a public digital signature algorithm for these two kinds of code units. However, it may or
may not be applied for Application Module code units, since verification for Application Module is
vendor-dependent.

In HAVi Authentication, a public key system based on Rivest Shamir Adleman (RSA) is used.
Also, Secure Hash Algorithm revision 1 (SHA-1) is used to digest the messages.

The HAVi Certification Authority (HCA) defines and keeps a unique pair of private key (never
disclosed) and public key. The HAVi Certification Authority (HCA) also issues several pairs of
private key and public key to each vendor on request, with the HCA's digital signature for the
vendor unique public key. In this way, each vendor will have flexibility to be able to generate final
signature to their products (DCM code units and havlet code units).

! In the HAVi specification of this version, HAVi public key is a 2048 bits key defined by
HAVi, and statically stored in each FAV

! vendor unique public key is one of 1024, 1536 or 2048 bits key assigned by the HCA, and
included in a certificate

! HAVi uses RSA algorithm for digital signature compliant to PKCS#1 v2.0 [19] (See section
3.10.1.1).

! HAVi uses well-known 160 bits SHA-1 Message Digest [20].

A HAVi-signed code unit includes some specific files necessary for authentication in the JAR file.
When an FAV is to install a HAVi-signed code unit, it has to verify the code unit with these files in
advance to install the software element.

 89

HAVi SPECIFICATION Version 1.1

 Uploadable DCM code units and havlet code units may be located in different locations with
different security risks. HAVi therefore distinguishes between "External code units" and
"Embedded code units". "External code units" are code units originating from device external
locations like a Web site or an unsecured packaged-medium, e.g. floppy. "Embedded code units"
are code units located in the SDD of a BAV, in a DCM/Application module (for havlets), or in
secure storage (e.g. resident storage like NV-RAM or HDD in FAV or BAV, or proprietary secured
memory card).

Thus, each vendor can request to obtain one or more pairs of vendor-unique keys from the HCA.
These keys may be different in its size or validity period. These keys may be used for only External
code units, or for only Embedded code units, or both.

The following figure shows the outline structure of certificates/signatures.

Root key

FAV

Company1
Embedded
code unit
certificate

BAV from
Company1

signature

CodeUnit

Company2
Embedded
code unit
certificate

BAV from
Company2

signature

CodeUnit

Company1
External
code unit
certificate

signature

CodeUnit

Company2
External
code unit
certificate

signature

CodeUnit

Company1
External
code unit
certificate

signature

CodeUnit

Company2
External
code unit
certificate

signature

CodeUnit

Package-Media Internet

Figure 25. Certificate Tree

3.10.1.1 EMSA-PKCS1-v1_5 encoding method in HAVi

Since HAVi Authentication allows only SHA-1 hash function, the encoding method is as follows,
which is compliant to EMSA-PKCS1-v1_5-Encode in PKCS#1 v2.0.

EMSA-HAVi(M, emLen)

Option: Hash SHA-1 hash function

Input: M Message to be encoded

 emLen intended length in octets of the encoded message.

Output: EM encoded message, an octet string of length emLen.

Steps:

1. Apply the hash function to the message M to produce a hash value H:

 H = Hash(M)2. Generate an octet string PS consisting of length emLen – 37
octets with value 0xFF.

3. Concatenate PS and T to form the encoded message EM as

 EM = 01 || PS || 00 || 3021300906052b0e03021a05000414 || H

 90

HAVi SPECIFICATION Version 1.1

4. Output EM

3.10.2 Code Unit Format

A HAVi-compliant signed code unit shall contain three specific files, named ‘havi.hashfile’,
‘havi.signature’ and ‘havi.cert’ in the JAR file. If the JAR file has directories, then each directory
may have its own ‘havi.hashfile’. Even in that case, the root directory shall have a ‘havi.hashfile’.

A HAVi-compliant signed code unit may contain another specific file, named ‘havi.crl’, if one or
more vendor-unique public key(s) have ever been revoked.

Below is the structure of HAVi-compliant signed code unit (uploadable DCM, havlet and possibly
Application Module).

code unit (JAR file)

Java class files
& content files

havi.hashfile

havi.cert

havi.crl

havi.signature

Figure 26. Authentication-specific files in a JAR file

3.10.2.1 Hash file

A code unit consists of several class files and possibly contents files. A file named ‘havi.hashfile’ is
used to specify the filenames and their order to compute a SHA-1 Hash digest value for the
directory.

The root directory shall have a master ‘havi.hashfile’. If class files and/or content files are stored in a
subdirectory and need to be verified, such a subdirectory also contains its own ‘havi.hashfile’ in it.

The format of ‘havi.hashfile’ is compliant to ETSI TS 101 812 V1.1.1 (2000-07), section 12.4.1.1.

However, since HAVi only allows SHA-1 as the hash algorithm, the format is shrunk as follows:

Syntax #bit Format

Hashfile () {

 digest_count /* always 1 */ 16 uimsbf
 for(i=0 ; i<digest_count ; i++) {
 digest_type /* always 2 for SHA-1 */ 8 uimsbf
 name_count 16 uimsbf
 for(j=0 ; j<name_count ; j++) {
 name_length 8 uimsbf

 91

HAVi SPECIFICATION Version 1.1

 for(k=0 ; k<name_length ; k++) {
 name_byte 8 bslbf
 }
 }
 for(j=0 ; j<digest_length ; j++) { /* always 20 for
SHA-1 */
 digest_byte 8 bslbf
 }
 }
}

digest_count is set to 1 because all the files are digested by SHA-1.

digest_type is set to 2 to represent SHA-1.

digest_length is 20 (bytes) because SHA-1 generates 160 bits digest.

name_count: This value identifies the number of object names associated with the digest value. It
may be one or more.

name_length: This value identifies the number of bytes in the object name

name_byte: This value holds one byte of the object name. Terminating null characters are not
considered to be part of the file name.

The digest value is computed over the objects named in the havi.hashfile in the ordered list. The
ordered list may contain an arbitrary mix of different object types (that is a mixture of file and
directory names). The digest value is computed over the concatenated relevant data in the order.
The relevant data for each objects depends on its type:

! if the object is a file, relevant data is the entire content of the file.

! if the object is a directory, relevant data is the content of the havi.hashfile of the named
directory.

3.10.2.2 Signature File

The SHA-1 Hash digest value in the ‘havi.hashfile’ (a sequence of digest_byte) for the root-
directory is signed and contained as a file named ‘havi.signature’.

This file is generated by the vendor who creates the code unit, with one of the ‘vendor-unique
private key’ issued by HAVi to the vendor.

The file format of ‘havi.signature’ is as follows:

 92

HAVi SPECIFICATION Version 1.1

SHA-1 Message Digest according to havi.hashfile
(generated by the vendor of code unit)

(160 bits)

RSA Signature of the preceding 20 bytes
(generated by the vendor of code unit)

(length depends on ‘havi.cert’)

0

MSB LSB

offset

20

Figure 27. havi.signature format

3.10.2.3 Certificate File

The signature file ‘havi.signature’ is verified with the ‘vendor-unique public key’ which
corresponds to the vendor-unique private key that is used to generate the signature.

The ‘vendor-unique public key’ must be certified by the HCA. A file named ‘havi.cert’ is used for
this purpose. The verifier module in an FAV can find the ‘vendor-unique public key’ to verify the
‘havi.signature’ in this file, and shall verify whether the public key is trusted.

’havi.cert’ and corresponding vendor-unique private key will be issued to vendors from the HCA.

The file format of ‘havi.cert’ is as follows.

0

1

MSB LSB

offset

2

HAVi Authentication Version (8bits)

Key Attributes (8bits)

Serial No. of this Vendor Unique Public Key
 (32bits)

Validity year 20XX (8bits)

Validity month YY (8bits)
6

Length (in bits) of Public Exponent (8bits)

Public Exponent
(1 to 8 bytes, depending on the previous field)

Length (in words of 32bits) of Public Modulus (8bits)

Public Modulus
(128, 192 or 256 bytes, depending on the previous field)

7

8

9

Key Attributes
7 6 5 4 3 2 1 0
R R R R R V EM EX

Reserved External code unit
Embedded code unit
Validity

RSA Signature of all the preceding bytes
(generated by HAVi for this vendor-unique public key)

(2048 bit)

Length (in bytes) of Extended Fields (8bits)

Extended fields

 93

HAVi SPECIFICATION Version 1.1

Figure 28. havi.cert format

HAVi Authentication Version – the version number of HAVi Authentication Algorithm.
This field shall be set to 0x01 for HAVi Specification Version 1.1.

Key Attributes – each bit indicates the characteristic of this vendor-unique key.

Serial No. of this vendor-unique public key – a serial number uniquely assigned by
HAVi for the key.

Validity year – year until when this key is valid. The last 2 digits of year (i.e. 00 – 99) is used
and represented as a signed byte (i.e. ranging from 0x00 to 0x63).

Validity month – month until when this key is valid. 01 – 12 is used and represented as a signed
byte (i.e. ranging from 0x01 to 0x0c).

For the Key Attributes field, each bit represents as follows:.

Reserved bits – not used in this version. These bits shall be set to 0.

Validity bit – 1 if the key has validity, 0 for otherwise. If this bit is set to 0, the verifier shall
neglect the following Validity fields.

Embedded code unit bit – 1 if the key may be used for Embedded code units, 0 for
otherwise.

External code unit bit – 1 if the key may be used for External code units, 0 for otherwise.

Length of Public Exponent – length of the following Public Exponent field, expressed
in bits.

Public Exponent – a sequence of Public Exponent (in terms of PKCS#1 v2.0) of size Length
of Public Exponent

Length of Public Modulus – length of the following Public Modulus field, expressed in
words of 32 bits

Public Modulus – a sequence of Public Modulus (in terms of PKCS#1 v2.0) of size Length
of Public Modulus

Length of Extended Fields – length of any extended fields which may be added in the future
version. This field shall be 0x00 for the current version.

Extended Fields – This field may contain additional data for succeeding versions of the specification. In
this version of the specification the field is absent, i.e., length of Extended Fields is zero.

RSA Signature – a sequence of 2048 bits RSA signature for all the preceding bytes, generated by
the HCA for the key.

3.10.2.4 Certificate Revocation List File

A vendor-unique key may be revoked if the key is compromised. A HAVi-signed code unit may
contain a list of revoked keys with HAVi’s signature on it. Such a list is called Certificate

 94

HAVi SPECIFICATION Version 1.1

Revocation List (CRL), and has a fixed filename of ‘havi.crl’ in the root directory of the code unit
JAR file. The CRL file will be issued by the HCA and delivered to each vendor when needed. The
CRL may contain all the keys which have ever been revoked, or may contain only limited but
significant keys.

Each DCM/havlet code unit vendor shall include the most recently issued ‘havi.crl’, if available, in
the JAR file.

The file format of ‘havi.crl’ is as follows:

0

4N+5

MSB LSB
offset

1

3

9

4N+1

Serial No. of CRL (16bits)

Number of Entries (Number of Revoked Keys) (16bits)

Serial No. of Revoked Key #1
 (32bits)

Serial No. of Revoked Key #2
 (32bits)

Serial No. of Revoked Key #N
 (32bits)

RSA Signature of all the preceding bytes
(generated by HAVi)

(RSA 2048 bits)

HAVi Authentication Version (8bits)

5

Figure 29. havi.crl format

HAVi Authentication Version – the version number of HAVi Authentication Algorithm.
This field shall be set to 0x01 for HAVi Specification Version 1.1.

Serial No. of CRL – serial number of the CRL. A CRL of serial number = 0 does not exist,
since 0 is reserved to mean that no keys have been revoked. When the HCA creates and delivers a
new (updated) CRL, the CA will increment this value by one.

Number of Entries – indicates the number of Serial No. of Revoked Key s contained in
the CRL

Serial No. of Revoked Key – serial number of each revoked key, which was assigned by the
HCA and contained in corresponding ‘havi.cert’ file.

RSA Signature – a sequence of 2048 bits RSA signature for all the preceding bytes, generated by
the HCA for the key.

3.10.2.5 Implementation note on keys, digest values and
signatures encoding

Keys, signatures and digest values, when included in one of the four authentication specific files

 95

HAVi SPECIFICATION Version 1.1

(`havi.hashfile', `havi.signature', `havi.cert' and `havi.crl') shall always be seen as
bit strings with leftmost bit first (bslbf format). If they need to be converted from (respectively to)
integer values, primitive I2OSP (respectively OS2IP) described in PKCS#1 v2.0 shall be used. This
corresponds to Big endian order.

PKCS#1 v2.0 explicitly describes all conversions that are needed regarding digest values and
signatures. Key values (public exponent and public modulus) should be converted to integer values
before being used in RSA algorithm.

3.10.3 Certificate Generation Procedure

When a DCM/Application Module code unit is to be signed, the necessary files are generated as
follows:

! using SHA-1 Hash function, generate a ‘havi.hashfile’ file for the root directory of the JAR
file, according to the procedure defined by ETSI TS 101 812 V1.1.1 (2000-07), section
13.4.1.1. If class files and/or content files are stored in a subdirectory and need to be verified,
generation of ‘havi.hashfile’s for such subdirectories is needed before the ‘havi.hashfile’ file
for the parent directory is generated.

! ’havi.cert’ and corresponding vendor-unique private key will be issued to vendors by the HCA.
! using RSA algorithm, generate the digital signature for the SHA-1 Hash Digest value in the

‘havi.hashfile’ (a sequence of digest_byte) for the root-directory with the private key which
is confidentially given to the vendor. The vendor should use a vendor-unique key of
appropriate Key Attributes. Then generate a ‘havi.signature’ file which consists of the
Hash Digest value and the signature.

! put the ‘havi.hashfile’ and ‘havi.signature’ described above, and the ‘havi.cert’ which
corresponds to the vendor-unique key into the code unit JAR file. If one or more ‘havi.crl’
file(s) have ever issued by HAVi, put the latest ‘havi.crl’ into the JAR file.

3.10.4 Code Unit Authentication Procedure

When an FAV is to install a DCM/havlet code unit, the procedure is as follows:

3.10.4.1 DCM code unit install

! check if the code unit JAR file includes ‘havi.cert’, ‘havi.signature’ and ‘havi.hashfile’. If any
of these files are absent, the code unit is immediately regarded as “untrusted” and DCM
installation fails. If all these three files are present, go to the next step.

! If the DCM manager has uploaded the code unit from the SDD of an BAV, check whether the
Embedded code unit bit in the Key Attributes field is set to 1. Otherwise (the DCM
Manager has downloaded the code unit from Internet), check whether the External code
unit bit is set to 1. If it fails, the code unit is regarded as “untrusted” and DCM installation
fails. If it succeeds, go to the next step.

! If Validity bit is set to 1, check whether the current date is within the validity period. If it
fails, the code unit is regarded as “untrusted” and DCM installation fails. If it succeeds or
Validity bit is set to 0, go to the next step.

! check whether the Serial No. of this Vendor Unique Public Key is identical to
one of the revoked keys which the FAV maintains. If the key has been revoked, the code unit
is regarded as “untrusted” and DCM installation fails. Otherwise, go to the next step.

! using the known (and stored in the FAV) HAVi public key, verify the ‘havi.cert’ (see section
3.10.4.3). If it fails, the code unit is regarded as “untrusted” and DCM installation fails. If it
succeeds, go to the next step.

! check whether the hash values in ‘havi.signature’ and ‘havi.hashfile’ (a sequence of
digest_byte) are the same. If it fails, the code unit is regarded as “untrusted” and DCM

 96

HAVi SPECIFICATION Version 1.1

installation fails. If it succeeds, go to the next step.
! using the vendor unique public key verified above, verify ‘havi.signature’. If it fails, the code

unit is regarded as “untrusted” and DCM installation fails. Otherwise, go to the next step..
! using SHA-1 Hash function, calculate a hash value according to the order specified by

‘havi.hashfile’. Then compare the value with the value in the ‘havi.hashfile’ (a sequence of
digest_byte). If it fails, the code unit is regarded as “untrusted” and DCM installation fails.

! if all these processes succeed, the DCM code unit is regarded as “trusted” and allowed to be
installed.

3.10.4.2 havlet code unit install

! check if the code unit JAR file includes ‘havi.cert’, ‘havi.signature’ and ‘havi.hashfile’. If any
of these files are absent, the code unit is immediately regarded as “untrusted”. If all these three
files are present, go to the next step.

! If Validity bit is set to 1, check whether the current date is within the validity period. If it
fails, the code unit is regarded as “untrusted”. If it succeeds or Validity bit is set to 0, go
to the next step.

! check whether the Serial No. of this Vendor Unique Public Key is identical to
one of the revoked keys which the FAV maintains. If the key has been revoked, the code unit
is regarded as “untrusted”. Otherwise, go to the next step.

! using the known (and stored in the FAV) HAVi public key, verify the ‘havi.cert’ (see section
3.10.4.3). If it fails, the code unit is regarded as “untrusted”. If it succeeds, go to the next step.

! using the vendor unique public key verified above, verify ‘havi.signature’. If it fails, the code
unit is regarded as “untrusted”. Otherwise, go to the next step.

! check whether the hash values in ‘havi.signature’ and ‘havi.hashfile’ (a sequence of
digest_byte) are the same. If it fails, the code unit is regarded as “untrusted”. Otherwise, go
to the next step.

! using SHA-1 Hash function, calculate a hash value according to the order specified by
‘havi.hashfile’. Then compare the value with the value in the ‘havi.hashfile’ (a sequence of
digest_byte). If it fails, the code unit is regarded as “untrusted”.

! if all these processes succeed, the havlet code unit is regarded as “trusted”.

For havlet code units, the FAV may load the “untrusted” code units into the Java runtime.
However, even when loading such untrusted havlet code units is allowed, it is recommended that
the FAV have a proprietary mechanism to assure that such an installation is only done with the
user’s responsibility.

3.10.4.3 Verifier Implementation Note

In a future version of HAVi specification, the authentication mechanism may be enhanced. In such
a case, the later version will be updated so that it has backward-compatibility to this specification.

Therefore, a verifier implementation shall take it into account and comply the following rules:

! Even if the value of HAVi Authentication Version in ‘havi.cert’ or ‘havi.crl’ file is
greater than 0x01, the verifier shall not regard it as a failure.

! If the value of HAVi Authentication Version in ‘havi.cert’ file is greater than 0x01, the
value of Length of Extended Fields may not equal to 0x00. In such a case, some
extended fields may be added before RSA Signature field. The verifier shall also verify the
value of Length of Extended Fields and succeeding unknown sequence of bytes in
verifying the signature of ‘havi.cert’ file. Of course the sequence of bytes does not make sense
and thus will be neglected in the authentication process of this version.

 97

HAVi SPECIFICATION Version 1.1

3.10.5 Revocation

Each vendor is strictly responsible for keeping its own vendor unique private key confidential. In
case a vendor unique private key has leaked out or compromised, some FAVs may refuse to regard
a code unit which is signed by such private key as “trusted”. This is so-called “revocation” process.
Revocation can be performed by detecting a vendor unique public key in a ‘havi.cert’ which
corresponds to one of such revoked vendor unique private keys maintained in the FAV during
authentication procedure. HAVi defines a standard Certificate Revocation List format (See section
3.10.2.4). Each FAV shall implement a Key Revocation Mechanism.

The procedure of the key revocation mechanism for DCM and havlet code units is as follows:

! an FAV maintains whole or a part of the latest CRL with Serial No. of CRL on a
persistent storage inside the FAV. An FAV shall be capable of maintaining at least 100
Serial No. of Revoked Key entries.

! the FAV will update its CRL when and only when it finds a ‘havi.crl’ with greater Serial
No. of CRL and valid CA signature on it.

! the FAV will neglect a ‘havi.crl’ with lower Serial No. of CRL than the one it keeps
even if it has a valid CA signature.

The loading of an HAVi-signed code unit signed with a revoked key will fail in the authentication
procedure. The HAVi-signed code unit will be seen as untrusted. Revocation of keys may lead to
malfunctions. Overcoming that problem is easy in the case of External code unit (a new signature
with a new key is to be computed) but rather difficult in case of Embedded code units. It is thus
strongly recommended for the manufacturers to have different keys to sign External code units and
Embedded code units.

Loaded HAVi-signed code unit signed with a revoked key are not required to be removed by the
FAV. They may thus keep to be viewed as trusted.

It might also happen the HAVi CA key to get compromised. In that case, a new HAVi key may be
issued. Each company may have to get a new certificate for its current key and to change the file
'havi.cert' in all their available files. The old HAVi key shall be used neither for signing new
code units nor to be embedded in new devices.

Each FAV shall have a mechanism allowing the user to turn off the security. When security will be
turned off, all new downloaded code units will be seen as trusted. A FAV with an old security
HAVi key will then still be able to run already loaded code units and to download new code units.

FAV may optionally have some proprietary and not publicly exposed mechanisms allowing to get
the new HAVi Root key. These mechanisms shall strongly guarantee the origin of the new key. A
FAV with a new Root key will behave as follows:

! All code units authenticated by the new HAVi Root key will be installed following the
rules of section 3.4

! DCM code units authenticated by the old HAVi Root key will be installed following the
rules of section 3.4.1 with the following restriction:

! Embedded Code Unit bit in the Key Attributes shall be set to 1 and External Code
Unit shall be set to 0.

! An FAV with such a mechanism shall be able to store at least 2 old root keys.

 98

HAVi SPECIFICATION Version 1.1

3.10.6 HAVi certification procedures

The procedures related to the HAVi Certification Authority, e.g. obtaining keys and certificates, are
described in [16].

 99

HAVi SPECIFICATION Version 1.1

4 Data Driven Interaction

A HAVi software element may provide a user with the ability to control another software element
using the HAVi Data Driven Interaction mechanism. Within this interaction the first software
element is termed the DDI Controller and the second software element the DDI Target. The DDI
Controller uses a description of the UI to be presented to the user, DDI data (consisting of a set of
DDI elements), obtained from the DDI Target. The means by which this control is accomplished is
described in general terms below. Section 5.12 APIs for Data Driven Interaction contains detailed
information on DDI-related data types and operations.

4.1 Data Driven Interaction Protocol

A DDI Controller and its DDI Target are both HAVi software elements each executing on an IAV
or FAV device. The software elements may be on the same or different devices, implemented using
native code or Java bytecode; in all cases, though, they interact by sending HAVi messages to each
other. The DDI Controller communicates with the user by using the input and output devices of
(typically) the device upon which the controller is executing. This I/O communication may be done
in a DDI Controller implementation-dependent manner. The DDI Target may be a DCM that
controls its device in an implementation-dependent manner. The HAVi DDI protocol described in
this section is structured so that a DDI Controller may be written in a generic manner. That is, a
DDI Controller need not be implemented with knowledge of a particular DDI Target in mind; all
target-dependencies are represented in the DDI data (below) provided by the target to the
controller.

 100

HAVi SPECIFICATION Version 1.1

DDI Controller DDI Target

User
Input
Device

UserAction
(element ID, action)

changed element ID(s)

NotifyDdiChange
(changed element ID (s))

UnSubscribe

User
Display
Device

 return
 values

Subscribe

root DDI element ID

GetDdiElement(ID)

DDI element(s)

Figure 30. DDI Message Sequence Scheme (Typical)

As shown in Figure 30, controller-target interaction starts with the controller sending a Subscribe
message to the target. The target will remember which software element sent this message (for use
as the destination software element in possible NotifyDdiChange messages below) and return
the ID of an initial (or root) DDI element (see below). The controller will use the GetDdiElement
operation with this ID as an argument (or other DDI defined operations) to obtain the complete
contents of the root DDI element for rendering on the controller’s display device. Thereafter, based
on user input, the contents of the controller’s display device, and the DDI element(s) the controller
has obtained from the target the controller may:

! change the information that is being displayed to the user using a controller
implementation-dependent mechanism

! ask the target for another DDI element using the GetDdiElement operation (with the ID
of the desired DDI element as an argument)

! or send a control command (determined by the contents of the DDI element and possible
user input) to the target using the UserAction operation.

At any time after a controller has subscribed to a target and before that controller has unsubscribed
to that target the target may indicate that the DDI description held by the controller has changed
(indicating, for example, that some aspect of the target’s internal state which is relevant to the user

 101

HAVi SPECIFICATION Version 1.1

has changed). The indication will be done by the target sending a NotifyDdiChange message to
the controller. Arguments to this message will provide the controller with information about which
parts of the target’s DDI description have changed.

A UserAction message sent to the target by the controller will return to the controller information
about those parts of the target’s DDI description that have changed as a direct result of the action.
For example, a DDI button hit may attempt to place a target device into a “rewinding” mode and
the target may wish to indicate the success (or failure) of the command by returning a text element
with an appropriate string value.

In this manner the user and the target device communicate with each other using a sequence of
messages sent between the controller and the target guided by the DDI data the controller obtains
from the target.

It is controller’s responsibility to provide “exit” possibilities to the user in an appropriate way.
When the controller is done with the interaction with a target it will send an Unsubscribe
message to that target. The target will thereafter not send NotifyDdiChange messages to that
controller and the controller should not send any other messages to that target. The controller may
open a new interaction by sending another Subscribe message to that target.

In addition to the GetDdiElement operation (which, as briefly described above, takes as an
argument the ID of a single element and returns the actual element with that ID) a DDI Target
provides a number of other similar operations for returning lists of element IDs or lists of actual
elements. The values of certain “large” attributes (e.g., bitmaps) are obtained by the controller from
the target using the GetDdiContent operation. See section 5.12 APIs for Data Driven Interaction
for details.

Note, because the HAVi DDI mechanism is primarily intended to allow users to interact with
devices, the DDI Controller that “pulls” the DDI description functions essentially as a UI-controller
and the target that supplies the DDI description is typically a DCM. However, it is possible for any
application (not only a UI-controller) to act as a DDI Controller and for any application (not only a
DCM) to act as a DDI Target. It is also possible for a DDI Target to be controlled by more than one
DDI Controller and for a DDI Controller to control more than one DDI Target. The DDI data used
by the DDI Controller need not have come from the DDI Target being controlled; though, typically
it will come from the target. Any DDI data that is supplied by a DDI Target will always be
appropriate for controlling that target.

Also note, for dealing with situations in which either the target or the controller goes away before
an explicit Unsubscribe operation is sent, the Messaging System MsgWatchOn and
MsgWatchOff calls should be used to notify each respective object that the other has gone away.

4.2 User Output and Input Device Models

The DDI Controller manages in an implementation-dependent manner a display device to present
information to the user and a user input device to accept commands from the user. In order to allow
the DDI model to apply to a broad range of particular devices these devices are modeled abstractly
by only specifying in a general manner the way in which DDI data is associated with physical user
interaction. The DDI data and its constituent DDI elements provide “suggestions” on how the
controller is to make this association. These suggestions depend on the type and attribute values of
the DDI elements.

 102

HAVi SPECIFICATION Version 1.1

4.2.1 Output Device Model

The DDI elements that the controller obtains from the target may be physically presented,
rendered, to the user using the display device. Each DDI element is of a particular type (e.g., panel,
icon, button) and each type of DDI element has a particular set of attributes (e.g., size, position,
color, image content, sound content). All attributes are divided into two distinct classes: mandatory
attributes and optional attributes. In a target’s DDI data a DDI element’s mandatory attributes will
always have an associated value; optional attributes may or may not have an associated value.
Every DDI element type has one or more mandatory label attributes whose values are text strings.

There are then three broad styles in which a DDI Controller can present a panel to a user:

Full-capability – all of the panel’s elements are displayed as required by the element’s attributes.

Intermediate – the entire panel cannot be displayed as given.

Basic – only a few or even a single element can be displayed at a time; however, at least, text string
label attributes must be rendered.

See section 5.12.2.1 for recommended guidelines for non-full-capability controllers .

Note that the controller is also responsible for physically presenting the values of audio attributes of
DDI elements as best as it and its display device are able.

Many DDI element types have attributes that are to be used by the controller to determine position
and size on the display device. The physical display device is considered to be a rectangular array
of discrete pixels. Position and size information is expressed with respect to a two-dimensional
coordinate system for this rectangle with non-negative x and y coordinate values; the upper-left
corner as the user faces the device is <0,0>. For details of coordinate system extent, aspect ratio of
the mapping to physical pixels, etc., see the description of DDI panels in section 5.12.8 Individual
DDI Elements. The positions of DDI elements contained within organizational DDI elements (that
is, panel and group elements) are relative to the position of the most immediately containing
organizational element. The values that pixels may have and the physical interpretation of the value
(e.g., color) are defined in section 5.12.4 Basic DDI Types.

For many types of DDI elements, attributes that specify their position are optional. When a position
attribute is not given for an element the controller has broad freedom to locate the rendering of that
element subject only to the guidelines provided by the place of that element within the overall DDI
data – see section 4.3.1 Organizational DDI Elements.

4.2.2 Input Device Model

Like output to the user, input from the user is modeled abstractly. This model can be presented with
the aid of the following definitions. DDI element types are interactive (e.g., button, set range) or
non-interactive (e.g., status), based upon whether they, respectively, can or cannot be used by the
controller to send a UserAction message to the target. DDI element types are user-modifiable
(e.g. set range) or non-user-modifiable (e.g., button, icon) depending upon whether they,
respectively, have or do not have a user-modifiable attribute.

User input is taken into account within the DDI model by requiring that a controller, in a manner
appropriate for the actual physical input device, allow the user to:

 103

HAVi SPECIFICATION Version 1.1

! change the value of a user-modifiable attribute of a user-modifiable DDI element (e.g.,
enter a new text string into a DDI entry element) – this causes the controller to send a
UserAction message to the target with arguments whose values depend on the type of
the DDI element and contain the value supplied by the user.

! select an interactive DDI element (e.g., “hit” a DDI button element) – this causes the
controller to send a UserAction message to the target with arguments whose values
depend on the type of the DDI element and on the particular kind of selection the user
performed.

! explicitly associate with the display device another DDI panel element by selecting a DDI
panel link element. This will cause the controller to send a UserAction message to the
target to indicate the selection. It will typically also cause the controller to obtain the DDI
elements contained in this new panel from the target.

! change the display device by having the controller render DDI elements that are
associated with the current DDI panel element but which are not currently rendered. This
change only affects the display device; it does not directly cause the controller to send a
UserAction message to the target. Note that if display resources are otherwise
inadequate to render the new DDI elements, the controller may “un-render” DDI elements
in a manner of its own choosing. For example, the controller may remove an arbitrary
element from the current display or allow the user to control a scrolling mechanism.

4.3 DDI Elements

4.3.1 Organizational DDI Elements

The DDI elements contained in a target’s DDI data are arranged into a hierarchy.

This hierarchy serves three purposes:

! It allows a controller to navigate through the DDI elements in an “organized” way.

! From the target’s point of view, it indicates which DDI elements belong logically together
and should, therefore, preferably be displayed physically together to the user.

! From the controller’s point of view, it can be used to let the target know about which DDI
element changes the controller should be notified.

Two types of organizational DDI elements determine the hierarchical organization of the elements
in a target’s DDI data:

! the DDI panel element, which has a (mandatory) attribute whose value is a list of the IDs
of the DDI elements that are contained in the panel. DDI panel elements may not be
(directly) contained in other DDI panel elements.

! the DDI group element, which has a (mandatory) attribute whose value is a list of the IDs
of the DDI elements that are contained in the group. DDI panel elements may not be
(directly) contained in other DDI group elements; however may contain other groups.

Panel and group elements are non-interactive and non-user-modifiable in the sense defined in
section 4.2.2 Input Device Model.

 104

HAVi SPECIFICATION Version 1.1

A non-organizational DDI element is simply an element that is not an organizational DDI element.
Non-organizational DDI elements will be discussed in section 4.3.3 Non-Organizational DDI
Elements.

At any point in time a controller has a current panel which is the DDI panel element that the
controller has most recently obtained from the target and which the controller is currently rendering
as best it can (with all its contained DDI elements) on the display device.

The controller allows the user to navigate through the current panel’s contents by means of the
above hierarchy. The controller can choose to render panels, groups within panels and non-
organizational DDI elements within panel or groups. The way in which a controller navigates
through the panels and groups is its choice. The only thing that a target can assume is that the user
is aware of the panel and the group that contains any DDI element the user may select. The
controller (depending on the capabilities of its display device) can assure this in a number of ways:

! by displaying the complete panel, all its groups with all their non-organizational DDI
elements

! by displaying for the panels and groups only their label or icon

! by displaying the non-organizational DDI elements only (in this case, the controller can
still assure that the user knows what he or she is looking at, because the user has
navigated through the panels, groups, and DDI elements in a way known to the user)

! some combination of the above.

4.3.2 Uses of Organizational DDI Elements

A DDI panel element (and its contained elements) may be used for the presentation and control of a
function or a very closely related set of functions in the target device. The panel represents a set of
DDI elements which the controller should render together on a single display screen. If this is not
possible, the controller may divide/modify the set of panel elements over as few display screens as
display capability allows. However, this should be done in a manner consistent with the intention of
the designer of the target DDI data so that the user thinks of this set of elements as comprising a
whole.

Similarly, a DDI group element may be used for the presentation and control of a sub-function of
the target device. The elements contained in the group all have the same level of display priority. In
situations where the controller cannot render all the groups and other elements in a panel at the
exact positions specified by their attributes the controller may move or choose to (temporarily) not
render some groups or other elements. However, the controller must make a strong attempt to keep
the elements in a group together when they are rendered. The groups within a panel have a linear
ordering. Like the panel and group elements which may contain them, non-organizational DDI
elements have position information supplied by their attributes. If display resources are limited, the
controller may change the position of non-organizational DDI elements within their panel or group.

4.3.3 Non-Organizational DDI Elements

As defined in the section above, non-organizational DDI elements are those DDI elements that are
not panel or group elements. These types of DDI elements occupy “leaf” device locations in the
DDI hierarchy determined by panel and group elements. A non-organizational DDI element has a
type and type-specific mandatory and optional attributes that suggest to the controller:

 105

HAVi SPECIFICATION Version 1.1

! how the element should be rendered,

! what sort of effect user input should have upon the element; i.e., is the element user-
modifiable in the sense defined in section 4.2.2 Input Device Model,

! and what effect user selection should have with respect to the controller sending
UserAction messages to the target; i.e., is the element interactive in the sense defined in
section 4.2.2 Input Device Model.

The text below briefly describes a subset of non-organizational DDI elements mentioning
important mandatory attributes, indicating element use and typical renderings, and categorizing
elements with respect to interactivity and user-modifiability. Detailed information is provided in
section 5.12 APIs for Data Driven Interaction.

Text element – has a mandatory attribute containing a text string. This element is used to present a
static label or other textual information to the user. A text element is non-user-modifiable.

Panel link element – has a mandatory attribute containing the ID of a panel element. Used for user-
driven navigation by the controller. See section 4.4 Navigation of the DDI Hierarchy. A panel link
element is non-user-modifiable.

Button element – has mandatory attributes that describe a sequence of “pressed” and “released”
appearances. Used to allow a user to send a simple (i.e., without parameters) command to the
controller. A button element is non-user-modifiable.

Choice element – has mandatory attributes that describe a discrete set of possible values of which
the user may choose one or a number and thereby indicate to the target some command or course of
action. Typical renderings are as many-out-of-many “choice boxes” or as one-out-of-many “radio
buttons”. A choice element is user-modifiable.

Entry element – allows a user to enter, for example, a text string value and send it to the target. A
typical rendering is as a text entry field perhaps with an associated on-screen keyboard. An entry
element is interactive and user-modifiable. Other numeric, date, and time data types may be also
entered.

Animation element – has a mandatory attribute containing a sequence of icons. If there is only one
icon in the sequence that icon is statically rendered by the controller. If there is more than one icon
in the sequence the controller renders each icon in temporal sequence giving the user the effect of
an animation. An animation element is non-user-modifiable.

Show Range element – has mandatory attributes defining a numeric range and a particular value
within that range. Used to present static numeric information to the user. Typical renderings are as a
circular meter with variable position pointer or as a linear variable length bar. A show range
element is non-user-modifiable.

Set Range element – has mandatory attributes defining a numeric range. Used to allow a user to
send a command with a numeric parameter to the target. Typical renderings are as a slider or dial.
A set range element is user-modifiable.

All above mentioned DDI elements can be used in an interactive and non-interactive way. Again,
the actual appearance and position of each DDI element depends on the controller; while a target’s
DDI data provides an explicit logical structure for its DDI elements, it only gives suggestions to the
controller for their rendering.

 106

HAVi SPECIFICATION Version 1.1

4.4 Navigation of the DDI Hierarchy

4.4.1 Controller-Driven Navigation

If a controller chooses not to render a whole panel, then the controller must provide some means
consistent with the capabilities of the user input and display output devices to allow the user to
bring un-rendered elements into view. To allow the user to control this process, the controller may
render items of its own choosing (e.g., arrows, scroll bars, etc.). These items are not obtained from
the target and are specific to the controller implementation. However the controller implements
controller-driven navigation, it must do so locally without explicit target involvement. That is, the
controller may not during this process send UserAction messages to the target, though it (the
controller) may obtain additional DDI elements from the target. This process is called controller-
driven navigation. DDI elements may contain attributes which the controller may or may not use
to guide the user during controller-driven navigation.

4.4.2 User-Driven Navigation

It is possible for DDI data to contain non-organizational DDI panel link elements. A panel link
element has as the value of a mandatory attribute the ID of a panel element. Other attributes suggest
a position and appearance for the rendering of the panel link element. This type of element offers a
means for the controller to switch from one panel to another. If the user selects this element the
controller may abandon rendering the currently rendered panel, make the specified panel element
the current panel, and render it appropriately. This process is called user-driven navigation. Again,
as for controller-driven navigation, the target will only be consulted if the controller needs
additional DDI elements

DDI panel link elements thus make it possible for a target to specify DDI hierarchies of effectively
arbitrary depth below the root panel. Also, there is no topological restriction for targets on the
relationship between panels given by panel link elements; e.g., cycles are allowed at the discretion
of the target designer.

4.5 Notification Scope for Target DDI Changes

As mentioned above in section 4.1 Data Driven Interaction Protocol, at any time while a controller
is subscribed to a target, the target may indicate that its DDI description (some or all of which the
controller may have previously read from the target) has changed by sending a NotifyDdiChange
message to the controller. Arguments to this message will provide the controller with information
about which parts of the target’s DDI description have changed. The target may also indicate that
its DDI description has changed in its response to a UserAction message sent to it by the
controller. For large target DDI descriptions this may lead to many possibly extraneous notification
messages being sent to the controller. A mechanism exists within the DDI model to reduce this
message traffic.

It is possible for the controller to give the target a description of a portion of the target’s DDI
description, the current notification scope. The target will only notify the controller of changes to
those target DDI elements that are within the notification scope. Target DDI elements outside of the
current notification scope may change but the target will not send a corresponding indication to the
controller. This indication is called a change report and may refer to zero or more changed DDI
elements. A change report is included in the arguments for both the UserAction and
NotifyDdiChange operations.

Any non-organizational target DDI element that changes and is within the current notification

 107

HAVi SPECIFICATION Version 1.1

scope will be included in the change report sent by the target to the controller. If DDI elements are
added to or removed from organizational target DDI elements then these organizational elements
will be included in the change report sent by the target to the controller. If both non-organizational
and organizational target DDI elements are changed, both changes will be included.

For low notification-traffic situations, the controller can choose to set the notification scope to be
the complete target DDI description. In higher traffic situations, the controller can set the
notification scope to be the current panel. The controller may also decide to add each retrieved
panel in its notification scope. A controller may change the notification scope during subscription.

Details are in section 5.12 APIs for Data Driven Interaction.

 108

HAVi SPECIFICATION Version 1.1

5 Software Element APIs and Protocols

5.1 HAVi Type Definitions and API Categories

5.1.1 HAVi API Descriptions

The following sections describe the APIs supported by the HAVi software elements. Each section
begins with a summary Services Provided table which uses the terminology listed below:

! Service: The first column of a Services Provided table gives the service name. These
names have three forms: ApiName::Name, <Client>::Name and Name. The first form
indicates that the service uses a HAVi operation code from Annex 11.6. The second form
indicates that the service would be provided by a client and uses an operation code
selected by the client. The third form is used for events, procedure calls and callbacks.

! Communication Type: The form of communication used between the software element
supporting the API (the “server”) and a client, possibilities are:

! procedure call (PC) – communication is via a local procedure call or via a HAVi
defined Java API. This form of communication is initiated by the client.
Implementation is platform dependent.

! call back (CB) – communication is via a local call back function. This form of
communication is initiated by the server. Implementation is platform dependent.

! messaging (M) – communication is via the Messaging System. This form of
communication is initiated by the client. The client sends a message containing an
operation code listed in Annex 11.6 to the server. The server then sends a reply
message.

! message back (MB) – communication is via the Messaging System. This form of
communication is initiated by the server. The server sends the client a message using
an operation code previously provided by the client. The client may then send a reply
message to the server. It is the responsibility of the client to select an operation code
that does not conflict with those used in other messages it intends to receive.

! event (E) – communication is via the Event Manager. This form of communication is
initiated by the server. The server posts an event (sends a message to the Event
Manager) which is delivered by the Event Manager using the event notification
mechanism.

! Locality: Applies to communication via messaging (M), events (E) and message backs
(MB). In the case of messaging, indicates whether an interface can only be called from
software elements on the same device (local) or also from software elements on other
devices (global). In the case of events, indicates whether the event is posted locally or
globally (see EventManager::PostEvent). In the case of message backs, indicates
whether the message can be sent only to software elements on the same device or also to
software elements on other devices. Note – communication via procedure call (PC) and
call back (CB) is always between local software elements.

 109

HAVi SPECIFICATION Version 1.1

! Access: Applies to communication via messaging (M), procedure call (PC), events (E),
and message backs (MB). For messaging and procedure call, this entry indicates the
software element types that may call an interface without generating an access violation.
For events two values are given for this entry, the first indicates which software elements
may post the event without generating an access violation, the second, shown in
parentheses, indicates possible receivers of the event (this value is informative only).
Similarly for message backs two values are given – the first indicates the software
element which may send the message, the second value, shown in parentheses, indicates
possible receivers of the message. Possible values for Access are:

! system – can only be called from HAVi defined software elements. Specific software
elements may be named (e.g., “DCM Manager”)

! trusted – can only be called from trusted software elements
! all – can be called from any software element.

! Reservation Protection: Applies to DCM and all FCM interfaces (for the generic FCM
APIs as well as for the type-specific FCM APIs). For DCM interfaces this refers to
interfaces in which reserved FCMs are involved. Reservation protection will only be
indicated for the above mentioned interfaces. In case an FCM is reserved, it indicates
whether an interface will check that the (SEID of the) calling software element is
identical to the (SEID of the) reserver and will refuse to execute a command that leads to
reservation violation. If the FCM is not reserved, any interface call by any software
element is allowed. In general, all state changing APIs should have a reservation
protection indication. However, state changing APIs that do not compromise the
functionality offered to a (primary or secondary) reserver are allowed to omit the
reservation protection indication.

Entries in the Services Provided table for which there is no choice (e.g., Locality in the case of PC
communication) or not applicable (e.g., Access in the case of CB communication) are left blank.

5.1.2 Basic HAVi Types

uint64

An unsigned 64 bit integer:
typedef unsigned long long uint64;

uint

An unsigned 32 bit integer:
typedef unsigned long uint;

ushort

An unsigned 16 bit integer:
typedef unsigned short ushort;

uchar

An unsigned 8 bit integer:
typedef unsigned char uchar;

 110

HAVi SPECIFICATION Version 1.1

GUID
typedef octet GUID[8];

VendorId
typedef octet VendorId[3];

The VendorId is the 24-bit SDD device vendor identifier, this is also the first three bytes of the
GUID.

SEID
typedef octet SEID[10];

ApiCode
typedef ushort ApiCode;

Each group of APIs (such the Registry APIs or the Event Manager APIs etc.) is assigned a unique
16-bit ApiCode, these are listed in Annex 11.5. Note that a software element may accept messages
from several API groups.

OperationCode

Messages sent to software elements contain a 24-bit operation code with the following structure:
struct OperationCode {
 ApiCode apiCode;
 uchar operationId;
};

The OperationCode values for HAVi messages are listed in Annex 11.6.

Status

HAVi APIs generally return the following status structure:
struct Status {
 ApiCode apiCode;
 ushort errCode;
};

The possible Status values are listed in Annex 11.7.

Version
typedef uint Version;

All HAVi software elements have an associated version number.

MediaFormatId
struct MediaFormatId {
 VendorId vendorId;
 uchar category;
 ushort majorType;

 111

HAVi SPECIFICATION Version 1.1

 ushort minorType;
};

AV recording and playback media, such as CD discs or DV tapes, are assigned a media format
code. Possible values are listed in Annex 11.10.

ImageTypeId
struct ImageTypeId {
 VendorId vendorId;
 ushort typeNo;
};

Values of ImageTypeId specified by HAVi are listed in Annex 11.13.

StreamTypeId
struct StreamTypeId {
 VendorId vendorId;
 ushort typeNo;
};

Values of StreamTypeId specified by HAVi are listed in Annex 11.11.

CompOperation

Definition
typedef ushort CompOperation;

Description
This type is used for Registry queries and FCM notifications, it indicates the comparison operation
to be performed on some attribute. The comparison operations supported by HAVi are listed in
Annex 11.17.

Two families of comparison operations are provided:

! byte row comparisons – these operations do not interpret any of the bytes in a specified
row (attribute value). For the basic IDL types (boolean, char, octet, short, long,
long long) this corresponds with the natural comparison on these types.

! sequence comparisons – these operations interpret a row of bytes (attribute value) as a
sequence of some type. In particular, the first four bytes of the attribute value are
interpreted as the length of the sequence. The comparison is then done over the rest of the
attribute value as a row of bytes. If the attribute value cannot be interpreted properly as a
sequence (it does not contain four bytes), the comparison fails. For the sequences of basic
IDL types, e.g., strings, this corresponds with the natural comparison on these types.

The most significant bit of a comparison operator indicates whether it is a byte row comparison or a
sequence comparison.

DateTime
struct DateTime {
 ushort year;

 112

HAVi SPECIFICATION Version 1.1

 uchar month;
 uchar day;
 uchar dayOfWeek;
 uchar hour;
 uchar minute;
 uchar sec;
 ushort msec;
};

The possible values of the DateTime fields are listed below:

Field Description

year Year AD (1, …, 32767), ignored when value is 0xffff
month Month (1,...,12), ignored when value is 0xff
day Day of month (1, ..., 31), ignored when value is 0xff
dayOfWeek Sunday, Monday,… (1,…,7), ignored when value is 0xff
hour Hour of day (0, ..., 23), ignored when value is 0xff
minute Minutes of hour (0, ..., 59), ignored when value is 0xff
sec Seconds of minute (0, ..., 59), ignored when value is 0xff
msec Milliseconds of second (0, …, 999), ignored when value is 0xffff

In addition to the rules for the range of valid values specified above, the following rules must also
hold:

! year, month, and day values should be consistent with valid calendar values, unless one
or more of them are set to “ignored”. For example, February 30 is invalid, and February
29 is only valid in a leap year.

! The value of dayOfWeek should be consistent with the year, month, and day values
provided, unless one or more of them are set to “ignored”.

If an invalid DateTime value is specified as an in parameter to an API call, an EINVALID_PARAM
error code may be returned.

5.1.3 Error Handling

All HAVi APIs involving messaging (those APIs where the Communication Type is “M” or “MB”)
shall return the Status structure specified above. The Status structure consists of two fields: an
API code and an error code. Generally the different software elements will define their own error
codes (see Annex 11.7), in addition though there are several “general purpose” error codes that can
be used by any software element. These general error codes are:

! SUCCESS – the operation has succeeded (this is the normal return value in Status and not an
error)

! EUNKNOWN_MESSAGE – the receiver of a HAVi message does not support the API indicated by
the Operation Code contained within the message

! EACCESS_VIOLATION – the caller of an API does not have permission to perform the
operation

! EUNIDENTIFIED_FAILURE – an error of unknown origin has occurred
! ERESERVED – the operation is refused because the FCM (or, in the case of a DCM, one of the

FCMs involved in the DCM operation) is reserved by another software element and the
invoking software element (possibly a secondary client) is not allowed to perform this

 113

HAVi SPECIFICATION Version 1.1

operation
! ENOT_IMPLEMENTED – the receiver of a HAVi message does not implement the optional API

(see section 5.1.5) indicated by the Operation Code contained within the message
! EINVALID_PARAMETER – one or more parameters in a HAVi message contain invalid values
! ERESOURCE_LIMIT – the operation failed due to resource limitations at the destination device
! EPARAMETER_SIZE_LIMIT – one or more parameters in a HAVi message exceed their safe

parameter size limit and the receiver is unable to handle the parameter(s)
! EINCOMPLETE_MESSAGE – the length of a HAVi message is shorter than the length required

for compliant messages (using the Operation Code contained within the message)
! EINCOMPLETE_RESULT – one or more out parameters in a HAVi message are correct but

incomplete. Note that this may only occur when one or more parameters are at least the safe
parameter size.

! ELOCAL – the caller of a “local” API (as indicated in the “Services Provided” tables) is not on
the same device as the provider of the API

! ESTANDBY – the operation is refused because the target device is in standby state

The error code appearing in the Status value returned by a HAVi API is either: one of the general
codes listed above, a Messaging System error code, or an API-specific error code (one that is listed
in the “Error codes” section following the description of the API).

If the Status value returned by a HAVi API contains one of the “general error codes” listed above
(including SUCCESS), the API code shall be that used in invoking the API, otherwise it shall be the
API code associated with the contained error (as identified in Annex 11.7). If the contained error is
not listed in the "Error codes" section following the description of the API or the contained error
has an invalid API code, the client of the API shall interpret the contained error as
EUNIDENTIFIED_FAILURE. Therefore, if the client is a Java client, the corresponding message-
sending method of the client class (see section 7.3.8.1.1), server helper class (see section 7.3.8.1.2)
or the SoftwareElement class shall throw HaviUnidentifiedFailureException in these
cases.

5.1.4 Parameter Size and Resource Limitations

Some of the APIs in the following sections have specifications that would allow unbounded sizes
for some parameters. However, each FAV and IAV will only have a limited amount of memory.
These limitations can differ from controller to controller and thus hamper interoperability between
controllers.

Therefore, for variable sized (input or output) parameters in HAVi APIs a “safe parameter size
limit” is specified. Such limits indicate that compliant software elements will be able to handle
messages where the size of the parameter in question is less than or equal to the safe parameter size
limit. However, accepting parameters of size larger than the safe parameter size limit is allowed.

The safe parameter size limit puts a requirement to support the indicated parameter size at both
sending and receiving sides. At the receiving side (in parameters for servers, out parameters for
clients) this means being able to receive and handle. At the sending side (out parameters for servers,
in parameters for clients) this means being able to construct and send.

The server may return the EPARAMETER_SIZE_LIMIT error if it cannot handle the request due to
the safe parameter size of an in parameter being exceeded.

The server shall return the EINCOMPLETE_RESULT error if the parameters it returns are valid but
incomplete. Note that a server may only return this error when one or more of the parameters it
returns are at least the safe parameter size.

 114

HAVi SPECIFICATION Version 1.1

The server shall return ERESOURCE_LIMIT if it fails to process a request due to lack of resources.
If the server generates an incomplete or potentially incomplete response, i.e., one where values of
the out parameters are valid but may be incomplete, this error shall not be returned.

A controller may present a notification to the user if a resource limitation problem occurs.

5.1.5 Optional APIs

Certain APIs, in particular those of specific FCMs such as the Tuner or VCR, are optional. A
software element which receives a message for an unimplemented optional API shall return an
error of the form ENOT_IMPLEMENTED. Only those APIs which list such an error are optional.
Optional APIs are highlighted in gray in the “Services Provided” tables.

5.1.6 Vendor and Third Party Extensions

Several of the identifiers appearing in the HAVi APIs have reserved ranges for use by this and
future versions of the HAVi specification. The following table summarizes these identifiers and
gives rules for third party and vendor extensions.

Table 9. Extensions to HAVi Entities

Entity IDL Type HAVi
range

Remarks

ProtocolType uchar 0x0 – 0x7f Annex 11.1
AttributeName uint 0x0 – 0x7fff ffff Annex 11.2
SoftwareElementType uint 0x0 – 0x7fff ffff Annex 11.3
SEID.swHandle ushort 0x0 – 0x00ff Annex 11.4
ApiCode ushort 0x0 – 0x7fff Annex 11.5
OperationId uchar 0x0 – 0x7f Annex 11.6
ErrorCode ushort 0x0 – 0x7fff Annex 11.7
AttributeIndicator ushort 0x0 – 0x7fff Annex 11.8
EventId union {…} SystemEventId Annex 11.9

MediaFormatId struct {…} VendorId == 0 Annex 11.10

StreamTypeId struct {…} VendorId == 0 Annex 11.11

TransmissionFormat union {…} no extensions Section 3.7.3
ImageTypeId struct {…} VendorId == 0 Annex 11.13

TransportType ushort no extensions Annex 11.14
DdiElementId ushort 0x0 – 0x7fff Annex 11.15
OptAttrType ushort 0x0 – 0x7fff Annex 11.16
CompOperation ushort no extensions Annex 11.17

5.1.7 Guidelines for API Updates in HAVi Versions

To avoid the introduction of new methods or system events for the smallest changes of an API,
some exceptions are allowed to the general rule which states that no API may ever be updated (see
section 2.8). However an extension of an API must ensure that the signature of previous versions is
not broken.

 115

HAVi SPECIFICATION Version 1.1

To enable adding of enums and error codes to existing APIs, clients must be implemented in such a
way that they are prepared to receive unknown error codes or enums and that they shall not fail as a
result of a new enum or const. A client shall interpret a received unknown error code as
EUNIDENTIFIED_FAILURE. Therefore, if the client is a Java client, the corresponding message-
sending method of the client class (see section 7.3.8.1.1), server helper class (see section 7.3.8.1.2)
or the SoftwareElement class shall throw HaviUnidentifiedFailureException in these cases. And Java
applications should catch any HaviException to avoid termination on an unknown HaviException
thrown by the HJA of a newer FAV.

An API may be updated as long as its signature does not change and it can be unmarshalled
irrespective of the version. This may be the case when new members are added to the type
definition of the enum parameters or union input parameters, or new error codes are added.

However, any change to the parameter list, or any change to the type definition of struct parameters
or union output parameters will change the signature of the API. In these cases a new API shall be
added with a new operation ID or a new system event shall be added with a new system event ID.

Moreover, even if the signature of the API is not changed, any change to the semantics or safe
parameter size needs a new API with a new operation ID or system event ID.

5.2 Communication Media Manager

5.2.1 Services Provided

Service Comm
Type

Locality Access

Cmm1394::GetGuidList M local all

Cmm1394::Write M local trusted

Cmm1394::Read M local trusted

Cmm1394::Lock M local trusted

Cmm1394::EnrollIndication M local trusted

Cmm1394::DropIndication M local trusted

<Client>::Cmm1394Indication MB local CMM1394 (trusted)

NewDevices E local CMM1394 (all)

GoneDevices E local CMM1394 (all)

NetworkReset E local CMM1394 (all)

GuidListReady E local CMM1394 (all)

5.2.2 CMM1394 API

Cmm1394::GetGuidList

Prototype
Status Cmm1394::GetGuidList(
 out sequence<GUID> activeGuidList,
 out sequence<GUID> nonactiveGuidList)

Parameters

 116

HAVi SPECIFICATION Version 1.1

! activeGuidList – the GUID list of all active devices on the network. The safe parameter
size limit is 63 GUID values.

! nonactiveGuidList – the GUID list of non-active devices on the network. The safe
parameter size limit is 63 GUID values.

Description
Get GUID lists of both active and non-active devices on the network. The first item returned in
activeGuidList shall be the GUID of the local node. A device is defined as active if it can
process HAVi messages (IAV or FAV) or respond to commands from HAVi software elements
(BAV or LAV). For FAV, IAV, or BAV devices, an SDD entry (HAVi_Device_Status) in the
HAVi_Unit_Directory can be read to determine the status of the device (see section 9.10.4.6). A value
of one indicates that the device is active. A value of zero indicates that the device is not active. An
LAV device is considered active whenever its GUID is visible on the network.

Error codes
! Cmm1394::ENOT_READY – the GUID list is not available yet, the system may be updating it.

This is a transient error, the client software element may retry.

Cmm1394::Write

Prototype
Status Cmm1394::Write(
 in GUID guid,
 in uint64 remoteOffset,
 in sequence<octet> data)

Parameters
! guid – target device’s GUID.
! remoteOffset – target device’s memory offset (the higher 16 bit is ignored).
! data – data block to be written to the remote device. The safe parameter size limit is 512 bytes

(the 1394 asynchronous packet size for bus speeds of 100 Mbps).

Description
Initiate a 1394 asynchronous write transaction with the remote device, which is identified by guid.
The specified data block will be written to the address specified by remoteOffset on the remote
device. The execution of the function may experience some latency due to bus transitions between
devices. The latency is upper bounded by the CMM’s internal timeout mechanism.

It is permitted for the user of this API to submit the local GUID as an argument. No error is
generated in this case and the operation will occur normally. Whether or not a 1394 transaction is
performed is implementation dependent.

When performing a 1394 transaction and the size of data is four, a quadlet-write packet shall be
used.

Error codes
! Cmm1394::EADDRESS – resp_address_error (see Table 6-11 of IEEE 1394-1995).
! Cmm1394::EHARDWARE – resp_data_error (see Table 6-11 of IEEE 1394-1995) or

ack_data_error (see Table 6-13 of IEEE 1394-1995).
! Cmm1394::ETYPE – resp_type_error (see Table 6-11 of IEEE 1394-1995) or ack_type_error

(see Table 6-13 of IEEE 1394-1995).
! Cmm1394::ECONFLICT – resp_conflict_error (see Table 6-11 of IEEE 1394-1995).

 117

HAVi SPECIFICATION Version 1.1

! Cmm1394::ERETRY – retry procedure error by ack_busy_X, ack_busy_A, ack_busy_B (see
Table 6-13 of IEEE 1394-1995).

! Cmm1394::ESIZE – the packet is too large to be sent.
! Cmm1394::EUNKNOWN_GUID – the destination GUID is unknown
! Cmm1394::ETIMEOUT – no response packet has been received from the remote device within

the internal timeout period or no valid ack code has been detected (see 6.2.5.2.1 of IEEE1394-
1995). This timeout period is vendor dependent.

! Cmm1394::EBUSRESET – the request has not been completed due to a bus reset.

Cmm1394::Read

Prototype
Status Cmm1394::Read(
 in GUID guid,
 in uint64 remoteOffset,
 in short dataSize, out sequence<octet> data)

Parameters
! guid – target device’s GUID
! remoteOffset – target device’s memory offset (the higher 16 bit is ignored)
! dataSize – size of data (in byte) to be read back from the remote device
! data – data block read back from the remote device. The safe parameter size limit is 512 bytes

(the 1394 asynchronous packet size for bus speeds of 100 Mbps).

Description
Initiate a 1394 asynchronous read transaction with the remote device specified by guid. dataSize
bytes of data will be read from the remote device starting at address remoteOffset. The
execution of the function may experience some latency due to bus transitions between devices. The
latency is upper bounded by the CMM’s internal timeout mechanism. This API may return fewer
bytes than requested without returning an error.

It is permitted for the user of this API to submit the local GUID as an argument. No error is
generated in this case and the operation will occur normally. Whether or not a 1394 transaction is
performed is implementation dependent.

When performing a 1394 transaction and the size of data is four, a quadlet-read packet shall be
used.

Error codes
! Cmm1394::EADDRESS – resp_address_error (see Table 6-11 of IEEE 1394-1995).
! Cmm1394::EHARDWARE – resp_data_error (see Table 6-11 of IEEE 1394-1995) or

ack_data_error (see Table 6-13 of IEEE 1394-1995).
! Cmm1394::ETYPE – resp_type_error (see Table 6-11 of IEEE 1394-1995) or ack_type_error

(see Table 6-13 of IEEE 1394-1995).
! Cmm1394::ECONFLICT – resp_conflict_error (see Table 6-11 of IEEE 1394-1995).
! Cmm1394::ERETRY – retry procedure error by ack_busy_X, ack_busy_A, ack_busy_B (see

Table 6-13 of IEEE 1394-1995).

! Cmm1394::EUNKNOWN_GUID – the destination GUID is unknown
! Cmm1394::ETIMEOUT – no response packet has been received from the remote device within

the internal timeout period or no valid ack code has been detected (see 6.2.5.2.1 of IEEE1394-

 118

HAVi SPECIFICATION Version 1.1

1995). This timeout period is vendor dependent.
! Cmm1394::EBUSRESET – the request has not been completed due to a bus reset.

Cmm1394::Lock

Prototype
Status Cmm1394::Lock(
 in GUID guid,
 in uint64 remoteOffset,
 in ushort extCode, in short dataSize,
 inout sequence<octet> oldData,
 in sequence<octet> newData)

Parameters
! guid – target device’s GUID
! remoteOffset – target device’s memory offset (the higher 16 bit is ignored)
! extCode – extended transaction code for the lock operation, which has been defined and

described in the 1394 standard on Table 6-10 (P158) and Table 7-5 (P188) , respectively
! dataSize – total size of both oldData and newData (in bytes)
! oldData – data block whose size depends on the extCode. The safe parameter size limit is 8

bytes.
! newData – data block whose size depends on the extCode. The safe parameter size limit is 8

bytes.

Description
Initiate a 1394 lock transaction on the specified address in the remote device. The operation is
specified by extCode. oldData is used as a verifying argument for a given lock operation. The
execution of the function may experience some latency due to bus transitions between devices. The
latency is upper bounded by the CMM’s internal timeout mechanism though.

It is permitted for the user of this API to submit the local GUID as an argument. No error is
generated in this case and the operation will occur normally. Whether or not a 1394 transaction is
performed is implementation dependent.

Error codes
! Cmm1394::EADDRESS – resp_address_error (see Table 6-11 of IEEE 1394-1995).
! Cmm1394::EHARDWARE – resp_data_error (see Table 6-11 of IEEE 1394-1995) or

ack_data_error (see Table 6-13 of IEEE 1394-1995).
! Cmm1394::ETYPE – resp_type_error (see Table 6-11 of IEEE 1394-1995) or ack_type_error

(see Table 6-13 of IEEE 1394-1995).
! Cmm1394::ECONFLICT – resp_conflict_error (see Table 6-11 of IEEE 1394-1995).
! Cmm1394::ERETRY – retry procedure error by ack_busy_X, ack_busy_A, ack_busy_B (see

Table 6-13 of IEEE 1394-1995).

! Cmm1394::ESIZE – the data size of either oldData or newData is out of the scope of any
lock operation.

! Cmm1394::EUNKNOWN_GUID – the destination GUID is unknown
! Cmm1394::ETIMEOUT – no response packet has been received from the remote device within

the internal timeout period or no valid ack code has been detected (see 6.2.5.2.1 of IEEE1394-
1995). This timeout period is vendor dependent.

! Cmm1394::EBUSRESET – the request has not been completed due to a bus reset.

 119

HAVi SPECIFICATION Version 1.1

Cmm1394::EnrollIndication

Prototype
Status Cmm1394::EnrollIndication(
 in GUID guid,
 in OperationCode opCode,
 in uint64 offsetStart,
 in uint64 offsetEnd,
 out boolean conflicts)

Parameters
! guid – GUID of the remote device this handler has interest in.
! opCode – the OperationCode provided by the caller. This is the value that the CMM will

place in the operation code of the notification message it sends to a client when an indication is
found to be targeted to this client

! offsetStart, offsetEnd – specify the starting and ending addresses of the memory space
the caller wants to receive and process an indication message (the higher 16 bit is ignored).

! conflicts – has the value True if the enrollment conflicts with an existing enrollment,
False otherwise

Description
This function allows a CMM client to enroll an indication handler with specific offset range and
interested GUID of a remote device. If the GUID parameter has the special “wildcard” value 0xffff
ffff ffff ffff, i.e. all bits set to 1, then the CMM client is attempting to enroll an indication handler
with specific offset range for all remote devices on the network.

The CMM saves the SEID of the caller (obtained from the Messaging System) along with the
GUID and address range parameters. When it receives an indication from a remote device, the
CMM dispatches the indication based on the memory offset value and length of the incoming
packet and the guid of the remote device. If the address range specified by the memory offset
value and length in the indication package is contained within the range specified by
offsetStart and offsetEnd, and the remote device's GUID matches the GUID specified by
the client, the CMM will dispatch the indication to this client through the Messaging System. If any
part of the address range specified in the indication package is outside of the range specified by
offsetStart and offsetEnd, the CMM does not send the indication to the corresponding
client. If the GUID specified by the client is 0xffff ffff ffff ffff and if the memory offset value and
length in the indication package is contained within the range specified by offsetStart and
offsetEnd, then the CMM will dispatch the indication to this client for an indication received
from any device on the network. The CMM sends the indication message to the client through the
<Client>::Cmm1394Indication API. If the CMM cannot find a matching client for a given
indication, it sends the 1394 response code resp_address_error to the remote device.

There can be multiple enrollments for the same packet. The CMM will sequentially dispatch the
packet to all clients with matching enrollments via the Cmm1394Indication API. If one client
returns SUCCESS the CMM sends a 1394 response using the associated responseData. If one
client returns a 1394 error then the CMM sends a 1394 response using this as the 1394 response
code. If all clients return ENOT_INTERESTED then the CMM sends a 1394 response using the 1394
resp_address_error response code. The CMM will stop dispatching to clients when it has
made a 1394 response.

Note – this mechanism can lead to overlapping enrollments. However it is assumed that 1394
protocols are designed such that overlapping enrollments do not lead to conflicts.

 120

HAVi SPECIFICATION Version 1.1

Enrolled indications are persistent through bus resets, though it is possible that some read, write or
lock notifications may be missed during a bus reset period. When a client is removed, the CMM is
responsible for removing its indication handlers by monitoring the Messaging System’s MsgLeave
event. When a remote device is removed from the system, the CMM is responsible for removing all
event handlers enrolled for the removed device.

Error codes
! Cmm1394::EINVALID_OFFSET – offsetStart, offsetEnd indicate an invalid address

range for the FAV or IAV.
! Cmm1394::EGUID_NOT_EXIST – specified GUID does not exist on the network.

Cmm1394::DropIndication

Prototype
Status Cmm1394::DropIndication(
 in GUID guid,
 in uint64 offsetStart,
 in uint64 offsetEnd)

Parameters
! guid – GUID of the remote device this handler has interested in.
! offsetStart, offsetEnd – specify the starting and ending addresses of the memory space

the caller wants to stop receiving and processing an indication message for (the higher 16 bit is
ignored).

Description
Remove an indication handler from the CMM. The indication handler that was installed by this
caller with the GUID and memory space matching the specified values will be identified and
removed.

Error codes
! Cmm1394::ENOT_FOUND – the indication handler specified is not found.

<Client>::Cmm1394Indication

Prototype
Status <Client>::Cmm1394Indication(
 in GUID guid,
 in octet tcode,
 in ushort extCode,
 in uint64 memOffset,
 in ushort dataSize,
 in sequence<octet> indicationData,
 out sequence<octet> responseData)

Parameters
! guid – GUID of the remote device this handler has interest in.
! tcode – transaction code defined by 1394 standard (Table 6-9, P157). Typical transaction

codes are block read/write and lock operations.
! extCode – extended transaction code for the lock operation, which has been defined and

described in the 1394 standard on Table 6-10 (P158) and Table 7-5 (P188) , respectively. This
field is used only when the tcode is a lock operation, and is ignored for any other operations.

 121

HAVi SPECIFICATION Version 1.1

! memOffset – memory location to be accessed.
! dataSize – the number of bytes to be read, written or locked. For a write or lock this equals

the length of indicationData, for a read this equals the length of the responseData
parameter to be returned.

! indicationData – the data portion of the incoming 1394 indication packet from the remote
device. The safe parameter size limit is 512 bytes (the 1394 asynchronous packet size for bus
speeds of 100 Mbps).

! responseData – the data portion of the 1394 response packet for the received indication. The
safe parameter size limit is 512 bytes (the 1394 asynchronous packet size for bus speeds of 100
Mbps).

Description
This client API will be invoked by the CMM when an indication is identified for the client. The
operation code used by the CMM to send this message comes from the previous invocation of
Cmm1394::EnrollIndication by the client. The client processes the received indication, if it
can handle the indication it returns the data for the 1394 response back to the CMM, otherwise it
returns Cmm1394::ENOT_INTERESTED.

If the indication was a read or lock operation and Status is SUCCESS, the data provided in the
responseData field shall be put in the 1394 response message by the CMM. If the indication was
a write operation and Status is SUCCESS, the responseData field may be left empty and will
not be used by the CMM.

Error codes
! Cmm1394::EADDRESS – resp_address_error (see Table 6-11 of IEEE 1394-1995).
! Cmm1394::EHARDWARE – resp_data_error (see Table 6-11 of IEEE 1394-1995) or

ack_data_error (see Table 6-13 of IEEE 1394-1995).
! Cmm1394::ETYPE – resp_type_error (see Table 6-11 of IEEE 1394-1995) or ack_type_error

(see Table 6-13 of IEEE 1394-1995).
! Cmm1394::ECONFLICT – resp_conflict_error (see Table 6-11 of IEEE 1394-1995).

! Cmm1394::ENOT_INTERESTED – the client does not handle the packet.

5.2.3 CMM1394 Private API

This section is informative and is not required for a HAVi compliant implementation.

The CMM may also need to provide topology, speed maps, and other environment descriptions to
its clients. The topology map depicts the connectivity among physical devices. For example, it can
be used to build a graphical interface that helps the user understand how devices are connected and
how certain features may be used. The speed map provides information on the possible maximum
speed that can be used for data transmission between any two devices in the network. It can be used
to analyze the current network connection scheme, and give the user helpful suggestions for
improving the performance of devices by rearranging connections. The topology map and speed
map may change constantly because of dynamic insertion or removal of devices. To identify the
right “version” for these maps, the bus generation number may be used. A new bus generation
signifies the change of bus configuration.

Bus generation number, topology map, and speed map will remain unchanged between bus resets.
To improve efficiency, the CMM may optionally cache these internally and update them only when
bus reset occurs.

 122

HAVi SPECIFICATION Version 1.1

Cmm1394::GetBusGenerationNumber

Prototype
Status Cmm1394::GetBusGeneration(out long busGenNumber)

Parameters
! busGenNumber – the current bus generation number

Description
Get the current bus generation number from the network. The bus generation number specifies the
number of times the current 1394 bus manager has generated topology or speed maps since its last
power reset. Change of the bus generation number implies the change of network configuration.

Error codes
! Cmm1394::ENOT_READY – the bus generation number is not yet available, the system may be

updating it.

Cmm1394::GetSpeedMap

Prototype
Status Cmm1394::GetSpeedMap(
 out long busGenNumber,
 out sequence<octet> speedMap)

Parameters
! busGenNumber – the current bus generation number.
! speedMap – speed map data block.

Description
Get the current speed map.

Error codes
! Cmm1394::ENOT_READY – the speed map is not yet available, the system may be updating it.

Cmm1394::GetTopologyMap

Prototype
Status Cmm1394::GetTopologyMap(
 out long busGenNumber,
 out sequence<octet> topMap)

Parameters
! busGenNumber – the current bus generation number
! topMap – pointer to an array of integer numbers, each representing a self_id packet from a

1394 device

Description
Get the current topology map.

Error codes

 123

HAVi SPECIFICATION Version 1.1

! Cmm1394::ENOT_READY – the topology map is not yet available, the system may be updating
it.

5.2.4 CMM1394 Events

NewDevices

Prototype
void NewDevices(in sequence<GUID> guidList)

Parameters
! guidList – the GUID list of all newly connected devices. The safe parameter size limit is 62

GUID values.

Description
NewDevices is a local event. This event is generated when a new device is connected to the home
network. When this happens, a network reset is triggered. The CMM gathers the GUID list of all
the newly connected devices and then invokes the Event Manager to post the NewDevices event.
The GUID list is passed to the Event Manager as additional information of the event. Since each
FAV or IAV has its own CMM and all CMM are automatically activated whenever there is a
network reset, the NewDevices event is only delivered locally within the device where the CMM
resides.

GoneDevices

Prototype
void GoneDevices(in sequence<GUID> guidList)

Parameters
! guidList – the GUID list of all disconnected devices. The safe parameter size limit is 62

GUID values.

Description
GoneDevices is a local event. This event is generated when devices are disconnected from the
home network. When this happens, a network reset is triggered. The CMM gathers the GUID list
of all the disconnected devices and then invokes the Event Manager to post the GoneDevices
event. The GUID list is passed to the Event Manager as additional information of the event. Since
FAV or IAV has its own CMM and all CMM are activated whenever there is a network reset, the
GoneDevices event is only delivered locally within the device where the CMM resides.

NetworkReset

Prototype
void NetworkReset()

Description
NetworkReset is a local event. This event is generated whenever there is a bus reset on the 1394.
CMM may gather sequential bus resets in a short period into one NetworkReset event.
 As opposed to the NewDevices and GoneDevices events, the CMM does not gather GUID list

 124

HAVi SPECIFICATION Version 1.1

of the changed devices. This event is intended for target software elements that are only interested
in knowing when bus reset has occurred but are not interested in specifics of the change.

GuidListReady

Prototype
void GuidListReady(
 in sequence <GUID> activeGuidList,
 in sequence <GUID> nonactiveGuidList,
 in sequence <GUID> goneDevices,
 in sequence <GUID> newDevices)

Parameters
! activeGuidList – the GUID list of all active devices on the network. The first item shall be

the GUID of the local node. The safe parameter size limit is 63 GUID values.
! nonactiveGuidList – the GUID list of non-active devices on the network. This is empty if

there is no non-active device. The safe parameter size limit is 63 GUID values.
! goneDevices – the GUID list of all disconnected devices. This is empty if there is no gone

device. The safe parameter size limit is 62 GUID values.
! newDevices – the GUID list of all newly connected devices. This is empty if there is no new

device. The safe parameter size limit is 62 GUID values.

Description
GuidListReady is a local event. This event is generated when Cmm1394 becomes available for
Cmm1394::GetGuidList API after bus reset. Cmm1394 may return Cmm1394::ENOT_READY
for Cmm1394::GetGuidList API after NetworkReset until GuidListReady. The definition
of activeGuidList and nonactiveGuidList contents are same as defined in
Cmm1394::GetGuidList API.

5.3 Messaging System

5.3.1 Services Provided

Service Comm
Type

Locality Access

MsgCallback CB

MsgOpen PC all

MsgClose PC all

MsgIsTrusted PC all

MsgGetSystemSeid PC all

MsgWatchOn PC all

MsgWatchOff PC all

Msg::Ping M global all

MsgSendSimple PC all

MsgSendReliable PC all

MsgSendRequest PC all

MsgSendResponse PC all

 125

HAVi SPECIFICATION Version 1.1

MsgSendRequestSync PC all

SystemReady E global Messaging System (all)

MsgLeave E global Messaging System (all)

MsgTimeout E global Messaging System (all)

MsgError E global trusted

5.3.2 Messaging System Data Structures

TransferMode

Definition
enum TransferMode {SIMPLE, RELIABLE};

Description
Used to characterize the mode of a message transfer request.

ProtocolType

Definition
typedef octet ProtocolType;
const ProtocolType HAVi_RMI = 0x00;

Description
Indicates the format of a MessageBody (see section 3.2.1.2.4).

5.3.3 Messaging System API

MsgCallback

Prototype
Status MsgCallback(in ProtocolType protocol,
 in SEID sourceId,
 in SEID destId,
 in Status state,
 in sequence<octet> buffer)

Parameters
! protocol – indication of the format of the MessageBody part of the buffer parameter
! sourceId – the 80-bit software element identifier of the software element that issued the

message
! destId – the 80-bit software element identifier of the target software element
! state – the status of the message. It may take following values:

 SUCCESS if everything worked fine
 Msg::EALLOC if the Messaging System cannot deliver the entire received message
 due to a lack of resources
 Msg::EDEST_SEID if the supervision of the software element (described in sourceId)
 has been detected as disappeared. The software element sourceId is no longer

 126

HAVi SPECIFICATION Version 1.1

 reachable (device unplugged, or software element performed a MsgClose).
 Fields other than sourceId are undefined.

! buffer – consists of the MessageBody field in the “General Message Format” (see Figure
10)

Description
This function is the callback supplied by a software element. This call back is invoked by the
Messaging System each time an incoming message (incoming reliable request or simple message)
is received for that software element. It may also be invoked to notify the software element about
the disappearance of a target software element (this service is provided only after a MsgWatchOn
request).

After the callback returns, and depending on the return code (SUCCESS or Msg::EFAIL), the
Messaging System acknowledges the message: if the callback returns with SUCCESS, the
Messaging System generates a msg_reliable_ack message. If the callback returns with
Msg::EFAIL, the Messaging System generates a msg_reliable_noack message containing
TARGET REJECT as MessageBody (see 3.2.1.2.5, Table 3).

Warning: a callback function is not allowed to call blocking functions. A callback always executes
in the context of the Messaging System, and is not allowed to block the Messaging System.
Applications should treat the callback as an interrupt.

Error codes
! Msg::EFAIL – the callback failed in delivering the message

MsgOpen

Prototype
Status MsgOpen(
 in MsgCallback callback,
 out SEID seid)

Parameters
! callback – the call back function that the Messaging System calls when it receives a message

for seid.
! seid – the 80-bit software element identifier that has been assigned to the software element.

Description
This function is called by a software element that requires the services of the Messaging System.
This function provides a unique software element identifier to the software element which is to be
used by the software element to register and to communicate with other software elements. This
function also allows the calling software element to provide a call back function that will be used
by the Messaging System when an incoming message (either a reliable request, or a simple
message) has to be passed to the software element.

Every time an MsgOpen call is performed, a fresh SEID is generated and returned to the caller.
Once this SEID is returned, the caller (a software element) can use it as an input parameter to the
other Messaging System calls presented below. For these calls, the Messaging System shall check
whether the SEID provided by the caller has been assigned to that caller.

The software element identifier returned by the Messaging System will be a trusted SEID or an
untrusted SEID (see section 3.2.1.1.3) according to the status or the requester. How the status of the

 127

HAVi SPECIFICATION Version 1.1

requester is determined by the Messaging System is implementation dependent.

Once called this function allows a software element to receive messages from the other software
elements on the network.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::EALLOC – if the Messaging System was unable to allocate a software element identifier.

MsgClose

Prototype
Status MsgClose(in SEID seid)

Parameters
! seid – the 80-bit software element identifier of the software element that is leaving the system

Description
This function is used by a software element when it no longer needs the services of the Messaging
System. After calling this function, the software element will not be known by the Messaging
System. The Messaging System will generate a MsgLeave event with the SEID attached.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::ESEID – seid is not valid

MsgIsTrusted

Prototype
Status MsgIsTrusted(in SEID seid, out boolean isTrusted)

Parameters
! seid – the 80-bit software element identifier to be checked
! isTrusted – the result of the request. True means seid represents a trusted software

element. False means seid represents an untrusted software element.

Description
This function checks whether seid is associated with a trusted or an untrusted software element.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::ESEID – the SEID is not available.

MsgGetSystemSeid

Prototype
Status MsgGetSystemSeid(
 in SEID seid,
 in SoftwareElementType type,
 out SEID systemSeid)

 128

HAVi SPECIFICATION Version 1.1

Parameters
! seid – the SEID of a software element within the same node as the requested system software

element
! type – a constant value identifying the system software element type (see Annex 11.3)
! systemSeid – the SEID of the requested system software element

Description
This function obtains the SEID of a system software element (see Annex 11.3) located on the same
host as the specified software element (seid parameter) and of the specified software element type.
This function does not guarantee the existence of the desired system software element.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::EELEMENT – type is not a system software element type

MsgWatchOn

Prototype
Status MsgWatchOn(
 in SEID sourceId,
 in SEID destId)

Parameters
! sourceId – the 80-bit software element identifier of the element making the request
! destId – the 80-bit software element identifier of the element to be supervised

Description
This function is used to establish a “supervision” for monitoring whether a software element is
present on the home network.

After calling MsgWatchOn, the Messaging System shall immediately check whether the target
software element exists by sending a Msg::Ping to the Messaging System where destId is
located. If the ping fails, MsgWatchOn returns an error.

To provide this service the Messaging System subscribes to events allowing it to detect whether
destId is no longer present on the home network. These events are: SystemReady, MsgLeave,
and NetworkReset. The Messaging System will inform sourceId of the “disappearance” of
destId (by invoking sourceId’s callback with state set to Msg::EDEST_SEID) under the
following conditions:

! the Messaging System receives a MsgLeave event as a result of destId performing a
MsgClose

! the Messaging System receives a NetworkReset event and detects, by invoking
Cmm1394::GetGuidList, that the device on which destId is located is no longer
active

! the Messaging System receives a SystemReady event and destId referred to a non-
system software element located on the device generating the event

! The Messaging System receives a MsgTimeout event and destId located on the device
caused the timeout.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational

 129

HAVi SPECIFICATION Version 1.1

! Msg::EBUSY – the sending message was refused because the number of messages exceeded
the outstanding message limit for the same source SEID or because of any other message
traffic reason. Outstanding message limit is implementation dependent

! Msg::EALLOC – the supervision establishment is not possible because of local resource
limitations

! Msg::ESOURCE_SEID – the source SEID is not available for this caller
! Msg::EDEST_SEID – any of the following occurred:

! The messaging system of the target can not find any
destination software element according to the
destination SEID.

! the Messaging System detected that the target software element disappeared
since the Messaging System received a MsgLeave event while the Messaging
System was waiting for an ACK or NOACK message, related to the
Msg::Ping request

! Msg::ESUPER_EXISTS – a supervision has already been established for the destination SEID
by the source SEID

! Msg::EACK – any of the following occurred:
! ack not received to the Msg::Ping
! the Messaging System received a NetworkReset and detected, by invoking

Cmm1394::GetGuidList, that the device on which the destination software
element is located is no longer on the network

! the Messaging System received a GoneDevice or GuidListReady event
and detected that the device on which the destination software element is
located is no longer on the network

! while waiting for an ACK or NOACK related to the Msg::Ping request,
received a SystemReady event and detected that the device on which the
destination non-system software element is located was initialized or reset

! Msg::ETIMEOUT – the Msg::Ping timed out
! Msg::EDEST_UNREACHABLE – any of the following occurred:

! the Msg::Ping cannot be delivered because a prior message to the
destination Messaging System has timed out

! while waiting for an ACK or NOACK related to the Msg::Ping request, the
Messaging System received a MsgTimeout event and detected that the
device on which the destination software element is located entered an
anomalous state

MsgWatchOff

Prototype
Status MsgWatchOff(
 in SEID sourceId,
 in SEID destId)

Parameters
! sourceId – the 80-bit software element identifier of the element making the request
! destId – the 80-bit software element identifier of the element supervised

Description
This function is used to stop a supervision of destId. If the Messaging System has no supervision
established for a software element, it will no longer monitor the availability of that software
element.

After MsgWatchOff, if the previously supervised object disappears, the calling object will not be

 130

HAVi SPECIFICATION Version 1.1

informed.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::EUNKNOWN – if the supervision is unknown or no longer established
! Msg::ESOURCE_SEID – the source SEID is not available for this caller

Msg::Ping

Prototype
Status Msg::Ping(in SEID target)

Parameters
! target – the 80-bit software element identifier of a software element being supervised

Description
Msg::Ping is sent by a software element to a Messaging System to query whether target is
present. If target is present on the remote device then Status indicates SUCCESS.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::EFAIL – if the target is not present

MsgSendSimple

Prototype
Status MsgSendSimple(in ProtocolType protocol,
 in SEID sourceSeid,
 in sequence<SEID> destSeidList,
 in sequence<octet> buffer)

Parameters
! protocol – indication of the format of the buffer parameter
! sourceSeid – The software element identifier of the source software element
! destSeidList – the list of software element identifiers of destination elements
! buffer – the data to send, consists of the MessageBody field in the “General Message

Format” (see Figure 10)

Description
This function is used to send a message to one or several destination software elements. The
function returns immediately. There is no guaranty that the message will be received by all
destination components. This function supports private protocols only.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::EALLOC – the Messaging System is unable to allocate resources
! Msg::ESEND – if the Messaging System could not send the message to one or more of the

destinations
! Msg::EBUSY – the sending message was refused because the number of messages exceeded

the outstanding message limit for the same source SEID or because of any other message

 131

HAVi SPECIFICATION Version 1.1

traffic reason. Outstanding message limit is implementation dependent.
! Msg::ESOURCE_SEID – the source SEID is not available for this caller
! Msg::EPROTOCOL – attempt to send a message using a HAVi reserved protocol
! Msg::ESIZE – the message has been refused or aborted by the Messaging System to avoid a

timeout.
! Msg::EDEST_UNREACHABLE – the message was not delivered to all destinations because a

prior message to one or more destination Messaging Systems has timed out.

MsgSendReliable

Prototype
Status MsgSendReliable(in ProtocolType protocol,
 in SEID sourceSeid,
 in SEID destSeid,
 in sequence<octet> buffer)

Parameters
! protocol – indication of the format of the buffer parameter
! sourceSeid – the software element identifier of the source software element
! destSeid – the software element identifiers of the destination element
! buffer – the data to send, consists of the MessageBody field in the “General Message

Format” (see Figure 10)

Description
This function is used to send a message to one destination software element. The function returns
once the sending is completed (message acknowledge received). This service guaranties the
requester that the destination software element has received the message. This function supports
private protocols only.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::EALLOC – the Messaging System is unable to allocate resources
! Msg::ESEND – if the Messaging System failed in sending the message
! Msg::EBUSY – the sending message was refused because the number of messages exceeded

the outstanding message limit for the same source SEID or because of any other message
traffic reason. Outstanding message limit is implementation dependent.

! Msg::ESOURCE_SEID – the source SEID is not available for this caller
! Msg::EACK – any of the following occurred:

! ack not received
! the Messaging System received a NetworkReset and detected, by invoking

Cmm1394::GetGuidList, that the device on which the destination software
element is located is no longer on the network

! the Messaging System received a GoneDevice or GuidListReady event
and detected that the device on which the destination software element is
located is no longer on the network

! while waiting for an ACK or NOACK related to the current reliable message,
received a SystemReady event and detected that the device on which the
destination software element is located was initialized or reset

! Msg::EOVERFLOW – the message has been sent to the target system, but required a memory
allocation that was too large for the target system

! Msg::EDEST_SEID – any of the following occurred:
! The messaging system of the target can not find any destination software

 132

HAVi SPECIFICATION Version 1.1

element according to the destination SEID.
! while waiting for an ACK or NOACK related to the current reliable message,

the Messaging System received a MsgLeave event, indicating that the target
software element has disappeared.

! Msg::ETARGET_REJECT – the destination SEID reject the message
! Msg::EPROTOCOL – attempt to send a message using a HAVi reserved protocol
! Msg::ESIZE – the message has been refused or aborted by the Messaging System to avoid a

timeout.
! Msg::EDEST_UNREACHABLE – any of the following occurred:

! the message cannot be delivered because a prior message to the destination
Messaging System has timed out

! while waiting for an ACK or NOACK related to the current reliable message,
the Messaging System received a MsgTimeout event and detected that the
device on which the destination software element is located entered an
anomalous state

MsgSendRequest

Prototype
Status MsgSendRequest(in SEID sourceSeid,
 in SEID destSeid,
 in OperationCode opCode,
 in sequence<octet> buffer,
 out uint transactionId)

Parameters
! sourceSeid – the software element identifier of the source software element
! destSeid – the software element identifier of the destination element
! opCode – the operation code invoked by the requester
! buffer – the request data to send (according to the prototype of the invoked method), consists

of the data after the TransactionId field in the “Function Call Mapping” (see Figure 14)
! transactionId – this value allows the requester to match the future response (if any) with

this request

Description
This function is used to send a “function call” message (see 3.2.3.2) to one destination software
element. The Messaging System will always use the reliable mode to send the message. Therefore,
the function returns once the sending is completed (message acknowledge received). This service
guaranties the requester that the destination software element has received the message.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::EALLOC – the Messaging System is unable to allocate resources
! Msg::ESEND – if the Messaging System failed in sending the message
! Msg::EBUSY – the sending message was refused because the number of messages exceeded

the outstanding message limit for the same source SEID or because of any other message
traffic reason. Outstanding message limit is implementation dependent.

! Msg::ESOURCE_SEID – the source SEID is not available for this caller
! Msg::EACK – any of the following occurred:

! ack not received
! the Messaging System received a NetworkReset and detected, by invoking

Cmm1394::GetGuidList, that the device on which the destination software

 133

HAVi SPECIFICATION Version 1.1

element is located is no longer on the network
! the Messaging System received a GoneDevice or GuidListReady event

and detected that the device on which the destination software element is
located is no longer on the network

! while waiting for an ACK or NOACK related to the current reliable message,
received a SystemReady event and detected that the device on which the
destination software element is located was initialized or reset

! Msg::EOVERFLOW – the message has been sent to the target system, but required a memory
allocation that was too large for the target system

! Msg::EDEST_SEID – any of the following occurred:
! The messaging system of the target can not find any destination software

element according to the destination SEID.
! while waiting for an ACK or NOACK related to the current reliable message,

the Messaging System received a MsgLeave event, indicating that the target
software element has disappeared.

! Msg::ETARGET_REJECT – the destination SEID rejects the message
! Msg::ESIZE – the message has been refused or aborted by the Messaging System to avoid a

timeout.
! Msg::EDEST_UNREACHABLE – any of the following occurred:

! the message cannot be delivered because a prior message to the destination
Messaging System has timed out

! while waiting for an ACK or NOACK related to the current reliable message,
the Messaging System received a MsgTimeout event and detected that the
device on which the destination software element is located entered an
anomalous state

MsgSendResponse

Prototype
Status MsgSendResponse(in SEID sourceSeid,
 in SEID destSeid,
 in OperationCode opCode,
 in TransferMode transferMode,
 in Status returnCode,
 in sequence<octet> buffer,
 in uint transactionId)

Parameters
! sourceSeid – the software element identifier of the source software element
! destSeid – the software element identifier of the destination element
! opCode – the operation code invoked by the requester
! transferMode – the mode (reliable or not) used to send the response
! returnCode – the status code returned according to the result of the operation
! buffer – the response data to send (according to the prototype of the invoked method),

consists of the data after the 32-bit reserved field in the “Function Return Mapping” (see
Figure 15)

! transactionId – this value allows the requester to match the response to be sent with the
request previously received

Description
This function is used to send a “function response” message (see 3.2.3.3) to one software element
which has previously performed a MsgSendRequest or MsgSendRequestSync call. According
to the chosen transfer mode, the function returns immediately or once the sending is completed

 134

HAVi SPECIFICATION Version 1.1

(message acknowledge received).

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::EALLOC – the Messaging System is unable to allocate resources
! Msg::ESEND – if the Messaging System failed in sending the message
! Msg::EBUSY – the sending message was refused because the number of messages exceeded

the outstanding message limit for the same source SEID or because of any other message
traffic reason. Outstanding message limit is implementation dependent.

! Msg::ESOURCE_SEID – the source SEID is not available for this caller
! Msg::EACK – any of the following occurred while in the reliable mode:

! ack not received
! the Messaging System received a NetworkReset and detected, by invoking

Cmm1394::GetGuidList, that the device on which the destination software
element is located is no longer on the network

! the Messaging System received a GoneDevice or GuidListReady event
and detected that the device on which the destination software element is
located is no longer on the network

! while waiting for an ACK or NOACK related to the current reliable message,
receives a SystemReady event and detected that the device on which the
destination software element is located was initialized or reset

! Msg::EOVERFLOW – the message has been sent to the target system, but required a memory
allocation that was too large for the target system (only in reliable mode)

! Msg::EDEST_SEID – any of the following occurred while in the reliable mode:
! The messaging system of the target can not find any destination software

element according to the destination SEID.
! while waiting for an ACK or NOACK related to the current reliable message,

the Messaging System receives a MsgLeave event, indicating that the target
software element has disappeared.

! Msg::ETARGET_REJECT – the destination SEID rejected the message (only in reliable mode)
! Msg::ESIZE – the message has been refused or aborted by the Messaging System to avoid a

timeout.
! Msg::EDEST_UNREACHABLE – any of the following occurred:

! the message cannot be delivered because a prior message to the destination
Messaging System has timed out

! while waiting for an ACK or NOACK related to the current reliable message,
the Messaging System receives a MsgTimeout event indicating that the
device on which the destination software element is located entered an
anomalous state

MsgSendRequestSync

Prototype
Status MsgSendRequestSync(in SEID sourceSeid,
 in SEID destSeid,
 in OperationCode opCode,
 in long timeout
 in sequence<octet> bufferIn,
 out sequence<octet> bufferOut,
 out Status returnCode)

Parameters
! sourceSeid – the software element identifier of the source software element

 135

HAVi SPECIFICATION Version 1.1

! destSeid – the software element identifier of the destination element
! opCode – the operation code invoked by the requester
! timeout – the maximum period (in milliseconds) to wait for a response after sending the

request. A value of zero defaults to the system timeout value (see section 3.2.1.2.2)
! bufferIn – the request data to send (according to the prototype of the invoked method),

consists of the data after the TransactionId field in the “Function Call Mapping” (see
Figure 14)

! bufferOut – the received response data (according to the prototype of the invoked method),
consists of the data after the 32-bit reserved field in the “Function Return Mapping” (see
Figure 15)

! returnCode – the Status code that is the result of the requested operation

Description
This function is used by a software element when it wants to send a “function call” message (see
3.2.3.2) to one destination software element and block until the response is received (synchronous
mode, see section 3.2.3.5). All requests are sent in “reliable mode”. A timeout value of zero
defaults to the system timeout value.

The specified timeout holds for the complete duration of the API call, that is, the time between the
start of the request and the reception of the response. This implies that the standard 30 second
timeout for ack/noack messages is overruled when the timeout parameter is less than 30000. If the
Messaging System times out while waiting for an ack/noack message and the timeout period is less
than 30 seconds, then the MsgTimeout event will not be generated. Also, when the ack/noack
message is received in time, but the response message is not received in time, then the
MsgTimeout event shall not be generated.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::EALLOC – the Messaging System is unable to allocate resources
! Msg::ESEND – if the Messaging System failed in sending the message
! Msg::EBUSY – the sending message was refused because the number of messages exceeded

the outstanding message limit for the same source SEID or because of any other message
traffic reason. Outstanding message limit is implementation dependent.

! Msg::ESOURCE_SEID – the source SEID is not available for this caller
! Msg::EACK – any of the following occurred:

! ack not received
! the Messaging System received a NetworkReset and detected, by invoking

Cmm1394::GetGuidList, that the device on which the destination software
element is located is no longer on the network

! the Messaging System received a GoneDevice or GuidListReady event
and detected that the device on which the destination software element is
located is no longer on the network

! while waiting for an ACK or NOACK related to the current reliable message,
received a SystemReady event and detected the device on which the
destination software element is located was initialized or reset

! Msg::EOVERFLOW – the message has been sent to the target system, but required a memory
allocation that was too large for the target system

! Msg::EDEST_SEID – any of the following occurred:
! The messaging system of the target can not find any destination software

element according to the destination SEID.
! while waiting for an ACK or NOACK related to the current reliable message,

the Messaging System received a MsgLeave event, indicating that the target
software element has disappeared.

 136

HAVi SPECIFICATION Version 1.1

! Msg::ETARGET_REJECT – the destination SEID rejected the message
! Msg::ETIMEOUT – timeout has expired
! Msg::ESIZE – the message has been refused or aborted by the Messaging System to avoid a

timeout.
! Msg::EDEST_UNREACHABLE – any of the following occurred:

! the message cannot be delivered because a prior message to the destination
Messaging System has timed out

! while waiting for an ACK or NOACK related to the current reliable message,
the Messaging System received a MsgTimeout event and detected that the
device on which the destination software element is located entered an
anomalous state

5.3.4 Messaging System Private API

This section is informative and is not required for a HAVi compliant implementation.

MsgSysOpen

Prototype
Status MsgSysOpen(
 in MsgCallback callback,
 inout SEID seid)

Parameters
! callback – the call back function that the Messaging System calls when it receives a message

for seid.
! seid – as input the field contains the well known identifier of the system component. As

output the Messaging System will deliver the network SEID (the GUID part of seid is
updated).

Description
This function is called by a system element that requires the services of the Messaging System. This
function provides a unique software element identifier to the system element which is to be used by
the system element to register and to communicate with other software elements. This function
allows the calling system element to provide a call back function that will be used by the
Messaging System when an incoming message (either a reliable request, or a simple message) has
to be passed to the system element.

Once called this function allows a software element to receive messages from the other software
elements on the network.

If more than one call back is installed for a system software component then the Messaging System
will only use the most recently installed call back.

Error codes
! Msg::ENOT_READY – the Messaging System is not operational
! Msg::EALLOC – if the Messaging System was unable to allocate resources

 137

HAVi SPECIFICATION Version 1.1

5.3.5 Messaging System Events

SystemReady
void SystemReady()

This event is generated by the Messaging System when all local system components are registered
and operational. It can also be used to detect that the software element identifiers of components
installed in the initialized device have probably changed (see section 3.2.1.2).

All Messaging Systems that receive this event shall abort outstanding requests to components on
the device where this event originates (since those components may have been reset or have
disappeared and may not respond to previously sent requests).

MsgLeave
void MsgLeave(in SEID seid)

This event is generated by the Messaging System when an element leaves the Messaging System
(by calling the MsgClose function). It can be used to detect that the component identified by seid
has left the system.

MsgTimeout

void MsgTimeout(in SEID seid)

This event is generated by the Messaging System if sequential 2 to 3 timeouts occur during a
reliable send actions. In general, this situation is to be considered anomalous, since no
acknowledgement was received from a remote Messaging System within the 30 second timeout
period. seid denotes the SEID of the destination software element.

The Messaging System that detects 2 to 3 times successive timeout for messages to same
destination device shall refuse to send messages to any software element on that device (In
particular, the MsgTimeout event shall not be sent to the device responsible for the problem). In
that case, the destination device is regarded as faulty.

 To realize this, the messaging system shall maintain the successive error counter for each remote
device. (If the messaging system detects NetworkReset or SystemReady event, it should clear
the error counter.)

The Messaging System shall return the error code EDEST_UNREACHABLE for all send attempts to
those software elements until the next NetworkReset or SystemReady event is received. Note
successive timeout means that no ack nor noack is received in the period of that successive
timeout, and no NetworkReset or SystemReady event is detected in that period.

The successive error counter will not be incremented by the Messaging System if the ack/noack
timeout period was overridden by a value smaller than 30 seconds in a MsgSendRequestSync
call (see also section 3.2.1.2.3).

MsgError
void MsgError(in SEID seid,
 in ushort attempts, in Status error)

 138

HAVi SPECIFICATION Version 1.1

This event enables a software element to indicate to other software elements that it has detected a
persistent failure of a Messaging System. It should be posted by a software element that has made
several attempts to send a message to software element seid, but during the period in which
message sending is attempted the Messaging System persistently returns an error code other than
EACK or ETIMEOUT. It is recommended that, before posting this event, at least 10 sends are
attempted with at least a one second interval between sends. The number of failed attempts is
recorded in attempts and error denotes the last error received. Posting this event should be
interpreted as a serious system failure and indicates that the system may no longer operate as
specified.

As with MsgTimeout, this event is intended to notify the user of a problem. There will be no
corrective action by the system itself. The user may need to reset or power off the device where the
software element seid is located. The software element posting the event is free to choose which
action to take after it has posted the event. It may choose to abort its activity, to retry sending, or to
take alternative actions. If the local Messaging System is not operational then the event may not be
broadcast. It is recommended that a notification or warning be presented to the user.

It is recommended that a software element that handles this event checks whether the event is
posted by a trusted software element. It may choose to only handle the event if this is the case.

5.4 Event Manager

5.4.1 Services Provided

Service Comm
Type

Locality Access

EventManager::Subscribe M local all

EventManager::Unsubscribe M local all

EventManager::Replace M local all

EventManager::AddEvent M local all

EventManager::RemoveEvent M local all

EventManager::PostEvent M local all

EventManager::ForwardEvent M global Event Manager

<Client>::EventManagerNotification MB local Event Manager (all)

A software element registers with the Event Manager using its SEID and the list of events it is
interested in. The Event Manager will then use the SEID to send event notification messages to the
software element via the Messaging System when the events of interest occur.

5.4.2 Event Manager Data Structures

EventId

HAVi has a predefined set of system event types that are generated by trusted components, see
Annex 11.9. Each event has an EventId – a quantity that identifies the event type to which it
belongs. An EventId has the following structure.

enum EventIdSchema {SYSTEM, VENDOR, APPLICATION};

union EventId switch (EventIdSchema) {

 139

HAVi SPECIFICATION Version 1.1

 case SYSTEM: SystemEventId systemEid;
 case VENDOR: VendorEventId vendorEid;
 case APPLICATION: AppEventId appEid;
};

! System specified event IDs contain only the 16-bit base event number:
 struct SystemEventId {
 ushort base;
 };

! Vendor specified event IDs contain a base event number plus a Vendor ID:
 struct VendorEventId {
 ushort base;
 VendorId vendorId;
 };

! Application specified event IDs contain a base event number plus a software element ID:
 struct AppEventId {
 ushort base;
 SEID seid;
 };

The three forms of EventId have different meanings. For SystemEventId, only the base event
number is known. For VendorEventId, the base event number and a VendorId (e.g. VendorId
of the event poster) are known. For AppEventId, the base event number and a SEID (e.g. SEID of
the event poster) are known.

The HAVi system events, those listed in Annex 11.9, are always posted using the
SystemEventId schema. Implementers may use any value for the base event number appearing
in VendorEventId and AppEventId. The vendor or application developer has the responsibility
of managing these base event numbers.

The Event Manager manipulates events represented by their EventId. For example, when a
software element registers the list of events it is interested to “listen to”, the software element must
prepare the EventId for each event in the list and pass the list to Event Manager. Suppose the
software element is interested in the events {E1, E2-from-Vendor-XYZ, E3-from-Object-ABC}, it
must prepare a SystemEventId for E1, a VendorEventId for E2, and a AppEventId for E3.
This list of three event identifiers is then passed to the Event Manager for registration.

When an Event Manager receives an event it delivers the event to all local software elements that
have registered an event ID matching that of the received event. For two event IDs to match they
must have the same EventIdSchema and base. If the schema is VendorEventId, then the
vendorId fields must also be equal for a match to occur. If the schema is AppEventId then the
seid fields must also be equal for a match to occur.

To post an event, the event poster needs to:

! construct the proper type of EventId (e.g., if the poster wants to disclose its vendor, it
needs to construct a VendorEventId and put the right value in the VendorId field)

! optionally construct additional information regarding the event (e.g. device GUID list
when posting a NewDevices event)

An EventManager::PostEvent message is then sent from the event poster to the Event
Manager and results in the actual delivery of the event.

 140

HAVi SPECIFICATION Version 1.1

5.4.3 Event Manager API

EventManager::Subscribe

Prototype
Status EventManager::Subscribe(
 in sequence<EventId> eidList,
 in OperationCode opCode)

Parameters
! eidList – array of events, represented by their EventId, for which the software element

wants to receive notification. The safe parameter size limit is 64 EventId values.
! opCode – the OperationCode provided by the caller. This is the value that the Event

Manager will place in the operation code of the notification message it sends to a client when
an event is to be delivered to this client.

Description
EventManager::Subscribe adds the software element (that has sent the message) to the Event
Manager’s internal table. A new entry is created to register the software element and the list of
events it wishes to “listen to”. There is no limit on the internal table size so long as the Event
Manager can find enough system resources to maintain the table. When any of the events in the
software element’s “interested” event list occurs, the Event Manager sends a notification message
to the software element. The message contains opCode, the EventId representing the event, and
possibly additional information about the event. When the software element receives the event
notification message, it uses the opCode to determine how to process the message. It is therefore
the responsibility of the software element to define the operation code for its event notification
message processing procedure call, and to pass it to the Event Manager at event registration time

If the list contains duplicate event identifiers there will be only one notification generated for such
events.

If the software element has already registered or resources cannot be allocated to honor the
registration request, an error is returned to the software element.

Error codes
! ERESOURCE_LIMIT – if resources cannot be allocated to register the software element
! EventManager::EEXIST – if the software element has already registered itself

EventManager::Unsubscribe

Prototype
Status EventManager::Unsubscribe()

Description
EventManager::Unsubscribe removes the software element from the Event Manager’s
internal table. The resources allocated for storing the software element are freed. This function is
normally called when a software element is about to leave the HAVi environment or when it no
longer wants to be notified of events. After this function is called, the software element will no
longer receive event notification messages from the Event Manager.

If the software element has not registered with the Event Manager, an error is returned.

 141

HAVi SPECIFICATION Version 1.1

Error codes
! EventManager::ENOT_FOUND – if the software element has not registered with the Event

Manager

EventManager::Replace

Prototype
Status EventManager::Replace(
 in sequence<EventId> eidList,
 in OperationCode opCode)

Parameters
! eidList – new array of events represented by their EventId, for which the software element

wants to be notified when any of them is posted. This new event array replaces the old one in
the Event Manager’s internal table. If the new event array is not specified (i.e. eidList is a
list of length zero), the old array in the Event Manager’s internal table is not changed. The safe
parameter size limit is 64 EventId values.

! opCode – the new value that the Event Manager will place in the operation code of the
notification message it sends to a client when an event is to be delivered to this client. This new
operation code replaces the old one in the Event Manager’s internal table. If the new operation
code is not specified (i.e. opCode.operationId is 0xff), the operation code in the Event
Manager’s internal table is not changed.

Description
Replace the software element’s list of “interested” events by the new list (if it is specified) and the
new operation code. Resources allocated for the software element’s old event list and operation
code are freed. The Event Manager’s internal table is updated and resources allocated to use the
new event list and operation code. After the new event list (if specified) and the new operation code
(if specified) are installed, if any event in the new event list occurs, the Event Manager sends a
<Client>::EventManagerNotification message to the software element. The message
uses the specified operation code and contains the EventId representing the event, and possibly
additional information about the event. When the software element receives the event notification
message, it uses the operation code to determine how to process the message.

If the list contains duplicate event identifiers there will be only one notification generated for such
events.

If resources cannot be allocated to honor the replacement request or if the software element has not
registered with the Event Manager, an error is returned.

Error codes
! ERESOURCE_LIMIT – if resources cannot be allocated to install the software element
! EventManager::ENOT_FOUND – if the software element has not registered with the Event

Manager

EventManager::AddEvent

Prototype
Status EventManager::AddEvent(in EventId eventId)

Parameters
! eventId – the new event, represented by its EventId, to be added to the software element’s

 142

HAVi SPECIFICATION Version 1.1

“listen-to” event list.

Description
Add the new event eventId to the software element’s list of “interested” events. The Event
Manager’s internal table is updated and resources allocated to accommodate the new event. If this
new event occurs, the Event Manager sends a notification message to the software element so that
it can then respond.

If resources cannot be allocated to add the new event to the software element’s event list, an error is
returned. Also if the software element has not registered with the Event Manager or if the software
element has already registered for the event, an error is returned.

Error codes
! ERESOURCE_LIMIT – if resources cannot be allocated to add the new event
! EventManager::ENOT_FOUND – if the software element has not registered with the Event

Manager
! EventManager::EEXIST – if the software element is already registered for this event

EventManager::RemoveEvent

Prototype
Status EventManager::RemoveEvent(in EventId eventId)

Parameters
! eventId – an event, represented by its EventId, to be removed from the software element’s

“listen-to” event list.

Description
Remove the event eventId from the software element’s list of “interested” events. The Event
Manager’s internal table is updated and resources allocated for the removed event are freed. After
invoking EventManager::RemoveEvent, the software element will no longer receive a
notification message from the Event Manager when eventId occurs.

If the specified event is not on the software element’s “interest” event list, of if the software
element has not registered with the Event Manager, an error is returned.

Error codes
! EventManager::ENOT_FOUND – if the specified event is not found in the software element’s

event list or the software element has not registered with the Event Manager

EventManager::PostEvent

Prototype
Status EventManager::PostEvent(
 in EventId eventId,
 in boolean global,
 in sequence<octet> eventInfo)

Parameters
! eventId – the event, represented by its EventId, that the software element wants to post on

the home network.

 143

HAVi SPECIFICATION Version 1.1

! global – a flag indicating whether the event is to be posted only locally within the device
where the software element (the event poster) resides or to be posted globally to all FAV and
IAV devices on the home network. When this flag is set to False, the event is posted locally.
When this flag is set to True, the event is posted network-wide.

! eventInfo – a buffer containing additional information associated with the posted event. The
type of information stored in eventInfo depends on the posted event. For example, if the
posted event is NewDevices (when new devices are connected), then eventInfo contains the
GUID list of the newly connected devices. If the posted event does not have additional
information, the length of eventInfo is set to 0. The safe parameter size limit is 512 bytes.

Description
Post the specified event to the home network. Posting an event means notifying all “target”
software elements (i.e., those including the event in their “listen-to” event list) regardless of their
location on the network. Event notification messages are sent by the Event Managers to all target
software elements. The event poster simply sends a message to an Event Manager indicating its
intention to post the specified event. It is the responsibility of the Event Managers to ensure that all
target software elements receive notification. An Event Manager sends notification messages to all
local target software elements. If the event is to be delivered network-wide, the initial Event
Manager (that receiving the EventManager::PostEvent message) also “broadcasts” the event
(together with additional information if present) to all remote Event Managers on the network.
Each remote Event Manager, when it receives the broadcast event, checks if any software element
in its local device is interested in the event and sends those target software elements an event
notification message. A remote Event Manager will not broadcast the event again to the network, it
merely delivers the event locally. Only the initial Event Manager broadcasts the event to the
network.

If an Event Manager fails in sending a notification message to any target software element or in
broadcasting the posted event to remote Event Managers, an error is returned. However errors
which are caused by devices that disappear during the ForwardEvent call will not result in an
EventManager::EDELIVERY error.

This API should only allow trusted software elements to post system events.

Error codes
! EventManager::EDELIVERY – event delivery to one or more destinations has failed

EventManager::ForwardEvent

Prototype
Status EventManager::ForwardEvent(
 in SEID posterSeid,
 in EventId eventId,
 in sequence<octet> eventInfo)

Parameters
! posterSeid – SEID of the software element that initially posted the event
! eventId – the event, represented by its EventId, that the software element wants to post on

the home network.
! eventInfo – a buffer containing additional information associated with the posted event. If

the posted event does not have additional information, the length of eventInfo is set to 0.
The safe parameter size limit is 512 bytes.

Description

 144

HAVi SPECIFICATION Version 1.1

EventManager::ForwardEvent is used by a local Event Manager to forward a posted event to
a remote Event Manager. The remote Event Manager then performs local event delivery on behalf
of the initiating Event Manager. Note that this function is invoked by a local Event Manager when
a software element posts a global event (using the EventManager::PostEvent with global
set to True). The local Event Manager performs the usual local event delivery, and also invokes
ForwardEvent for each remote Event Manager on the network.

Error codes
! EventManager::EFORWARDING – event forwarding has failed to a software element which

has registered for the event. If multiple forwardings fail, one error code shall be returned.

<Client>::EventManagerNotification

Prototype
Status <Client>::EventManagerNotification(
 in SEID posterSeid,
 in EventId eventId,
 in sequence<octet> eventInfo)

Parameters
! posterSeid – SEID of event poster
! eventId – ID of posted event
! eventInfo – additional information provided with the event. The safe parameter size limit is

512 bytes.

Description
Used when the Event Manager delivers an event to a client by sending a “message back” to the
client (with the operation code specified when the client registered interest in the event, e.g., using
EventManager::Subscribe).

5.4.4 Event Manager Events

Trusted software elements, including HAVi system components, generate system events that reflect
changes in the home network affecting other components. To ensure a basic level of
interoperability, the set of HAVi system events is standardized. Annex 11.9 lists the system events
used in the current version of the HAVi specification. This list is likely to grow with future
versions. All base numbers for the system events are reserved for future specifications. Untrusted
software elements are not allowed to post system events.

5.4.5 Event Manager Protocol

When an event is posted globally to all Event Managers in the home network, the following
mechanism is used:

The event poster sends a EventManager::PostEvent message to its local Event Manager
requesting the event to be posted on its behalf. The message contains the SEID of the event poster,
the EventId of the event to be posted, whether the event is to be delivered locally or globally, and
possibly additional information about the event.

The local Event Manager checks if any software element residing locally have the posted event in
its “listen-to” event list. All target software elements that meet this condition will get an event

 145

HAVi SPECIFICATION Version 1.1

notification message from this Event Manager. The message contains the operation code selected
by the target software, the SEID of event poster, the EventId of the posted event and possibly
additional information about the event. The target software element, upon receiving the
notification message, will presumably respond to the event. The Event Manager should not wait for
this response (it should not use MsgSendRequestSync to send the notification message) but
continue to send any remaining notification messages.

Local delivery of a posted event works in the following way. For every entry in its internal table,
the Event Manager checks if the entry’s target software element has requested notification of the
posted event. If it has, the entry’s SEID is used as the target software element to receive Event
Manager notification messages. The exact message content depends on the posted event (see
Annex 11.9 for examples). The general form of an event notification message is given by the
<Client>::EventManagerNotification API.

For example, if the posted event is NewDevices, the additional eventInfo buffer contains the
GUID list of the newly connected devices. The Event Manager’s internal table entry also contains
the OperationCode of the target software element. The SEID of the event poster is known to the
Event Manager from the Messaging System. Thus an Event Manager always has enough
information to construct the notification messages to be sent to target software elements. For each
target software element, the Event Manager constructs one notification message. The message is
then sent to the target software element that will presumably respond to the posted event. The Event
Manager should not wait for this response (it should not use MsgSendRequestSync to send the
notification message) but continue to send any remaining notification messages.

If the event is to be delivered network-wide, the local Event Manager (where the event poster
resides) “broadcasts” the event to all Event Managers residing on the network. When a remote
Event Manager receives the event, it performs local event delivery as described in the paragraph
above.

A global event will be broadcast by an Event Manager using EventManager::ForwardEvent.
The Event Manager may send ForwardEvent to other Event Managers in any order. If the
Messaging System reports an unrecoverable error condition, or a timeout condition, the forwarding
failed. However, an Event Manager shall attempt to forward a posted event to each Event Manager
before returning from an EventManager::PostEvent method. If at least one message
forwarding failed, this shall be reflected in the return code of PostEvent. However errors which
are caused by devices having disappeared during the ForwardEvent call will not result in an
EventManager::EDELIVERY error.

At initialization time, and after each network reset, the Event Manager asks the local CMM to get
the list of active GUIDs for all the devices in the network. For each device, the value stored in the
HAVi_Device_Class SDD field is retrieved (possibly using services provided by CMM, but the exact
mechanism is implementation dependent). An active FAV or IAV device will have a local Event
Manager, furthermore its SEID is known (since Event Managers have a well-known software
element handle). Each Event Manager can thus construct the list of other Event Managers in the
network. Devices that do not have the HAVi_Device_Class SDD field are considered to be LAV or
BAV devices and will not have a local Event Manager. Nonactive FAV and IAV devices are
considered to not have an active Event Manager.

 146

HAVi SPECIFICATION Version 1.1

5.5 Registry

5.5.1 Services Provided

Service Comm
Type

Locality Access

Registry::RegisterElement M global all

Registry::UnregisterElement M global all

Registry::RetrieveAttributes M global all

Registry::GetElement M global all

Registry::MultipleGetElement M global all

NewSoftwareElement E global Registry (all)

GoneSoftwareElement E global Registry (all)

5.5.2 Registry Data Structures

Attribute

Definition
struct Attribute {
 AttributeName name;
 sequence<octet> value;
};

Description
The Attribute structure is used to characterize a software element through the
Registry::RegisterElement method. Attribute values are formatted as described in Table 6
in section 3.4.1. The safe parameter size limit for Attribute.value is 106 bytes.

AttributeName

Definition
typedef uint AttributeName;

Description
HAVi Registry attributes are listed in Annex 11.2 and described in Table 7 found in section 3.4.1.
The most significant bit of an attribute name is dedicated to the class of attribute as explained in
section 3.4.1.

SoftwareElementType

Definition
const AttributeName ATT_SE_TYPE = 0x00;
typedef uint SoftwareElementType;

Description

 147

HAVi SPECIFICATION Version 1.1

The software element type attribute represents the primary function of a software element. Each
type is associated with different APIs. The software element types specified by HAVi are listed in
Annex 11.3.

The software element types from 0x0 to 0x007f ffff are for use by trusted software elements. In
particular, only trusted software elements can register themselves with these software element
types.

If the software element is a system service, the type attribute designates the service itself:
 COMMUNICATION_MEDIA_MANAGER, EVENT_MANAGER, REGISTRY,
 DCM_MANAGER, STREAM_MANAGER, RESOURCE_MANAGER

If the software element is an FCM, the type attribute designates the type of functional component
that the FCM controls: GENERIC_FCM, VCR_FCM, TUNER_FCM, etc. (The GENERIC_FCM type
attribute is used by a software element that only exposes the basic FCM APIs and not any
additional functionality.) The list will be extended as FCMs are introduced by new HAVi versions.

If the software element is a DCM, then the type attribute will be: DCM

If the software element is an Application Module, then the type attribute will be:
APPLICATION_MODULE

If the software element provides a non-HAVi compliant API then the type attribute will be in the
range from 0x8000 0000 to 0xffff ffff. Such kind of software elements are havlet, DDI controller
and any other HAVi applications except Application Modules.

This is a mandatory attribute.

VendorId
const AttributeName ATT_VENDOR_ID = 0x01;

The VendorId data type is defined in section 5.1.2.

This is a mandatory attribute for DCM, FCM and Application Module software elements.

HUID
const AttributeName ATT_HUID = 0x02;

The HUID data type is defined in section 5.6.2.

This is a mandatory attribute for DCM, FCM and Application Module software elements.

TargetId
const AttributeName ATT_TARGET_ID = 0x03;

The TargetId data type is defined in section 5.6.2.

This is a mandatory attribute for DCM, FCM and Application Module software elements.

InterfaceId
const AttributeName ATT_INTERFACE_ID = 0x04;

 148

HAVi SPECIFICATION Version 1.1

The InterfaceId data type is defined in section 5.6.2.

This is a mandatory attribute for DCM, FCM and Application Module software elements.

DeviceClass

Definition
const AttributeName ATT_DEVICE_CLASS = 0x05;
enum DeviceClass{ LAV, BAV, IAV, FAV};

Description
This is the set of device categories (see section 2.3.3) standardized by the HAVi Architecture,
values are: LAV, BAV, IAV, FAV

This is a mandatory attribute for DCM and FCM software elements.

GuiReq
const AttributeName ATT_GUI_REQ = 0x06;
typedef uint GuiReq;

const GuiReq NO_GUI = 0x00;
const GuiReq DDI_GUI = 0x01;
const GuiReq HAVLET_GUI = 0x02;

Description
Designates the Graphical User Interface level(s) the software element supports. The attribute is a
32-bit field where each bit shows the availability of a corresponding level. The bit set to 1 means
available. The following values are reserved:

! NO_GUI: the software element does not offer a user interface (default value).
! DDI_GUI: the software element is compatible with DDI protocol acting as a DDI

 Target.
! HAVLET_GUI: the software element provides an uploadable application.

This is an optional attribute. If this attribute is not registered, the value will be treated as NO_GUI.

MediaFormatId

Definition
const AttributeName ATT_MEDIA_FORMAT_ID = 0x07;

The MediaFormatId data type is defined in section 5.1.2.

Description
This attribute indicates the format of the media handled by the device or functional component.
Possible values are listed in Annex 11.10.

This is an optional attribute

 149

HAVi SPECIFICATION Version 1.1

DeviceManufacturer

Definition
const AttributeName ATT_DEVICE_MANUF = 0x08;
typedef wstring<50> DeviceManufacturer;

Description
Name of the manufacturer of the device or functional component associated with the software
element. This is a UNICODE string representing the name of the manufacturer. Each character will
be coded with two bytes. For example, “A” is coded as 0x0041. The string can be empty (of zero
length) since it may be difficult to determine the name of an LAV manufacturer.

This is a mandatory attribute for DCMs and FCMs.

DeviceModel

Definition
const AttributeName ATT_DEVICE_MODEL = 0x09;
typedef wstring<50> DeviceModel;

Description
This attribute is the model name, as provided by the manufacturer, of the device associated with a
DCM or FCM.

This is an optional attribute.

SoftwareElementManufacturer

Definition
const AttributeName ATT_SE_MANUF = 0x0a;
typedef wstring<50> SoftwareElementManufacturer;

Description
Name of the manufacturer of the software element. This is an optional attribute.

SoftwareElementVersion

Definition
const AttributeName ATT_SE_VERS = 0x0b;
typedef Version SoftwareElementVersion;

Description
Contains the version number of the software element according to the method described in section
2.8. This attribute is mandatory for DCMs, FCMs, Application Modules and system components.

AvLanguage

Definition

 150

HAVi SPECIFICATION Version 1.1

const AttributeName ATT_AV_LANG = 0x0c;
typedef uint AvLanguage;

const AvLanguage NO_AV_LANGUAGE = 0x00;
const AvLanguage AVC_LANGUAGE = 0x01;
const AvLanguage CAL_LANGUAGE = 0x02;

Description
Designates the proprietary AV command language the software element supports in addition to
HAVi messaging. The attribute is a 32 bit field where each bit shows the availability of a
corresponding AV language. The bit set to 1 means available. This is an optional attribute. If the
attribute is not registered, its value will be treated as NO_AV_LANGUAGE.

UserPreferredName

Definition
const AttributeName ATT_USER_PREF_NAME = 0x0d;
typedef wstring<16> UserPreferredName;

Description
A user selected name used to identify the device associated with a DCM or FCM. The string can be
empty (of zero length). This attribute is mandatory for DCMs and FCMs.

SimpleQuery

Definition
struct SimpleQuery {
 AttributeName attributeName;
 sequence<octet> compareValue;
 CompOperation compareOperation;
};

Description
SimpleQuery is used by the Registry::GetElement operation.

! attributeName – the name of the attribute whose value is to be compared with
compareValue.

! compareValue – the value to be compared against the attribute. The format of
compareValue follows that of attributes as described in Table 6 in section 3.4.2, its safe
parameter size limit is 106 bytes.

! compareOperation – operation performed during comparison.

A simple query is used to find a Registry entry with a specific attribute and attribute value. A
Registry entry satisfies a simple query if it has an attribute that satisfies the simple query, i.e., if the
value of one of the attributes with name equal to attributeName satisfies: value
compareOperation compareValue.

The above interpretation is designed for queries on attributes that may only occur once in a Registry
entry. Moreover, it is suitable for specifying most queries on attributes that may occur multiple
times in a Registry entry. E.g., a software element X may be registered with the attribute
MediaFormatId occurring twice, once with the value DISC__DVD and once with the value
DISC__DVD__R. Now, the query “ATT_MEDIA_FORMAT_ID EQ DISC__DVD” for finding FCMs

 151

HAVi SPECIFICATION Version 1.1

that can handle DVD discs will return software element X since it has one attribute satisfying the
condition. However, note that this interpretation may sometimes seem “counter intuitive” for
attributes that may occur multiple times. E.g., the query “ATT_MEDIA_FORMAT_ID NEQ

DISC__DVD” will also return software element X, since it has one attribute satisfying the condition
(although it also has one that does not satisfy the condition).

If compareOperation is ANY then an entry satisfies the query provided it has an attribute named
attributeName (and compareValue is ignored). For EQU, NEQU, GT, GE, LT and LE, the query
can be processed as follows: The query is evaluated byte by byte, starting with the most significant
byte.

! Bytes are Different

! If a pair of bytes differ then the result of the query is determined by comparing the two
bytes using compareOperation.

! Bytes are Identical, Same Length

! If compareValue and the attribute value are of the same length and are identical then
EQU, GE, and LE succeed while NEQU, LT, and GT fail.

! Bytes are Identical, Different length

! If compareValue and the attribute value are not of the same length, but are identical
up to the length of the shorter sequence, then:

1. the attribute value has greater length: NEQU, GT, GE succeed while EQU, LT, and LE fail;

2. compareValue has greater length: NEQU, LT, LE succeed while EQU, GT, and GE fail.

For BWA, the query can be processed as follows: If the lengths (or types) differ, the query fails,
otherwise perform the following: For each byte i, Ai, of the attribute value, and each byte i, Bi, of
compareValue, if the bitwise logical and of Ai and Bi results in a non-zero value, then Ai BWA Bi
succeeds, otherwise it fails. The bytes of the attribute value and compareValue are processed
from the most significant byte (in big endian order, with the leftmost byte as the most significant
byte) to the least significant byte. The query succeeds if for any byte j, Aj BWA Bj succeeds. The
query fails if for all bytes i in attribute value and compareValue, Ai BWA Bi fails.

For BWO, the query can be processed as follows: If the lengths (or types) differ, the query fails,
otherwise perform the following: For each byte i, Ai, of the attribute value, and each byte i, Bi, of
the compareValue, if the bitwise logical or of Ai and Bi results in the value 0xff, then Ai BWO Bi
succeeds, otherwise it fails. The bytes of the attribute value and compareValue are processed
from the most significant byte (in big endian order, with the leftmost byte as the most significant
byte) to the least significant byte. The query succeeds if for all bytes j in attribute value and
compareValue, Aj BWO Bj succeeds. The query fails if for any byte j, Aj BWO Bj fails.

BoolOperation

Definition
enum BoolOperation {AND, OR};

Description
This type is used within the definition of the ComplexQuery structure.

 152

HAVi SPECIFICATION Version 1.1

ComplexQuery

Definition
struct ComplexQuery {
 union query1 switch(short) {
 case 0: SimpleQuery smplQuery1;
 case 1: sequence<ComplexQuery, 1> cmplxQuery1;
 };

 union query2 switch(short) {
 case 0: SimpleQuery smplQuery2;
 case 1: sequence<ComplexQuery, 1> cmplxQuery2;
 };

 BoolOperation boolOperation;
};

Description
ComplexQuery is used by the Registry::MultipleGetElement operation. A complex query
is a boolean operation between two SEID lists obtained from either a simple query or another
complex query.

The IDL sequence appearing in query1 and query2 should contain exactly one element. (The
sequence construct is used simply because this is the only way to define a recursive data structure in
IDL.) However, in order to comply with the HAVi CDR rules (which define the mapping from
IDL into a bitflow), the length of this sequence (always 1) has to be marshalled (as an IDL long)
before the single element of the sequence is marshalled. Safe parameter size limits of ComplexQuery
are as follows: max number of SimpleQuerys in a whole ComplexQuery is 32, max depth of
recursion in a whole ComplexQuery is 5.

5.5.3 Registry API

Registry::RegisterElement

Prototype
Status Registry::RegisterElement(
 in SEID seid,
 in sequence<Attribute> table)

Parameters
! seid – the unique identifier of the software element to be registered.
! table – the attribute table. The table is checked to assure attributes are valid. The safe

parameter size limit is 100 Attribute values.

Description
This service primitive is used to add or modify a software element in the Registry database. If seid
is already within the database then all of the old attributes associated to specified seid will be
removed and the new attributes will be added. If seid is not present within the database then an
entry is created for seid using the attributes in table, and a NewSoftwareElement event for
the newly added seid is posted globally. Only local software elements (i.e., elements that reside on
the same node as the Registry) may be registered.

 153

HAVi SPECIFICATION Version 1.1

For an untrusted caller the Registry checks whether or not the seid parameter is the SEID of the
caller. It is forbidden for an untrusted caller to register an element with a SEID other than its own.
For a trusted caller the seid parameter can be associated with any software element (however if
seid is not on the same device as the Registry then an error is returned).

Furthermore, the Registry checks that untrusted software elements only register a ATT_SE_TYPE
attribute that is among those possible for untrusted software elements (see Annex 11.3).

Error codes
! ERESOURCE_LIMIT – resource allocation error.
! Registry::ELOCATION – seid is a remote software element.
! Registry::EATTRIBUTE_NAME – the registration is not possible since a single valued

system attribute name occurs multiple times.

Registry::UnregisterElement

Prototype
Status Registry::UnregisterElement(in SEID seid)

Parameters
! seid – the unique identifier of the software element to be unregistered

Description
Registry::UnregisterElement is used to remove a software element from the Registry
database and a GoneSoftwareElement event for the removed seid is posted globally.

For an untrusted caller the Registry checks whether or not the seid parameter is the SEID of the
caller. It is forbidden for an untrusted caller to unregister an element with a SEID other than its
own. For a trusted caller the seid parameter can be associated with any software element.

Error codes
! Registry::EIDENTIFIER – the software element cannot be found in the local Registry

Registry::RetrieveAttributes

Prototype
Status Registry::RetrieveAttributes(
 in SEID seid,
 out sequence<Attribute> table)

Parameters
! seid – the unique identifier of a software element.
! table – indicates where the attribute list corresponding to the software element is to be

copied. The safe parameter size limit is 100 Attribute values.

Description
This service primitive is used to read the attributes of the software element whose identifier is
seid. The software element with this SEID may be located anywhere in the network (i.e., it need
not reside on the same node as the Registry that initially receives the RetrieveAttributes
request).

 154

HAVi SPECIFICATION Version 1.1

Error codes
! Registry::EIDENTIFIER – the software element cannot be found in any Registry
! Registry::ENETWORK – no response due to a network problem

Registry::GetElement

Prototype
Status Registry::GetElement(
 in SimpleQuery query,
 out sequence<SEID> seidList)

Parameters
! query – specifies a simple boolean operation on one attribute of the Registry database. It

contains the following elements as described above: name, compareValue and operation.
! seidList – the list of SEIDs of software elements which match the query.

Description
This primitive is used to get a list of software element identifiers that satisfy the query given
through the query parameter. If the caller is remote to the Registry (i.e., resides on a different node
than the Registry) then only SEIDs that are local to the Registry are returned. If the caller is local to
the Registry then all SEIDs on the network (local as well as remote) that satisfy the query are
returned.

Should Registry::ENETWORK be returned, the out parameter seidList contains all matching
SEIDs that were found in the network.

Error codes
! Registry::ENETWORK – the response is not complete due to a network problem

Registry::MultipleGetElement

Prototype
Status Registry::MultipleGetElement(
 in ComplexQuery query,
 out sequence<SEID> seidList)

Parameters
! query – specifies a complex query on several attributes of the Registry database.
! seidList – the list of SEIDs of software elements which match with criteria of the query

Description
This primitive is used to get a list of software element identifiers from Registry database satisfying
a boolean operation between two queries (which in turn may involve other queries – see the
definition of ComplexQuery).

Should Registry::ENETWORK be returned, the out parameter seidList contains all matching
SEIDs that were found in the network.

Error codes
! Registry::ENETWORK – the response is not complete due to a network problem

 155

HAVi SPECIFICATION Version 1.1

5.5.4 Registry Events

NewSoftwareElement
void NewSoftwareElement (
 in SEID seid,
 in boolean hasHuid,
 in HUID huid)

This event is generated when a new entry is created (using Registry::RegisterElement). The
SEID corresponds to that of the newly registered software element. NewSoftwareElement is not
generated when an entry is updated. NewSoftwareElement is not generated for system elements
(i.e., when system elements register themselves). The HUID corresponds to that of the newly
registered software element (if it has one), hasHuid indicates if the HUID parameter is valid.

GoneSoftwareElement
void GoneSoftwareElement(in SEID seid)

This event is generated when an entry is removed from the Registry (using
Registry::UnregisterElement). The SEID corresponds to the identifier of the unregistered
software element.

5.5.5 Registry Protocol

Each Registry maintains a local database containing entries for the registered software elements
located on the same device as the Registry.

When a Registry (A) receives a query from a local software element (i.e., running on the same
device), it uses the Messaging System to forward the query to other Registries. The query is sent to
all other Registries, and Registry A waits for the response messages from each remote Registry. (It
is the responsibility of the Registry implementor to assure that the Registry will not be blocked
indefinitely. For example, a timer can be armed just before sending the request to a remote
Registry.) When all the replies have been received, then Registry A sends a response to the calling
software element. The response contains all the SEIDs found in the different replies.

If one reply contains a EINCOMPLETE_RESULT error, this error is returned to the calling software
element. If one of the remote Registries could not be reached, the return code is
Registry::ENETWORK (however, if the forwarding fails due to the device containing the remote
Registry being removed then this error is not returned). In the case where both occur, the return
code passed to the calling software element may be either EINCOMPLETE_RESULT or
Registry::ENETWORK.

When a Registry receives a query from a remote Registry, it examines its local database and
generates a response.

 156

HAVi SPECIFICATION Version 1.1

Software
Element A
Device X Registry

Device X
Registry
Device Y

Registry
DeviceZ

SendReliable(Query(...))

SendReliable(Query_resp(Y,...))

SendReliable(Query_resp(Z,...))

SendReliable(Query_resp(X+Y+Z...))

SendReliable(Query(...))

SendReliable(Query(...))

Figure 31. Registry Protocol

In a similar way, if a Registry receives a RetrieveAttributes request for an SEID that is not
local to the Registry, the “local” Registry uses the SEID to find out on which node it resides, then
forwards the retrieval request to the Registry on that remote node. The remote Registry sends the
retrieval result to the “local” Registry which in turn returns it to the caller.

The RetrieveAttributes is only sent to the remote registry on which the requested SEID
resides. If that Registry is (currently) not in the network, the Registry::EIDENTIFIER error is
returned.

5.6 Device Control Module

This section provides a set of commands for device management within the architecture provided
by a DCM. These DCM commands include areas such as connection management, informational
and status queries for the device and its plugs, etc. The DCM corresponding to a device is the target
of these messages. This document describes the common set of DCM commands. Regardless of the
type of device that is represented by the DCM, the DCM command set must be supported.
However, (proprietary) extensions of the DCM command set are allowed.

5.6.1 Services Provided

Service Comm
Type

Locality Access Resv
Prot

Dcm::GetDeviceIcon M global all

Dcm::GetHuid M global all

Dcm::GetFcmCount M global all

Dcm::GetFcmSeidList M global all

Dcm::GetDeviceClass M global all

Dcm::GetDeviceManufacturer M global all

Dcm::GetUserPreferredName M global all

 157

HAVi SPECIFICATION Version 1.1

Service Comm
Type

Locality Access Resv
Prot

Dcm::SetUserPreferredName M global all

UserPreferredNameChanged E global DCM (all)

Dcm::GetPowerState M global all

Dcm::SetPowerState M global all yes

PowerStateChanged E global DCM (all)

PowerFailureImminent E global DCM (all)

Dcm::NativeCommand M global all yes

Dcm::GetControlCapability M global all

Dcm::GetHavletCodeUnitProfile M global all

Dcm::GetHavletCodeUnit M global all

Dcm::GetPlugCount M global all

Dcm::GetPlugStatus M global all

Dcm::Connect M global Stream Manager yes

Dcm::Disconnect M global Stream Manager yes

Dcm::GetConnectionList M global all

DeviceConnectionAdded E global DCM (all)

DeviceConnectionDropped E global DCM (all)

DeviceConnectionChanged E global DCM (all)

Dcm::GetChannelUsage M global all

Dcm::GetPlugUsage M global all

Dcm::SetIecBandwidthAllocation M global Stream Manager yes

BandwidthRequirementChanged E global DCM (all)

Dcm::IecSprayOut M global Stream Manager

Dcm::IecTapIn M global Stream Manager yes

Dcm::GetSupportedTransmissionFormats M global all

Dcm::GetTransmissionFormat M global all

Dcm::SetTransmissionFormat M global Stream Manager yes

TransmissionFormatChanged E global DCM (all)

Dcm::GetContentIconList M global all

Dcm::SelectContent M global all yes

Dcm::StopContent M global all yes

ContentListChanged E global DCM (all)

Dcm::ScheduleReservation M global Resource Manager

Dcm::UnscheduleReservation M global Resource Manager

Dcm::GetScheduledActionReferences M global all

InvalidScheduledAction E global DCM (all)

Dcm::AddVirtualFcm M local trusted

Dcm::RemoveVirtualFcm M local virtual FCM

 158

HAVi SPECIFICATION Version 1.1

Service Comm
Type

Locality Access Resv
Prot

Dcm::GetAvailableStreamTypes M global all

Dcm::GetStreamType M global all

Dcm::SetStreamTypeId M global Stream Manager yes

StreamTypeChanged E global Dcm(all)

5.6.2 Device Control Module Data Structures

DeviceIcon

Definition
struct DeviceIcon {
 Label deviceIconName;
 OptAttrList optionals;
};

Description
The device icon element is returned by the DCM and DCM Manager API calls GetDeviceIcon.
Device icons may be used to represent a device (DCM) to a human user; for example, on a network
map image. The particular form of representation is a vendor device option.

For the definition and meaning of the Label and OptAttrList types see section 5.12 APIs for
Data Driven Interaction.

The deviceIconName label denotes the user preferred name as discussed in the DCM and
Registry sections. The user preferred name can be changed via Dcm::SetUserPreferredName.
The DCM takes care that the deviceIconName in the DeviceIcon retrieved via
Dcm::GetDeviceIcon is updated accordingly. Note that DeviceIcon is also used for providing
a visual representation of an Application Module. In this case, the deviceIconName label does
not mean denoting the user preferred name of the device.

Optional Attributes
! DEVICE_ICON_BITMAP

Optionally, a device icon may provide a bitmap representation in one or more of the optional
attributes. The size of the bitmap is recommended to be a size that would allow a controller or
other user interface application to easily display on the screen a number of device representations.
This would allow the user to select a given device for further device control. In any case, the
bitmap should be no larger that 48 x 48 pixels. Note that the device icon’s bitmap is represented by
an optional attribute of type DEVICE_ICON_BITMAP which directly contains the pixels of the
bitmap. This means that when a DeviceIcon has been obtained, DdiTarget::GetDdiContent
does not need to be used to obtain the pixels.

For the definition and meaning of the DEVICE_ICON_BITMAP see section 5.12 APIs for Data
Driven Interaction.

 159

HAVi SPECIFICATION Version 1.1

ContentIcon

Definition
struct ContentIcon {
 Label contentIconName;
 boolean availability;
 OptAttrList optionals;
};

Description
The content icon element is returned by the API call Dcm::GetContentIconList. Content icons
may be used to represent to a human user the content that can be provided by a device. The DCM
for this device will make available, using Dcm::GetContentIconList, a set of content icons for
user selection of the DCM’s AV content. When selected, using Dcm::SelectContent, the target
device will start playing this content out .

The availability attribute indicates whether or not the content shown by the content icon is (=
True) or is not (= False) available now.

For the definition and meaning of the Label and OptAttrList types see section 5.12 APIs for
Data Driven Interaction.

Optional Attributes
! CONTENT_ICON_BITMAP
! FONTSIZE
! PLAYBACK_DURATION
! RECORDED_DATETIME
! BROADCAST_DATETIME

The PLAYBACK_DURATION attribute shows the length of time required for playing back this
content.

The RECORDED_DATETIME attribute shows when this content was recorded and is, for example,
used for A/V storage devices.

The BROADCAST_DATETIME attribute shows when this content will be transmitted from a
broadcasting station and, for example, is used for tuner devices.

For the definition and meaning of the optional attributes see section 5.12 APIs for Data Driven
Interaction.

The size of the content icon bitmap is recommended to be a size that would allow a controller or
other user interface application to easily display on the screen a number of device content
representations. In any case, the bitmap should be no larger that 48 x 48 pixels.

Note that the content icon’s bitmap is represented by an optional attribute of type
CONTENT_ICON_BITMAP which directly contains the pixels of the bitmap. This means that when a
ContentIcon has been obtained, DdiTarget::GetDdiContent does not need to be used to
obtain the pixels.

TargetId

The Target ID is the identification of a device, functional component of a device, or Application

 160

HAVi SPECIFICATION Version 1.1

Module inside a device, and must have the following structure:

enum TargetType {DCM_61883, DCM_NON61883, FCM_61883,
 FCM_NON61883, AM };

struct TargetId {
 TargetType type;
 GUID guid;
 uint n1;
 ushort n2;
};

The type indicates whether the target is an Application Module, FCM or DCM. For the latter two
it also indicates whether the associated device is IEC-61883 compliant or otherwise. FAVs, IAVs
and BAVs are IEC-61883 compliant and thus their DCMs and FCMs have type set to
DCM_61883 or FCM_61883 respectively. The DCM or FCM for an IEC-61883 compliant LAV
shall have type set to DCM_61883 or FCM_61883 respectively. The DCM or FCM for a non IEC-
61883 compliant LAV shall have type set to DCM_NON61883 or FCM_NON61883 respectively.

The guid indicates the device which should be used for (IEEE-1394) communication (including
streaming). For non-61883 devices and application modules, this is the GUID of the host.

The interpretation of the fields n1 and n2 should be done according to the following table:

type GUID of: n1 n2

DCM_61883 target 0xffff ffff 0xffff
DCM_NON61883 host ID of non IEC-61883 compliant

LAV (assigned by host)
0xffff

FCM_61883 target 0xffff ffff Index of FCM
(from 0x0000 to
0xfffe)

FCM_NON61883 host ID of non IEC-61883 compliant
LAV (assigned by host)

Index of FCM
(from 0x0000 to
0xfffe)

AM host ID of Application Module
(assigned by host)

0xffff

At each moment in time, a Target ID is unique in the sense that a target is represented by only one
Target ID and a Target ID refers to only one target.

Notes:

! In case of non-61883 devices, the n1 value is assigned by the host. It is the host’s
responsibility to assign these values such that at each moment in time a Target ID
corresponds to a single target.

! For IEC-61883 devices the Target ID is unique and persistent. However, for non IEC-
61883 devices a host might not be able to assign a unique and/or persistent Target ID. So,
for these types of devices it may be the case that a Target ID X refers to a device x while
later on it refers to another device y. Moreover, it may be the case that at some moment in
time a device x is represented by a Target ID X while some time later it is represented by
a Target ID Y.

 161

HAVi SPECIFICATION Version 1.1

! Target IDs of Application Modules are assigned by the host on which the application is
going to run; they are passed to the Application Module at installation. The GUID in this
Target ID is the GUID of the host, the n1 field is a number assigned by the host in such a
way that there is no other Application Module on that node with the same Target ID (the
n2 field is 0xffff). If the host assigns a Target ID to some Application Module in a
persistent way, i.e. each time the Application Module is started it gets the same Target ID
and that Target ID is never assigned to another Application Module, the host can indicate
this to the Application Module by the n1Uniqueness value provided during installation
(see section 7.4.2). The Application Module shall set the n1Uniqueness field of its
HUID according to this parameter.

InterfaceId

The Interface ID is the identification of a DCM, FCM, or Application Module and must have the
following structure.
typedef ushort InterfaceId;

The Interface ID is assigned per DCM and Application Module. FCMs have the same Interface ID
as their associated DCM.

The Interface ID is assigned by the vendor (author) of the DCM, FCM or Application Module.

HUID

The HUID is the unique identification of a DCM, FCM, or Application Module and must have the
following structure.
enum FCAssigner {NONE, AVC, CAL, VENDOR, DCM};

struct HUID {
 TargetId targetId;
 InterfaceId interfaceId;
 VendorId vendorId;
 boolean n1Uniqueness;
 FCAssigner n2Assigner;
};

The targetId identifies uniquely the target (see above).

The vendorId contains the ID of the vendor of the DCM, FCM or Application Module. As
indicated below, HUIDs have to satisfy several properties. In general, it is the vendor indicated by
this Vendor ID that guaranties that the properties are met.

The interfaceId is a number assigned by the vendor to identify the API supported by the
software element. When a device manufacturer provides different (versions of) APIs for the same
device/application, it shall differentiate their HUIDs by varying their Interface IDs.

The n1Uniqueness field indicates whether the host could assign the Target ID n1 field uniquely
for that device, and will never use that same value for any other device. For BAVs in BAV mode,
IAVs and FAVs, n1Uniqueness is always True.

The n2Assigner field has the value of NONE for the HUIDs of DCM and AM code units. For

 162

HAVi SPECIFICATION Version 1.1

FCMs, n2Assigner≠NONE indicates interface uniqueness and the basis for this uniqueness:

! the AV/C address determines the FCM index. The value 'n2' is regarded as a combination of
upper-byte (hereafter, n2_H) and lower byte (hereafter, n2_L), where n2_H corresponds to
subunit_type or Extended_subunit_type, and n2_L corresponds to subunit_ID or
Extended_subunit_ID. If Extended_subunit_type is used for AV/C address and its value is less
than 224, n2_H equals to the value plus 32. Otherwise, lower 5-bits of n2_H equal to the
subunit_type and upper 3-bits shall be zeros. If Extended_subunit_ID is used and its value is
less than 251, n2_L equals to the value plus 4. Otherwise, lower 3-bits of n2_L equal to the
subunit_ID and upper 5-bits shall be zeros. Note that n2 = 0xffff is not allowed for an FCM.

! the CAL context id determines the FCM index.
! the FCM index is assigned and guaranteed by the vendor.
! the FCM index is assigned and guaranteed by the DCM.

Note: Also for FCMs of BAVs, n2Assigner is useful to indicate (FCM) persistency.

The n1Uniqueness and n2Assigner fields together also determine whether the HUID’s
interface can be uniquely identified by the interfaceId and vendorId fields: if a software
element with HUID H has some API A and H.n1Uniqueness is True and
H.n2Assigner≠NONE, then it will always be the case that any software element with HUID H
has API A.

The above definitions lead to the following properties for HUIDs:

! The HUID of a DCM can be inferred from the HUID of any of its FCMs by replacing the
n2 sub-field of the target field (targetId) by 0xffff, the type sub-field of the target field
(targetId) as appropriate (DCM_61883 in case of FCM_61883 and DCM_NON61883 in
case of FCM_NON61883), and the n2Assigner field by NONE.

! The GUID of the node that is needed for (IEEE-1394) communication can be inferred
from the guid sub-field of the target field (targetId).

ByteRow
typedef sequence<octet> ByteRow;

Uninterpreted row of bytes. This type is used for passing native commands to a DCM or FCM (and
its associated device).

The safe parameter size limit for ByteRow values is the same as that of the data parameter for
Cmm1394::Read and Cmm1394::Write.

NativeProtocol

HAVi has been designed to support the embedding of non-HAVi devices in the HAVi architecture.
To allow extensive control of these devices by their native command protocols, the following type
is introduced:
enum NativeProtocol {VENDOR_PROTOCOL};

NativeProtocol indicates how (via which standard) a sequence of bytes should be interpreted.
VENDOR_PROTOCOL is used for vendor defined command protocols. In this case, the caller must
know the vendor of the DCM target device and its native command set.

 163

HAVi SPECIFICATION Version 1.1

ContentType
enum ContentType {AUDIO, AV};

ContentIconRef
struct ContentIconRef {
 uint handle;
 ContentIcon icon;
};

NO_CHANNEL
typedef short ChannelNumber;
const ChannelNumber NO_CHANNEL = -1;

NO_CHANNEL is a special value returned by Dcm::GetChannelUsage.

DeviceConnectionDropReason
enum DeviceConnectionDropReason {
 DEV_CON_DROPPED_BY_NON_HAVI_REQUEST,
 IEC_BROADCASTOUT_RESTORE_FAILURE,
 IEC_BROADCAST_BROKEN
};

Stream Manager Types

The DCM APIs use the following types defined in the Stream Manager section:
Plug, DeviceConnection, IecPlug, StreamType,
TransmissionFormat

Resource Manager Types

The DCM APIs use the following types defined in the Resource Manager section:
SAReference, Command, SAConnection, SAPeriod

5.6.3 Device Control Module API

Dcm::GetDeviceIcon

Prototype
Status Dcm::GetDeviceIcon(
 out DeviceIcon icon)

Parameters
! icon – a representation for the device the DCM represents.

Description
Provides a visual representation of the device that can be displayed to the user. It is the same
representation as that acquired through DcmManager::GetDeviceIcon for BAV devices (and
possibly LAV devices).

 164

HAVi SPECIFICATION Version 1.1

The device icon shall be constructed from the HAVi_User_Preferred_Name field in the SDD of the
device and from the HAVi_Device_Icon_Bitmap field if it is available.

Dcm::GetHuid

Prototype
Status Dcm::GetHuid(out HUID dcmId)

Parameters
! dcmId – the HAVi Unique ID of the DCM

Description
Returns the HAVi Unique ID of the DCM.

Dcm::GetFcmCount

Prototype
Status Dcm::GetFcmCount(out ushort fcmCount)

Parameters
! fcmCount – the number of FCMs related to the DCM.

Description
Returns the number of FCMs related to the device represented by the DCM.

Dcm::GetFcmSeidList

Prototype
Status Dcm::GetFcmSeidList(out sequence<SEID> fcmIdList)

Parameters
! fcmIdList – a list of software element identifiers of FCMs. The safe parameter size limit is

10 SEID values.

Description
Returns the list of software element identifiers of the FCMs related to the device represented by the
DCM.

Dcm::GetDeviceClass

Prototype
Status Dcm::GetDeviceClass(out DeviceClass deviceClass)

Parameters
! deviceClass – the device class, see section 5.5.2.

Description
Returns the DeviceClass of the device represented by this DCM.

 165

HAVi SPECIFICATION Version 1.1

Dcm::GetDeviceManufacturer

Prototype
Status Dcm::GetDeviceManufacturer(out wstring name)

Parameters
! name – the name of the manufacturer. The safe parameter size limit is the maximum length of

the Registry DeviceManufacturer data structure.

Description
Returns the name of the manufacturer of this device.

Dcm::GetUserPreferredName

Prototype
Status Dcm::GetUserPreferredName(out wstring name)

Parameters
! name – a string indicating the user provided name. The safe parameter size limit is the

maximum length of the Registry UserPreferredName data structure.

Description
Provides the name that a user has given to this specific device. If no name has been assigned the
string is empty. The user preferred name is also available as an attribute in the Registry.

To share this name with other HAVi devices, a device may provide the user preferred name in the
field HAVi_User_Preferred_Name in its SDD data.

Dcm::SetUserPreferredName

Prototype
Status Dcm::SetUserPreferredName(in wstring name)

Parameters
! name – a string indicating the name to be assigned to the DCM. The safe parameter size limit is

the maximum length of the Registry UserPreferredName data structure.

Description
Sets the user preferred name of the device represented by this DCM to the specified name.

The user preferred name of a device can be retrieved from several places; the DCM and the device
shall ensure that each place provides the same name. This concerns:

! the name retrieved via Dcm::GetUserPreferredName

! the ATT_USER_PREF_NAME Registry attribute for the DCM

! the deviceIconName in the DeviceIcon retrieved via Dcm::GetDeviceIcon

 166

HAVi SPECIFICATION Version 1.1

! the HAVi_User_Preferred_Name field in the SDD of the device. In order to be compliant
with IEEE1239a-2000, the implementation shall defer the SDD updating (and thus to
send back Dcm::SetUserPreferredName response) if the SDD updating result in a
generation field value used within the last 60 seconds.

Error codes
! ERESOURCE_LIMIT – if the DCM was unable to allocate resources (e.g., the name is too long)

Dcm::GetPowerState

Prototype
Status Dcm::GetPowerState(out boolean powerState)

Parameters
! powerState – the current power state of the device

Description
A device may support two power states that are visible within the HAVi network. True represents
that the device is powered and operating normally, False represents a “standby” state in which
operations cannot be done directly. Dcm::GetPowerState provides the current power state of the
device.

HAVi assumes a model in which the DCM is responsible for the power state of the device. If the
power state is False and the DCM must provide a service for which the device is required, the
DCM (not the user) must wakeup the device. Note that in standby mode, the device is not
completely unpowered: it can in some way be awoken by HAVi via the network. (If this is not the
case, the device is not reachable from HAVi and the DCM should not be installed.)

Dcm::SetPowerState

Prototype
Status Dcm::SetPowerState(inout boolean powerState)

Parameters
! powerState – the desired/obtained power state of the device represented by the DCM

Description
Set the power state of the device and possibly its functional components. When the PowerState is
True, Dcm::SetPowerState turns on the power of the device, depending on the implementation
(e.g., shared power supply) this may also turn on the power of some or all of its functional
components. When powerState is False, Dcm::SetPowerState turns off the power of the
device and the power of some or all of its functional components. If any of its functional
components does not support a standby mode, the power state of the respective functional
component remains True, but the power state of all other functional components and the device
are set to False. The power state of the device after the call has been handled is returned.

Note: If the power state of either functional component can not be changed according to the
indicated rules because its FCM is reserved by an SE other than the caller, then ERESERVED is
returned and the power state of device and all its functional components remain unchanged.

 167

HAVi SPECIFICATION Version 1.1

Error codes
! ENOT_IMPLEMENTED – if the DCM is (always) unable to change power state
! ERESERVED – if the power state can not be changed since any of the functional components

involved is reserved.
! Dcm::ENOT_POSS – if the power state can not be changed due to other reasons (user

intervention).

Dcm::NativeCommand

Prototype
Status Dcm::NativeCommand(
 in NativeProtocol protocol,
 in ByteRow command,
 out ByteRow response)

Parameters
! protocol – indication of the protocol of the native command, e.g. Vendor specific, AVC,

CAL, etc.
! command – the native command to be sent to the device. The safe parameter size limit is the

same as that of the data parameter for Cmm1394::Write.
! response – the response from the device. The safe parameter size limit is the same as that of

the data parameter for Cmm1394::Read.

Description
The DCM receives a command in one of its native command protocols. Dcm::NativeCommand is
intended for dealing with non-HAVi standards (e.g. CAL, AV/C). A native command may have
side-effects on the standard HAVi DCM interface or the interface of one of its FCMs. It is the
responsibility of the DCM (and its FCMs) to assure that the HAVi standard interface is not violated
and to determine whether the specific native command is accepted or not. For example, a DCM
may receive an AV/C “play” request for a VCR sub-unit that has a corresponding FCM. The DCM
must then assure that the FCM’s state remains consistent with that of the sub-unit.

Error codes
! Dcm::ENO_PROT – if the specified native proprietary protocol is not supported
! Dcm::ENO_COMMAND – if the specified command is not supported in the specified native

protocol

Dcm::GetControlCapability

Prototype
Status Dcm::GetControlCapability(
 out boolean extControl,
 out boolean notifies)

Parameters
! extControl – true if external (non-HAVi) control (e.g., manual control by the user) can

occur; false if the DCM has exclusive control over the resources of the device.
! notifies – true if the DCM is notified of external control and so maintains a consistent

view of its resources; false otherwise.

Description

 168

HAVi SPECIFICATION Version 1.1

Indicates the level of control the DCM has over its device, i.e. whether other controllers can also
control the device via other means, e.g., a manual control panel. Moreover, it indicates whether the
DCM receives change of state notifications from the device and so maintains a consistent view of
the device state.

Dcm::GetHavletCodeUnitProfile

Prototype
Status Dcm::GetHavletCodeUnitProfile(
 out Version version,
 out long transferSize,
 out long codeSpace,
 out long workingSpace,
 out long chunkSize)

Parameters
! version – the lowest version of the HAVi Messaging System required by this havlet.
! transferSize – the number of havlet code unit bytes to be transferred (i.e., the JAR file size)
! codeSpace – the number of bytes required for the installed havlet code unit (read-only part)
! workingSpace – an estimate of the number of bytes required for the working space of the

installed havlet code unit (read/write part)
! chunkSize – the maximum number of havlet code unit bytes the DCM can send at a time

Description
Provides the various size parameters needed for determining whether the destination of the havlet
code unit (for example, an FAV UI Manager) can install the havlet. This method is only supplied if
the DCM indicates that it supports a havlet via the ATT_GUI_REQ attribute in the Registry.

Error codes
! ENOT_IMPLEMENTED – the DCM has no havlet code unit

Dcm::GetHavletCodeUnit

Prototype
Status Dcm::GetHavletCodeUnit(
 in long firstByte,
 in long lastByte,
 out sequence<octet> byteArray)

Parameters
! firstByte – the number of the first byte of the transferred havlet code unit byte array wanted
! lastByte – the number of the last byte of the array wanted
! byteArray – the byte array requested (empty if none could be delivered or if invalid

firstByte and/or lastByte values are supplied). The safe parameter size limit is 512 bytes
(the 1394 asynchronous packet size for bus speeds of 100 Mbps).

Description
Provides the bytecode that can be used to install and execute an havlet, a Level 2 application stored
in this DCM. A havlet code unit receiver can request all or some of the bytes of the havlet code unit
from the DCM. It should first use Dcm::GetHavletCodeUnitProfile to determine if it is
capable of retrieving and installing the code unit. firstByte and lastByte should indicate

 169

HAVi SPECIFICATION Version 1.1

subsequent parts of the code unit to be transferred. The first byte of the code unit is number 1; the
last byte is the value of transferSize. The amount of bytes requested (lastByte -

firstByte + 1) shall not exceed the value of chunkSize. This method is only supplied if the
DCM indicates that it supports a havlet via the ATT_GUI_REQ attribute in the Registry.

The format of the bytecode and the way it should be handled by an FAV are described in the
section 7.4.

Error codes
! EINVALID_PARAMETER – the values of firstByte and/or lastByte are invalid
! ENOT_IMPLEMENTED – the DCM has no havlet code unit

Dcm::GetPlugCount

Prototype
Status Dcm::GetPlugCount(
 in TransportType type,
 out ushort inCount,
 out ushort outCount)

Parameters
! type – indication of the location of DCM plugs; i.e. 1394 plugs on the device (type is

IEC61883) or external plugs on the device (type is CABLE).
! inCount – the number of input plugs of the specified type.
! outCount – the number of output plugs of the specified type.

Description
Provides information about the number of input and output plugs on the DCM, e.g. the number of
1394 plugs on the device or the number of (non-1394) device plugs to the external world.

Error codes
! EINVALID_PARAMETER – if the specified TransportType is neither IEC61883 nor CABLE

Dcm::GetPlugStatus

Prototype
Status Dcm::GetPlugStatus(
 in Plug plug,
 out PlugStatus status)

Parameters
! plug – identifies a plug on the DCM or an FCM associated with the DCM
! status – the status information for the specified plug

Description
Dcm::GetPlugStatus returns status information for the specified plug.

Error codes
! Dcm::ENO_ADDR – if the specified Plug does not exist for this DCM or an FCM associated

with the DCM

 170

HAVi SPECIFICATION Version 1.1

Dcm::Connect

Prototype
Status Dcm::Connect(
 in SEID caller,
 in Plug src,
 in Plug dest)

Parameters
! caller – the SEID of the original software element on behalf of which the connect is to be

performed.
! src – the location of the plug that will be the source of the connection; this can be an FCM

plug or a DCM plug.
! dest – the location of the plug that will be the destination of the connection; this can be an

FCM plug or a DCM plug.

Description
Establish a device connection on the device represented by the DCM between the specified source
plug and the specified destination plug. DCM and FCM plugs are numbered starting from zero, the
total number of plugs can be obtained via Dcm::GetPlugCount and Fcm::GetPlugCount. The
connect operation is called by Stream Managers. The reservation protection check is not done using
the actual caller of Dcm::Connect but using the (original) caller supplied as a parameter by the
Stream Manager. If this caller is the DCM itself (as results from an invocation of
Dcm::SelectContent), then the reservation protection check is not performed. Reservation
check is not performed on src.

Per breakable connection, a DCM keeps track of the Stream Managers that established the
connection (via Dcm::Connect). In case of a Dcm::Disconnect call by a Stream Manager and
in case a Stream Manager is removed from the network (network partition), that Stream Manager is
removed from the list. A DCM can use MsgWatchOn to be notified of disappearing Stream
Managers.

If no Stream Managers are left, the DCM can decide to break the connection or mark it as “stale”.
A stale connection will always be broken in case a newly created connection would be hampered.
A DCM is allowed to treat non-HAVi connections in the same way as permanent connections:
connections that cannot be broken. For these non-breakable connections, the DCM does not need to
maintain a list of involved Stream Managers.

Error codes
! Dcm::ENO_ADDR – if one of the specified Plug values does not exist for this DCM or an FCM

associated with the DCM
! Dcm::ENOT_SUPPORTED – it is (always) not possible to establish the connection
! Dcm::ENOT_POSS – it is currently not possible to establish the connection

Dcm::Disconnect

Prototype
Status Dcm::Disconnect(
 in SEID caller,
 in Plug src,
 in Plug dest)

 171

HAVi SPECIFICATION Version 1.1

Parameters
! caller – the SEID of the original software element on behalf of which the disconnect is to be

performed.
! src – the location of the plug that is the source of the connection to be disconnected
! dest – the location of the plug that is the destination of the connection to be disconnected

Description
Removes a device connection on the device represented by the DCM. DCM and FCM plugs are
numbered starting from zero, the total number of plugs can be obtained via Dcm::GetPlugCount
and Fcm::GetPlugCount. The disconnect operation is called by Stream Managers. The
reservation protection check is not done using the actual caller of Dcm::Connect but using the
(original) caller supplied as a parameter by the Stream Manager. If this caller is the DCM itself (as
results from an invocation of Dcm::StopContent), then the reservation protection check is not
performed. Reservation check is not performed on src.

For breakable connections: remove the Stream Manager from the list of Stream Managers that are
involved in this connection. If no Stream Managers are left, the DCM can decide to break the
connection or mark it as “stale”. The IEC61883 broadcast connection associated with the broken or
stale connection should be broken by the DCM or device itself if the Dcm or device itself has no
need to continue the broadcast connection.

For non-breakable connections (permanent or non-HAVi), no action of the DCM is needed.

Error codes
! Dcm::ENO_ADDR – if one of the specified Plug values does not exist for this DCM or an FCM

associated with the DCM

Dcm::GetConnectionList

Prototype
Status Dcm::GetConnectionList(
 in Plug plug,
 out sequence<DeviceConnection> list,
 out sequence<boolean> preemptable)

Parameters
! plug – address of the plug for which device connections are to be reported
! list – a list of device connections from or to the plug indicated by plug. The safe parameter

size limit 20 DeviceConnection values.
! preemptable – indicates which of the connections in list the DCM will allow a Stream

Manager to preempt. The safe parameter size limit 20 boolean values.

Description
Provides a list of all device connections in the device represented by the DCM that are either from
or to the plug indicated by plug.

Error codes
! Dcm::ENO_ADDR – if the specified Plug does not exist for this DCM or an FCM associated

with the DCM

 172

HAVi SPECIFICATION Version 1.1

Dcm::GetChannelUsage

Prototype
Status Dcm::GetChannelUsage(
 in IecPlug plug,
 out short channel)

Parameters
! plug – a DCM plug for the IEC61883 transport type (a PCR).
! channel – the 1394 isochronous channel number.

Description
Provides the 1394 channel number that is used by the specified plug. If no channel is used by the
plug, NO_CHANNEL is returned.

Error codes
! Dcm::ENO_ADDR – if the specified IecPlug does not exist for this DCM

Dcm::GetPlugUsage

Prototype
Status Dcm::GetPlugUsage(
 in ushort channel,
 out sequence<IecPlug> list)

Parameters
! channel – a 1394 isochronous channel number.
! list – a list of IecPlug values (plug control register numbers). The safe parameter size limit

20 IecPlug values.

Description
Providing a 1394 isochronous channel number, this method obtains a (possibly empty) list giving
the IecPlug structure of plugs that use the specified channel.

Error codes
! Dcm::ENO_ADDR – if channel does not refer to a proper 1394 channel number

Dcm::SetIecBandwidthAllocation

Prototype
Status Dcm::SetIecBandwidthAllocation(
 in SEID caller,
 in IecPlug plug,
 in uint maxBandwidth)

Parameters
! caller – the SEID of the original software element on behalf of which the bandwidth

allocation strategy is to be set.
! plug – a source DCM plug for the IEC61883 transport type (an oPCR)
! maxBandwidth – the requested static payload

 173

HAVi SPECIFICATION Version 1.1

Description
Dcm::SetIecBandwidthAllocation is used to set a bandwidth allocation strategy (see section
5.9.5.4.1) for the specified oPCR. If maxBandwidth is 0, dynamic bandwidth allocation is
requested, if maxBandwidth is non-zero then static bandwidth allocation is requested. The
bandwidth allocation strategy can be changed only if the plug has no IEC 61883 connections (i.e.,
the point-to-point counter and broadcast bit are zero) and only via calls to
SetIecBandwidthAllocation.

When dynamic bandwidth allocation is set it is the responsibility of the DCM to assure that
bandwidth allocation is attempted (whether by the device or itself) whenever there is a change in
bandwidth requirements of the plug. The DCM will then post the
BandwidthRequirementChanged event.

When static bandwidth allocation is set the device shall set the payload field in the specified plug to
maxBandwidth / (8000 * 32). It is the responsibility of the DCM to assure that bandwidth
allocation is not attempted (whether by the device or itself) whenever there is a change in
bandwidth requirements of the plug.

When static bandwidth allocation is set, bandwidth allocation may still be required if the maximum
bandwidth specified is less than the maxBandwidth of the stream type of the source FCM plug
attached to the IEC plug. In such cases a BandwidthRequirementChanged event is posted and
indicates that the new bandwidth requirement cannot be honored because bandwidth allocation is
not attempted due to the setting of static bandwidth allocation.

This API is called only by Stream Managers. The reservation protection check is not done using the
actual caller of Dcm::SetIecBandwidthAllocation but using the (original) caller supplied as
a parameter by the Stream Manager.

The Stream Manager shall call this API when establishing an IEC connection if the plug is attached
to a source FCM plug and it produces a variable rate stream type. It should be called after setting
the transmission format and after making internal attachments to the plug (since these actions may
also result in the payload being altered).

Error codes
! Dcm::ENO_ADDR – if the specified IecPlug does not exist for this DCM
! Dcm::EDEV_BUSY – the point-to-point counter or broadcast bit are non-zero for the specified

IecPlug
! Dcm::ENOT_POSS – if the DCM cannot assure that the payload field of the plug contains the

payload value corresponding to maxBandwidth (either maxBandwidth is too large or too
small or the device does not support static bandwidth allocation)

Dcm::IecSprayOut

Prototype
Status Dcm::IecSprayOut (
 in SEID caller,
 in IecPlug plug,
 in ushort channel,
 in ushort payload)

Parameters
! caller – the SEID of the original software element requesting the connection.
! plug – identifies the DCM plug to use as the source of an IEC 61883 broadcast-out

 174

HAVi SPECIFICATION Version 1.1

connection.
! channel – the value to be set for Channel number field of the oPCR.
! payload – the value to be set for payload field of the oPCR.

Description
Establish an IEC61883 broadcast-out connection from the specified plug. IEC 61883 allows
broadcast connections to only be established by the AV device on which the PCR is located. Thus
the DCM shall establish the broadcast-out connection by proprietary communication with the
device (when the DCM is remote to the device). It is the responsibility of the device to establish the
broadcast-out connection according to IEC 61883, including allocation of bandwidth and channel.
It is also the responsibility of the device to restore the broadcast-out connection. If the restoration
fails, a DeviceConnectionDropped event should be posted by the DCM. Dcm’s are suggested
to select Data rate considering capability of sink devices and the network.

When plug.pcrNum is ANY_PLUG, the DCM should return Dcm::ENO_ADDR or
ENOT_IMPLEMENTED if the API is not supported.

This API is called only by Stream Managers. The reservation protection check is not done using
the actual caller of Dcm::IecSprayOut but using the (original) caller supplied as a parameter by
the Stream Manager.

Error codes
! ENOT_IMPLEMENTED – it is (always) not possible to establish a broadcast-out connection
! Dcm::ENO_ADDR – if the specified plug value does not exist for this DCM
! Dcm::EDEV_BUSY – unable to use the plug
! Dcm::EINSUFF_BANDWIDTH – bandwidth allocation has failed
! Dcm::EINSUFF_CHANNEL – channel allocation has failed

Dcm::IecTapIn

Prototype
Status Dcm::IecTapIn (
 in SEID caller,
 in IecPlug plug,
 in ushort isocChannel)

Parameters
! caller – the SEID of the original software element requesting the connection.
! plug – identifies the DCM plug to use as the sink of an IEC 61883 broadcast-in connection.
! isocChannel – the 1394 isochronous channel to use for the broadcast-in connection.

Description
Establish an IEC61883 broadcast-in connection to the specified plug. IEC 61883 allows broadcast
connections to only be established by the AV device on which the PCR is located. Thus the DCM
shall establish the broadcast-in connection by proprietary communication with the device (when the
DCM is remote to the device).

When plug.pcrNum is ANY_PLUG, the DCM should return Dcm::ENO_ADDR or
ENOT_IMPLEMENTED if the API is not supported.

This API is called only by Stream Managers. The reservation protection check is not done using
the actual caller of Dcm::IecTapIn but using the (original) caller supplied as a parameter by the

 175

HAVi SPECIFICATION Version 1.1

Stream Manager.

Error codes
! ENOT_IMPLEMENTED – it is (always) not possible to establish a broadcast-in connection
! Dcm::ENO_ADDR – if the specified plug value does not exist for this DCM
! Dcm::EDEV_BUSY – unable to use the plug

Dcm::GetSupportedTransmissionFormats

Prototype
Status Dcm::GetSupportedTransmissionFormats(
 in StreamType type,
 in Plug plug,
 out sequence<TransmissionFormat> formats)

Parameters
! type – a stream type
! plug – a DCM plug
! formats – list of transmission formats. The safe parameter size limit is 10

TransmissionFormat values.

Description
Given a specific plug and stream type, this method provides the list of transmission formats
supported by that plug for use with the stream type. The first member of formats is the
TransmissionFormat value returned by Dcm::GetTransmissionFormat.

Error codes
! Dcm::ENO_ADDR – if the specified Plug does not exist for this DCM

Dcm::GetTransmissionFormat

Prototype
Status Dcm::GetTransmissionFormat(
 in Plug plug,
 out TransmissionFormat format)

Parameters
! plug – a DCM plug
! format – a transmission format.

Description
Given a specific plug, indicated by its plug number and its direction, this method provides the
transmission format currently assigned to that plug.

Error codes
! Dcm::ENO_ADDR – if the specified Plug does not exist for this DCM

Dcm::SetTransmissionFormat

Prototype

 176

HAVi SPECIFICATION Version 1.1

Status Dcm::SetTransmissionFormat(
 in SEID caller,
 in Plug plug,
 in TransmissionFormat format)

Parameters
! caller – the SEID of the original software element on behalf of which the transmission

format is to be changed.
! plug – a DCM plug
! format – a transmission format

Description
Given a specific plug, indicated by its address, this method assigns the transmission format for the
specified plug. The transmission format assigned must be a format supported by the plug as
provided by the Dcm::GetSupportedTransmissionFormats primitive. Even in this case it is
possible that the transmission format cannot be set (e.g., some devices may not be able to change
the transmission format when the plug is active). In this case, the method will fail as indicated in the
return code. This operation is called by Stream Managers. The reservation protection check is not
done using the actual caller of Dcm::SetTransmissionFormat but using the (original) caller
supplied as a parameter by the Stream Manager. If this caller is the DCM itself (as results from an
invocation of Dcm::SelectContent), then the reservation protection check is not performed.

Error codes
! Dcm::ENO_ADDR – if the specified Plug does not exist for this DCM
! Dcm::ENOT_SET – it is (currently) not possible to set the transmission format to the specified

value
! Dcm::ENOT_SUPPORTED– if it is (always) not possible to set the transmission format to the

specified value.

Dcm::GetContentIconList

Prototype
Status Dcm::GetContentIconList(
 in ContentType type,
 out sequence<ContentIconRef> list)

Parameters
! type – content type of the streams in the content icon list.
! list – list of the content icons and their handles for the device. The safe parameter size limit is

2 Kbytes.

Description
Get the list of content icons for this device for either the AUDIO or AV content types. If the device
does not support content icons, the list will be empty. The handles identify the content icons and
will refer to the same content until the DCM disappears. Note – this does not mean that the content
icon also needs to be available until the DCM disappears.

Dcm::SelectContent

Prototype
Status Dcm::SelectContent(

 177

HAVi SPECIFICATION Version 1.1

 in ContentType contentType,
 in uint handle,
 in boolean dynamicBw,
 in FcmPlug sink)

Parameters
! contentType – the content type of the ContentIconList from which content is to be

selected
! handle – reference number of the content to be selected. This is the value of one of the handle

entries in the list returned by Dcm::GetContentIconList and obtained with type set to
contentType (the content icon is identified by this reference number).

! dynamicBw – indicates desired bandwidth allocation strategy
! sink – the sink plug to be used for the content

Description
Selects the actual content, identified by handle, to flow to the indicated sink. The DCM uses
StreamManager::FlowTo to create a connection from the FCM that provides the specified
content. The ConnectionHint can just use “any” values. A DCM should use MsgWatchOn to be
notified when the caller disappears: the DCM should then perform Dcm::StopContent.

Error codes
! Dcm::ENO_CONT – if no content is available of the specified type for the specified handle
! Dcm::ESINK_FCM – the FCM indicated by sink does not exist
! Dcm::ESINK_PLUG – the FCM indicated by sink does not contain the specified plug
! Dcm::ENO_CONNECTION – the FlowTo connection could not be established

Dcm::StopContent

Prototype
Status Dcm::StopContent(
 in ContentType contentType,
 in uint handle)

Parameters
! contentType – the content type of the ContentIconList from which content is to be

stopped.
! handle – reference number of the content to be selected. This is the value of one of the handle

entries in the list returned by Dcm::GetContentIconList and obtained with type set to
contentType (the content icon is identified by this reference number).

Description
Stops the flowing of the content identified by handle. The DCM uses StreamManager::Drop
to break the connection from the FCM that provides the specified content.

Error codes
! Dcm::ENO_CONT – if no content is available of the specified type for the specified handle
! Dcm::ENOT_RUN – if the content indicated by contentType and handle is not currently

selected

 178

HAVi SPECIFICATION Version 1.1

Dcm::ScheduleReservation

Prototype
Status Dcm::ScheduleReservation(
 in sequence<Command> startCommandsList,
 in sequence<Command> stopCommandsList,
 in sequence<SAConnection> connectionList,
 in DateTime startTime,
 in DateTime stopTime,
 in SAPeriod periodicity,
 in sequence<HUID> involvedFcmList,
 in wstring<50> userInfo,
 in long index)

Parameters
! startCommandsList, stopCommandsList – commands to be executed during the

Scheduled Action. The commands are listed by order of execution. The safe parameter size
limits are 1 Kbyte.

! connectionList – list of connections that have to be established from and by this DCM.
The safe parameter size limit is 10 SAConnection values.

! startTime, stopTime – date and time information about the Scheduled Action
! periodicity – indicates the periodicity of the Scheduled Action. If a periodicity is specified,

the Scheduled Action starts and stops every day or every week at the time indicated in
startTime

! involvedFcmList – list of the involved FCMs. The safe parameter size limit is 10 HUID
values.

! userInfo – string field containing the reservation reason
! index – index of the Scheduled Action

Description
Reservation of the involved resources (distribution of the Scheduled Action for one DCM),
specifying all the commands that will have to be performed at start/stop time. All commands are
checked in order to ensure the FCMs will perform the required commands at start time.

Implementation guideline: in addition to the schedule reservation information, the DCMs should
store the Action Scheduler SEID along with the index parameter in order to entirely reference
Scheduled Actions in which they are involved.

Error codes
! Dcm::ECOMMANDS – reservation is rejected because of invalid commands
! Dcm::ECONNECTIONS – reservation is rejected because of invalid connections
! Dcm::ESCHED_OVERLAP – reservation is rejected because of scheduling overlap

Dcm::UnscheduleReservation

Prototype
Status Dcm::UnscheduleReservation(in long index)

Parameters
! index – index of the Scheduled Action (of the calling Action Scheduler)

Description

 179

HAVi SPECIFICATION Version 1.1

Cancellation of the scheduled reservation.

Dcm::GetScheduledActionReferences

Prototype
Status Dcm::GetScheduledActionReferences(
 out sequence<SAReference> saReferenceList)

Parameters
! saReferenceList – list of Scheduled Actions references. The safe parameter size limit is

20 SAReference values.

Description
Gets the list of Scheduled Action references in which this DCM is involved.

Error codes
! Dcm::ENONE – no Scheduled Action is associated with this DCM

Dcm::AddVirtualFcm

Prototype
Status Dcm::AddVirtualFcm (
 out HUID fcmHuid)

Parameters
! fcmHuid – the HUID of the FCM as assigned by the DCM

Description
Results in the addition of the calling (trusted) software element to the set of FCMs associated with
the target DCM. This target DCM must represent an FAV device. The target DCM will take care
that in the Registry, the ATT_SE_TYPE attribute of the calling software element is changed to
GENERIC_FCM.

The availability of handling isochronous streams by software depends on the system design of FAV
devices. There may be DCMs for FAVs which do not support this API.

From the perspective of an application, the virtual FCM will be treated like other FCMs. In
particular Dcm::Connect can be used to make device connections involving the virtual FCM. As
with connection requests in general, not all requests may be possible for the DCM to configure. In
the case of device connections involving virtual FCMs, the DCM will only allow device
connections between IEC61883 input plugs and the virtual FCM. This restriction may be relaxed in
future versions of HAVi.

Error codes
! ENOT_IMPLEMENTED – if this DCM has no support for virtual FCMs (if the DCM is not

representing an FAV)
! ERESOURCE_LIMIT – if this DCM has insufficient resources to support this additional FCM.

 180

HAVi SPECIFICATION Version 1.1

Dcm::RemoveVirtualFcm

Prototype
Status Dcm::RemoveVirtualFcm()

Description
Results in the removal of the calling (trusted) FCM from the set of FCMs associated with the target
DCM. This target DCM should represent an FAV device. The target DCM will take care that in the
Registry, the ATT_SE_TYPE attribute of the calling FCM is changed from GENERIC_FCM to its
value prior to Dcm::AddVirtualFcm.

Error codes
ENOT_IMPLEMENTED – if this DCM has no support for virtual FCMs (if the DCM does not
represent an FAV)

Dcm::GetAvailableStreamTypes

Prototype
Status Dcm::GetAvailableStreamTypes(
 in plug DcmPlug ,
 in plug FcmPlug,
 out sequence<StreamType> types)

Parameters
! DcmPlug – DCM plug, specifying one end of an attachment.

! FcmPlug– FCM plug, specifying the other end of an attachment.

! types – list of stream types

Description
Given an attachment specified by DcmPlug and FcmPlug, this method provides the list of
currently available stream types for the attachment (For example, some DCM may return
temporary stream type even if there is no tape. Such DCM should accept setStreamTypeId for
the stream type and may generate StreamTypeChanged event after stream types come concrete).
The members of types list have unique stream type Ids and the first member of the list has the
same stream type ID as the StreamType value returned by Dcm::GetStreamType.

This API returns available stream types that are available after the plugs are attached even if the
plugs are not yet attached. FcmPlug and DcmPlug parameters must be the same direction,
otherwise EINVALID_PARAMETER is returned.

Dcm::GetStreamType

Prototype
Status Dcm::GetStreamType(
 in plug DcmPlug,
 out StreamType type)

Parameters

 181

HAVi SPECIFICATION Version 1.1

! DcmPlug – indicating DcmPlug

! type – stream type

Description
Given an attachment specified by DcmPlug, this method provides the stream type currently
assigned to that attachment. The maxBandwidth field of type shall indicate the maximum
bandwidth (in bps) produced by the plug (a source plug), or capable of being consumed (a sink
plug).This API returns value only when there is an attachment.

Error codes
! Dcm::ENO_ATTACH – there is no attachment between specified plugs.
! Dcm::ENO_ADDR – if the specified plug does not exist for this DCM.

Dcm::SetStreamTypeId

Prototype
Status Dcm::SetStreamTypeId(
 in SEID caller,
 in plug DcmPlug,
 in StreamTypeId typeId)

Parameters
! caller – the SEID of the original software element on behalf of which the stream type is to

be changed.
! DcmPlug –Dcm Plug

! typeId –stream type Id to be set.

Description

Given an attachment specified by DcmPlug , this method assigns the stream type ID to the
specified attachment. The stream type ID assigned must be one supported by the attachment as
provided by the Dcm::GetSupportedStreamTypes primitive. This operation is called by
Stream Managers. The reservation protection check is not done using the actual caller of
Dcm::SetStreamTypeId but using the (original) caller supplied as a parameter by the Stream
Manager. If this caller is the DCM to which this FCM belongs (as results from an invocation of
Dcm::SelectContent), then the reservation protection check is not performed. This API returns
value only when there is an attachment. If the DcmPlug specified is sink then the reservation check
is not performed.

Error codes
! Dcm::ENO_ATTACH – there is no attachment between specified plugs.
! Dcm::ENO_ADDR – if the specified plug does not exist for this DCM.
! Dcm::ENOT_SET – it is currently not possible to set the stream type ID to the specified

value.
! Dcm::ENOT_SUPPORTED – it is (always) not possible to set the stream type ID to the

specified value

 182

HAVi SPECIFICATION Version 1.1

5.6.4 Device Control Module Events

UserPreferredNameChanged

Prototype
void UserPreferredNameChanged(in wstring name)

Parameters
! name – the new user preferred name.

Description
Notification of a change of the user preferred name of this DCM. If a user preferred name is
changed via Dcm::SetUserPreferredName, the DCM shall post this event after changing all the
following values:

! the name retrieved via Dcm::getUserPreferredName

! the ATT_USER_PREF_NAME Registry attribute for the DCM

! the deviceIconName in the DeviceIcon retrieved via Dcm::GetDeviceIcon

! the HAVi_User_Preferred_Name field in the SDD of the device.

PowerStateChanged

Prototype
void PowerStateChanged(in boolean powerState)

Parameters
! powerState – the current power state of the device represented by the DCM

Description
Notification of a change in the power state of the device represented by the DCM.

PowerFailureImminent

Prototype
void PowerFailureImminent()

Description
Indication that a power failure is imminent. This event indicates that the whole device represented
by the DCM, including its FCMs is about to enter an unpowered state. The consequences of
entering the unpowered state are implementation specific.

DeviceConnectionAdded

Prototype
void DeviceConnectionAdded(

 183

HAVi SPECIFICATION Version 1.1

 in Plug src, in Plug dest)

Parameters
! src – identifies a plug on the DCM or an FCM associated with the DCM
! dest – identifies a plug on the DCM or an FCM associated with the DCM

Description
Notifies that a device connection from src to dest has been added due to external (non-HAVi)
control.

Note: Some types of devices might not support this feature (see Dcm::GetControlCapability
above).

DeviceConnectionDropped

Prototype
void DeviceConnectionDropped(
 in Plug src, in Plug dest,
 in DeviceConnectionDropReason reason)

Parameters
! src – identifies a plug on the DCM or an FCM associated with the DCM
! dest – identifies a plug on the DCM or an FCM associated with the DCM
! reason – the reason why the connection has become inoperable

Description
Notifies one of the following has occurred:

! a device connection has been dropped due to external (non-HAVi) control
! break of IEC 61883 broadcast-out connection due to failure in restoring after bus reset.
! break of IEC 61883 broadcast connection.

Stream Managers drop their connections that become inoperable and post ConnectionDropped
events with the DropReason set to DEVICE_CONNECTION_DROPPED, IEC_BROADCAST_BROKEN
or RESTORE_FAILURE. This event should not be generated when a IEC 61883 broadcast
connection which is not involved in HAVi connection has been broken.

Note: Some types of devices might not support this feature (see Dcm::GetControlCapability
above).

Note2: break of a broadcast connection does not mean drop of the attachment.

DeviceConnectionChanged

Prototype
void DeviceConnectionChanged(
 in Plug plug,
 in InternalPlug oldPlug, in InternalPlug newPlug,
 in StreamType newSType,
 in TransmissionFormat newTFormat)

Parameters

 184

HAVi SPECIFICATION Version 1.1

! plug – identifies a plug on the DCM or an FCM associated with the DCM
! oldPlug – identifies a plug on an FCM associated with the DCM
! newPlug – identifies a plug on an FCM associated with the DCM
! newSType – new stream type used by the connection
! newTFormat – new transmission format used by the connection

Description
Notifies that a device connection has changed due to device function. For example, an external
(non-HAVi) action, such as pushing a button on the device’s front panel may cause the change. It is
also possible that the change may occur as a side-effect of HAVi APIs (e.g., Vcr::Stop) –
depending on the implementation of the DCM, FCM and device.

A DeviceConnectionChanged event indicates that the device connection between plug and
oldPlug has replaced by one between plug and newPlug. A DeviceConnectionChanged
event is not accompanied by a pair of DeviceConnectionDropped and
DeviceConnectionAdded events. When a DeviceConnectionChanged occurs there may also
be a change in stream type and/or transmission format used by the source or sink, however it does
not trigger StreamTypeChanged or TransmissionFormatChanged events. The Stream
Managers involved (those managing connections with the specified plugs) will check the
compatibility of source and sink and attempt to set the new stream type and transmission format if
needed. The compatibility check is not applied to the CABLE connection.

Note: Some types of devices might not support this feature (see Dcm::GetControlCapability
above).

TransmissionFormatChanged

Prototype
void TransmissionFormatChanged(
 in Plug plug,
 in TransmissionFormat format)

Parameters
! plug – a DCM plug on the node
! format – the new transmission format used by plug

Description
Posted when the transmission format of the specified plug has changed as a result of operation of
the device (rather than as a result of Dcm::SetTransmissionFormat). The plug is a source. The
Stream Managers involved (managing connections with the specified source) will check the
compatibility of sinks and set the new transmission format of sinks (via
Dcm::SetTransmissionFormat). The compatibility check is not applied to the CABLE
connection.

BandwidthRequirementChanged

Prototype
void BandwidthRequirementChanged(
 in IecPlug plug, in boolean allocated)

Parameters

 185

HAVi SPECIFICATION Version 1.1

! plug – a source IEC plug on the node
! allocated – indicates whether sufficient bandwidth is allocated for the plug

Description
Posted when the bandwidth requirement of the specified plug has changed. Stream Managers that
have connections involving plug, will check whether the current payload field in the IEC plug is
still less than the maxBandwidth field of the stream type of the sink FCM. If the current payload is
greater than this value or allocated is False a ConnectionChanged event is posted with
change reason BANDWIDTH_ADAPTATION_FAILURE. The operational status of the connection
becomes FAILURE, the failure reason is BANDWIDTH_FAILURE.

ContentListChanged

Prototype
void ContentListChanged(in ContentType type)

Parameters
! type the content type of the content icon list for which content has changed.

Description
Notification of a change in a content list of a DCM. Note that changes in content lists should not be
too frequent because users should be able to select content icons from the lists presented to them.

InvalidScheduledAction

See section 5.10.4 on Resource Manager events.

StreamTypeChanged

Prototype
void StreamTypeChanged(
 in plug SrcDcmPlug,
 in StreamType type)

Parameters
! SrcDcmPlug -DcmPlug

! type – changed stream type

Description
Posted when the stream type of the specified plug has changed as a result of operation of the
functional component (rather than as a result of Dcm::SetStreamTypeId). The plug is a source.
The Stream Managers involved (managing connections with the specified source) will check the
compatibility of sinks and set the new stream type at the sink (via Dcm::SetStreamTypeId). The
compatibility check is not applied to the CABLE connection.

 186

HAVi SPECIFICATION Version 1.1

5.7 Functional Component Module

This section specifies a set of commands for control, administration and management of FCMs.
Generally, FCM commands can be subdivided into the following categories:

! Commands that deal with administration and management of FCMs, similar to the
commands for DCMs. These commands are supported by all FCMs, independent of their
particular type.

! Commands which apply only to a specific functional domain such as VCRs or tuners.
These function-specific commands typically correspond to the native commands such as,
for a VCR functional component, the PLAY, STOP and REWIND commands. Because
the HAVi messages for these commands must be sent to a software element within the
network, the FCM also acts as the target for these messages. Proprietary extensions of
function-specific command sets are allowed.

This section only deals with the first category – administration and management commands of
FCMs. Function-specific command sets are described in section 6.

5.7.1 Services Provided

Service Comm
Type

Locality Access Resv
Prot

Fcm::GetHuid M global all

Fcm::GetDcmSeid M global all

Fcm::GetFcmType M global all

Fcm::GetPowerState M global all

Fcm::SetPowerState M global all yes

PowerStateChanged E global FCM (all)

PowerFailureImminent E global FCM (all)

Fcm::NativeCommand M global all yes

Fcm::SubscribeNotification M global all

Fcm::UnsubscribeNotification M global all

<Client>::FcmNotification MB global FCM (all)

Fcm::GetPlugCount M global all

Fcm::GetSupportedStreamTypes M global all

Fcm::Wink M global all

Fcm::Unwink M global all

Fcm::CanWink M global all

Fcm::Reserve M global Resource Manager

Fcm::Release M global Resource Manager

Fcm::GetReservationStatus M global all

Fcm::GetWorstCaseStartupTime M global all

ReserveIndication E global FCM (all)

ReleaseIndication E global FCM (all)

 187

HAVi SPECIFICATION Version 1.1

Service Comm
Type

Locality Access Resv
Prot

Fcm::SetPlugSharing M global all yes

PlugSharingChanged E global FCM (all)

Fcm::IecAttach M local DCM

Fcm::IecDetach M local DCM

5.7.2 Functional Component Module Data Structures

FcmAttributeIndicator

For defining notifications, the following types are needed:
typedef ushort FcmAttributeIndicator;

Indication of a specific FCM attribute, to be specified for each specific functional component type
separately (see Annex 11.8).

FcmAttributeValue
typedef sequence<octet> FcmAttributeValue;

Since the type of the possible FCM attributes cannot be specified in advance, a general data
structure is used (sequence of bytes). For each attribute, the range of values and their representation
as a byte string is specified by the specific FCM. The CDR standard is used to map types into byte
sequences. In the case of short or long values, the value is always passed in big-endian format.

The safe parameter size limit for FcmAttributeValue values is 32 bytes.

NotificationId
typedef ushort NotificationId;

Unique (for a specific FCM) identification of a notification type, provided by the notification
source and used by the subscriber to refer to the specific subscription.

DCM Types

The FCM APIs use the following types defined in the DCM section:
NativeProtocol, ByteRow

Stream Manager Types

The FCM APIs use the following types defined in the Stream Manager section:
IecPlug, StreamType, Direction, Plug

Resource Manager Types

The FCM APIs use the following type defined in the Resource Manager section:
ClientRole

 188

HAVi SPECIFICATION Version 1.1

ClientRecord

Definition
struct ClientRecord {
 SEID client;
 boolean primary;
 ClientRole clientRole;
 wstring<50> info;
 OperationCode preemptionRequestCode;
};

Description
A specification of a client record (used for FCM reservation). client specifies the client.
primary is True for primary access rights and False for secondary access rights. clientRole
specifies its user or system role. info specifies the client's supplied information.
preemptionRequestCode is the operation code of the client’s preemption request message.

5.7.3 Functional Component Module API

Fcm::GetHuid

Prototype
Status Fcm::GetHuid(out HUID fcmId)

Parameters
! fcmId – HAVi Unique ID of the FCM

Description
Returns the HAVi Unique ID of the functional component represented by the FCM.

Fcm::GetDcmSeid

Prototype
Status Fcm::GetDcmSeid(out SEID dcmId)

Parameters
! dcmId –software element identifier of the DCM

Description
Returns the software element identifier of the DCM that represents the device on which the
functional component represented by this FCM resides.

Fcm::GetFcmType

Prototype
Status Fcm::GetFcmType(out SoftwareElementType type)

Parameters

 189

HAVi SPECIFICATION Version 1.1

! type – the software element type of the FCM as defined in Annex 11.3

Description
Returns the HAVi standardized type (VCR_FCM, TUNER_FCM, GENERIC_FCM etc.) of the functional
component represented by this FCM. (See the description of SoftwareElementType in section
5.5.2. and the list of FCM types in Annex 11.3.)

Fcm::GetPowerState

Prototype
Status Fcm::GetPowerState(out boolean powerState)

Parameters
! powerState – the current power state of the functional component

Description
Power management of a functional component is similar to the power management of a device. A
functional component may support two power states that are visible within the HAVi network.
True represents that the functional component is powered and operating normally, False
represents a “standby” state in which operations cannot be done directly. Fcm::GetPowerState
provides the current power state of the functional component.

HAVi assumes a model in which the FCM is responsible for the power state of the functional
component. If the power of the functional component is off and the FCM must provide a service in
which the device is really required, the FCM (not the user) must wake up the device. Note that in
standby mode, the functional component is not completely unpowered: it can in some way be
awoken by HAVi via the network. (If this is not the case, the device is not reachable from in HAVi
and the complete FCM should not be available).

Fcm::SetPowerState

Prototype
Status Fcm::SetPowerState(inout boolean powerState)

Parameters
! powerState – the desired/obtained power state of the device represented by the FCM

Description
Try to set the power state of the functional component to the powerState provided. When the
powerState is True, Fcm::SetPowerState turns on the power of the functional component,
and possibly (depending on the device itself) also the power of the whole device. When
powerState is False, Fcm::SetPowerState turns off the power of the functional component,
if possible. If the FCM represents a functional component that does not support a standby mode (or
which requires the whole device to be in standby), the power state of the device remains True. The
power state of the functional component after the call has been handled is returned.

Error codes
! ENOT_IMPLEMENTED – if the FCM is (always) unable to change power state
! Fcm::ENOT_POSS – if the FCM is unable to change power state because of one or more

FCMs, which are required to change power state simultaneously, are reserved by other SE(s).

 190

HAVi SPECIFICATION Version 1.1

Fcm::NativeCommand

Prototype
Status Fcm::NativeCommand(
 in NativeProtocol protocol,
 in ByteRow command,
 out ByteRow response)

Parameters
! protocol – indication of the native protocol of the command
! command – native command to be sent to the device. The safe parameter size limit is the same

as that of the data parameter for Cmm1394::Write.
! response – the response from the device. The safe parameter size limit is the same as that of

the data parameter for Cmm1394::Read.

Description
The FCM receives a command in one of its native command protocols. Useful for dealing with
other non-HAVi standards (e.g. CAL, AV/C). A native command may have side-effects on the
standard HAVi DCM interface or the interface of one of its FCMs. It is the responsibility of the
FCM (together with its DCM and other FCMs) to assure that the HAVi standard interface is not
violated and to determine whether the native command is accepted or not.

Error codes
! Fcm::ENO_PROT – if the specified native proprietary protocol is not supported
! Fcm::ENO_COMMAND – if the specified command is not supported in the specified native

protocol

Fcm::SubscribeNotification

Prototype
Status Fcm::SubscribeNotification(
 in FcmAttributeIndicator attributeIndicator,
 in FcmAttributeValue value,
 in CompOperation comparator,
 in OperationCode opCode,
 out FcmAttributeValue currentValue,
 out NotificationId notificationId)

Parameters
! attributeIndicator – indication of an FCM state attribute.
! value – value of an FCM state attribute. The safe parameter size limit is that of

FcmAttributeValue.
! comparator – specification of the condition on value, on which the event has to be

generated.
! opCode – the OperationCode provided by the caller. This is the value that the FCM will

place in the operation code of the notification message it sends to a client.
! currentValue – the current value of the FCM attribute. The safe parameter size limit is that

of FcmAttributeValue.
! notificationId – identification (within an FCM) of a notification.

Description
Registers the caller as a software element interested in a setting of the specified FCM attribute. In

 191

HAVi SPECIFICATION Version 1.1

general, the caller will be notified when the value of the attribute identified by
attributeIndicator and value satisfy comparator. If the comparator is ANY, every setting
of the attribute results in a notification, and the value parameter is ignored.

SubscribeNotification returns the notificationId that the FCM will use in the
notification of this situation. This ID must also be used by the caller to unsubscribe. It also returns
the current value of the FCM state attribute.

The subscription ends when the application unsubscribes explicitly or when the application is no
longer reachable by the FCM (detected by the MsgWatchOn facility of the FCM’s local Messaging
System).

This definition only specifies the general part of the API. If a specific FCM supports notification of
attribute changes, the attributes and the values (of each attribute) for the FCM are specified in
Annex 11.8.

The FcmAttributeValue in the above specification is a sequence of bytes. In the FCM API
sections, specific types (specified in IDL) are associated with FcmAttributeValue. The mapping
of the IDL types onto the sequence of bytes is again according to CDR. The first byte of
FcmAttributeValue is considered the “zero index” for natural boundary alignment.

Error codes
! EINVALID_PARAMETER – the value of value, or some other parameter, is invalid for the

FCM
! ERESOURCE_LIMIT – if the FCM was unable to allocate resources to register this indication

listener

Fcm::UnsubscribeNotification

Prototype
Status Fcm::UnsubscribeNotification(
 in NotificationId notificationId)

Parameters
! notificationId – unique (within the FCM) notification ID

Description
Unsubscribes the caller as a software element that is interested in the occurrence of the situation
specified by notificationId. The FCM will stop sending notifications to the caller.

Error codes
! Fcm::ENO_NOT – if no notification with this ID has been registered for the caller

<Client>::FcmNotification

Prototype
Status <Client>::FcmNotification(
 in NotificationId notificationId,
 in FcmAttributeIndicator attributeIndicator,
 in FcmAttributeValue value)

Parameters

 192

HAVi SPECIFICATION Version 1.1

! notificationId – identification (within the FCM) of the notification.
! attributeIndicator – indication of an FCM state attribute.
! value – value of an FCM state attribute. The safe parameter size limit is that of

FcmAttributeValue.

Description
During the subscription, the FCM will send a “message back” to the subscriber, each time the
situation occurs using the operation code the subscriber has specified via
Fcm::SubscribeNotification.

Fcm::GetPlugCount

Prototype
Status Fcm::GetPlugCount(
 out ushort inCount,
 out ushort outCount)

Parameters
! inCount – the number of input FCM plugs
! outCount – the number of output FCM plugs

Description
Provides information about the number of input and output plugs on the FCM.

Fcm::GetSupportedStreamTypes

Prototype
Status Fcm::GetSupportedStreamTypes(
 in ushort plugNum,
 in Direction direction,
 out sequence<StreamType> types)

Parameters
! plugNum – the number of a plug on the FCM.
! direction – the direction of the plug plugNum on the FCM.
! types – list of stream types. The safe parameter size limit is 20 StreamType values.

Description
Given a specific FCM plug, indicated by its plug number and its direction, this method provides the
list of stream types possibly supported by that plug. The members of this list have unique stream
type IDs and the first member of the list has the same stream type ID as the StreamType value
returned by Dcm::GetStreamType. This API returns all supported stream types even it can’t be
set now (e.g., It returns a stream type even when current media is not suitable for the stream type).

Error codes
! Fcm::ENO_ADDR – if the specified plug (indicated by plugNum and direction) does not

exist for this FCM

 193

HAVi SPECIFICATION Version 1.1

Fcm::Wink

Prototype
Status Fcm::Wink()

Description
The Fcm::Wink command is intended to attract the attention of the user. It may result in the
device blinking a LED, making a sound, displaying a logo, etc. How a device responds to
Fcm::Wink is implementation dependent.

Error codes
! ENOT_IMPLEMENTED – the functional component represented by the FCM is not capable of

winking
! Fcm::EWAS_WINKING – the functional component represented by the FCM was already

winking

Fcm::Unwink

Prototype
Status Fcm::Unwink()

Description
Stop the winking behavior of a device.

Error codes
! ENOT_IMPLEMENTED – the functional component represented by the FCM is not capable of

winking
! Fcm::EWAS_NOT_WINKING – the functional component represented by the FCM was not

winking

Fcm::CanWink

Prototype
Status Fcm::CanWink(out boolean canWink)

Parameters
! canWink – if true, the FCM is capable of winking

Description
Determine if a device can wink.

Fcm::Reserve

Prototype
Status Fcm::Reserve(
 in SEID client, in ClientRole role,
 in wstring<50> info, in boolean primary,
 in boolean nonIntrusive,
 in OperationCode preemptionRequestCode)

 194

HAVi SPECIFICATION Version 1.1

Parameters
! client – a contender for the resource
! role – the user or system role of the contender
! info – the information string related to this reservation
! primary – True if reservation as a primary client; False if reservation as a secondary client
! nonIntrusive – True if the intention of the reservation is non-intrusive; otherwise the

intention is preemptive
! preemptionRequestCode – the operation code of the client’s preemption request message

Description
An FCM reservation can only be done by a Resource Manager (the FCM shall verify this). Before
issuing this request, the Resource Manager may use Fcm::GetReservationStatus as
appropriate to retrieve the current reservation-related data from the FCM. The client will have
either primary or secondary access rights if the reservation succeeds.

The nonIntrusive parameter prevents that accidentally a resource preemption takes place in case
a non-intrusive reservation was intended. Its value therefore needs to be True if the client requested
a non-intrusive resource reservation.

If a client has already reserved the resource, another reservation for the same client shall be
accepted (unless another client has a conflicting reservation). Its access rights shall be according to
the last reservation request, and its previous reservation shall be undone by an implicit release (an
event ReleaseIndication is posted).

It shall always be possible to accept a preemptive reservation for a primary contender, unless both
contender and client are of type “system”. If the resource is being preempted for a primary
contender, a reservation for the current primary client is undone by an implicit release. A primary
reservation can be done independently of the number of accepted secondary clients, and without
having to release the resource for any secondary client. (Note that there can be secondary clients
without a primary client.)

If secondary access is supported by the FCM, then preemption for secondary access rights always
succeeds when the contender is of type “user”. If the resource cannot accept any additional
secondary clients, one of the current secondary clients shall be selected for an implicit release of the
resource. When the contender is of type “system” preemption for secondary access rights fails. In
case the resource is preempted, its state shall remain unchanged (no return to the neutral state). If it
is not possible or not valid to perform a reservation, the error code ENO_RESERVE is returned.

Each FCM shall use the Messaging System’s watch-on facility to detect the disappearance of any
of its clients. An FCM should return to a neutral state if its last client disappeared in this way (see
Fcm::Release).

Either all three methods Reserve, Release, and GetReservationStatus, and the events
ReserveIndication and ReleaseIndication shall be implemented by the FCM, or none of
them shall be. If these methods are not supported, the error code ENOT_IMPLEMENTED is returned
if any of them is invoked.

The execution of this API does not depend on the power state of the FCM. This means that a FCM
shall not use the error code of ESTANDBY.

Error codes
! Fcm::ENO_RESERVE – the reservation failed
! ENOT_IMPLEMENTED – the resource does not allow reservations

 195

HAVi SPECIFICATION Version 1.1

Fcm::Release

Prototype
Status Fcm::Release(in SEID client, in boolean neutral)

Parameters
! client – a presumed current client of the resource
! neutral – if True, the FCM will return to a neutral state before it is released

Description
An FCM::Release can only be done by a Resource Manager (the FCM shall verify this). The data
on the client and its access rights will be removed from the FCM. If a client disappears from the
network, the FCM will undo (release) the client’s reservation. Through the neutral parameter, a
releasing client can determine whether or not to return the state of the FCM to neutral. This shall
only have an effect if this was the last client of the FCM. It is up to the FCM what the meaning of
this neutral state is, but its intention is that the FCM becomes “inactive” after it was released in the
neutral state. A non-neutral release of FCMs allows handing over resources to other applications in
a state-preserving manner.

For example, releasing a VCR FCM in a neutral state by the single client of the FCM might prevent
any further recording activity on the inserted tape, despite the fact that the client did not previously
perform an explicit “stop recording” action. Had the FCM been released with neutral set to
False, the recording should continue.

Either all three methods Reserve, Release, and GetReservationStatus, and the events
ReserveIndication and ReleaseIndication shall be implemented by the FCM, or none of
them shall be. If these methods are not supported, the error code ENOT_IMPLEMENTED is returned
if any of them is invoked.

The execution of this API does not depend on the power state of the FCM. This means that a FCM
shall not use the error code of ESTANDBY.

Error codes
! Fcm::ENO_RELEASE – there was no reservation to be released for this client
! ENOT_IMPLEMENTED – the resource does not allow reservations

Fcm::GetReservationStatus

Prototype
Status Fcm::GetReservationStatus(
 out boolean primaryPossible,
 out boolean secondaryPossible,
 out sequence<ClientRecord> clientRecords)

Parameters
! primaryPossible – only if True, the resource can accept a non-intrusive primary

reservation
! secondaryPossible – only if True, the resource can accept a (non-intrusive) secondary

reservation
! clientRecords – the list of primary and secondary clients of this resource; if the list is

empty, there are no clients; if primaryPossible is False, the first record denotes the
primary client, otherwise it denotes a secondary client. The safe parameter size limit is 10

 196

HAVi SPECIFICATION Version 1.1

ClientRecord values.

Description
A Resource Manager can use this method to retrieve reservation-related data from the FCM. Any
other software element may also use this method.

Either all three methods Reserve, Release, and GetReservationStatus, and the events
ReserveIndication and ReleaseIndication shall be implemented by the FCM, or none of
them shall be. If these methods are not supported, the error code ENOT_IMPLEMENTED is returned
if any of them is invoked.

Error codes
! ENOT_IMPLEMENTED – the resource does not allow status retrieval

Fcm::GetWorstCaseStartupTime

Prototype
Status Fcm::GetWorstCaseStartupTime(out long seconds)

Parameters
! seconds – worst case number of seconds needed to start a command

Description
Queries for the longest time an FCM takes to start one of its commands. It is a “worst case” time in
the sense that it reflects the longest time the slowest FCM command requires to become activated.

This may be used for a Scheduled Action start time setup, for synchronizing the start-up of all
devices in the Scheduled Action. It is up to the application to get worst case startup times of FCMs
before setting a Scheduled Action.

Error codes
! ENOT_IMPLEMENTED – no worst case startup time available

Fcm::SetPlugSharing

Prototype
Status Fcm::SetPlugSharing(
 in ushort plugNum,
 in boolean canShare)

Parameters
! plugNum – an output FCM plug
! canShare – desired sharing state for the plug

Description
SetPlugSharing is intended for use in parental control and other situations where one
application prevents other applications from making connections involving a particular source plug.
If canShare is False, then only the “plug owner” (the software element which disabled sharing)
will be allowed to make connections using the plug (existing connections using the plug and
established by other software elements will be dropped by Stream Managers).

 197

HAVi SPECIFICATION Version 1.1

Note that FCM plug sharing and FCM reservation are orthogonal – in particular, reserving an FCM
does not necessarily prevent other applications from connecting to its plugs.

A change in the plug sharing state causes a PlugSharingChanged event to be posted.

It is recommended that an application call SetPlugSharing after establishing connection (using
the source plug) rather than before.

Error codes
! Fcm::ENO_ADDR – if the specified output plug does not exist for this FCM

Fcm::IecAttach

Prototype
Status Fcm::IecAttach(
 in IecPlug pcr,
 in InternalPlug plug)

Parameters
! pcr – the plug control register (PCR) to attach to the virtual FCM.
! plug – the FCM plug to attach to the PCR

Description
Fcm::IecAttach will be called by an FAV DCM when the DCM establishes a connection to a
virtual FCM (i.e., Dcm::Connect is invoked). In the case of connections involving virtual FCMs,
the DCM will only allow attachments between IEC 61883 plugs and the virtual FCM. This
restriction may be relaxed in future versions of HAVi.

As a result of this call, the target (virtual) FCM can now start consuming the isochronous stream
from the specified PCR (pcr is an iPCR and plug is an input FCM plug) or producing the stream
(pcr is an oPCR and plug is an output FCM plug).

Error codes
! ENOT_IMPLEMENTED – if this FCM is not a virtual FCM
! Fcm::ENO_ADDR – the pcr or plug values are invalid
! Fcm::EATTACH – if the attachment cannot be made (e.g., direction mismatch or a sink already

has an attachment)

Fcm::IecDetach

Prototype
Status Fcm::IecDetach(
 in IecPlug pcr,
 in InternalPlug plug)

Parameters
! pcr – the plug control register (PCR) to detach from the virtual FCM.
! plug – the FCM plug to detach from the PCR

Description
Fcm::IecDetach will be called by a (FAV) DCM when the DCM breaks the connection to a

 198

HAVi SPECIFICATION Version 1.1

virtual FCM (i.e., Dcm::Disconnect is invoked). As a result of this call, the target (virtual) FCM
should now stop consuming or producing the isochronous stream.

Error codes
! ENOT_IMPLEMENTED – if this FCM is not a virtual FCM
! Fcm::ENO_ADDR – the pcr or plug values are invalid
! Fcm::EATTACH – if the attachment does not exist

5.7.4 Functional Component Module Events

PowerStateChanged

Prototype
void PowerStateChanged(in boolean powerState)

Parameters
! powerState the current power state of the functional component represented by the FCM

Description
Posted when there is a change of the power state of the functional component represented by the
FCM.

PowerFailureImminent

Prototype
void PowerFailureImminent()

Description
Indication that a power failure is imminent. This event indicates that the part of the device
represented by the FCM is about to enter an unpowered state. The consequences of entering the
unpowered state are implementation specific. This event shall only be posted if at least one of the
other FCMs of the DCM and the DCM itself remain powered, otherwise
Dcm::PowerFailureImminent shall be posted.

ReserveIndication

Prototype
void ReserveIndication(in SEID client,
 in boolean primary)

Parameters
! client – the client for which the FCM was reserved
! primary – True in case of a reservation with primary access rights, False in case of a

reservation with secondary access rights.

Description
This is an indication of the reservation of the posting FCM. If it is preempted by the client, both a
ReleaseIndication and ReserveIndication are posted by the FCM. If a reservation on
behalf of a client changes its access rights (from secondary to primary, or the other way around),

 199

HAVi SPECIFICATION Version 1.1

also both a ReleaseIndication and ReserveIndication are posted by the FCM.

Clients should subscribe to these events because they want to track the reservation status of FCMs
that they have reserved (other clients can preempt their resources).

Either all three methods Reserve, Release, and GetReservationStatus, and the events
ReserveIndication and ReleaseIndication shall be implemented by the FCM, or none of
them shall be. If these methods are not supported, the error code ENOT_IMPLEMENTED is returned
if any of them is invoked.

ReleaseIndication

Prototype
void ReleaseIndication(in SEID client,
 in boolean primary, in boolean neutral)

Parameters
! client – the client for which the FCM was released
! primary – True in case of a release with primary access rights, False in case of a release

with secondary access rights.
! neutral – True in case a release of the FCM resulted in its neutral state, False in case of a

release without a state change of the FCM.

Description
This is an indication of the release of the posting FCM, either explicitly by the client, or implicitly
(by preemption on behalf of another client, or by disappearance of the client).

Either all three methods Reserve, Release, and GetReservationStatus, and the events
ReserveIndication and ReleaseIndication shall be implemented by the FCM, or none of
them shall be. If these methods are not supported, the error code ENOT_IMPLEMENTED is returned
if any of them is invoked.

PlugSharingChanged

Prototype
void PlugSharingChanged(
 in ushort plugNum
 in boolean canShare,
 in SEID owner)

Parameters
! plugNum – an output FCM plug
! canShare – the current sharing state of the specified plug
! owner – the SEID of the software element which disabled sharing

Description
Posted when the sharing state of a plug changes. This happens either:

! as a result of an invocation of Fcm::SetPlugSharing that alters the plug sharing state

! if sharing is disabled and the owner disappears (in which case canShare shall be True)

 200

HAVi SPECIFICATION Version 1.1

If canShare is True the value of owner is undefined and should be ignored.

5.8 Device Control Module Manager

5.8.1 Services Provided

Service Comm
Type

Locality Access

DcmManager::SetPreference M global trusted

DcmManager::GetPreference M global all

DcmManager::GetDeviceIcon M global all

DcmManager::InstallDcm M global trusted

DcmManager::UninstallDcm M global trusted

DcmManager::DMInitialization M global DCM Managers

DcmManager::DMInitialInquiry M global DCM Managers

DcmManager::DMInquiry M global DCM Managers

DcmManager::DMCommand M global DCM Managers

DcmManager::DMGetDcm M global DCM Managers

DcmInstallIndication E global all

DcmUninstallIndication E global all

The entries starting with the prefix DM are DCM management protocol messages.

5.8.2 DCM Manager Data Structures

VMID

Definition
typedef octet ModelId[3];

struct VMID {
 VendorId deviceVendor;
 ModelId deviceModel;
};

Description
VendorId is the Vendor_ID, and ModelId is the Model_ID representing a BAV device model, as
specified in the SDD data. A VMID (Vendor Model Identifier) therefore specifies a device model
from some vendor.

GuestId

Definition

 201

HAVi SPECIFICATION Version 1.1

union GuestId switch(boolean) {
 case True: VMID group;
 case False: GUID single;
};

Description
Specification of a guest designation. GUID denotes a single guest, while VMID denotes a group of
guests.

PreferenceId

Definition
enum PreferenceId {
 DCM_PREFER_VENDOR_HOST,
 DCM_PREFERRED_HOST,
 DCM_PREFERRED_URL,
 DM_PREFERRED_URL_DEVICE
};

Description
The set of DCM management preference identifiers.

PreferenceValue

Definition
union PreferenceValue switch(PreferenceId) {
 case DCM_PREFER_VENDOR_HOST: boolean preferVendorHost;
 case DCM_PREFERRED_HOST: GUID preferredHost;
 case DCM_PREFERRED_URL: URLString preferredURL;
 case DM_PREFERRED_URL_DEVICE: GUID preferredURLDevice;
};

Description
Specification of a preference value.

ProfileRecord

Definition
struct ProfileBody {
 long transferredDcmCodeUnitSize;
 long installedDcmCodeSpace;
 long installedDcmWorkingSpace;
 Version messageVersion;
};

union ProfileRecord switch(boolean) {
 case True: ProfileBody Profile;
 case False: ; //empty
};

 202

HAVi SPECIFICATION Version 1.1

Description
Specification of a DCM code unit profile, in accordance to section 9.10.7.

URLString

Definition
typedef sequence<octet> URLString;

Description
Specification of a URL string. The length shall not exceed 256 bytes. It is not null-terminated (see
section 9.10.8).

DMCommandType
enum DMCommandType {
 LEADER, INSTALL_INV, UNINSTALL_INV,
 INSTALL_URL_PREF, INSTALL_URL_BAV, INSTALL_CODE_BAV,

INSTALL, UNINSTALL, INSTALLED, NOT_INSTALLED
};

DMCommandResult
enum DMCommandResult { ACCEPTED, REJECTED, BUSY };

DMGetDcmResult
enum DMGetDcmResult {
 CONTINUED, FINISHED,
 FAILED_SCHEME, FAILED_CODE, FAILED_ACCESS, FAILED
};

DcmInstallResult
enum DcmInstallResult {
 IGNORED,

URL_PREF, URL_BAV,
CODE_BAV, PROP_VENDOR, PROP,

 FAILED
};

DcmInstallConflict
enum DcmInstallConflict {
 NONE,
 VENDOR, HOST, URL, VENDOR_HOST,
 VENDOR_URL, HOST_URL, VENDOR_HOST_URL
};

DcmUninstallResult
enum DcmUninstallResult { IGNORED, COMMANDED, SPONTANEOUS };

 203

HAVi SPECIFICATION Version 1.1

5.8.3 DCM Manager API

Upon a network reset event, the DCM management system shall perform installation and
uninstallation activities autonomously, according to the description in section 3.6.1. This section
describes the API services of DCM Managers. Please refer to section 5.8.5 for the overall protocol
description and the associated concepts.

DcmManager::SetPreference

Prototype
Status DcmManager::SetPreference(
 in GuestId guest,
 in boolean set,
 in PreferenceValue value)

Parameters
! guest – the guest or guest model for which this preference is set (not interpreted for

DM_PREFERRED_URL_DEVICE)
! set – if True, the preference is set; otherwise it is removed, and becomes unspecified (in

which case value is not interpreted, except for PreferenceId)
! value – the preference value to be set

Description
A preference value is set and persistently stored (if possible) on or through the host device running
the DCM Manager that receives this message. However, a DCM Manager may refuse the setting of
a preference if it does not have the capability. The removal of a preference always succeeds, even if
the preference was not set.

Error codes
! EINVALID_PARAMETER – faulty preference value parameters were specified
! DcmManager::EVOLATILE – the value was set, but not persistently
! DcmManager::EFAIL – the value was not set because the guest parameter is known not to

designate a BAV or LAV device or model.

DcmManager::GetPreference

Prototype
Status DcmManager::GetPreference(
 in PreferenceId preference,
 in GuestId guest,
 out boolean set,
 out PreferenceValue value)

Parameters
! preference – the identifier of the preference for which the value is retrieved
! guest – the guest or guest model for which this preference is retrieved (not to be interpreted

for DM_PREFERRED_URL_DEVICE)
! set – if True, the preference was set, and value is valid; otherwise the preference is

unspecified
! value – the retrieved preference value

 204

HAVi SPECIFICATION Version 1.1

Description
A preference value is retrieved from or through the host device on whose DCM Manager the
method is invoked. If the preference is not found value shall not contain correct data.

Error codes
! EINVALID_PARAMETER – a faulty preference parameter was specified
! DcmManager::EFAIL – a value was not retrieved because the guest parameter is known not

to designate a BAV or LAV device or model.

DcmManager::GetDeviceIcon

Prototype
Status DcmManager::GetDeviceIcon(
 in GUID guest,
 out DeviceIcon icon)

Parameters
! guest – GUID of a BAV or LAV device for which a device icon is requested
! icon – a representation for a BAV or LAV device. (The DeviceIcon type is discussed in

section 5.6.2.)

Description
An icon is retrieved for guest. This method makes it possible to display a graphical or textual
representation of a guest for which no DCM code unit is installed, e.g., to show guests for which
DCM code unit installations have failed. For a BAV device, a representation is coded in the SDD
data. How a representation for an LAV device may be retrieved is not specified. If no
representation can be retrieved, DcmManager::EFAIL will be returned and the value of icon is
undetermined.

The device icon shall be constructed from the HAVi_User_Preferred_Name field in the SDD of the
device and from the HAVi_Device_Icon_Bitmap field if it is available.

Error codes
! DcmManager::EFAIL – a device icon could not be retrieved (possibly invalid guest

specified)

DcmManager::InstallDcm

Prototype
Status DcmManager::InstallDcm(in GUID guest)

Parameter
! guest – GUID of a guest for which a DCM code unit shall be installed

Description
A DCM code unit shall be installed for a BAV or LAV device for which no DCM code unit is
currently installed, if possible. If the method returns successfully, the installation is in progress, and
a DcmInstallIndication event shall designate the result of the installation attempt. The
preferences specified for the guest shall determine the installation results, in the same way as for the
autonomous installation procedure performed by the DCM management system.

 205

HAVi SPECIFICATION Version 1.1

A final follower that receives an InstallDcm message sends a DMCommand (with command
value INSTALL_INV) to the final leader. If no final leader is known, the method shall return with
error code EFAIL. The final leader shall accept the command immediately, and InstallDcm shall
return successfully. (The final leader handles the command after accepting it.) Only if the final
follower knows the specified guest parameter is not valid, DMCommand shall not be sent to the final
leader, and the final follower shall immediately return with error code EFAIL. This is the case if the
specified guest is not in the network or does not correspond to a BAV or LAV device.

Note: If the DCM code unit is already installed locally, the receiving final follower may not handle
(reject) the request locally, but should still involve the final leader.

Error codes
! DcmManager::EFAIL – the installation failed (possibly invalid guest specified)

DcmManager::UninstallDcm

Prototype
Status DcmManager::UninstallDcm(in GUID guest)

Parameter
! guest – GUID of a guest for which the DCM code unit shall be uninstalled

Description
A DCM code unit, if there is any, shall be uninstalled for guest. After the method returns
successfully, the uninstallation is in progress, and a DcmUninstallIndication event shall
designate if a DCM code unit was uninstalled or not.

A final follower that receives an UninstallDcm message sends a DMCommand (with command
value UNINSTALL_INV) to the final leader. If no final leader is known, the method shall return with
error code EFAIL. The final leader shall accept the command immediately, and UninstallDcm
shall return successfully. (The final leader handles the command after accepting it.) Only if the final
follower knows the specified guest parameter is not valid, DMCommand shall not be sent to the final
leader, and the final follower shall immediately return with error code EFAIL. This is the case if the
specified guest is not in the network or does not correspond to a BAV or LAV device.

Note: If the DCM code unit is installed locally, the receiving final follower need not involve the
final leader, and may uninstall the code unit directly.

Error codes
! DcmManager::EFAIL – the uninstallation failed (possibly invalid guest specified)

DcmManager::DMInitialization

Prototype
Status DcmManager::DMInitialization(
 out boolean URLDeviceSet,
 out GUID URLDevice)

Parameters
! URLDeviceSet – True if the value of URLDevice is valid, False otherwise
! URLDevice – the value of preference DM_PREFERRED_URL_DEVICE set at the receiving

 206

HAVi SPECIFICATION Version 1.1

initial follower (any value if the preference is not set)

Description
This is a protocol message (see section 5.8.5). This message is sent from the initial leader to all
initial followers after the initial leader has received a NetworkReset event or is powered up. If a
DCM Manager receives this message, it shall verify that it originates from the current initial leader
(through the use of Cmm1394::GetGuidList). If not, it shall return with error code EFAIL. If the
current final leader receives this message, it shall stop acting as a final leader (a new one shall be
selected subsequently).

 Error codes
! DcmManager::EFAIL – the message was not received from the assumed initial leader

DcmManager::DMInitialInquiry

Prototype
Status DcmManager::DMInitialInquiry(
 out sequence<GUID> guestList)

Parameter
! guestList – the GUIDs of the guests for which a DCM code unit is locally installed. The

safe parameter size limit of this list is bounded by the safe parameter size limit of the lists
returned by Cmm1394::GetGuidList.

Description
This is a protocol message (see section 5.8.5). It is sent from the final leader to a final follower to
find out for which guests the final follower has installed a DCM code unit. The final leader shall
only take additional autonomous actions (DMInquiry, DMCommand) for guests for which no DCM
code unit is installed on any host (installation), or for guests for which more than one DCM code
unit is found to be installed (uninstallation).

It shall be the first method used by the final leader after it is selected, and shall be sent to all final
followers, even if there are no guests in the network. From this message, a final follower learns
which DCM Manager is the final leader.

DcmManager::DMInquiry

Prototype
Status DcmManager::DMInquiry(
 in GUID guest,
 in ProfileRecord profile,
 out boolean preferVendorHost,
 out boolean preferVendorHostForModel,
 out GUID preferredHost,
 out GUID preferredHostForModel,
 out URLString preferredURL,
 out URLString preferredURLForModel,
 out boolean sameVendorHost,
 out boolean acceptable,
 out boolean installed,
 out short dcmCount)

 207

HAVi SPECIFICATION Version 1.1

Parameters
! guest – the guest for which an (un)installation inquiry is performed
! profile – the profile that the final follower shall interpret to determine if it can install the

corresponding DCM Java code unit (empty if it does not apply in the inquiry)
! preferVendorHost – the value of preference DCM_PREFER_VENDOR_HOST set at the final

follower (False if the preference is not set)
! preferVendorHostForModel – the preferVendorHost preference for the VMID of the

guest (typically False if the preference is unspecified)
! preferredHost – the value of preference DCM_PREFERRED_HOST set at the final follower (the

guest’s GUID if the preference is not set)
! preferredHostForModel – the preferredHost preference for the VMID of the guest (the

guest’s GUID if the preference is not set)
! preferredURL – the value of preference DCM_PREFERRED_URL set at the final follower (an

empty string if the preference is not set)
! preferredURLForModel – the preferredURL preference for the VMID of the guest (an

empty string if the preference is not set)
! sameVendorHost – True only if the final follower identifies the guest to be from the same

vendor as itself
! acceptable – (1) if profile is empty: True only if the host is able to install a proprietary DCM

code unit for the guest; (2) if profile is not empty: True only if the host is able to upload and
install the DCM Java code unit for the guest whose characteristics are represented by profile.
Note that if the profile contains a version number higher than the version number of the host,
acceptable should be False.

! installed – True only if a DCM code unit for the guest is already installed
! dcmCount – the number of DCM code units currently installed on the host

Description
This is a protocol message (see section 5.8.5). This message is sent from the final leader to a final
follower. The final leader requests for some guest data locally available at the final follower. The
final leader sends a non-empty profile for an uploadable DCM Java code unit only if the (FAV)
final follower should reply whether it is able to install the corresponding code unit. (This decision
shall be based on the parameters contained in the profile.)

Each DCM Manager with preference settings for VMIDs (guest models) shall verify for a BAV
guest whether the VMID applies to it. If so, one or more of the preferences that apply to the guest
model shall also be returned. Note that a DCM Manager can consult the BAV device's SDD to
acquire the necessary model ID data.

This message may be invoked by any remote DCM Manager at any time, to acquire installation
data for a guest.

DcmManager::DMCommand

Prototype
Status DcmManager::DMCommand(
 in DMCommandType command,
 in GUID device,
 in URLString preferredURL,
 out DMCommandResult result)

Parameters
! command:

 208

HAVi SPECIFICATION Version 1.1

LEADER – selected for final leadership
INSTALL_INV – install invocation
UNINSTALL_INV – uninstall invocation
INSTALL_URL_PREF – install the Java code unit designated by the preferred URL (only then

the preferredURL parameter shall not be the empty string)
INSTALL_URL_BAV – install the Java code unit designated by the URL contained in the BAV

device
INSTALL_CODE_BAV – install the Java code unit contained in BAV device
INSTALL – install in a proprietary manner
UNINSTALL – uninstall
INSTALLED – installation succeeded
NOT_INSTALLED – installation failed

! device – a host or guest value, depending on the command type
! preferredURL – the URL that a (FAV) device shall use to install a DCM code unit
! result:

ACCEPTED – accepted (always for command values LEADER, INSTALL_INV,
UNINSTALL_INV, UNINSTALL, INSTALLED, NOT_INSTALLED; possible for command
values INSTALL_URL_PREF, INSTALL_URL_BAV, INSTALL_CODE_BAV, INSTALL)

REJECTED – rejected (only possible for command values INSTALL_URL_PREF,
INSTALL_URL_BAV, INSTALL_CODE_BAV, INSTALL)

BUSY – busy (only possible for command values INSTALL_URL_PREF,
INSTALL_URL_BAV, INSTALL_CODE_BAV, INSTALL)

Description
This is a protocol message (see section 5.8.5). The specific cases are :

! LEADER – The message is sent by the initial leader to an initial follower to declare the
follower as the final leader. It shall subsequently behave accordingly. Parameter device
indicates a URL capable device, unless it is the receiver’s GUID (the receiver knows
whether it supports URL access). The receiver shall ignore this command and return with
error code EFAIL if it does not originate from the initial leader.

! INSTALL_INV, UNINSTALL_INV – The message is sent by a final follower to the final
leader upon an invocation of DcmManager::InstallDcm or
DcmManager::UninstallDcm by a software element on the final follower. Parameter
device indicates the guest to which the request applies. If the receiver assumes it is not
the final leader, an EFAIL error code shall be returned by it and the command is ignored.

! INSTALL_URL_PREF, INSTALL_URL_BAV, INSTALL_CODE_BAV, INSTALL – The
message is sent by the final leader to a final follower. Parameter device indicates the
guest for which a DCM code unit should be installed. A command for installing a DCM
code unit shall be accepted by a final follower if it expects to be able to install it. Only if
it has insufficient resources, an install command shall be rejected. However, it may be
that the specific installation requested cannot currently be performed by the final
follower, because it is installing another DCM code unit. In this temporary condition, it
shall return a busy result. A final follower that accepted an installation command shall
normally return a DMCommand to the final leader to inform it about the installation attempt
(see below). If the sender is assumed not to be the final leader, an EFAIL error code shall
be returned by the receiver.

 209

HAVi SPECIFICATION Version 1.1

! UNINSTALL – The message is sent by the final leader to a final follower. Parameter
device indicates the guest for which a DCM code unit should be uninstalled. A
command for uninstalling a DCM code unit shall always be accepted and immediately
executed by a final follower, although it will take no action if there is no installed code
unit (it shall not post a DcmUninstallIndication event). If the sender is assumed not
to be the final leader, an EFAIL error code shall be returned by the receiver.

! INSTALLED, NOT_INSTALLED – The message is sent by a final follower to the final
leader to inform it about the result of an accepted installation request. Parameter device
indicates the guest for which the installation was attempted. These messages shall be
voided if the final leader is unknown. If the receiver assumes it is not the final leader, an
EFAIL error code shall be returned by it.

Error codes
! DcmManager::EFAIL – the message was not received from the assumed initial/final leader

DcmManager::DMGetDcm

Prototype
Status DcmManager::DMGetDcm(
 in URLString URL,
 in long demandBegin,
 in long demandEnd,
 out long supplyBegin,
 out long supplyEnd,
 out sequence<octet> byteArray,
 out DMGetDcmResult result)

Parameters
! URL – the locator of the DCM Java code unit to be uploaded
! demandBegin – the number of the first byte of the array wanted (1 indicates the first byte of

the code unit; 0 indicates that the sender is no longer interested in the code unit)
! demandEnd – the number of the last byte of the array wanted (may be larger than the last byte

of the code unit)
! supplyBegin – the number of the first byte of the byte array delivered (corresponding to the

first byte of byteArray; 0 if it is empty)
! supplyEnd – the number of the last byte of the byte array delivered (corresponding to the last

byte of byteArray)
! byteArray – the array of bytes that are a part of the code unit being uploaded. The safe

parameter size limit is 512 bytes (the 1394 asynchronous packet size for bus speeds of 100
Mbps).

! result:
CONTINUED – successful retrieval, more bytes to follow
FINISHED – successful retrieval, no more bytes to follow
FAILED_SCHEME – unsuccessful retrieval, URL scheme could not be handled
FAILED_CODE – unsuccessful retrieval, code unit was not found
FAILED_ACCESS – unsuccessful retrieval, URL access was aborted
FAILED – unsuccessful retrieval (other cause)

Description
This message is sent from a final follower to a DCM manager that is believed to be able to access
the DCM Java code unit at the specified URL location (typically the final leader). The URL value

 210

HAVi SPECIFICATION Version 1.1

is either the one presented by the final leader as the preferredURL parameter in DMCommand, or it
is the one found in the BAV device (depending on the leader command). The URL shall be
extended with the HAVi DCM code extension, if none is specified.

The requester shall attempt to retrieve and install the code unit by sending this message one or more
times. Unless the final follower already has the code unit, the message shall be sent to the final
leader first. If the final leader fails to retrieve a code unit, the final follower is free to try any DCM
Manager or URL access capable FCM, or use proprietary means to acquire the code unit. Trying
the final leader first allows use of cached code units at the final leader device, such that, for
example, BAV devices of the same vendor and model may amortize a URL access effort for their
DCM code unit.

The number of bytes requested may correspond to the maximum load the requester can accept; it
may be larger than the number of bytes actually retrieved. The code unit sender will always indicate
which part of the code unit was delivered, and whether it was the last part. Note that the actual
number of bytes delivered by the code unit sender may be bound by the amount of memory
working space it has.

It depends on the URL scheme and the storage medium how long it will take to fetch a number of
bytes. It is allowed, particularly if code unit retrieval takes a long time, for the replied array of bytes
to be smaller than can be handled by receiver or by the final follower. At any time, the final
follower can decide whether to continue requesting additional bytes, or to stop the process if it takes
too long. As a courtesy, the final follower shall send a final DMGetDcm message with
demandBegin set to 0, to indicate to the code unit sender that it can stop retrieving data on its
behalf.

5.8.4 DCM Manager Events

DcmInstallIndication

Prototype
void DcmInstallIndication(
 in GUID guest,
 in DcmInstallResult result,
 in DcmInstallConflict conflict)

Parameters
! guest – GUID of a guest device for which a DCM code unit installation result is posted
! result:

IGNORED – already installed (possible only upon an install invocation)
URL_PREF – Java code unit installed from preferred URL location
URL_BAV – Java code unit installed from URL location obtained from BAV device
CODE_BAV – Java code unit obtained from BAV device installed
PROP_VENDOR – proprietary code unit installed by a host from the same vendor as the guest
PROP – proprietary code unit installed by a host not from the same vendor as the guest
FAILED – installation in network failed

! conflict:
NONE – no conflict
VENDOR – prefer vendor host conflict
HOST – preferred host conflict
URL – preferred URL conflict
VENDOR_HOST – prefer vendor host conflict and preferred host conflict

 211

HAVi SPECIFICATION Version 1.1

VENDOR_URL – prefer vendor host conflict and preferred URL conflict
HOST_URL – preferred host conflict and preferred URL conflict
VENDOR_HOST_URL – prefer vendor host conflict and preferred host conflict and preferred

URL conflict

Description
This is an indication of an installation result for a guest. It is always posted by the final leader after
a successful installation, or after no installation in the network is found to be possible. A reported
conflict can relate to either guest and/or guest model preferences.

Note that the DCM management protocol does not use this event. It is intended for (system)
applications.

DcmUninstallIndication

Prototype
void DcmUninstallIndication(
 in GUID guest,
 in DcmUninstallResult result)

Parameters
! guest – GUID of a guest device for which a DCM code unit uninstallation result is posted
! result:

IGNORED – uninstallation failed (upon an uninstall invocation if there is no DCM code unit)
COMMANDED – uninstallation succeeded (not on initiative by DCM code unit)
SPONTANEOUS – uninstallation succeeded (on initiative by DCM code unit)

Description
This is an indication of an uninstallation attempt for a guest. The specific cases are:

! IGNORED – If the final leader is requested to uninstall a DCM code unit, but finds none in
the network, it posts the event with this result. (Note that it is possible there are guests in
the network for which no DCM code unit is installed.)

! COMMANDED – If a final follower uninstalls a DCM code unit upon request of the final
leader or another software element, it posts the event with this result.

! SPONTANEOUS – If a DCM code unit is uninstalled by invoking uninstalled() on the DCM
Manager on the code unit's own initiative, the local DCM Manager posts the event with
this result.

Note that the DCM management protocol does not use this event. It is intended for (system)
applications.

5.8.5 DCM Management Protocol

The DCM management system is constructed from a distributed group of DCM Managers on FAV
and IAV devices. DCM Managers interact on a peer-to-peer basis to implement the DCM
management service, while in turn using services of local software elements. These are the CMM,
Messaging System, Event Manager, Registry, and DCM code units. Each DCM Manager can read
SDD data directly from devices connected to the HAVi 1394 network. The DCM management

 212

HAVi SPECIFICATION Version 1.1

protocol supports the use of device storage and Internet access facilities.

In a nutshell, each DCM Manager starts with a leader election after a network reset event is
received. One DCM Manager will be selected as the final leader. All DCM Managers are final
followers, and subordinate to the final leader. Note that the final leader also plays the role of a final
follower in the protocol description. Final leader and followers subsequently collaborate to install
DCM code units autonomously for each guest found on the network (for which a DCM code unit is
not yet installed). In addition to automatic DCM management, each DCM Manager may also
accept method invocations by software elements. The final leader will control most of the protocol
activities.

5.8.5.1 Leader Election

After a device is powered up, or after a NetworkReset event is received, a DCM Manager
behaves as follows:

! The GUID list is retrieved through Cmm1394::GetGuidList. The relevant SDD data of
all devices are retrieved: HAVi_Device_Class, HAVi_DCM_Manager, Model_ID, Vendor_ID,
EUI-64 (GUID). Devices without such SDD data are classified as LAV devices.

! An IAV device without a DCM Manager (derived from HAVi_DCM_Manager) shall be
ignored, and shall not be a host for any guest on the HAVi 1394 network.

! From all host GUIDs, the highest bit order-reversed GUID is calculated, and the DCM
Manager on the device with this GUID is declared the initial leader. The reversal prevents
devices from certain vendors acting as the initial leader in many network configurations
(since the GUID starts with a vendor identifier.) Note that all devices read the same
GUID list, and will declare the same DCM Manager as initial leader. All other DCM
Managers are initial followers.

At this time, each DCM Manager knows if it is the initial leader or an initial follower. Each device
knows which other DCM Managers there are, and which SEIDs they have. (The SEID is the
concatenation of the device GUID and the fixed DCM Manager software element handle.)
Message passing between DCM Managers is enabled. Each DCM Manager shall be registered.

The initial leader selects a final leader, and possibly a URL access capable host or guest in the
following manner:

! To all initial followers the initial leader sends a DMInitialization message, and
awaits all responses. The responses may yield one or more
DM_PREFERRED_URL_DEVICE preferences (declaring URL access capabilities) for FAV,
IAV, BAV, and/or LAV devices.

! The selection of the final leader is as follows:

! If there are FAV devices with a declared URL access capability, one of them is selected in
a proprietary way.

! Otherwise, if there are IAV devices with a declared URL access capability, one of them is
selected in a proprietary way.

! Otherwise, if there are FAV devices, one of them is selected in a proprietary way.
! Otherwise, if there are IAV devices, one of them is selected in a proprietary way.

 213

HAVi SPECIFICATION Version 1.1

Device A
ELECTING

INITIAL LEADER

Device B
ELECTING

INITIAL LEADER

Device C
ELECTING

INITIAL LEADER

Calculate the highest bit order-
reversed GUID (= Device A).

INITIAL LEADER INITIAL FOLLOWER INITIAL FOLLOWER

DCMManager::DMInitialization
request

DCMManager::DMInitialization
response (URLdevice = Device C)

DCMManager::DMInitialization
request

DCMManager::DMInitialization
response (URLdevice = Device C)

Calculate the highest bit order-
reversed GUID (= Device A).

Calculate the highest bit order-
reversed GUID (= Device A).

A final leader which has a URL
access capability is selected.

DCMManager::DMCommand
(command = LEADER)

 request/response

FINAL LEADER

DCMManager::DMInitialInquiry
request/response

FINAL FOLLOWER

FINAL FOLLOWER

DCMManager::DMInitialInquiry
request/response

Figure 32. DCM Manager Protocol

! If there is no existing FAV or IAV device with a declared URL access capability, the
initial leader verifies whether at least one of the DM_PREFERRED_URL_DEVICE
preferences corresponds to an existing BAV or LAV device. If so, it selects any of them.

! A DMCommand is sent by the initial leader to the selected DCM Manager to announce to
the receiver it is the final leader. A URL access capable guest GUID may also be
specified (unless the receiver’s GUID is provided). If the final leader has URL access
capability itself, it may ignore the guest GUID.

 214

HAVi SPECIFICATION Version 1.1

The final leader starts by sending DMInitialInquiry messages to all final followers, so each
DCM Manager will know which one is the final leader. The autonomous operation phase then
commences.

The process sketched in this section is represented in the message sequence chart for devices A, B,
and C. Note that DMInitialization requests may be sent in parallel to increase the performance
of the election process.

5.8.5.2 Autonomous Operation

The final leader will take the initiative to handle DCM code unit installations. The final followers
will wait for and handle DMInquiry and DMCommand messages from the final leader. The final
leader will control the operation as follows, for each guest in the network for which no DCM code
unit is already installed (as reported by DMInitialInquiry):

! To each final follower an initial DMInquiry message is sent with an empty profile
parameter. From all received inquiry records, the final leader learns the following:

! The preferences set for the guest and guest model, if any.
! For each host, whether the guest is from the same vendor, and whether it can install a

proprietary DCM code unit for the guest.
! For each host, whether a DCM code unit is already installed for the guest.
! For each host, the number of installed DCM code units.

! If no installed DCM code unit was found for the guest, the final leader shall send
additional DMInquiry and DMCommand messages to all or some final followers, and
proceed according to the rules in sections 3.6.1 and 3.6.2 to install a DCM code unit.
Additional DMInquiry messages must carry the profile of the DCM code unit to be
installed. The profile is empty in the case of a proprietary DCM code unit. Note that the
final leader must acquire a URL-specified profile before a DCM Manager can install the
corresponding code unit.

For each install and uninstall action, initial DMInquiry messages will be sent to all final followers.
The final leader shall not rely on its local installation knowledge. (Note that DCM code units can be
uninstalled spontaneously.) The final leader shall not attempt to install another code unit for a guest
for which the code unit has been uninstalled. Only after a network reset or after an invoked
installation request (DcmManager::InstallDcm) shall such an attempt be made.

If the final leader finds more than one installed DCM code unit for a guest, it shall uninstall all but
one.

If the final leader has no URL capability itself, it shall employ the selected URL capable guest, if
available. If no DCM code unit for it is already installed, the final leader shall attempt to install a
DCM code unit for it, in the same way as for any other guest. Subsequent URL access can take
place through the DCM or one or more FCMs installed for the guest.

If an install command results in a “busy” indication from a candidate host, the final leader may
either choose an equally suited host, or it may first try to install a DCM code unit for another guest.
However, the final leader shall not try to install a DCM code unit on a less suited host if there is at
least one better suited host with a “busy” indication. This indication shall be temporary, and shall
only be used by a host if it is currently installing another DCM code unit. If all best suited hosts are
busy, the final leader shall delay DCM code unit installation for the guest. It is recommended to
retry busy candidate hosts not more often than once every three seconds.

Each final follower takes the initiative for the uninstallation of local DCM code units, without

 215

HAVi SPECIFICATION Version 1.1

involvement of the final leader. If a guest disappears from the network for which a DCM code unit
is installed, the local final follower shall learn this upon a NetworkReset event. Note that a DCM
code unit can also uninstall itself. In either case, an installation of another code unit is only
attempted upon a NetworkReset event or an invoked installation request.

5.8.5.3 Protocol Details

The previous sections described the functional activities performed by a DCM Manager. In this
section, a state machine is given that specifies how a DCM Manager should react to incoming
events and messages from the system. Although the implementation of the required behavior is
proprietary, the state machine can also serve as an implementation guideline.

Figure 33 shows a state machine of a DCM Manager, including major states and transitions in the
protocol. The blocks represent states and the arrows represent transitions. A transition denotes a
trigger, possibly with a condition and an associated action. Alternative transitions for an arrow are
listed below each other. The ovals represent that the DCM Manager may reenter its previous
substate (indicated by the dot) if one of the indicated transitions occurs. An arrow, on the other
hand, indicates that the main state is (re)entered. The other symbols in the figure are explained in
the next table.

T : C a trigger T under the condition C
x → M+/- message M was received from x and will be responded to with SUCCESS/EFAIL
x ← M+/- message M was sent to x and responded to with SUCCESS/EFAIL

d a remote DCM Manager
s the DCM Manager to which the state transition diagram applies ("self")
i the actual initial leader according to s (identified by Cmm1394::GetGuidList

 each time a trigger P or R occurs, and after a message I or L is received)
f the final leader assumed by s
P the device of s is powered up or activated
R s receives a network reset event
I a DMInitialization message
L a DMCommand with command value LEADER (leader selection)
C a DMCommand not with command values LEADER, INSTALL_INV,

 UNINSTALL_INV, INSTALLED, or NOT_INSTALLED

R : s = i

R : s ≠ i
d → I- : d ≠ i

d ← C+

R : s ≠ i
d → I- : d ≠ i

d → L-
d → C-

i → I+
d ← I- : d ≠ i
f ← L+ : f ≠ s

f ← L-

R : s ≠ i
i → I+

d → I- : d ≠ i
d → L- : d ≠ i

f → C+
d → C- : d ≠ f

f = s

i → I+
d ← C-

R : s = i

P : s = i

P : s ≠ i

i → L+

R : s = i

ELECTING

LEADING FOLLOWING

INACTIVE

 216

HAVi SPECIFICATION Version 1.1

Figure 33. DCM Manager States

The main states of a DCM Manager are:

! ELECTING – As the initial leader it sends DMInitialization messages to all other
DCM Managers, and awaits their responses. If it completes this activity, it selects either
itself for final leadership and becomes LEADING, or it selects another DCM Manager for
final leadership by sending it a message DMCommand for leader selection, and becomes
FOLLOWING. It will also become FOLLOWING if another DCM Manager sends it a
DMInitialization message and appears to be the real initial leader, and if it receives
an EFAIL response on a DMInitialization or DMCommand message. If a network reset
event occurs, it aborts handling the current DMInitialization messages, and restarts
sending them to all actual DCM Managers.

! LEADING – As the final leader it starts by sending DMInitialInquiry messages to all
DCM Managers. It will issue DMInquiry messages, and issue and accept DMCommand
messages until it terminates the final leadership. It becomes FOLLOWING if it receives a
DMInitialization message from the actual initial leader or an EFAIL response on a
DMCommand message. If it becomes the initial leader, due to a network reset event, it
becomes ELECTING.

! FOLLOWING – As an initial or final follower it awaits and handles incoming messages.
If it receives a message DMCommand for leader selection from the actual initial leader it
becomes LEADING. Other DMCommand messages will be rejected if they do not originate
from the assumed final leader. If it becomes the initial leader, due to a network reset
event, it becomes ELECTING.

The protocol takes into consideration possible timing variations between DCM Managers in the
network, and in the delivery of events and messages. In particular, network reset events in general
have no effect if the receiving DCM Manager does not identify itself as the initial leader. Note that
in some circumstances, a new leader election can be in progress while the previous final leader is
still issuing commands.

Protocol messaging shall rely on the transaction id mechanism of the Messaging System to match
requests and responses. Unexpected responses shall be discarded.

In addition to the behavior according to the state machine, there are additional rules a DCM
Manager implementation should follow:

! A DCM Manager shall always accept and handle protocol messages. If a message is not
expected or cannot be handled, the receiver shall return with EFAIL. This can only be the
case for InstallDcm, UninstallDcm, DMInitialization, and DMCommand.

! An invocation of InstallDcm and UninstallDcm by an application may return with
SUCCESS, yet fail due to a network reset. However, the subsequent autonomous DCM
management will “assimilate” or annihilate these invocations. The application may use
watch-ons on DCMs and may subscribe to the events DcmInstallIndication and
DcmUninstallIndication to handle these situations.

 217

HAVi SPECIFICATION Version 1.1

! A DCM Manager should abort a DCM code unit installation if it receives a
NetworkReset event or a DMInitialization message during the installation process,
before invoking install on the code unit – see section 3.6.3. (It is recommended to handle
pending NetworkReset events before invoking install.)

! A DCM Manager shall stop sending any protocol message (DMInitialization,
DMInitialInquiry, DMInquiry, DMCommand, DMGetDcm) to any DCM Manager,
when the following occurs:

! It receives EUNIDENTIFIED_FAILURE on a protocol message from another DCM
Manager

! It receives a MsgTimeout or MsgError event with SEID parameter denoting a DCM
Manager.

If it receives a protocol message from another DCM Manager while it stops handling
protocol operation, it returns EUNIDENTIFIED_FAILURE. It restarts handling protocol
operation, when it receives a NetworkReset event or a DMInitialization message.
Note that it can handle a message except a protocol message, while it stops handling
protocol operation.

5.9 Stream Manager

5.9.1 Services Provided

Service Comm
Type

Locality Access

StreamManager::FlowTo M local all

StreamManager::SprayOut M local all

StreamManager::TapIn M local all

StreamManager::Drop M global all

StreamManager::GetLocalConnectionMap M global all

StreamManager::GetGlobalConnectionMap M global all

StreamManager::GetConnection M global all

StreamManager::GetStream M global all

ConnectionAdded E global Stream Manager (all)

ConnectionDropped E global Stream Manager (all)

ConnectionChanged E global Stream Manager (all)

5.9.2 Stream Manager Data Structures

Direction
enum Direction {IN, OUT};

OperationalStatus
enum OperationalStatus {

 218

HAVi SPECIFICATION Version 1.1

 NORMAL,
 FAILURE,
 UNKNOWN,
};

OperationalStatus describes whether a connection is operating or not, more specifically:

! NORMAL indicates that the Stream Manager assumes the connection is operational.
! FAILURE indicates that the Stream Manager assumes the connection is not operational.
! UNKNOWN indicates that the Stream Manager cannot determine whether the connection is

operational or not.

When a Stream Manager creates a FlowTo connection, it assures the source and sink are
compatible, the connection then has NORMAL operational status.

When a Stream Manager creates a SprayOut or TapIn connection, it does not assure source/sink
compatibility, the connection then has UNKNOWN operational status.

A connection will also have UNKNOWN operational status if static bandwidth allocation has been set
and the bandwidth specified in the DCM output IecPlug is less than the maximum bandwidth of
the stream type of the source FCM plug.

FailureReason
enum FailureReason {
 STREAM_TYPE_MATCH_FAILURE,
 TRANSMISSION_FORMAT_MATCH_FAILURE,
 BANDWIDTH_FAILURE,
};

After a connection has been established, its operational status may change. In particular the
connection may change from NORMAL or UNKNOWN to FAILURE status. The Stream Manager does
not drop connections that have FAILURE for their operational status, however applications may
choose to do so.

FailureReason enumerates the situations that cause a FAILURE operational status:

! STREAM_TYPE_MATCH_FAILURE occurs if the Stream Manager cannot match source and sink
stream type ID when servicing a StreamTypeChanged event or a
DeviceConnectionChanged event.

! TRANSMISSION_FORMAT_MATCH_FAILURE occurs if the Stream Manager cannot match
source and sink when servicing a TransmissionFormatChanged event or a
DeviceConnectionChanged event.

! BANDWIDTH_FAILURE occurs if the Stream Manager cannot match source and sink bandwidth
capability when servicing a BandwidthRequirementChanged event or a
StreamTypeChanged event or a DeviceConnectionChanged event.
BANDWIDTH_FAILURE may also occur if the source has failed to allocate bandwidth, or the
stream type has changed when static bandwidth allocation is set and insufficient bandwidth is
allocated.

If the conditions causing failure no longer apply, the operational status changes from FAILURE to
UNKNOWN or NORMAL.

ConnectionState
struct ConnectionState {

 219

HAVi SPECIFICATION Version 1.1

 OperationalStatus status;
 sequence<FailureReason> failures;
};

The current state of a connection. failures shall be empty if status is NORMAL or UNKNOWN.

DropReason
enum DropReason {
 OWNER_REQUEST,
 NON_OWNER_REQUEST,
 SHARING_DISABLED,
 OWNER_GONE,
 SOURCE_FCM_GONE,
 SINK_FCM_GONE,
 SOURCE_POWER_OFF,
 SINK_POWER_OFF,
 DEVICE_CONNECTION_DROPPED,
 SOURCE_DEVICE_GONE,
 SINK_DEVICE_GONE,
 RESTORE_FAILURE,
 UNKNOWN,
 IEC_BROADCAST_BROKEN
};

DropReason enumerates the situations when a Stream Manager will drop a connection and post a
ConnectionDropped event:

! OWNER_REQUEST indicates that the connection has been dropped on request from the HAVi
software element that created the connection.

! NON_OWNER_REQUEST indicates the connection was dropped on request from some other
HAVi software element.

! SHARING_DISABLED indicates that sharing has been disabled for the source of the connection
(a PlugSharingChanged event has been posted) and the plug owner differs from the
connection owner.

! OWNER_GONE indicates that the owner has disappeared (detected via MsgWatchOn).
! SOURCE_FCM_GONE indicates that the source FCM has disappeared (detected via

MsgWatchOn).
! SINK_FCM_GONE indicates that the sink FCM has disappeared (detected via MsgWatchOn).
! SOURCE_POWER_OFF and SINK_POWER_OFF indicate that the source or sink FCM, or

associated DCM, has posted a PowerStateChanged event with powerState set to False.
! DEVICE_CONNECTION_DROPPED occurs if the DCM associated with a source or sink posts a

DeviceConnectionDropped event from which it can be derived that the source and sink are
no longer connected.

! SOURCE_DEVICE_GONE indicates that the source device has disappeared (detected after
NetworkReset).

! SINK_DEVICE_GONE indicates that the sink device has disappeared (detected after
NetworkReset).

! RESTORE_FAILURE occurs if the Stream Manager cannot reallocate bandwidth or the channel
during connection restoration.

! UNKNOWN results if the Stream Manager detects that a connection is no longer present but
cannot determine the cause of its removal.

! IEC_BROADCAST_BROKEN indicates that the connection has been dropped because IEC61883
broadcast on the connection has been broken.

 220

HAVi SPECIFICATION Version 1.1

ChangeReason
enum ChangeReason {
 STREAM_TYPE_CHANGED,
 TRANSMISSION_FORMAT_CHANGED,
 DEVICE_CONNECTION_CHANGED,
 BANDWIDTH_ADAPTATION_FAILURE,
 BANDWIDTH_ADAPTATION_SUCCESS,
};

ChangeReason enumerates the situations when a Stream Manager will post a
ConnectionChanged event:

! STREAM_TYPE_CHANGED indicates that the Stream Manager has serviced a
StreamTypeChanged event from the source FCM (and involving the source plug of the
connection).

! TRANSMISSION_FORMAT_CHANGED indicates that the Stream Manager has serviced a
TransmissionFormatChanged event from the source DCM (and involving the source plug
of the connection).

! DEVICE_CONNECTION_CHANGED indicates that the Stream Manager has serviced a
DeviceConnectionChanged event from the source or sink DCM (and involving the source
or sink plug of the connection). Note, as the result of DeviceConnectionChanged, the
stream type and/or transmission format used by the connection may also change, however only
one ConnectionChanged event is posted.

! BANDWIDTH_ADAPTATION_FAILURE indicates that the Stream Manager has received a
BandwidthRequirementChanged event from the source DCM with allocated set to
False.

! BANDWIDTH_ADAPTATION_SUCCESS indicates that the Stream Manager has serviced a
BandwidthRequirementChanged event from the source DCM with allocated set to
True.

TransportType
typedef ushort TransportType;

Transport types are specified in Annex 11.14.

Plug
struct CablePlug {
 Direction dir;
 short cableNum;
};

struct InternalPlug {
 Direction dir;
 ushort fcmIndex;
 ushort plugNum;
};

struct IecPlug {
 Direction dir;
 short pcrNum;
};

A CablePlug represents a non-1394 device plug (for example, an analog video plug), an
InternalPlug represents a functional component plug, and an IecPlug represents an IEC

 221

HAVi SPECIFICATION Version 1.1

61883 device plug (a “plug control register”). A DCM plug is a CablePlug or IecPlug, an FCM
plug is an InternalPlug.

The InternalPlug.fcmIndex can be inferred from the HUID of the FCM to which the plug
belongs via Fcm::GetHuid.

The numbering for plugs starts at zero. The total number of plugs can be obtained via
Dcm::GetPlugCount and Fcm::GetPlugCount.

union Plug switch(TransportType) {
 case CABLE: CablePlug cablePlug;
 case INTERNAL: InternalPlug internalPlug;
 case IEC61883: IecPlug iecPlug;
};

ANY_PLUG
typedef short PlugNumber;

const PlugNumber ANY_PLUG = -1;

ANY_PLUG is a special value for IecPlug.pcrNum and allows a client to indicate that any plug
can be used for a connection.

DeviceConnection
struct DeviceConnection {
 Plug src;
 Plug dest;
};

TransmissionFormat
typedef ushort CableFormat;

struct IecFormat {
 octet[4] FMT_FDF;
 octet[4] mask;
};

IecFormat.FMT_FDF values correspond to those appearing in the second quadlet of the CIP
header defined by IEC 61883.1, regardless of whether the CIP header is with or without the SYT
field. The mask value indicates which bits of FMT_FDF should be examined when checking two
IecFormat values for compatibility. Reserved bits, as identified by IEC 61883, shall be set to one
in the mask.
union TransmissionFormat switch(TransportType) {
 case CABLE: CableFormat cableFormat;
 case INTERNAL: ;
 case IEC61883: IecFormat iecFormat;
};

The TransmissionFormat is transport type dependent. It is only used for the CABLE and
IEC61883 transport types.

The Stream Manager APIs allow applications to specify the transmission format to use for
connections or to defer selection of transmission format to the Stream Manager. When the

 222

HAVi SPECIFICATION Version 1.1

application specifies the transmission format, it may base its selection on formats used by existing
connections (obtained via Dcm::GetTransmissionFormat) or those supported by DCMs
(obtained via Dcm::GetSupportedTransmissionFormats).

PlugStatus
struct CablePlugStatus {
 boolean hasAttachment;
 boolean hasLegacyFcm;
};

struct InternalPlugStatus {
 boolean hasAttachment;
 boolean hasInternalConnection;
 boolean canShare;
 SEID owner;
};

struct IecPlugStatus {
 boolean dynamicBandwidthAllocation;
 boolean hasAttachment;
};

union PlugStatus switch(TransportType) {
 case CABLE: CablePlugStatus cablePlugStatus;
 case INTERNAL: InternalPlugStatus internalPlugStatus;
 case IEC61883: IecPlugStatus iecPlugStatus;
};

PlugStatus describes operational characteristics of a plug. The various attributes have the
interpretations given below.

Cable Plugs:

! CablePlugStatus.hasAttachment – True if the plug is attached to an FCM plug.
! CablePlugStatus.hasLegacyFcm – True if the plug is used by an FCM representing an

external legacy device. The Stream Manager will consider such a plug as in use.

Internal Plugs:

! InternalPlugStatus.hasAttachment – True if the plug is attached to a DCM plug.
! InternalPlugStatus.hasInternalConnection – True if the plug is connected to

another FCM plug.
! InternalPlugStatus.canShare – True unless sharing is currently disabled (as a result of

Fcm::SetPlugSharing)
! InternalPlugStatus.owner – if canShare is False then owner is the SEID of the

client that disabled sharing via Fcm::SetPlugSharing, if canShare is True the value of
owner is undefined and should be ignored.

IEC 61883 Plugs:

! IecPlugStatus.dynamicBandwidthAllocation – True unless static bandwidth
allocation has been set via Dcm::SetIecBandwidthAllocation

! IecPlugStatus.hasAttachment – True if the plug is attached to an FCM plug.

 223

HAVi SPECIFICATION Version 1.1

Channel
struct CableChannel {
 CablePlug source;
 CablePlug sink;
};

struct IecChannel {
 ushort isocChannel;
 IecPlug source;
 IecPlug sink;
};

union Channel switch(TransportType) {
 case CABLE: CableChannel cableChannel;
 case INTERNAL: ;
 case IEC61883: IecChannel iecChannel;
};

IsocChannel
typedef ushort IsocChannel;

const IsocChannel LEGACY_ISOC_CHANNEL = 63;
const IsocChannel ASYNC_STREAM_ISOC_CHANNEL = 31;

FcmPlug
struct FcmPlug {
 TargetId targetFcm;
 Direction plugDir;
 ushort plugNum;
};

An FcmPlug, like an InternalPlug, represents a functional component plug. While an
InternalPlug value is only unique within the context of a DCM, an FcmPlug includes a
TargetId and so is globally unique.

ConnectionId
struct ConnectionId {
 SEID mgr;
 ushort seq;
};

Stream Managers and applications refer to connections via globally unique connection identifiers.
These values are persistent (unchanged by network resets). The mgr field is the SEID of the Stream
Manager which created the connection, seq is a sequence number assigned by that Stream
Manager.

ConnectionType
enum ConnectionType {FLOW, SPRAY, TAP};

 224

HAVi SPECIFICATION Version 1.1

Connection
struct Connection {
 ConnectionId connId;
 ConnectionType connType;
 ConnectionState connState;
 StreamType streamType;
 TransmissionFormat transmissionFormat;
 SEID owner;
 FcmPlug source;
 FcmPlug sink;
 Channel channel;
 uint allocBandwidth;
};

The value of the transport type for a connection can be determined from the discriminator in the
Channel or the TransmissionFormat value (and the discriminators must agree).

If the value of connType is TAP then the values of source and source plug in channel should be
ignored. If the value of connType is SPRAY then the values of sink and the sink plug in channel
should be ignored.

The value of allocBandwidth is in units of bits per second (bps). This value for TAP connections
may be zero (even if a source is present via another connection). For SPRAY and FLOW connections,
the value is the same for overlays as for the original connection. For IEC61883 connections,
allocated bandwidth is related to the number of allocated bandwidth units as described in section
5.9.5.4.1. If the TransportType of the channel is CABLE then the value of streamType shall be
CABLE_STREAM and TransmissionFormat shall be CABLE_FORMAT.

StreamType
struct StreamType {
 StreamTypeId id;
 boolean constantRate;
 uint maxBandwidth;
};

The value of maxBandwidth is in units of bits per second (bps).

StreamType values are returned by Dcm::GetStreamType and
Fcm::GetSupportedStreamTypes. For source plugs, maxBandwidth indicates the maximum
data rate the plug is capable of producing for the specified StreamTypeId. For sink plugs
maxBandwidth indicates the maximum data rate the plug is capable of consuming for the
specified StreamTypeId.

The constantRate parameter is only significant for source plugs, it indicates whether the
source’s bandwidth requirements are constant (e.g., DV, CD audio) or may change (e.g., a MPEG
transport stream source containing several services with different bit rates).

Stream
struct Stream {
 boolean hasSource;
 FcmPlug source;
 sequence<ConnectionId> connections;

 225

HAVi SPECIFICATION Version 1.1

};

A Stream value identifies the HAVi connections sharing a common source FCM plug, or that
would share a common source FCM plug if one were connected (either directly via FlowTo or
indirectly via SprayOut) to any sink FCM plug used by a member of the stream. For example,
TAP connections using the same isochronous channel belong to the same stream.

hasSource is False when no source is present (only TAP connections belong to the stream). If
hasSource is False the values of source and streamType are undefined and should be
ignored.

ConnectionHint
struct ConnectionHint {
 boolean anyTransport;
 boolean anyStreamType;
 boolean anyTransmissionFormat;
 boolean anyChannel;
 TransportType ttype;
 StreamType stype;
 TransmissionFormat tformat;
 Channel channel;
};

ConnectionHint allows Stream Manager clients to specify values of various parameters needed
for connection creation or to indicate that the Stream Manager is free to select their value. There are
some constraints on valid ConnectionHint values arising from the implicit TransportType
values in tformat and channel:

! if anyTransport is True then anyTransmissionFormat and anyChannel must also be
True

! if anyTransport is False and anyTransmissionFormat is False then ttype must be
the same as the transport type appearing as the discriminator in tformat.

! if anyTransport is False and anyChannel is False then ttype must be the same as the
transport type appearing as the discriminator in channel.

! if anyTransport is False and ttype is CABLE, then anyStreamType and
anyTransmissionFormat must be False and stype and tformat must be
CABLE_STREAM and CABLE_FORMAT respectively.

5.9.3 Stream Manager API

StreamManager::FlowTo

Prototype
Status StreamManager::FlowTo(
 in boolean dynamicBw,
 in FcmPlug source,
 in FcmPlug sink,
 in ConnectionHint hint,
 out ConnectionId connId)

Parameters

 226

HAVi SPECIFICATION Version 1.1

! dynamicBw – indicates whether dynamic (dynamicBw is True) or static (dynamicBw is
False) bandwidth allocation should be set

! source – a FcmPlug structure identifying a source plug
! sink – a FcmPlug structure identifying a sink plug
! hint – a ConnectionHint structure identifying possible transport type, transmission format,

stream type and channel values
! connId – a ConnectionId value returned by FlowTo

Description
StreamManager::FlowTo creates a point-to-point connection between two FCM plugs. If
hint.anyTransport is True the plugs are first checked for compatibility and the ability to
support a connection. This will result in the determination of a transport type. CABLE transport shall
not be selected in this process. And if the source and sink FCMs reside on the same device, then
INTERNAL transport type shall be selected (So the selection of transport type mentioned above is
actually not performed in this version of HAVi specification. But might be performed in the future
version). If hint.anyTransport is False then hint.ttype is used as the transport type. If
connection is possible then, depending on the transport type, one of the following will occur:

CABLE: source is attached to a cable output plug and sink is attached to a cable input
plug

INTERNAL: an internal connection is established between source and sink via
Dcm::Connect.

IEC61883: source is attached to an oPCR and sink to an iPCR for which an IEC 61883
point-to-point connection is established.

The Stream Manager will match the lists of stream types supported by source and sink FCM plugs.
This will result in a list of pairs of stream types (a, b), where a matches b and a is available at the
source plug and b is available at the sink plug. (Here “available” means a supported stream type, if
the plug is unconnected, or the current stream type if it is connected.) If hint.anyStreamType is
True then this list is used. If hint.anyStreamType is False then the list is reduced to those
pairs that match hint.stype.

The Stream Manager shall attempt to create the connection using successive stream types from the
list until a connection can be successfully created or all candidate stream types have been tried. If
hint.anyStreamType is False, then stream types from the final list shall be chosen so that
stream types that match “exactly” with hint.stype are tried before “non-exact” matches. Two
stream types match “exactly” when they are equal, so stream type A matches exactly with stream
type A, stream type UNKNOWN_STREAM matches exactly with stream type UNKNOWN_STREAM, but
A only matches “non-exactly” with UNKNOWN_STREAM. (Of course stream type A does not match
at all with a different stream type B.)

If hint.anyTransmissionFormat is True then the Stream Manager attempts to select a
transmission format for the (selected or specified) stream type that is supported by both the source
and sink device. If hint.anyTransmissionFormat is False then the Stream Manager uses
hint.tformat as the transmission format.

The Stream Manager will set the transmission format of the source and sink (via
Dcm::SetTransmissionFormat). If the sink can autoconfigure (infer the transmission format
from the incoming stream), the actual value used may be different from that set by the Stream
Manager but can be read by the Stream Manager via Dcm::GetTransmissionFormat.

If hint.anyChannel is True then the Stream Manager selects an unused channel, otherwise it
uses the specified channel. If hint.anyChannel is True when transport type is CABLE, the
EANY_CHANNEL error is returned. For IEC61883 connections, if channel refers to an existing

 227

HAVi SPECIFICATION Version 1.1

point-to-point connection, an overlay is attempted; otherwise the specified channel is allocated.

For IEC61883 connections, if a DCM plug number within channel is ANY_PLUG then the Stream
Manager is free to select which device plug to use, else it attempts to use the specified plug.

For IEC61883 connections, if the stream type assigned to the source is variable rate
(constantRate is False) then Dcm::SetIecBandwidthAllocation is called as follows:

! If dynamicBw is False and hint.anyStreamType is True, then the Stream Manager
shall call Dcm::SetIecBandwidthAllocation using the maxBandwidth value
associated with the stream type of the source plug.

! If dynamicBw is False and hint.anyStreamType is False, then the Stream Manager
shall call Dcm::SetIecBandwidthAllocation using hint.stype.maxBandwidth.

! In any other case (i.e., dynamicBw is True), then the Stream Manager shall call
Dcm::SetIecBandwidthAllocation with maxBandwidth set to 0 (dynamic
bandwidth allocation). If this call fails (because a previous connection has set static
bandwidth allocation) then the Stream Manager shall continue in connection
establishment using static bandwidth allocation.

Note that utilization of a CABLE connection would typically require that a physical cable join the
DCM plugs. The Stream Manager is not responsible for maintaining information about physical
cabling configurations. When it receives a FlowTo request for a CABLE connection it simply
attaches the FCM plugs to the DCM plugs at each end of the connection.

Error codes
! StreamManager::ESOURCE_FCM – the FCM indicated by source does not exist
! StreamManager::ESINK_FCM – the FCM indicated by sink does not exist
! StreamManager::ESOURCE_PLUG – the FCM indicated by source does not contain the

specified plug
! StreamManager::ESINK_PLUG – the FCM indicated by sink does not contain the specified

plug
! StreamManager::EUNSUP_TRANSPORT – connection requires an unsupported transport type
! StreamManager::EUNSUP_STREAM – connection requires an unsupported stream type
! StreamManager::ENO_MATCH_STREAM – the plugs are incompatible (stream type

mismatch)
! StreamManager::ENO_MATCH_FMT – the plugs are incompatible (transmission format

mismatch)
! StreamManager::ENO_MATCH_BW – the source bandwidth exceeds that supported by the

sink or hint.Stype.maxBW exceeds supported Stype.maxBW of source/sink FCM
(bandwidth mismatch)

! StreamManager::ENO_MATCH_SPEED – the source uses a transmission speed unsupported
by the sink

! StreamManager::ENO_MATCH_TRANSPORT – the plugs are incompatible (transport type
mismatch)

! StreamManager::ENO_MATCH_DIR – the plugs are incompatible (direction mismatch)
! StreamManager::EINVALID_FMT – the specified transmission format is not supported by

the source or sink
! StreamManager::ESOURCE_BUSY – the source plug is a member of another stream
! StreamManager::ESINK_BUSY – the sink plug is a member of another stream
! StreamManager::EDEV_BUSY – failure to allocate a device plug
! StreamManager::EINSUFF_BANDWIDTH – bandwidth allocation has failed

 228

HAVi SPECIFICATION Version 1.1

! StreamManager::EINSUFF_CHANNEL – channel allocation has failed
! StreamManager::EINVALID_CHANNEL – the specified channel value is not valid
! StreamManager::ECHANNEL_BUSY – hint.anyChannel is False and the specified

channel is in use by a different source
! StreamManager::EASYNC_CHANNEL – channel is set to

ASYNC_STREAM_ISOC_CHANNEL
! StreamManager::ESTATICBW – dynamicBw has the value False, the stream type is

variable rate, but the source cannot be set to static bandwidth allocation
! StreamManager::ERESERVED_SINK – the FCM indicated by sink is reserved (and not by

the software element making the FlowTo request)
! StreamManager::EDEV_CONN – failure to establish a device connection
! StreamManager::ESHARE – the connection cannot be established because the source plug is

not sharable (and the owner differs from the software element making the FlowTo request)
! StreamManager::EANY_CHANNEL– hint.anyChannel is True when transportType is

CABLE.
! StreamManager::ERESERVED_SOURCE– required connection need to be established (i.e.,

not overlay) and rejected due to reservation protection.

StreamManager::SprayOut

Prototype
Status StreamManager::SprayOut(
 in boolean dynamicBw,
 in FcmPlug source,
 in ConnectionHint hint,
 out ConnectionId connId)

Parameters
! dynamicBw – indicates whether dynamic (dynamicBw is True) or static (dynamicBw is

False) bandwidth allocation should be set
! source – a Plug structure identifying a source plug
! hint – a ConnectionHint structure identifying possible transport type, transmission format,

stream type and channel values
! connId – a connection identifier

Description
StreamManager::SprayOut creates an unbound connection for a source plug (a connection of
type SPRAY). Depending on the transport type, one of the following will occur:

CABLE: source is attached to a cable output plug.
INTERNAL: the EINVALID_PARAMETER error is returned.
IEC61883: source is attached to an oPCR for which an IEC 61883 broadcast-out

connection is established. Note that IEC 61883 restrictions on establishment
of broadcast connections may prevent the Stream Manager from creating a
SPRAY connection despite the availability of resources. If so the Stream
Manager shall attempt to establish the broadcast-out connection via
Dcm::IecSprayOut. If this API is not supported by the DCM then the
StreamManager::EIEC61883 error is returned. If Dcm::IecSprayOut
returns Dcm::EINSUFF_BANDWIDTH or Dcm::EINSUFF_CHANNEL then the
Stream Manager returns StreamManager::EINSUFF_BANDWIDTH or
StreamManager::EINSUFF_CHANNEL respectively. If
Dcm::IecSprayOut succeeds the Stream Manager will set the connection’s
Connection.allocBandwidth to the value from the oPCR.

 229

HAVi SPECIFICATION Version 1.1

If hint.anyTransport is True the EINVALID_PARAMETER error is returned.

The Stream Manager will construct a list of stream types available at the source FCM plug. (Here
“available” means a supported stream type, if the plug is unconnected, or the current stream type if
it is connected.) If hint.anyStreamType is True then this list is used. If
hint.anyStreamType is False then the list is reduced to those entries that match hint.stype.

The Stream Manager shall attempt to create the connection using successive stream types from the
list until a connection can be successfully created or all candidate stream types have been tried. If
hint.anyStreamType is False, then stream types from the final list shall be chosen so that
stream types that match “exactly” with hint.stype are tried before “non-exact” matches. Two
stream types match “exactly” when they are equal, so stream type A matches exactly with stream
type A, stream type UNKNOWN_STREAM matches exactly with stream type UNKNOWN_STREAM, but
A only matches “non-exactly” with UNKNOWN_STREAM. (Of course stream type A does not match
at all with a different stream type B.)

If hint.anyTransmissionFormat is True then the Stream Manager attempts to select a
transmission format for the (selected or specified) stream type that is supported by the source
device. If hint.anyTransmissionFormat is False then the Stream Manager uses
hint.tformat as the transmission format.

The Stream Manager will set the transmission format of the source (via
Dcm::SetTransmissionFormat).

If hint.anyChannel is True then the Stream Manager selects an unused channel, otherwise it
uses the specified channel. If hint.anyChannel is True when transport type is CABLE, the
EANY_CHANNEL error is returned. For IEC61883 connections, if channel refers to an existing
point-to-point connection, an overlay is attempted; otherwise the specified channel is allocated.

For IEC61883 connections, if a DCM plug number within channel is ANY_PLUG then the Stream
Manager is free to select which DCM plug to use, else it attempts to use the specified plug. The
sink field in channel should be ignored.

For IEC61883 connections, if the stream type assigned to the source is variable rate
(constantRate is False) then Dcm::SetIecBandwidthAllocation is called as follows:

! If dynamicBw is False and hint.anyStreamType is True, then the Stream Manager
shall call Dcm::SetIecBandwidthAllocation using the maxBandwidth value
associated with the stream type of the source plug.

! If dynamicBw is False and hint.anyStreamType is False, then the Stream Manager
shall call Dcm::SetIecBandwidthAllocation using hint.stype.maxBandwidth.

! In any other case (i.e., dynamicBw is True), then the Stream Manager shall call
Dcm::SetIecBandwidthAllocation with maxBandwidth set to 0 (dynamic
bandwidth allocation). If this call fails (because a previous connection has set static
bandwidth allocation) then the Stream Manager shall continue in connection
establishment using static bandwidth allocation.

Error codes
! StreamManager::ESOURCE_FCM – the FCM indicated by source does not exist
! StreamManager::ESOURCE_PLUG – the FCM indicated by source does not contain the

specified plug

 230

HAVi SPECIFICATION Version 1.1

! StreamManager::EUNSUP_TRANSPORT – the transport type indicated by channel is not
supported

! StreamManager::ENO_MATCH_DIR – the plug is not a source (output) plug
! StreamManager::EUNSUP_STREAM – connection requires an unsupported stream type
! StreamManager::ENO_MATCH_STREAM – the plug does not support the specified stream

type or, if already connected, is set to another stream type
! StreamManager::EINVALID_FMT – the specified transmission format is not supported by

the source
! StreamManager::ESOURCE_BUSY – the plug is a member of another stream
! StreamManager::EDEV_BUSY – failure to allocate a device plug
! StreamManager::EINSUFF_BANDWIDTH – bandwidth allocation has failed
! StreamManager::EINSUFF_CHANNEL – channel allocation has failed
! StreamManager::EINVALID_CHANNEL – the specified channel value is not valid
! StreamManager::ECHANNEL_BUSY – hint.anyChannel is False and the specified

channel is in use by a different source
! StreamManager::EASYNC_CHANNEL – channel is set to

ASYNC_STREAM_ISOC_CHANNEL
! StreamManager::ESTATICBW – dynamicBw has the value False, the stream type is

variable rate, but the source cannot be set to static bandwidth allocation
! StreamManager::EBROADCAST – unable to establish the connection because of

Dcm::IecSprayOut is not supported by the source DCM.
! StreamManager::EDEV_CONN – failure to establish a device connection
! StreamManager::ESHARE – the connection cannot be established because the source plug is

not sharable (and the owner differs from the software element making the SprayOut request)
! StreamManager::EANY_CHANNEL– hint.anyChannel is True when transportType is

CABLE.
! StreamManager::ERESERVED_SOURCE– required connection need to be established (i.e.,

not overlay) and rejected due to reservation protection.
! StreamManager::ENO_MATCH_FMT– the specified TransmissionFormat does not match

with that of already existing connection.

StreamManager::TapIn

Prototype
Status StreamManager::TapIn(
 in FcmPlug sink,
 in ConnectionHint hint,
 out ConnectionId connId)

Parameters
! sink – a FcmPlug structure identifying sink plug
! hint – a ConnectionHint structure identifying possible transport type, transmission format,

stream type and channel values
! connId – a connection identifier

Description
StreamManager::TapIn creates an unbound connection for an FCM sink plug (a connection of
type TAP). Depending on the transport type, one of the following will occur:

CABLE: sink is attached to a cable input plug.
INTERNAL: the EINVALID_PARAMETER error is returned.
IEC61883: sink is attached to an iPCR for which an IEC 61883 broadcast-in

connection is established. Note that IEC 61883 restrictions on establishment

 231

HAVi SPECIFICATION Version 1.1

of broadcast connections may prevent the Stream Manager from creating a
TAP connection despite the availability of resources. If so the Stream
Manager shall attempt to establish the broadcast-in connection via
Dcm::IecTapIn. If this API is not supported by the DCM then the
StreamManager::EIEC61883 error is returned.

If hint.anyTransport is True the EINVALID_PARAMETER error is returned.

The Stream Manager will construct a list of stream types available at the sink FCM plug. (Here
“available” means a supported stream type, if the plug is unconnected, or the current stream type if
it is connected.) If hint.anyStreamType is True then this list is used. If
hint.anyStreamType is False then the list is reduced to those entries that match hint.stype.

The Stream Manager shall attempt to create the connection using successive stream types from the
list until a connection can be successfully created or all candidate stream types have been tried. If
hint.anyStreamType is False, then stream types from the final list shall be chosen so that
stream types that match “exactly” with hint.stype are tried before “non-exact” matches. Two
stream types match “exactly” when they are equal, so stream type A matches exactly with stream
type A, stream type UNKNOWN_STREAM matches exactly with stream type UNKNOWN_STREAM, but
A only matches “non-exactly” with UNKNOWN_STREAM. (Of course stream type A does not match
at all with a different stream type B.)

If hint.anyTransmissionFormat is True then the Stream Manager attempts to select a
transmission format for the (selected or specified) stream type that is supported by the sink device.
If hint.anyTransmissionFormat is False then the Stream Manager uses hint.tformat as
the transmission format.

The Stream Manager will set the transmission format of the sink (via
Dcm::SetTransmissionFormat). If the sink can autoconfigure (infer the transmission format
from the incoming stream), the actual value used may be different from that set by the Stream
Manager but can be read by the Stream Manager via Dcm::GetTransmissionFormat.

If hint.anyChannel is True then the Stream Manager selects an unused channel, otherwise it
uses the specified channel. If hint.anyChannel is True when transport type is CABLE, the
EANY_CHANNEL error is returned.

For IEC61883 connections, if a plug number within channel is ANY_PLUG then the Stream
Manager is free to select which DCM plug to use, else it attempts to use the specified plug. The
source field in channel should be ignored.

The Stream Manager shall assure that the connection does not belong to a stream for which sharing
is disabled (by a software element other than the TapIn client). If this is not possible
StreamManager::ESHARE is returned.

Error codes
! StreamManager::ESINK_FCM – the FCM indicated by sink does not exist
! StreamManager::ESINK_PLUG – the FCM indicated by sink does not contain the specified

plug
! StreamManager::EUNSUP_TRANSPORT – the transport type indicated by channel is not

supported
! StreamManager::ENO_MATCH_DIR – the plug is not a sink (input) plug
! StreamManager::EUNSUP_STREAM – connection requires an unsupported stream type
! StreamManager::ENO_MATCH_STREAM – the plug does not support the specified stream

type or, if already connected, is set to another stream type

 232

HAVi SPECIFICATION Version 1.1

! StreamManager::EINVALID_FMT – the specified transmission format is not supported by
the sink

! StreamManager::ESINK_BUSY – the plug is a member of another stream
! StreamManager::EDEV_BUSY – failure to allocate a device plug
! StreamManager::EINSUFF_CHANNEL – hint.anyChannel is True but all channels are in

use
! StreamManager::EASYNC_CHANNEL – channel is set to

ASYNC_STREAM_ISOC_CHANNEL
! StreamManager::EINVALID_CHANNEL – the specified channel value is not valid
! StreamManager::EBROADCAST – unable to establish the connection because

Dcm::IecTapIn is not supported by the sink DCM.
! StreamManager::ERESERVED_SINK – the FCM indicated by sink is reserved (and not by

the software element making the TapIn request)
! StreamManager::EDEV_CONN – failure to establish a device connection
! StreamManager::ESHARE – the connection cannot be established because if the connection

were established it would be a member of a stream for which the source plug is not sharable
(and the owner differs from the software element making the TapIn request)

! StreamManager::EANY_CHANNEL– hint.anyChannel is True when transportType is
CABLE.

! StreamManager::ENO_MATCH_FMT– the specified TransmissionFormat does not match
with that of already existing connection.

StreamManager::Drop

Prototype
Status StreamManager::Drop(in ConnectionId connId)

Parameters
! connId – a valid connection identifier

Description
StreamManager::Drop breaks a connection. Resources associated with the connection are
released provided no plugs are bound to the underlying channel. The SEID of the issuer of
StreamManager::Drop need not be the same as that of the owner of the connection (i.e., it is
possible to preempt connections). However only trusted or system SEIDs can drop connections
which they do not own. When sink FCM is reserved then ERESERVED_SINK is returned and
connection will be kept.

Error codes
! StreamManager::ECONN_ID – connId does not refer to a connection created by the Stream

Manager
! StreamManager::EACCESS_VIOLATION – an untrusted software element has attempted to

drop a connection which it does not own
! StreamManager::ERESERVED_SINK – the FCM indicated by sink is reserved (and not by

the software element making the Drop request)

StreamManager::GetLocalConnectionMap

Prototype
Status StreamManager::GetLocalConnectionMap(
 out sequence<Connection> list)

 233

HAVi SPECIFICATION Version 1.1

Parameters
! list – a list of connections managed by the Stream Manager. The safe parameter size limit is

32 Connection values.

Description
StreamManager::GetLocalConnectionMap queries the Stream Manager for all connections
which it manages (i.e., has created).

StreamManager::GetGlobalConnectionMap

Prototype
Status StreamManager::GetGlobalConnectionMap(
 out sequence<Connection> list)

Parameters
! list – a list of all HAVi connections on the home network. The safe parameter size limit is

128 Connection values.

Description
StreamManager::GetGlobalConnectionMap queries the Stream Manager for a list of all
HAVi connections on the home network. The Stream Manager may implement this function by
combining the results of GetLocalConnectionMap queries to all other Stream Managers on the
network, with the connections it controls itself. There is no guarantee that connections are not
created or dropped while the Stream Manager is processing the query.

Error codes
! StreamManager::ENETWORK – the response may not be complete due to a network problem

StreamManager::GetConnection

Prototype
Status StreamManager::GetConnection(
 in ConnectionId connId,
 out Connection conn)

Parameters
! connId – a valid connection identifier
! conn – the Connection structure for connId

Description
StreamManager::GetConnection queries the Stream Manager for the Connection data
structure associated with connId.

Error codes
! StreamManager::ECONN_ID – connId does not refer to a connection created by the Stream

Manager

 234

HAVi SPECIFICATION Version 1.1

StreamManager::GetStream

Prototype
Status StreamManager::GetStream(
 in ConnectionId connId,
 out Stream stream)

Parameters
! connId – a valid connection identifier
! stream – the Stream structure for connId. The safe parameter size limit for

stream.connections is 32 Connection values.

Description
StreamManager::GetStream requests the Stream Manager to build the Stream data structure
that contains the connection specified by connId. Building the Stream structure may involve
communication (via GetLocalConnectionMap) with other Stream Managers.

Error codes
! StreamManager::ECONN_ID – connId does not refer to a connection created by any

Stream Manager

StreamManager::ENETWORK – the response may not be complete due to a network problem

5.9.4 Stream Manager Events

ConnectionAdded
void ConnectionAdded(in ConnectionId connId)

Parameters
! connId – the connection identifier of the new connection

Description
The ConnectionAdded event is issued by a Stream Manager after a successfully servicing a
FlowTo, SprayOut or TapIn request.

ConnectionDropped
void ConnectionDropped(
 in ConnectionId connId,
 in sequence<DropReason> reasons)

Parameters
! connId – the connection identifier of the dropped connection
! reason – the reasons the connection was dropped, the safe parameter size limit is 4

DropReason values.

Description
The ConnectionDropped event is issued by a Stream Manager after it has dropped a connection.

 235

HAVi SPECIFICATION Version 1.1

ConnectionChanged
void ConnectionChanged(
 in ConnectionId connId,
 in ConnectionState oldState,
 in ConnectionState newState,
 in ChangeReason reason)

Parameters
! connId – the connection identifier of the changed connection
! oldState – the state of the connection before the change
! newState – the state of the connection after the change
! reason – the reason the connection has changed

Description
The ConnectionChanged event is issued by a Stream Manager after it has handled a
StreamTypeChanged, TransmissionFormatChanged, BandwidthRequirementChanged,
or DeviceConnectionChanged event involving the connection. The change may have been
handled successfully or not, as indicated by the newState parameter.

5.9.5 Stream Manager Procedures

5.9.5.1 Stream Type Matching

The following pseudo-code describes the procedure for determining when the stream types
associated with a source plug and a sink plug “match” (or whether a requested stream type matches
one already associated with a plug).

Let S1 and S2 be two StreamTypeId values that are to be tested for a match. Then there are two
main cases:

Case I: both S1 and S2 are HAVi stream types

 if(S1.typeNo == S2.typeNo)
 return ok
 else if(S1.typeNo == UNKNOWN_STREAM ||
 S2.typeNo == UNKNOWN_STREAM)
 return ok
 else if((S1.typeNo.major == S2.typeNo.major) &&
 (S1.typeNo.minor == UNKNOWN_STREAM ||
 S2.typeNo.minor == UNKNOWN_STREAM))
 return ok
 else
 return ENO_MATCH_STREAM

Case II: either S1 or S2 (or both) are non-HAVi (i.e. vendor) stream types

 if(S1 == S2)
 return ok
 else if (S1.vendorId == 0 && S1.typeNo == UNKNOWN_STREAM)
 return ok
 else if (S2.vendorId == 0 && S2.typeNo == UNKNOWN_STREAM)
 return ok
 else
 return ENO_MATCH_STREAM

 236

HAVi SPECIFICATION Version 1.1

5.9.5.2 Transmission Format Matching

The following pseudo-code describes the procedure for determining when two transmission
formats “match”. Let TF1 and TF2 be two TransmissionFormat values that are to be tested for
a match.
if TF1 and TF2 do not use the same transport type
 return ENO_MATCH_FMT

switch on the transport type {
case CABLE:
 if TF1 == TF2
 return ok
 else
 return ENO_MATCH_FMT
case INTERNAL:
 return ok
case IEC61883:
 if(TF1.FMT_FDF & (TF1.mask & TF2.mask) ==
 TF2.FMT_FDF & (TF1.mask & TF2.mask))
 return ok
 else
 return ENO_MATCH_FMT
}

5.9.5.3 NO_SIGNAL Stream Type

NO_SIGNAL stream type represents that no valid signal is generated by the source FCM. (e.g.,
empty packets going on IEC connection). For the purpose of NO_SIGNAL is just to inform the state,
Dcm::SetStreamTypeId with specifying NO_SIGNAL always results Dcm::ENOT_SUPPORTED.
And NO_SIGNAL will not be returned by Dcm::GetAvailableStreamTypes. It can be returned
by Fcm::GetSupportedStreamTypes or Dcm::GetStreamType API from source DCM or
carried by events generated by source plug. Thus the Stream Manager which involved by a
StreamTypeChanged with NO_SIGNAL will always fail to match the stream types, so the stream
manager will change ConnectionState to FAILURE and FailureReason to
STREAM_TYPE_MATCH_FAILURE then generate ConnectionChanged event.

Note: It is not mandatory to support NO_SIGNAL stream type even if an FCM is capable of
producing a signal which is not valid. Also, it depends on the implementation of the FCM as to
which stream is valid. So stream types other than NO_SIGNAL do not guarantee that a connection is
carrying valid content for user presentation.

5.9.5.4 IEC 61883 Connections

5.9.5.4.1 Bandwidth Allocation

For IEC 61883 connections, the bandwidth computation procedure used by the Stream Manager is:

1) Determine the payload – the maximum number of quadlets in one isochronous
packet excluding headers. If the DCM has dynamic bandwidth allocation set
(dynamicBw is True in FlowTo or SprayOut) then obtain the payload from the
oPCR. If the DCM has static bandwidth allocation set (dynamicBw is False)
either obtain the payload from the oPCR or calculate via payload =
maxBandwidth / (8000 * 32). (Note – when an oPCR uses static bandwidth

 237

HAVi SPECIFICATION Version 1.1

allocation these two values are the same.)
2) Select the overhead_ID to be used by the oPCR. (HAVi does not specify how this

value is selected.)
3) Determine the maximum packet speed between the source device and the sink

device (for example, by consulting the IEEE 1394 speed map). From this
determine the data rate coefficient (DR). In case there is no sink, e.g., a SPRAY
connection, the data rate capability of the source shall be used.

4) Knowing payload, overhead_ID and DR calculate the number of bandwidth
allocation units, BWU, using the formula in IEC 61883.1.

5) In case of IEC broadcast-out connections established via DCM::IecSprayOut,
the DCM/device shall allocate BWU from the 1394 Isochronous Resource
Manager. In all other cases, the Stream Manager shall allocate BWU.

5.9.5.4.2 Static and Dynamic Bandwidth Allocation

Certain devices are inherently variable data rate – their bandwidth requirements may change
depending upon content. An example is a digital tuner changing from a low bandwidth service to a
high bandwidth service with the same StreamTypeId. To accommodate such devices and
encourage efficient use of the 1394 network, HAVi provides two bandwidth allocation strategies:
static bandwidth allocation and dynamic bandwidth allocation. Stream Manager clients indicate
their bandwidth allocation preference when requesting a connection to be established. Overlays will
not change the method used.

! static bandwidth allocation – Stream Managers allocate bandwidth corresponding to the
payload in the oPCR. If the source is variable rate the Stream Manager first requests the
DCM to set static bandwidth allocation (via Dcm::SetIecBandwidthAllocation), if
this request fails then the Stream Manager returns the ESTATICBW error. If bandwidth
requirements change it is the responsibility of the DCM to issue the
BandwidthRequirementChanged event.

! dynamic bandwidth allocation – Stream Managers allocate bandwidth corresponding to
the payload in the oPCR. If the source is variable rate the Stream Manager first requests
the DCM to set dynamic bandwidth allocation via
Dcm::SetIecBandwidthAllocation. (If this request fails then static bandwidth
allocation is used.) If bandwidth requirements change it is the responsibility of the DCM
to assure that bandwidth allocation is attempted, or excessive bandwidth is released,
(whether by the device or itself) and issue the BandwidthRequirementChanged event.

Note that even in the case of static bandwidth allocation, the bandwidth guarantee may not be
absolute. If the maxBandwidth the Stream Manager specifies in
Dcm::SetIecBandwidthAllocation is the maximum value for just the current stream type (as
opposed to all possible stream types of which the source is capable) then as a result of a
StreamTypeChanged or DeviceConnectionChanged event, the value of
StreamType.maxBandwidth associated with source FCM plug may increase and no longer
correspond to the allocated bandwidth as indicated in the source oPCR payload (in which case the
connection will enter the state BANDWIDTH_FAILURE).

5.9.5.4.3 Overlays

FlowTo, TapIn or SprayOut may result in an IEC 61883 overlay connection. Conditions for
performing an overlay when handling a FlowTo are:

 238

HAVi SPECIFICATION Version 1.1

! the source FCM plug is attached to an connected oPCR (where “connected” is as defined
by IEC 61883.1). If not then an overlay is not necessary and establishment of a point-to-
point connection should be attempted.

! the sink FCM plug is unattached, or attached to an unconnected iPCR, or attached to an
iPCR connected to the oPCR (where “connected” and “unconnected” are as defined by
IEC 61883.1). If not then ESINK_BUSY should be returned.

! the maximum packet speed between the source and sink devices is greater than or equal
to the data rate specified in the oPCR. If not then ENO_MATCH_SPEED is returned.

! the stream type ID requested by the client and associated with the source and sink can be
matched. If not then ENO_MATCH_STREAM should be returned.

! the transmission format requested by the client and associated with the source and sink
can be matched. If not then ENO_MATCH_FMT should be returned.

! the maximum bandwidth of the source should not exceed the maximum bandwidth of the
sink. If not then ENO_MATCH_BW should be returned.

Conditions for performing an overlay when handling a SprayOut are:

! hint.anyChannel is True or hint.channel contains an IecChannel value, and this
value refers to a currently allocated 1394 channel.

! the source FCM plug is attached to an active oPCR (where “active” is as defined by IEC
61883.1). If not then an overlay is not necessary and a establishment of a broadcast-out
connection should be attempted.

! the stream type ID requested by the application matches that in use by the source FCM
plug. If not then ENO_MATCH_STREAM should be returned.

! the transmission format requested by the application matches that is use by the oPCR. If
not then ENO_MATCH_FMT should be returned.

Conditions for performing an overlay when handling a TapIn are:

! hint.anyChannel is True or hint.channel contains an IecChannel value, and this
value refers to a currently allocated 1394 channel.

! the sink FCM plug is either unattached, or attached to an unconnected iPCR, or attached a
connected iPCR using the channel referred to by the IecChannel value (where
“connected” and “unconnected” are as defined by IEC 61883.1). If not then ESINK_BUSY
should be returned.

! the stream type ID requested by the application is supported by the sink FCM plug (if
unattached) of matches that used by the sink FCM plug (if attached). If not then
ENO_MATCH_STREAM should be returned.

! the transmission format requested by the application matches that is use by the iPCR. If
not then ENO_MATCH_FMT should be returned.

 239

HAVi SPECIFICATION Version 1.1

5.9.5.4.4 Usage of Special Channels

Many legacy 1394 devices by default allocate isochronous channel 63 (LEGACY_ISOC_CHANNEL).
In addition channel 31 (ASYNC_STREAM_ISOC_CHANNEL) is used by IEEE 1394a devices for
asynchronous streaming. To avoid possible conflict with the operation of these devices a HAVi
Stream Manager shall restrict its use of channel 31 and 63 as follows:

! a Stream Manager shall not use channel 31 for a HAVi connection

! a Stream Manager may overlay on channel 63, however a Stream Manager shall only
allocate channel 63 for a HAVi connection if the Channel.isocChannel parameter of
FlowTo or SprayOut contains LEGACY_ISOC_CHANNEL and hint.anyChannel is
False, i.e., a Stream Manager shall not allocate channel 63 if the hint.anyChannel
parameter of FlowTo or SprayOut is True

5.10 Resource Manager

5.10.1 Services Provided

Service Comm
Type

Locality Access

ResourceManager::Reserve M global all

ResourceManager::Release M global all

ResourceManager::Negotiate M global all

<Client>::PreemptionRequest MB global Resource
Managers

ResourceManager::ScheduleAction M global all

ResourceManager::UnscheduleAction M global all

ResourceManager::GetLocalScheduledActions M global all

ResourceManager::GetScheduledActionData M global all

ResourceManager::TriggerNotification M global all

<Client>::AwakeNotification MB global Resource
Managers

ResourceManager::GetScheduledConnections M global Resource
Managers

InvalidScheduledAction E global all

AbortedScheduledAction E global all

ErroneousScheduledAction E global all

5.10.2 Resource Manager Data Structures

ClientRole

Definition
enum ClientRole {USER, SYSTEM };

 240

HAVi SPECIFICATION Version 1.1

Description
The two roles of a client.

ReservationResult
enum ReservationResult {
 FAILED_OTHER, PRIMARY, SECONDARY,
 FAILED_SELF, NOT_SUPPORTED, NO_RESOURCE
};

NegotiationResult
enum NegotiationResult {
 ACCEPTED, REJECTED, TIMEOUT, NOT_SUPPORTED,
 NO_RESOURCE, SYSTEM_CLIENT
};

ResourceRequestRecord

Definition
struct ResourceRequestRecord {
 SEID resource;
 boolean primary;
};

Description
A specification of a resource request record. resource specifies the resource to be reserved by
the resource management system. primary is True if the resource should be reserved with
primary access rights; otherwise it should be reserved with secondary access rights.

ResourceStatusRecord

Definition
struct ResourceStatusRecord {
 SEID resource;
 ReservationResult acquisition;
};

Description
A specification of a resource status record. resource specifies the resource for which data is
retrieved by the resource management system. acquisition specifies the result of a reservation
attempt:

! FAILED_OTHER – no access rights because for at least one other specified resource no access
rights could be acquired

! PRIMARY – primary access rights acquired
! SECONDARY – secondary access rights acquired
! FAILED_SELF – no access rights because the requested access rights could not be acquired
! NOT_SUPPORTED – the resource does not support reservation
! NO_RESOURCE – the resource does not exist (or an invalid SEID value)

 241

HAVi SPECIFICATION Version 1.1

ResourceNegotiateRecord

Definition
struct ResourceNegotiateRecord {
 SEID resource;
 NegotiationResult result;
 wstring<50> info;
};

Description
A specification of a resource negotiate record. resource specifies the resource for which
negotiation was performed by the resource management system. result specifies the result of a
preemption request to the primary client that holds the resource (if any):

! ACCEPTED – accepted (also if there is no primary client)
! REJECTED – rejected by the client
! TIMEOUT – timeout has expired
! NOT_SUPPORTED – the client does not support preemption requests
! NO_RESOURCE – the resource does not exist (or an invalid SEID value), or does not support

reservation
! SYSTEM_CLIENT – negotiation with a system client is not allowed

info specifies an information string that may be supplied by the current client of the resource.

SAReference

Definition
struct SAReference {
 SEID actionScheduler;
 long index;
};

Description
References a Scheduled Action within the network.

Command

Definition
struct Command {
 OperationCode opCode;
 sequence<octet> command;
 HUID huid;
};

Parameters
! opCode – the operation code of the command sent to the FCM or DCM
! command – sequence of octets that will directly be addressed to the FCM or DCM; this field

will be the bytes after the TransactionId field in the message representation discussed in
section 3.2.3.2 (Figure 14)

! huid – HUID of the FCM or DCM that will execute the command

 242

HAVi SPECIFICATION Version 1.1

Description
Defines a single command associated with the HUID of the FCM or DCM that will have to
perform it. The command is a sequence of octets the Action Scheduler does not have to interpret.

SAConnection

Definition
struct SAConnection {
 FcmPlug source;
 FcmPlug sink;
 StreamType stype;
};

Parameters
FcmPlug and StreamType types are defined within the Stream Manager.

Description
Defines a connection structure that is maintained in each Action Scheduler to perform the
scheduled bandwidth reservation.

SAPeriod

Definition
enum SAPeriod {NONE, DAILY, WEEKLY};

Description
Refers to the periodicity parameter defining the way a Scheduled Action must be repeated. NONE
means that the Scheduled Action must only be performed once.

RMConnection

Definition
struct RMConnection {
 SAConnection connection;
 DateTime startTime;
 DateTime stopTime;
 SAPeriod periodicity;
};

Description
Structure to exchange connection information between Resource Managers.

 243

HAVi SPECIFICATION Version 1.1

5.10.3 Resource Manager API

ResourceManager::Reserve

Prototype
Status ResourceManager::Reserve(
 in boolean preemptive,
 in ClientRole role, in wstring<50> info,
 in OperationCode preemptionRequestCode,
 in sequence<ResourceRequestRecord> requestRecords,
 out sequence<ResourceStatusRecord> statusRecords)

Parameters
! preemptive – if True, the resources are preempted from the current resource clients;

otherwise, a non-intrusive reservation for the resources is attempted
! role – the requester is a user or system client
! info – an information string related to this reservation
! preemptionRequestCode – the operation code of the client’s PreemptionRequest

method (may be invoked by Resource Managers during negotiation)
! requestRecords – the request records of the resource group to be reserved. The safe

parameter size limit is 20 ResourceRequestRecord values.
! statusRecords – the returned status records of the resource group. The safe parameter size

limit is 20 ResourceStatusRecord values.

Description
A resource group preemption is done, or a non-intrusive reservation is attempted on behalf of the
invoking contender. The request records specify for each resource whether primary or secondary
access rights are required. The returned status records specify the result for each resource in the
request record list. The value of role should reflect the role of the requesting contender. info is
an information string recorded in the reserved resources upon a successful reservation.

A Resource Manager should use Fcm::GetReservationStatus messages to learn about the
status of FCMs. It then analyzes the results to determine whether the requested type of reservation
(non-intrusive or preemptive) will go through or not. (For rules regarding FCM reservation, refer to
the section on Fcm::Reserve.) If it will go through, then it sends Reserve commands to each of
the FCMs. If it turns out that due to contention from other requests or a network failure an FCM
reservation request is unable to go through, then the RM releases all FCMs in the request which
have been reserved so far. In case of failure to reserve all resources in the group, the acquisition
field in the ResourceStatusRecord for each resource which succeeded will be FAILED_OTHER.

A client is recommended to supply the same value for PreemptionRequestCode if it does
several separate reservations. This is recommended because ResourceManager::Negotiate
can only pick one of the supplied codes in a possible future <Client>::PreemptionRequest to
the client.

Error codes
! ResourceManager::ERESERVE_FAILED – the reservation failed

ResourceManager::Release

Prototype

 244

HAVi SPECIFICATION Version 1.1

Status ResourceManager::Release(
 in sequence<SEID> resources,
 in boolean neutral)

Parameters
! resources – the resource group to be released. The safe parameter size limit is 20 SEID

values.
! neutral – if True FCMs will return to a neutral state before they are released

Description
Any subset of the reserved resources of the invoking client will be released, provided the client has
reserved them. Invalid SEID values are ignored.

ResourceManager::Negotiate

Prototype
Status ResourceManager::Negotiate(
 in boolean request, in ClientRole role,
 in long negotiateTimeout,
 in wstring<50> info, in sequence<SEID> resources,
 out sequence<ResourceNegotiateRecord> negotiateRecords)

Parameters
! request – if True, this is a preemption request; otherwise it is a withdrawal
! role – the requester is a user or system client
! negotiateTimeout – the period in seconds the negotiation may last
! info – an information string related to this negotiation
! resources – the resources for which negotiation takes place. The safe parameter size limit is

20 SEID values.
! negotiateRecords – the returned negotiate records for the resources. The safe parameter

size limit is 20 ResourceNegotiateRecord values.

Description
A resource group negotiation is done on behalf of the invoking contender. The value of role
should reflect the role of the requesting contender. info is an information string used to inform
current resource clients about the negotiation. negotiateTimeout specifies the amount of time
the negotiation may take place. The returned negotiate records specify the result for each resource.

role, negotiateTimeout, and info are ignored if the invoker withdraws an earlier preemption
request, and NegotiateRecords will then be an empty list.

If a Resource Manager receives a Negotiate command, it will retrieve the primary owners for all
specified resources by Fcm::GetReservationStatus. To all primary clients it sends a
PreemptionRequest command, specifying all resources for which the client is the primary
client. It sets a timer with the specified timeout value, and awaits all responses during the timeout
period. It returns the call from the contender after all expected replies have been received, or shortly
after the timeout, compiling the resource negotiate records for all resources.

If the current primary client of a resource is a system client, a negotiation for that resource will
always be rejected by a Resource Manager. Note that negotiation is not possible for acquiring
secondary access rights.

 245

HAVi SPECIFICATION Version 1.1

Error codes
! ResourceManager::EREJECTED – the negotiation did not succeed for at least one client

<Client>::PreemptionRequest

Prototype
Status <Client>::PreemptionRequest(
 in boolean request, in sequence<SEID> resources,
 in SEID contender, in long preemptionTimeout,
 in ClientRole role, in wstring<50> inInfo,
 out wstring<50> outInfo)

Parameters
! request – if True, this is a preemption request; otherwise a preemption withdrawal
! resources – the resources this client has reserved as primary, and for which the negotiation

takes place. The safe parameter size limit is 20 SEID values.
! contender – the contender for the resources
! preemptionTimeout – the maximum period in seconds the client is expected to accept or

reject the preemption request
! role – the user or system role of the contender
! inInfo – an information string submitted by the contender
! outInfo – an information string submitted by the current client

Description
This message is sent by a Resource Manager to the primary client of the resources. The client
should process the message within the specified timeout period for a preemption request (and
immediately for a preemption withdrawal). Before the timeout expires, the client should reply.
inInfo is an additional information string that may be supplied by the contender. If a client is too
late with its response, the reply will be ignored (ResourceManager::Negotiate will return
“timeout has expired”).

If the client accepts the preemption request, the method returns successfully. Otherwise it returns
with error code EREJECTED. outInfo may carry extra information from the client to the
contender. As a guideline, a request for resources for which the client is not the primary client
should be rejected by it, and unexpected withdrawals should be ignored. These situations will
normally not occur, but cannot be avoided when several reservations and releases occur at the same
time.

preemptionTimeout, inInfo, and outInfo can be ignored if this is a preemption withdrawal.
The operation code used to send the PreemptionRequest message is (one of the operation
codes) supplied by the client via ResourceManager::Reserve.

Error codes
! ResourceManager::EREJECTED – the negotiation was not accepted for at least one client
! ResourceManager::ENOT_SUPPORTED – the application does not support preemption

requests

ResourceManager::ScheduleAction

Prototype
Status ResourceManager::ScheduleAction(
 in SEID controllerApplicationId,

 246

HAVi SPECIFICATION Version 1.1

 in SEID triggerId,
 in OperationCode awakeNotification,
 in sequence<Command> startCommandsList,
 in sequence<Command> stopCommandsList,
 in sequence<SAConnection> connectionList,
 in DateTime startTime,
 in DateTime stopTime,
 in SAPeriod periodicity,
 in sequence<HUID> involvedFcmList,
 in wstring<50> userInfo,
 out long index)

Parameters
! controllerApplicationId – optional SEID of the application that may be awoken

during a Scheduled Action. For this parameter, the SEID of the invoked Resource Manager
means that no controller application is used during this Scheduled Action

! triggerId – optional SEID of the DCM/FCM that may generate the Scheduled Action
triggering signal. For this parameter, the SEID of the invoked Resource Manager means that no
trigger is used during this Scheduled Action

! awakeNotification – the operation code of the controller application’s awake notification
message (to be invoked by the Action Scheduler). This parameter is ignored if
controllerApplicationId is absent.

! startCommandsList, stopCommandsList – commands to be executed during the
Scheduled Action. The commands are listed by order of execution. The safe parameter size
limit for each parameter is 2 Kbytes.

! connectionList – list of connections that have to be performed during the Scheduled
Action. The safe parameter size limit is 20 SAConnection values.

! startTime, stopTime – date and time information for the Scheduled Action
! periodicity – indicates the periodicity of the Scheduled Action. If a periodicity is specified,

the Scheduled Action starts and stops every day or every week at time indicated in startTime
! involvedFcmList – list of the FCMs to be reserved at the start time of the Scheduled

Action. The safe parameter size limit is 10 HUID values.
! userInfo – string field containing the reservation reason
! index – references the Scheduled Action

Description
Defines a Scheduled Action. This data is given by the invoking application to the Action Scheduler.
It is checked whether the Scheduled Action is valid (all involved FCMs exist and are present at
scheduling time, FCMs can accept the commands, there is enough bandwidth to perform
connections, etc...).

Each time a Scheduled Action is created, it is referenced with an index that is returned by the
Action Scheduler in charge of this new Scheduled Action.

Error codes
! ResourceManager::EMISSING_RES – at least one of the involved FCMs are not present at

scheduling time
! ResourceManager::ESCHED_OVERLAP – at least one of the involved FCMs has already

scheduled another Scheduled Action at the specified time
! ResourceManager::ECOMM_CHECK – at least one of the involved FCMs cannot deal with

the specified commands
! ResourceManager::EINSUFF_BANDWIDTH – not enough network resources
! ResourceManager::ECONT_SEID – controllerApplicationId is invalid

 247

HAVi SPECIFICATION Version 1.1

! ResourceManager::ETRIGG_SEID – triggerId is invalid
! ResourceManager::ETIME – incorrect time information (e.g., incorrect format, invalid or

“ignored” values in DateTime, start time > stop time, stop time < current time)
! ResourceManager::EINV_PLUG – at least one of the plug connections is invalid

ResourceManager::UnscheduleAction

Prototype
Status ResourceManager::UnscheduleAction(in long index)

Parameter
! index – reference to the Scheduled Action

Description
Unschedules the Scheduled Action which has the given index. This UnscheduledAction is sent
to the Action Scheduler that maintains the Scheduled Action that has to be cancelled.

If this method is called while the Scheduled Action is executing, the execution is aborted, and an
ErroneousScheduledAction event is posted. The involved DCMs shall be sent
UnscheduleReservation messages by the Action Scheduler.

Error codes
! ResourceManager::EINV_INDEX – the index is invalid

ResourceManager::GetLocalScheduledActions

Prototype
Status ResourceManager::GetLocalScheduledActions(
 out sequence<long> indexList)

Parameters
! indexList – list of Scheduled Action indexes. The safe parameter size limit is 20 long

values.

Description
Gets the index list of all Scheduled Actions (if any) undertaken by a Resource Manager. The list is
empty if no Scheduled Actions have been undertaken by this Resource Manager.

ResourceManager::GetScheduledActionData

Prototype
Status ResourceManager::GetScheduledActionData(
 in long index,
 out boolean valid,
 out SEID controllerApplicationId,
 out SEID triggerId,
 out OperationCode awakeNotification,
 out sequence<Command> startCommandsList,
 out sequence<Command> stopCommandsList,
 out sequence<SAConnection> connectionList,

 248

HAVi SPECIFICATION Version 1.1

 out DateTime startTime,
 out DateTime stopTime,
 out SAPeriod periodicity,
 out sequence<HUID> involvedFcmList,
 out wstring<50> userInfo)

Parameters
! index – references the Scheduled Action for which the data are to be retrieved
! valid – True if the Scheduled Action is currently valid, False if it is invalid, i.e., it is still

missing one or more resources required for (future) execution
! controllerApplicationId – optional SEID of the application that may be awoken during

a Scheduled Action. For this parameter, the SEID of the invoked Resource Manager means
that no controller application is used during this Scheduled Action

! triggerId – optional SEID of the DCM/FCM that may generate the Scheduled Action
triggering signal. For this parameter, the SEID of the invoked Resource Manager means that no
trigger is used during this Scheduled Action

! awakeNotification – the operation code of the controller application’s awake notification
message (to be invoked by the Action Scheduler)

! startCommandsList, stopCommandsList – commands to be executed during the
Scheduled Action; the commands are listed by order of execution. The safe parameter size
limit for each parameter is 2 Kbytes.

! connectionList – list of connections that have to be performed during this Scheduled
Action. The safe parameter size limit is 20 SAConnection values.

! startTime, stopTime – date and time information for the Scheduled Action
! periodicity – indicates the periodicity of the Scheduled Action; if a periodicity is specified,

it indicates that the Scheduled Action starts and stops every day or every week at time indicated
in startTime

! involvedFcmList – list of the involved FCMs. The safe parameter size limit is 10 HUID
values.

! userInfo – string field containing the reservation reason

Description
Gets Scheduled Action data corresponding to a given index. Note that startTime and stopTime
remains the same as those registered by ResourceManager::ScheduleAction, even though
the corresponding Scheduled Action with 'periodicity' has once (or more) been executed

Error codes
! ResourceManager::EINV_INDEX – index is invalid

ResourceManager::TriggerNotification

Prototype
Status ResourceManager::TriggerNotification(
 in long index, in boolean startStop)

Parameters
! index – local reference to the Scheduled Action
! startStop – indicates the type of the triggering notification: if True, it is a start indication;

otherwise, it is a stop indication.

Description
The TriggerNotification is issued by the trigger, e.g. an FCM or DCM, as a result of the set

 249

HAVi SPECIFICATION Version 1.1

up (subscription or otherwise) by the invoking application (the Action Scheduler identification and
the index of the Scheduled Action should have been passed to the trigger).

Error codes
! ResourceManager::EINV_INDEX – index is invalid

<Client>::AwakeNotification

Prototype
Status <Client>::AwakeNotification()

Description
The awake notification is a general purpose message of an application to indicate to it that the caller
has accomplished whatever the application was waiting for (“whatever” is proprietary between
caller and application). This method is used for scheduled actions.

The operation code used to send the AwakeNotification message is indicated by the client via
ResourceManager::ScheduleAction.

ResourceManager::GetScheduledConnections

Prototype
Status ResourceManager::GetScheduledConnections(
 in DateTime startTime,
 in DateTime stopTime,
 in SAPeriod periodicity,
 out sequence<RMConnection> connections)

Parameters
! startTime, stopTime – date and time information for the Scheduled Action
! periodicity – periodicity of the Scheduled Action
! connections – list of all connections active between start and stop time. The safe parameter

size limit is 100 RMConnection values.

Description
Get a list of all connections that will be active between start and end time. For periodical schedules,
future intervals also have to be taken into account. The list is empty if no connections match.

5.10.4 Resource Manager Events

InvalidScheduledAction

Prototype
void InvalidScheduledAction(
 in SAReference ref, in wstring<50> userInfo)

Parameters
! ref – reference of the Scheduled Action that is not valid
! userInfo – reservation reason string of the Scheduled Action

 250

HAVi SPECIFICATION Version 1.1

Description
This event can be issued between scheduling time and stop time of the Scheduled Action.
Depending on the software element that outputs this event, it indicates that either FCMs, network
resources, or Action Scheduler are not all gathered for a successful execution of the Scheduled
Action. Issuing this event does not involve the deletion of the Scheduled Action.

An Action Scheduler issues this event when a Scheduled Action cannot be completed in the current
situation (a resource disappears, not enough bandwidth available ...).

A DCM involved in a particular Scheduled Action (via Dcm::ScheduleReservation), issues
this event when its Action Scheduler is missing in the current situation. Unlike an Action
Scheduler, a DCM shall delete its related Restricted Scheduled Action data.

The event indicates the reference of the Scheduled Action, and its reservation reason for user
information purposes.

AbortedScheduledAction

Prototype
void AbortedScheduledAction(
 in SAReference ref, in wstring<50> userInfo)

Parameters
! ref – reference of the Scheduled Action that is aborted
! userInfo – reservation reason string of the Scheduled Action

Description
This event is issued by the Action Scheduler when the Scheduled Action is not executing in the
following three cases:

! If the control application or trigger (if any) disappears.

! If the required resources (FCMs, network resources) are still not present, at or after the
stop time of a non-triggered (invalid) Scheduled Action – i.e., the Scheduled Action
remained invalid.

! If the required resources for a Scheduled Action become available again, but the restart of
the Scheduled Action fails.

Issuing this event means that the specified Scheduled Action data has been deleted by the Resource
Manager. Also the related Restricted Scheduled Action data is removed from the involved DCMs
by the Resource Manager (via Dcm::UnscheduleReservation).

This event indicates the reservation reason of the Scheduled Action for user information purposes.

ErroneousScheduledAction

Prototype
void ErroneousScheduledAction(
 in SAReference ref, in wstring<50> userInfo)

 251

HAVi SPECIFICATION Version 1.1

Parameters
! ref – reference of the Scheduled Action that has encountered an error during execution
! userInfo – reservation reason string of the Scheduled Action

Description
This event is issued during execution of the Scheduled Action if one of the following errors occur:

! start/stop command or connection fails

! reservation fails

! controller application or trigger disappears

! FCM disappears or is preempted

The Scheduled Action is aborted, unless it is controlled by an application. In that case the
application may decide to unschedule (and thereby abort) it.

5.10.5 Bandwidth Checking Protocol

To get a snapshot of all scheduled isochronous connections distributed on the network for a
specified period of time, an Action Scheduler has to query all other Action Schedulers to obtain
their relevant schedules. To enable this, the inter-Action Scheduler method
ResourceManager::GetScheduledConnections is defined. The Resource Manager that acts
as an Action Scheduler will invoke this method on all other Resource Managers. It adds the
required bandwidth of all Action Schedulers (including itself) to its own required bandwidth for
overlapping time periods in the future. If this calculation exceeds the available bandwidth, the
remaining network bandwidth is assumed unavailable for the newly planned scheduled action.

Notes:

! In principle, when several Action Schedulers are checking concurrently, a scheduled action
may unnecessarily be rejected. However, this scheme suffices for home networks, where only a
few concurrent schedules will occur.)

! For calculation of the actual bandwidth needed see the section 5.9.5.4.1.

In the example below a scheduled action is going to be registered at RM1 as Schedule B. For
bandwidth checking RM1 contacts the other Action Schedulers of the network (which are RMa and
RMb) to get schedules that are concurrent (i.e. overlapping) with the schedule RM1 is working for.
The request contains the scheduling time information, so that RMa and RMb return only the
information about those scheduled connections, which are concurrent. Comparing this information
with its own schedules, RM1 becomes able to compute whether the remaining network resources
are enough to ensure the completion of all scheduled actions programmed in the future.

Inter-resource manager communication for checking bandwidth at scheduling time is depicted
below:

 252

HAVi SPECIFICATION Version 1.1

RM 1

RM b

RM a

GetScheduledConnections

GetScheduledConnections

ScheduleAction
return scheduled connections

return scheduled connections

Sched A
Sched B

Sched X
Sched Y
. . .

Sched R
Sched S
. . .

Figure 34. Resource Managers and Bandwidth Checks

Bandwidth checking reference algorithm. The algorithm below describes a possible
implementation guideline, the actual implementation is of course proprietary. The algorithm does
not take into account different link speeds in the network:

There is a new schedule A which includes the start time s1, the end time e1, the needed bandwidth
B1 and the needed number of channels C1. The problem is to determine whether this new schedule
can be added to the action scheduler.

 253

HAVi SPECIFICATION Version 1.1

Collect registered schedules with an end time later than s1 and with a start time earlier than e1 and
make a schedule table of schedules that are affected by the new schedule A. An example of a
schedule table is:

Start time End time Bandwidth
needed

No. of channels
needed

Sa Ea 6Mbps 1

Sb Eb 6Mbps 2

Sc Ec 5Mbps 1

Sd Ed 5Mbps 1

Se Ee 5Mbps 2

Make a bandwidth table which includes as check point times: s1, the later start times than s1 and
the earlier end times than e1 from the schedule table. A bandwidth table then looks like:

Check point time Bandwidth
needed

No. of channels needed

C1 12Mbps 2

C2 15Mbps 4

C3 10Mbps 3

The bandwidth table is built by calculating for each check point the bandwidth and number of
channels from the schedule table. The calculation steps are:

! Find all schedules containing the check point from the schedule table.
! Make the summations (or subtractions) of bandwidth and number of channels for all the found

schedules.
! Put the summations to the bandwidth and channel slot of the bandwidth table.

Obtain maximum bandwidth (Bmax) and maximum number of channels (Cmax) from the
bandwidth table. Calculate:

 Bmax + B1 and Cmax + C1

Then check with the available network bandwidth and channel numbers for overflow caused by the
new schedule.

For efficiency reasons the overflow check done at the end could be done during the calculations of
step (3).

5.11 Application Module

This section provides the common set of Application Modules commands. Besides the commands
described here, an Application Module may also provide the DDI API. When it does, it indicates so
by the ATT_GUI_REQ attribute in the Registry. Moreover, as holds for all HAVi components,
proprietary extensions of this command set are allowed.

5.11.1 Services Provided

Service Comm
Type

Locality Access

 254

HAVi SPECIFICATION Version 1.1

Service Comm
Type

Locality Access

ApplicationModule::GetIcon M global all

ApplicationModule::GetHuid M global all

ApplicationModule::GetHavletCodeUnitProfile M global all

ApplicationModule::GetHavletCodeUnit M global all

5.11.2 Application Module Data Structures

HUID

The HUID is the unique identification of a DCM, FCM or Application Module. The structure for
HUIDs is given in section 5.6.2.

5.11.3 Application Module API

ApplicationModule::GetIcon

Prototype
Status ApplicationModule::GetIcon(
 out DeviceIcon icon)

Parameters
! icon visual representation of the application.

Description
Provides a visual representation of the application that can be displayed to the user. DeviceIcon is
defined in section 5.6.2.

ApplicationModule::GetHuid

Prototype
Status ApplicationModule::GetHuid(out HUID appId)

Parameters
! appId – a HUID of an Application Module

Description
Returns the HUID of the Application Module.

ApplicationModule::GetHavletCodeUnitProfile

Prototype
Status ApplicationModule::GetHavletCodeUnitProfile(
 out Version version,
 out long transferSize,

 255

HAVi SPECIFICATION Version 1.1

 out long codeSpace,
 out long workingSpace,
 out long chunkSize)

Parameters
! version – the lowest version of the HAVi Messaging System required by this havlet.
! transferSize – the number of havlet code unit bytes to be transferred
! codeSpace – the number of bytes required for the installed havlet code unit (read-only part)
! workingSpace – an estimate of the number of bytes required for the working space of the

installed havlet code unit (read/write part)
! chunkSize – the maximum number of havlet code unit bytes the Application Module can

send at a time

Description
Provides the various size parameters needed for determining whether the destination of the havlet
code unit (for example, an FAV UI Manager) can install the havlet. This method is only supplied if
the Application Module indicates that it supports havlets via the ATT_GUI_REQ attribute in the
Registry.

Error codes
! ENOT_IMPLEMENTED – if the Application Module does not contain a havlet.

ApplicationModule::GetHavletCodeUnit

Prototype
Status ApplicationModule::GetHavletCodeUnit(
 in long firstByte,
 in long lastByte,
 out sequence<octet> byteArray)

Parameters
! firstByte – the number of the first byte of the transferred havlet code unit byte array wanted
! lastByte – the number of the last byte of the array wanted
! byteArray – the byte array requested (empty if none could be delivered or if invalid

firstByte and/or lastByte values are supplied). The safe parameter size limit 512 bytes
(the 1394 asynchronous packet size for bus speeds of 100 Mbps).

Description
Provides the bytecode that can used to install and execute an havlet, a Level 2 application stored in
this Application Module. A havlet code unit receiver can request all or some of the bytes of the
havlet code unit from the Application Module. It should first use
ApplicationModule::GetHavletCodeUnitProfile to determine if it is capable of
retrieving and installing the code unit. firstByte and lastByte should indicate subsequent parts
of the code unit to be transferred. The first byte of the code unit is number 1; the last byte is the
value of transferSize. The amount of bytes requested (lastByte - firstByte + 1) shall not
exceed the value of chunkSize.

The format of the bytecode and the way it should be handled by an FAV are described in section
7.4.3. This method is only supplied if the Application Module indicates that it supports havlets via
the ATT_GUI_REQ attribute in the Registry.

Error codes

 256

HAVi SPECIFICATION Version 1.1

! ENOT_IMPLEMENTED – if the Application Module does not contain a havlet.
! EINVALID_PARAMETER – the values of firstByte and/or lastByte are invalid

5.12 APIs for Data Driven Interaction

This section describes in detail the DDI-related data structures and operations that have been
described more generally in section 4 Data Driven Interaction. This section relies on the concepts
and terminology defined in section 4.

The data structures described here represent a set of DDI elements that can be extracted by a DDI
Controller from a DDI Target and presented by the controller to a human user on a display screen.
The controller can then allow the user to manipulate and indicate selection of the displayed
elements and thereby cause the controller to send corresponding user actions to the target. These
user actions are represented by data structures (associated with the DdiTarget::UserAction
operation) which are also defined in this section. It is also possible for the target to notify the
controller of changes in the target by sending (using a message back operation) a representation of
the change as a list of affected element IDs. Element data structures can be referenced using unique
element IDs. The elements whose selection can give rise to user actions are called interactive
elements. Elements that are not interactive may be used by the target to provide information about
the target to the user where it is not necessary to allow the user to provide input to the target.

The controller and target use the operations defined below to carry on this interaction. The DDI
Controller opens an interaction with a target using the DdiTarget::Subscribe operation,
interacts with the target using the other DdiTarget:: and <Client>:: (i.e. DDI Controller)
operations, then closes the interaction with that particular target using the
DdiTarget::Unsubscribe operation. During the interaction:

! DDI elements are obtained by the controller from the target using the GetDdiElement,
GetDdiPanel, GetDdiGroup, and GetDdiElementList operations. It is up to the
controller to determine how many DDI elements are retrieved and when they are
retrieved. The target only knows about what was last pulled from it by the above
operations.

! other data structures, DDI content, which can be considered to be logical parts of the DDI
element that reference them, may be obtained by the controller using the
GetDdiContent operation.

! the controller may send a user action to the target using the UserAction operation.

! as noted above, the target may use the <Client>::NotifyDdiChange message back
operation to indicate to the controller that particular elements have changed and that their
new values may be obtained from the target using the DdiTarget::GetDdi…
operations mentioned above.

A controller may carry on an interaction with more than one target at a time. A target may carry on
interactions with more than one controller at a time. In this latter case, the target should coordinate
(in an implementation-dependent manner) user actions from and notifications to each controller to
ensure that each controller’s DDI state is consistent with the current target state.

The DDI version level is supported as described in section 5.13.2 Version Control API.

 257

HAVi SPECIFICATION Version 1.1

5.12.1 Services Provided

Service Comm
Type

Locality Access

DdiTarget::Subscribe M global all

DdiTarget::Unsubscribe M global all

DdiTarget::GetDdiElement M global all

DdiTarget::GetDdiPanel M global all

DdiTarget::GetDdiGroup M global all

DdiTarget::GetDdiElementList M global all

DdiTarget::GetDdiContent M global all

DdiTarget::ChangeScope M Global all

DdiTarget::UserAction M global all

<Client>::NotifyDdiChange MB global DDI Target (all)

5.12.2 Presentation Requirements and Recommendations for DDI
Controllers

The DDI protocol places a small number of mandatory presentation requirements on a DDI
Controller: how a controller must output DDI data to its human user and how the controller must
accept input from its user and transform it into DDI data (i.e., actions). The DDI protocol also
includes a larger number of recommendations for the controller’s user input/output operation.
These requirements and recommendations are of two kinds: general and specific. General
requirements and recommendations are given here; specific ones, will be given in the sub-sections
describing particular elements, attributes, actions, and operations. In the case of requirements, the
words “required” or “must” and their variants will be used. In the case of recommendations, the
words “recommended” or “suggested” and their variants will be used.

5.12.2.1 General Presentation Requirements for DDI Controllers

The general presentation requirements placed on a DDI Controller are to:

! Display (using a controller-specific rendering, given its user input/output capabilities) the
information contained in the attributes of the DDI elements that the controller has pulled
from the target. Note, this requirement is only specified abstractly: the controller must
give a “best-effort” (relative to its actual capabilities) presentation of the information
embodied in the elements; however, no particular form or level of rendering is required.

! It is however required that the controller makes it possible for a user to see all DDI
elements of a panel, e.g. by using scrolling facilities. It is also required that a controller
makes it possible for a user to access all reachable panels (those for which the target
supplied panel links).

 258

HAVi SPECIFICATION Version 1.1

! Allow the user to manipulate in a controller-specific, best-effort manner any interactive
DDI element that the controller has pulled from the target so as to result in the generation
of any action (with any attribute values that the action is capable of having) associated
with that interactive element. Note, again this requirement is expressed abstractly with
respect to the particular user-controller interaction that the controller uses to allow the
user to: choose an interactive element, specify the attributes of an action, and indicate that
the action should be sent by the controller to the target.

! If a target shows a DDI element to the user, it is required to be the most recent, correct
version (not an old, obsolete version). Therefore the controller has to pull (or more often,
pull again) from the target all elements whose identifiers are listed in change reports from
the target if the user needs the information contained in those elements.

! All elements (except the DDI_TEXT element which already contains a text string) have a
mandatory label attribute that is defined to be a text string of length between zero and 16
characters. These labels have to be shown by the controller (minimal controllers can use
scrolling if needed).

5.12.2.2 General Presentation Recommendations for DDI
Controllers

Presentation recommendations for DDI Controllers allow for two types of scaling: panel scaling
and element scaling. Both types of scaling are explained below.

5.12.2.2.1 Panel Scaling

A panel element is intended to represent an entire screen’s worth of DDI elements. Within the
panel can be zero or more groups, each of which may contain individual elements or other groups.
In addition, a panel can have standalone elements that are not part of any group.

For controllers showing several panels on their screen, the navigation between these panels is
proprietary (there are however recommendations with respect to usage of panel links).

A controller can present a given panel in one of three styles: full-capability, intermediate, and basic.

! If the controller’s panel is displayed on the screen as required by all elements supplied by
the target then the controller is said to be operating in “full-capability”.

! If the controller cannot display the entire panel as given it can then drop down to the next
style of “intermediate”. Suggestions on how to scale down would be represented by the
target in its placement of elements within groups, groups within groups, and groups
within a panel. The intermediate controller could then display one group at a time and
allow the user to locally navigate between groups by displaying next and previous groups.

! The order in which the elements and groups of a panel should be shown is determined by
their order inside the panel/group. It is recommended that controllers make sure that the
user knows the hierarchical level of the shown group within the panel. E.g. by showing
(as much as possible) the labels of the other elements or groups.

! The last style, “basic”, would be used if the controller can only display a few or one DDI
element at a time. The basic controller could then display a set of elements at a time and
allow the user to locally navigate between elements.

 259

HAVi SPECIFICATION Version 1.1

! The order in which the elements should be shown is determined by their order inside the
panel/group. It is recommended that controllers make sure that the user knows the
hierarchical level of the shown elements within the panel. E.g. by showing (as much as
possible) the labels of the other elements or groups.

Which of the above styles the controller chooses depends on its capability and also whether the
screen is concurrently used for other purposes (e.g. video rendering).

Note that the capabilities that the target assumes for element sizes and position might clash with the
controller’s capabilities for these attributes. This can still make it impossible for a controller that is
in principle “full-capability”, to show all the elements of the panel together.

5.12.2.2.2 Element Scaling

As given in section 5.12.2.1 General Presentation Requirements for DDI Controllers, a controller
is required to display information contained in DDI elements. However, the controller has the
freedom to choose the particular rendering and user interaction operation. Especially for non-
organisational elements, the controller can choose between different rendering possibilities.

DDI element optional attributes are intended to be suggestions to the controller on how to organize
and present the target’s panels, groups, and elements to the user.

A controller has to take into account the DDI element mandatory attributes, but in case the
controller does not choose to represent graphical attributes (e.g. text-only controllers), it can neglect
even specific (graphical) mandatory attributes. These mandatory graphical attributes that might be
neglected are: aspect ratio, height, width, and bitmaps. In this case, the label attribute is used to
represent an element to the user.

Ideally DDI elements should be positioned on the panel or group according to the (optional)
position attribute supplied by the target. If this is not possible (not supplied by target, basic panel
style chosen, etc.), the controller is recommended to render the elements on the screen in the order
supplied by the target in either horizontal or vertical direction.

It is recommended that, if targets supply position attributes, they do this for all elements of the
group/panel. Note that targets should not rely on the precise position of the elements that they
specify.

The above guidelines allow controllers to use rather different styles of representing DDI elements
by ignoring or adapting certain types of attributes. It is recommended that a controller uses the same
style for all the elements of the same panel or group.

5.12.3 DDI Data Structures Overview

The DDI elements are the data structures that a DDI Target can use to define how the target should
be represented on a display screen by a DDI Controller.

An element is represented as a struct of a particular type. Attributes for an element are
represented by the fields of the struct. There are two kinds of attributes: mandatory and
optional. Each mandatory attribute is represented by an explicit field, starting with the first field of
the element. The mandatory attributes of a DDI element must be included in the element. Optional
attributes are contained in a variable length list (possibly empty) contained in the last explicit field
of the element. The optional attributes need not be present but if included are intended to give the
controller suggestions on displaying this particular DDI element

 260

HAVi SPECIFICATION Version 1.1

All DDI elements have the mandatory attributes height and width indicating the size (in pixels) that
the element should occupy on a graphics capable controller. The optional attribute, position, is used
to place the element on the panel or group. The height, width and position of a panel are specified
relative to a safety area of 640 x 480 pixels on which any full capability controller can surely
display a panel. A panel is defined to be two-dimensional with the upper left corner being defined
as (x = 0, y = 0). All positions given for groups or standalone elements directly contained in a
panel’s list of elements are relative to this origin. Similarly, the elements within a group have
position values based on the group’s upper-, left-most position being (x = 0, y = 0). The x-
coordinate is positive incrementing from left to right. The y-coordinate is positive incrementing
from top to bottom.

The “navigation” from one panel to another panel is done by the controller getting the next panel as
contained in the panelLink attribute of the DDI element DdiPanelLink. The user selecting the
DdiPanelLink element does not result in any user action that retrieves the panel. Instead, the
controller itself has to requests the panel in the DdiPanelLink by using the operations
GetDdiPanel, GetDdiElement or GetDdiElementList.

Panels and groups can have background colors, pictures or patterns. A pattern could take the form
of a tiled sequence of icons, this would allow for textured appearances

Panels and groups can also have audio/video content streamed in real-time. When an audioVideo
attribute is given in DDI data, a DDI Controller can use the audio video stream for background
video, etc. If the audioVideo attribute is valid, a DDI Controller should consider audioVideo as
higher priority to “background picture”, “background pattern” and “background color”.

Furthermore, panels and groups can have audio content streamed in real-time. When an Audio
attribute is given in DDI data, a DDI Controller can use the audio stream for background music,
etc.

For DDI elements having the (optional) sound attribute a controller should give that sound priority
over the (audio part) of the background audio/video or audio content (if present).

5.12.4 Basic DDI Types

The data types described here are used in a number of other DDI data structures and are not
necessarily associated with a particular element type or attribute type.

DdiElementType

Definition
typedef ushort DdiElementType;

Description
The particular ushort values for the DDI element types are specified in Annex 11.15. The data
type representing each DDI element type is given in section 5.12.8 Individual DDI Elements.

DdiElementId

Definition
struct DdiElementId {
 DdiElementType ddiElementType;

 261

HAVi SPECIFICATION Version 1.1

 ushort ddiElementHandle;
};

Description
DdiElementId is used for the identification of any of the DDI elements specified by this section.
The ddiElementHandle field is defined by the DDI Target. This field is not meant to be
interpreted and should not be modified by the DDI Controller.

A target always returns the same element for a given DdiElementId.

Every DDI element includes a mandatory attribute (in the element’s first field) of type
DdiElementId which is an identifier for that DDI element. See section 5.12.8 Individual DDI
Elements.

DdiContentId

Definition
struct DdiContentId {
 DdiContentType ddiContentType;
 ushort ddiContentHandle;
 uint ddiContentSize;
};

Description
DdiContentId is used for the identification of any DDI content data structure – see section 5.12.5
DDI Content Formats for DdiContentType. The ddiContentSize field contains the total size
of the content data in bytes. The target may use this size to make appropriate preparations in
anticipation of receiving the actual content data. If the content is empty, ddiContentSize should
be equal to 0. The ddiContentHandle field is defined by the DDI Target. This field is not meant
to be interpreted and should not be modified by the DDI Controller. The DdiContentId is
returned to the target when the controller requests the value of the content data (via
GetDdiContent).

A target always returns the same piece of content for a given DdiContentId.

DdiElementIdList and DdiElementList

Definition
typedef sequence<DdiElementId> DdiElementIdList;
typedef sequence<DdiElement> DdiElementList;

Description
The above types are used for referring to lists of DDI element IDs and elements.

DdiColor

Definition
typedef octet DdiColor[4];

 262

HAVi SPECIFICATION Version 1.1

Description
The order of the octets in DdiColor is: alpha, R, G, B (true color). The alpha field shall specify
the transparency of the pixel with respect to the background. A value of 0 indicates the pixel is fully
transparent, a value of 0xff indicates that the pixel is opaque.

Bitmap and Sound

Definition
typedef sequence<octet> Bitmap;
typedef sequence<octet> Sound;

Description
The format and size of a Bitmap will be determined by the data structure within which it is
contained – see section 5.12.5 DDI Content Formats. The width and height of a bitmap should be
no larger than the specified width and height of the DDI element that it is (directly or indirectly)
contained in.

The format and size of a Sound will be determined by the data structure within which it is
contained – see section 5.12.5 DDI Content Formats.

A “bitmap” is a single image and a “sound” is audio data identified by DdiContentId. A bitmap
and/or sound can optionally be part of certain DDI elements and is intended to be a small amount of
data. For example, a sound may be used to attach short audio output data items to button elements
for presentation during button presses and releases. Note, bitmaps and sounds are distinct from
media streams being played back in real-time, usually over an extended period of time – see
AudioVideo or Audio below. The term “audio/video” will be used when media stream
references are required.

AudioVideo

Definition
struct AudioVideo {
 SEID dcm;
 uint handle;
};

Description
AudioVideo is used to represent a media stream source on the target associated with the specified
handle. The handle is specified by the target and could also (but does not need to) be used in a
content icon list. When used in an attribute by the target, AudioVideo allows the controller to
setup audio/video media streams using the DCM::SelectContent. If a DDI element has audio
audio/video stream content then it must be supported by some DCM (specified by dcm). If the
controller can accept and support media streams then the controller should use SelectContent
with the contentType field set to AV.

There is no mandatory audio/video stream format in HAVi DDI.

When an audioVideo attribute is given in DDI data, a DDI Controller can use the audio video
stream for background video, etc.

 263

HAVi SPECIFICATION Version 1.1

Audio

Definition
struct Audio {
 SEID dcm;
 uint handle;
};

Description
Audio is used to represent a audio media stream source on the target associated with the specified
handle. The handle is specified by the target and could also (but does not need to) be used in a
content icon list. When used in an attribute by the target, Audio allows the controller to setup audio
media streams using the DCM::SelectContent. If a DDI element has audio stream content then
it must be supported by some DCM (specified by dcm). If the controller can accept and support
media streams then the controller should use SelectContent with the contentType field set to
Audio.

There is no mandatory audio stream format in HAVi DDI.

When an Audio attribute is given in DDI data, a DDI Controller can use the audio stream for
background music, etc.

Label

Definition
typedef wstring<16> Label;

Description
A Label is used within DDI elements from the target to hold textual data meant to be ultimately
interpreted by the human user with which the controller is communicating. It is not intended for the
controller to interpret the contents of a Label or to modify it in a way that would change its
meaning to the human user.

NotificationScope

Definition
enum NotificationScope {CURRENT, GLOBAL, ADD};

Description
The NotificationScope type is used as a parameter of DdiTarget::Subscribe and
DdiTarget::ChangeScope that indicates whether the NotificationScope should generate
DDI change reports only for elements within the current panel (= CURRENT), for elements within all
available panels (= GLOBAL) or for elements within the set of panels retrieved since the last call to
DdiTarget::Subscribe or DdiTarget::ChangeScope (= ADD). The current panel is always
part of the notification scope.

Interactivity

Definition

 264

HAVi SPECIFICATION Version 1.1

enum Interactivity {ENABLED, DISABLED};

Description
Interactive DDI elements include a mandatory interactivity attribute that indicates whether the
element can be used in an interactive (ENABLED) way resulting in defined user actions or in a non-
interactive (DISABLED) way, not resulting in user actions. For “normally” interactive DDI
elements, Interactivity = DISABLED means that the DDI element is still visible, but for
instance grayed-out (this is up to the controller). The “normally” interactive elements are:
DdiToggle, DdiButton, DdiBasicButton, DdiSetRange, DdiEntry, DdiChoice.

InformTarget

Definition
enum InformTarget {INCREMENTALLY, COMPLETE};

Definition
InformTarget indicates whether:

! each change to an interactive element, e.g., a DDI_ENTRY being used for text entry,
immediately results in the controller sending an associated user action (InformTarget
= INCREMENTALLY);

! or, the controller waits until the user indicates in a controller-dependent manner that user
input is finished and only then sends the user action (InformTarget = COMPLETE).

DDI elements (like DdiEntry) with the informTarget attribute set to COMPLETE require
the controller to send a user action back to the target only when the user has finished entering the
information. When and how the controller knows when to send a user action is determined by the
controller. It could be an ENTER button on the remote, typing the ENTER key on a keyboard, etc.

DDI elements (like DdiSetRange) with the informTarget attribute set to
INCREMENTALLY require the controller to send the user action back to the target immediately
when the user updates the information. Before possible change reports from the target due to this
user action arrives back at the controller, the user may already have done more updates. This kind
of “type ahead” can be allowed by the controller, but in the case that the user’s input has to be
ignored it is also the controller’s responsibility to indicate this to the user. In the case in which the
user’s input does not need to be ignored, the controller can send it as a whole to the target as a next
user action. So, for DdiSetRange this means that even with informTarget=INCREMENTALLY, a
user action can indicate a change larger than stepValue.

Pattern

Definition
struct Pattern {
 ushort height;
 ushort width;
 DdiContentId patternBitmapId;
};

Description

 265

HAVi SPECIFICATION Version 1.1

The controller can present groups of elements as small opaque blocks on the screen, and can either
make the panel background opaque or transparent. The controller has the freedom to display both
standalone elements and groups in any manner it sees presentable.

The PNG bitmap format, which includes gamma information, can be used to define the
characteristics of the screen. In this way colors and brightness levels will appear correct whether the
bitmap is displayed on a TV screen or other display device.

Fontsize

Definition
enum Fontsize {SMALL, MEDIUM, LARGE};

Description
DDI elements can have optional fontSize suggestions. In case of full capability devices, as a
guideline, MEDIUM size is specified as 16x32 pixels (two-byte codes such as kanji code are 32x32),
SMALL size is specified as 12x24 pixels (two-byte codes are 24x24) and LARGE size is specified as
20x40 pixels (two-byte codes are 40x40). MEDIUM is the default font size when no fontSize is
specified. In any case it is required that SMALL characters are not larger than MEDIUM and MEDIUM
characters are not larger than LARGE.

Position

Definition
struct Position {
 ushort xPosition;
 ushort yPosition;
};

Description
The maximum value of Position components correspond to the safety area size as specified in
DdiPanel.

DDI elements can overlap by defining their positions to be at an overlapping relative location and
using transparent bitmaps attributes. DDI elements should not completely hide each other. The
order of DdiElement’s in the panel or group also indicates the back to front order. If the position
attribute is not specified or if the controller does not handle position or size information, DDI
elements should be rendered in a non-overlapping way.

SafetyAreaPosition

Definition
enum HorizontalPosition {LEFT, CENTER, RIGHT};
enum VerticalPosition {TOP, MIDDLE, BOTTOM};

struct SafetyAreaPosition {
 HorizontalPosition horizontalPosition;
 VerticalPosition verticalPosition;
};

 266

HAVi SPECIFICATION Version 1.1

Description
The desired position of the safety area on the physical display of the controller can be specified
using the SafetyAreaPosition attribute.

FocusNavigation

Definition
struct FocusNavigation {
 DdiElementId up; DdiElementId down;
 DdiElementId left; DdiElementId right;
};

Description
Targets can indicate how a controller may allow the user to navigate between elements using the
FocusNavigation attribute:

DDI elements (not panels and groups) can have optional “focus change” suggestions, which the
controller can use to move the focus on screen. The basic set of directions is “up, down, left, right”,
but the controller is free to have its own input device which can map to these concepts (it does not
need to have an IR remote with 4 buttons). Groups will not have navigation suggestions; the only
“suggestion” is the order of the group ID’s in the panel list. The controller navigates between
groups in this order (or some other order if it has a reason to deviate from this).

The DdiElementId’s in the FocusNavigation structure should point to DDI elements in the
same panel as the DDI element which contains the FocusNavigation structure. It is allowed for
the DdiElementId’s to point to the containing DDI element itself.

DdiTitle

Definition
typedef DdiContentId DdiTitle;

Description
DdiTitle is a bitmap used by a panel or group to indicate its purpose. The title must be no greater
than 10% of the size of the panel or group.

DdiContentType
enum DdiContentType { UNICODE, PNG, HAVi_RAW_BITMAP, AIFF_C,
JPEG };

DdiContent

Definition
union DdiContent switch (DdiContentType) {

case UNICODE: wstring unicodeText;
 case PNG: Bitmap pngBitmap;
 case HAVi_RAW_BITMAP: Bitmap rawBitmap;
 case AIFF_C: Sound AIFF_C_sound;
 case JPEG: Bitmap jpegBitmap;

 267

HAVi SPECIFICATION Version 1.1

};

Description
DDI data can include DDI content data: text data, bitmap (image) data and sound data, and indicate
audio/video stream data. DDI content data formats are divided into two distinct classes: mandatory
formats and optional formats. The mandatory formats for DDI content data are specified below,
and all DDI Controllers shall at least support the mandatory text format.

5.12.5 DDI Content Formats

5.12.5.1 Text data

All text defined in the DDI element will be in UNICODE which is specified in the reference [12].

5.12.5.2 Image data

Both PNG , JPEG and HAVi raw bitmap are mandatory DDI content image formats for graphics-
capable controllers.

! PNG (Portable Network Graphics)

Details of this format are given in the PNG specification [10]. DDI Controllers are not
required to implement the full PNG specification, there are the following limitations:

Limitations : (A) the PNG image file is restricted to a single image
 (B) color type = 3 (index color, max. 8 bit color)
 (C) bit depth = 1,2,4,8 (max. 8 bit color)

! JPEG

Details of this format are given in the JPEG International Standard, using the JPEG File
Interchange Format (JFIF)[18]. DDI Controllers are not required to implement the full JPEG
specification, there is the following limitation:

(A) only coding using sequential DCT-based mode is required to be supported

Note that a JPEG image may include a thumbnail, but the HAVi platform is not required to
display it.

! HAVi raw bitmap

HAVi raw bitmap, which is defined by HAVi, is also a mandatory DDI content image format.
The HAVi raw bitmap format described below uses the same style IHDR, PLTE chunk
formats described in the PNG specification. An alternative RdAT chunk defined by HAVi is
used instead of the standard IDAT chunk.

A. File signature:
The first eight bytes of a HAVi raw bitmap file always contain the following values:

 (decimal) 137 72 65 86 105 13 10 26
 (hexadecimal) 89 48 41 56 69 0d 0a 1a

 268

HAVi SPECIFICATION Version 1.1

 (ASCII C notation) \211 H A V i \r \n \032

B. IHDR:
The IHDR chunk must appear first in the bitmap data. It contains:

 Width: 4 bytes
 Height: 4 bytes
 Bit depth: 1 byte (value : 8)
 Color type: 1 byte (value : 3, index color, max. 256 color)
 Compression method: 1 byte (value : 255, no compression)
 Filter method: 1 byte (value : 255, no information)
 Interlace method: 1 byte (using PNG method)

C. PLTE:
The PLTE chunk contains from 1 to 256 palette entries, and each entry has a three-byte
series of the form: Red(1 byte), Green(1 byte), Blue(1 byte).
The first entry in PLTE is referenced by pixel value 0, the second by pixel value 1, etc.
the PLTE chunk may have fewer entries than the bit depth. In that case, any out-of-
range pixel value that found in the RdAT chunk is an error.

D. RdAT:
The RdAT chunk contains the actual image data. To create this data
image scan lines are represented as described in PNG Image layout. The layout and
total size of this raw data are determined by the fields of IHDR in the PNG
specification.

E. IEND:
The IEND chunk shall appear last, and it’s data field is empty. This IEND chunk shows
the end of the HAVi raw bitmap.

5.12.5.3 Sound data

AIFF-C is a mandatory HAVi sound format (AIFF-C is specified in reference [11]). DDI
Controllers are not required to implement the full AIFF-C specification, there are the following
limitations:

Limitations: (A) sample size = 8 bit
 (B) sample rate = 22.050 kHz

5.12.6 DDI Mandatory Attributes

The mandatory DDI attributes (rows) for each DDI element type (columns) are shown in the
following table.

Table 10. Mandatory Attributes of DDI Elements

Mandatory Attributes

D
d
i
P
a
n
e
l

D
d
i
G
r
o
u
p

D
d
i
P
a
n
e
l
L
i
n
k

D
d
i
B
u
t
t
o
n

D
d
i
B
a
s
i
c
B
u
t
t
o
n

D
d
i
T
o
g
g
l
e

D
d
i
A
n
i
m
a
t
i
o
n

D
d
i
S
h
o
w
R
a
n
g
e

D
d
i
S
e
t
R
a
n
g
e

D
d
i
E
n
t
r
y

D
d
i
C
h
o
i
c
e

D
d
i
T
e
x
t

D
d
i
S
t
a
t
u
s

D
d
i
I
c
o
n

elemId X X X X X X X X X X X X X X
label elemName X X X X X X X X X X X X

 269

HAVi SPECIFICATION Version 1.1

height, width X X X X X X X X X X X X X X
aspectRatio X
elements X X
interactivity X X X X X X X X X X X
linkBitmapDdiContentId X
panelLink X
pressedLabel X
releasedLabel X
numOffStates X
toggleStates X
state X
repetition X
speed X
animations X
orientation X X
valueRange X X
stepValue X X
valueSet X X
informTarget X X
entryType X
qualifier X
defaultEntry X
maxCharsDigits X
choiceType X
choiceNumber X
wrapType X
choiceOrientationType X
choiceList X
textDdiContentId X
currentStatus X
elemBitmapentId X X

5.12.7 DDI Optional Attributes

The optional DDI attributes (rows) for each DDI element type (columns) are shown in the
following table.

Table 11. Optional Attributes of DDI Elements

Optional Attributes

D
d
i
P
a
n
e
l

D
d
i
G
r
o
u
p

D
d
i
P
a
n
e
l
L
i
n
k

D
d
i
B
u
t
t
o
n

D
d
i
B
a
s
i
c
B
u
t
t
o
n

D
d
i
T
o
g
g
l
e

D
d
i
A
n
i
m
a
t
i
o
n

D
d
i
S
h
o
w
R
a
n
g
e

D
d
i
S
e
t
R
a
n
g
e

D
d
i
E
n
t
r
y

D
d
i
C
h
o
i
c
e

D
d
i
T
e
x
t

D
d
i
S
t
a
t
u
s

D
d
i
I
c
o
n

POSITION X X X X X X X X X X X X X X
SHOW_WITH_PARENT X
INITIAL_FOCUS X X
BACKGROUND_COLOR X X X X
BACKGROUND_PICTURE_LINK X X
BACKGROUND_PATTERN X X
FOCUS_SOUND_LINK X X X X X X X X X X X X

 270

HAVi SPECIFICATION Version 1.1

FONTSIZE X X X X X X X X X X X X X X
TITLE X X
AUDIO_VIDEO X X
AUDIO X X
SAFETY_AREA_POSITION X
FOCUS_NAVIGATION X X X X X X X X X X X
HELP_PANEL_LINK X X X X X X X X X X X X
PRESSED_BITMAP_LINK X
RELEASED_BITMAP_LINK X
PRESSED_SOUND_LINK X
RELEASED_SOUND_LINK X
SELECT_SOUND_LINK X X X X X X
VALUE_OFFSET X X
VALUE_POWER10 X X
MAX_LABEL X X
MIN_LABEL X X
CENTER_LABEL X X
UNIT_LABEL X X
HOTLINK X

Note that DEVICE_ICON_BITMAP, CONTENT_ICON_BITMAP, PLAYBACK_DURATION,
RECORDED_DATETIME, and BROADCAST_DATETIME are not listed in this table since they are used
only by the DeviceIcon and ContentIcon data structures defined in section 5.6.2 DCM Data
Structures. These optional attributes are not used by any of the DDI elements defined in this
section.

OptAttrType

Definition
typedef ushort OptAttrType;

Description
The particular ushort values for the optional attribute types are specified in Annex 11.16.

OptionalAttribute
union OptionalAttribute switch (OptAttrType) {
 case POSITION: Position position;
 case SAFETY_AREA_POSITION: SafetyAreaPosition
 safetyAreaPosition;
 case BACKGROUND_COLOR: DdiColor backgroundColor;
 case BACKGROUND_PATTERN: Pattern backgroundPattern;
 case BACKGROUND_PICTURE_LINK:
 DdiContentId backgroundPicture;
 case AUDIO_VIDEO: AudioVideo audioVideo;
 case AUDIO: Audio audio;
 case DEVICE_ICON_BITMAP: Bitmap deviceIconBitmap;
 case CONTENT_ICON_BITMAP: Bitmap contentIconBitmap;
 case PRESSED_BITMAP_LINK: DdiContentId pressedBitmap;
 case RELEASED_BITMAP_LINK: DdiContentId releasedBitmap;
 case HOTLINK: wstring<256> hotlink;
 case FONTSIZE: Fontsize fontSize;

 271

HAVi SPECIFICATION Version 1.1

 case FOCUS_NAVIGATION: FocusNavigation focusNavigation;
 case INITIAL_FOCUS: DdiElementId initialfocus;
 case SHOW_WITH_PARENT: boolean showWithParent;
 case TITLE: DdiTitle titleDdiContentId;
 case VALUE_OFFSET: short valueOffset;
 case VALUE_POWER10: short valuePower10;
 case MAX_LABEL: Label maxLabel;
 case MIN_LABEL: Label minLabel;
 case CENTER_LABEL: Label centerLabel;
 case UNIT_LABEL: Label unitLabel;
 case FOCUS_SOUND_LINK: DdiContentId focusSound;
 case PRESSED_SOUND_LINK: DdiContentId pressedSound;
 case RELEASED_SOUND_LINK: DdiContentId releasedSound;
 case SELECT_SOUND_LINK: DdiContentId selectSound;
 case HELP_PANEL_LINK: DdiElementId helpPanelLink;
 case PLAYBACK_DURATION: DateTime playbackDuration;
 case RECORDED_DATETIME: DateTime recordedDateTime;
 case BROADCAST_DATETIME: DateTime broadcastDateTime;
};

Description
All optional attributes have an associated member of the OptAttrType enumerated type.

Those optional attributes that can appear in more than one type of element are described here; some
details may also appear in the description of the elements that use them. Optional attributes that
can appear in only one type of element are described in the sub-section on that particular element.

OptAttrList
typedef sequence<OptionalAttribute> OptAttrList;

Description
A list of optional attributes may be empty.

5.12.8 Individual DDI Elements

DdiElement

Definition
union DdiElement switch (DdiElementType) {
 case DDI_PANEL: DdiPanel panel;
 case DDI_HELP_PANEL: DdiPanel helpPanel;
 case DDI_ALERT_PANEL: DdiPanel alertPanel;
 case DDI_GROUP: DdiGroup group;
 case DDI_PANELLINK: DdiPanelLink panelLink;
 case DDI_BUTTON: DdiButton button;
 case DDI_BASICBUTTON: DdiBasicButton basicButton;
 case DDI_TOGGLE: DdiToggle toggle;
 case DDI_ANIMATION: DdiAnimation animation;
 case DDI_SHOWRANGE: DdiShowRange showRange;
 case DDI_SETRANGE: DdiSetRange setRange;
 case DDI_ENTRY: DdiEntry entry;

 272

HAVi SPECIFICATION Version 1.1

 case DDI_CHOICE: DdiChoice choice;
 case DDI_TEXT: DdiText text;
 case DDI_STATUS: DdiStatus status;
 case DDI_ICON: DdiIcon icon;
};

Description
The DDI element types are specified in Annex 11.15 HAVi DDI Element Types.

DdiPanel

Definition
enum AspectRatio {

 // unknown, or non-standard format (pixel aspect ratio)
 UNKNOWN_PIXEL_ASPECT_FORMAT,

 // square pixels (1.0)
 SQUARE_PIXEL_ASPECT_FORMAT,

 // 720 by 576 pixels rendered on a physical
 // 4 by 3 display (1.067)
 PAL_720_BY_576_DISPLAY_4_BY_3_PIXEL_ASPECT_FORMAT,

 // 704 by 480 pixels rendered on a physical
 // 4 by 3 display (0.909)
 NTSC_704_BY_480_DISPLAY_4_BY_3_PIXEL_ASPECT_FORMAT,

 // 720 by 480 pixels rendered on a physical
 // 4 by 3 display (0.889)
 ARIB_720_BY_480_DISPLAY_4_BY_3_PIXEL_ASPECT_FORMAT,

 // 720 by 576 pixels rendered on a physical
 // 16 by 9 display (1.422)
 PAL_720_BY_576_DISPLAY_16_BY_9_PIXEL_ASPECT_FORMAT,

 // 704 by 480 pixels rendered on a physical
 // 16 by 9 display (1.212)
 ATSC_704_BY_480_DISPLAY_16_BY_9_PIXEL_ASPECT_FORMAT,

 // 720 by 480 pixels rendered on a physical
 // 16 by 9 display (1.185)
 ARIB_720_BY_480_DISPLAY_16_BY_9_PIXEL_ASPECT_FORMAT

};

struct DdiPanel {
 DdiElementId elemId;
 Label panelName;
 ushort height;
 ushort width;
 AspectRatio aspectRatio;
 DdiElementIdList elements;

 273

HAVi SPECIFICATION Version 1.1

 OptAttrList optionals;
};

Description
The DdiPanel element can contain groups, panel links, and standalone elements. It cannot
contain other panel elements, though. It has it’s own DdiElementId. When using the
Subscribe operation, the device will return the root panel DdiElementId. All panels are linked
from this root panel.

The actual panel size is not specified, but a safety area on which any full capability controller can
surely display a panel is 640 x 480 pixels, i.e. the upper-left corner as the user faces the device is
<0,0>; the lower-right is <639, 479>. If the panel has the attribute of background AudioVideo,
pattern, picture or color, then the background of the panel is displayed on the actual full screen
(e.g., 720 x 480 or 720 x 576 etc).

The aspectRatio attribute shows the aspect ratio of the panel and the controller may or may not
display the panel using this aspect ratio, i.e. a high grade controller might support all aspect ratios
but a low grade controller might support only one aspect ratio for panels.

Optional Attributes
! POSITION – indicates the panel position within the safety area.
! SHOW_WITH_PARENT – The optional attribute showWithParent is used to indicate that this

panel, if possible, should be displayed at the same time as its parent panel. The parent panel is
defined to be the previous current panel.

! INITIAL_FOCUS – This points to the first DDI Element in the panel to be used for focus
navigation.

! BACKGROUND_COLOR
! BACKGROUND_PICTURE_LINK
! BACKGROUND_PATTERN
! FOCUS_SOUND_LINK
! FONTSIZE
! TITLE
! AUDIO_VIDEO
! AUDIO
! SAFETY_AREA_POSITION

Help Panels and Alert Panels

Description
A help panel can be used for explanations of functionality or user operations, etc. that do not fit
well on, for example, the current panel. A help panel has the same structure as DdiPanel but its
DdiElementType value is DDI_HELP_PANEL.

An alert panel can be used for (large) alerts, dialog boxes, etc. that do not fit well on, for example,
the current panel. An alert panel has the same structure as DdiPanel but its DdiElementType
value is DDI_ALERT_PANEL.

In the case of help panels or alert panels, the current panel is not changed even if the controller pulls
new elements using any of the DDI operations.

 274

HAVi SPECIFICATION Version 1.1

DdiGroup

Definition
struct DdiGroup {
 DdiElementId elemId;
 Label groupName;
 ushort height;
 ushort width;
 DdiElementIdList elements;
 OptAttrList optionals;
};

Description
The DdiGroup element is used to suggest to the controller that the elements it contains should be
displayed as visually “together”. This grouping is helpful when the controller has to scale down the
panel. Groups indicate to the controller which elements need to appear together – not necessarily at
the same time. A DdiGroup has its own DdiElementId. Note that panels do not necessarily
contain groups.

A DdiGroup cannot contain DdiPanel elements, but a DdiGroup can contain another DdiGroup
by referencing its DdiElementId. However, it is not allowed for targets to construct cyclic
references of groups.

Optional Attributes
! POSITION – indicates the group position within a panel.
! INITIAL_FOCUS – This points to the first DDI Element in the group to be used for focus

navigation.
! BACKGROUND_COLOR
! BACKGROUND_PICTURE_LINK
! BACKGROUND_PATTERN
! FONTSIZE
! TITLE
! AUDIO_VIDEO
! AUDIO

The background color, picture, audioVideo, and pattern can be chosen to be the background of this
group. Only one of these should be present.

DdiPanelLink

Definition
struct DdiPanelLink {
 DdiElementId elemId;
 Label linkName;
 ushort height;
 ushort width;
 Interactivity interactivity;
 DdiContentId linkBitmap;
 DdiElementId panelLink;
 OptAttrList optionals;
};

Description

 275

HAVi SPECIFICATION Version 1.1

Non-interactive and interactive DdiPanelLinks are intended to indicate to the controller which
panel to fetch next. Note that selection of an (interactive or non-interactive) DdiPanelLink does
not imply any retrieval of a panel and neither changes the current panel.

The bitmap provided with a DdiPanelLink can be used by the controller to represent this item;
how it is presented (as an icon, button, etc.) is up to the controller. If the bitmap is empty, it means
that the bitmap is absent.

A suggestion for GUI designers is to include the DdiPanelLink elements together in one group so
that the controller can display them together. When displaying a scaled-down GUI, the controller
must enable the user to navigate between all DDI elements. How the controller does this is its
decision.

The recommended size for the linkBitmap is to allow it to be easily displayed on a screen along
with a full size panel. This allows a standard way of displaying DDI elements that are presented
specifically to the user for navigation purposes.

Optional Attributes
! POSITION
! FOCUS_SOUND_LINK
! FONTSIZE
! FOCUS_NAVIGATION
! HELP_PANEL_LINK

DdiButton

Definition
struct DdiButton {
 DdiElementId elemId;
 Label pressedLabel;
 Label releasedLabel;
 ushort height;
 ushort width;
 Interactivity interactivity;
 OptAttrList optionals;
};

Description
The display device determines how the button is presented on the screen. The button element
allows two user actions to be placed on it and the controller can determine how this is presented to
the user interacting with this DDI element. A press/release button generates a user action when
pressed and one when released. A DdiButton is initially in released state, during pushing it is
“temporarily” in pressed state. In between the user actions PRESS and RELEASE, no other user
action is allowed.

Optional Attributes
! POSITION
! FOCUS_SOUND_LINK
! FONTSIZE
! FOCUS_NAVIGATION
! HELP_PANEL_LINK
! PRESSED_BITMAP_LINK

 276

HAVi SPECIFICATION Version 1.1

! RELEASED_BITMAP_LINK
! PRESSED_SOUND_LINK
! RELEASED_SOUND_LINK

DdiBasicButton

Definition
struct DdiBasicButton {
 DdiElementId elemId;
 Label buttonName;
 ushort height;
 ushort width;
 Interactivity interactivity;
 DdiContentId buttonBitmap;
 OptAttrList optionals;
};

Description
This element is used to display a label or bitmap image for either selection or display only. If the
controller displays the bitmap; it is suggested that it does not display the label. An empty bitmap
means that the bitmap is absent.

Optional Attributes
! POSITION
! FOCUS_SOUND_LINK
! FONTSIZE
! FOCUS_NAVIGATION
! HELP_PANEL_LINK
! SELECT_SOUND_LINK

DdiToggle

Definition
struct ToggleState {
 Label toggleStateName;
 DdiContentId toggleStateBitmap;
};

struct DdiToggle {
 DdiElementId elemId;
 Label toggleName;
 ushort height;
 ushort width;
 Interactivity interactivity;
 ushort numToggleStates; // (>1)
 sequence<ToggleState> toggleStates;
 ushort currentToggleState;// >= 0 and <

numToggleStates
 OptAttrList optionals;
};

Description

 277

HAVi SPECIFICATION Version 1.1

The DdiToggle element allows a choice from several toggle states. A controller is only required to
show the current toggle state. The toggleStateName field may be the empty Label. The bitmap
referred to by the iconBitmap field may also be empty. This means that the bitmap is absent.

Optional Attributes
! POSITION

! BACKGROUND_COLOR – indicates the color used for the toggle indicator.
! FOCUS_SOUND_LINK
! FONTSIZE
! FOCUS_NAVIGATION
! HELP_PANEL_LINK

DdiAnimation

Definition
enum RepetitionType {
 PLAY_ONCE,
 PLAY_REPEATEDLY,
 PLAY_ALTERNATING
};

struct AnimationState {
 Label animationStateName;
 DdiContentId animationStateBitmap;
};

struct DdiAnimation {
 DdiElementId elemId;
 Label animationName;
 ushort height;
 ushort width;
 Interactivity interactivity;
 RepetitionType repetition;
 ushort animationStateDuration;
 sequence<AnimationState> animation;
 OptAttrList optionals;
};

Description
This element is a multiple image icon which may be used for presenting an animation.

With PLAY_ALTERNATING the animation starts playing forwards (in the ascending order of the
animation sequence) until it reaches the end of the sequence; it then plays the animation sequence
backwards until it reaches the beginning and then continues going forwards again.

The controller does not have to display the animationStateNames when displaying the
associated bitmaps (if these are present; that is: non-empty).

The animationStateDuration field is the length of time (in units of 0.1 seconds) that each
element of the animation sequence should be displayed. The animation sequence should have at
least one member.

Optional Attributes

 278

HAVi SPECIFICATION Version 1.1

! POSITION

! FOCUS_SOUND_LINK – used only if interactivity = ENABLED.
! FONTSIZE

! FOCUS_NAVIGATION – used only if interactivity = ENABLED.
! HELP_PANEL_LINK
! SELECT_SOUND_LINK

DdiShowRange

Definition
enum OrientationType {
 LINEAR_HORIZONTAL,
 LINEAR_VERTICAL,
 CIRCULAR
};

struct DdiShowRange {
 DdiElementId elemId;
 Label rangeName;
 ushort height;
 ushort width;
 Interactivity interactivity;
 OrientationType orientation;
 ushort valueRange;
 ushort stepValue;
 ushort valueSet;
 OptAttrList optionals;
};

Description
It is allowed for controllers to ignore the orientation attribute, however support for at least
LINEAR_HORIZONTAL and LINEAR_VERTICAL is highly recommended.

Optional Attributes
! POSITION

! FOCUS_SOUND_LINK – used only if interactivity = ENABLED.
! FONTSIZE

! FOCUS_NAVIGATION – used only if interactivity = ENABLED.
! HELP_PANEL_LINK
! SELECT_SOUND_LINK
! VALUE_OFFSET
! VALUE_POWER10
! MAX_LABEL
! MIN_LABEL
! CENTER_LABEL
! UNIT_LABEL

The values of the valueOffset (= O) and valuePower10 (= P) fields allow a controller to
calculate the “real” value by means of the formula: (V + O)×10P where V=valueSet.

 279

HAVi SPECIFICATION Version 1.1

DdiSetRange

Definition
struct DdiSetRange {
 DdiElementId elemId;
 Label rangeName;
 ushort height;
 ushort width;
 Interactivity interactivity;
 OrientationType orientation;
 ushort valueRange;
 ushort stepValue;
 ushort valueSet;
 InformTarget informTarget;
 OptAttrList optionals;
};

Description
For OrientationType see DdiShowRange.

Optional Attributes
! POSITION

! FOCUS_SOUND_LINK – used only if interactivity = ENABLED.
! FONTSIZE

! FOCUS_NAVIGATION – used only if interactivity = ENABLED.
! HELP_PANEL_LINK
! VALUE_OFFSET
! VALUE_POWER10
! MAX_LABEL
! MIN_LABEL
! CENTER_LABEL
! UNIT_LABEL

The values of the valueOffset (= O) and valuePower10 (= P) fields allow a controller to
calculate the “real” value by means of the formula: (V + O)×10P where V= the current value in
range.

DdiEntry

Definition
enum EntryType { TEXTUAL, NAT_NUMBER, FLOAT, DATE, TIME};

union EntryFormats switch (EntryType) {
 case TEXTUAL: wstring<256> entryString;
 case NAT_NUMBER: uint entryLiteral;
 case FLOAT: float entryFloat;
 case DATE: DateTime entryDate;
 case TIME: DateTime entryTime;
};

enum Qualifier {CONCEAL, VISIBLE};
struct DdiEntry {
 DdiElementId elemId;

 280

HAVi SPECIFICATION Version 1.1

 Label entryName;
 ushort height;
 ushort width;
 Interactivity interactivity;
 EntryType entryType;
 Qualifier qualifier;
 InformTarget informTarget;
 EntryFormats currentEntry;
 ushort maxCharsDigits;
 OptAttrList optionals;
};

Description
In the case of entryType DATE, only the [year/month/day] fields of the DateTime structure can
be used; the other DateTime fields are ignored.

In the case of entryType TIME, only the [hour/min/sec] fields of the DateTime structure can be
used; the other DateTime fields are ignored.

The Qualifier attribute determines whether characters within the entry field should be displayed
or concealed, e.g. for PIN entry.

The maxCharsDigits field contains the maximum number of characters or digits that can be
entered by the user. The field should be ignored for the FLOAT, DATE and TIME entry types.

Optional Attributes
! POSITION

! BACKGROUND_COLOR – indicates the color used for the entry indicator.
! FOCUS_SOUND_LINK – used only if interactivity = ENABLED.
! FONTSIZE

! FOCUS_NAVIGATION – used only if interactivity = ENABLED.
! HELP_PANEL_LINK

DdiChoice

Definition
struct ChoiceElement {
 Label choiceName;
 DdiContentId choiceBitmapDdiContentId;
 boolean elementStatus;
};

enum ChoiceType {LESS_THAN, EQUAL, MORE_THAN};

enum WrapType {DONT_CARE, STOP_AT_BORDERS, WRAP_AROUND};

enum ChoiceOrientationType {
 HORIZONTAL,
 VERTICAL
};

struct DdiChoice {

 281

HAVi SPECIFICATION Version 1.1

 DdiElementId elemId;
 Label choiceName;
 ushort height;
 ushort width;
 Interactivity interactivity;
 ChoiceType choiceType;
 ushort choiceNumber;
 WrapType wrapType;
 ChoiceOrientationType choiceOrientationType;
 sequence<ChoiceElement> choiceList;
 OptAttrList optionals;
};

Description
Refer to the user action associated with the choice DDI element to see how it returns the list of
choices made or only returns the single choice (radio button). The elementStatus field of the
ChoiceElement structure indicates the current status of this choice element, i.e. True indicates
chosen, False indicates not chosen. A graphics capable controller does not need to show the labels
when displaying the supplied bitmaps (if these are present; that is: non-empty).

A controller that cannot show all choice elements at once, shows only a subset. Depending on the
wrapType attribute. For the value WRAP_AROUND, the controller continues with showing the first
elements next to the last elements (and the other way around). For the value STOP_AT_BORDERS,
the controller stops showing at border (first and last) elements. The choiceOrientationType
attribute indicates whether the choice elements should be rendered next to each other or below each
other. A controller is allowed to ignore this attribute, however support for this attribute is highly
recommended.

The choiceNumber together with the choiceType define how many elements from the total
number of elements the user is expected to select.

The choiceList sequence should not be empty.

Optional Attributes
! POSITION

! FOCUS_SOUND_LINK – used only if interactivity = ENABLED.
! FONTSIZE

! FOCUS_NAVIGATION – used only if interactivity = ENABLED.
! HELP_PANEL_LINK

DdiText

Definition
struct DdiText {
 DdiElementId elemId;
 ushort height;
 ushort width;
 Interactivity interactivity;
 DdiContentId textContent;
 OptAttrList optionals;
};

Description

 282

HAVi SPECIFICATION Version 1.1

The text DDI element is used if the device only wants to display text, with no user entry of text.
Textual data can contain newline characters and can have at most 40 characters horizontally; a
vertical (line) limit is not needed since the controller can use scrolling if necessary. DdiText can
also be used as an interactive field that would be a text string that is a “hot link”.

Optional Attributes
! POSITION

! FOCUS_SOUND_LINK – used only if interactivity = ENABLED.
! FONTSIZE

! FOCUS_NAVIGATION – used only if interactivity = ENABLED.
! HELP_PANEL_LINK
! SELECT_SOUND_LINK

! HOTLINK – if present indicates that the text contains a URL address. It is a controller option
whether to link to the addressed site or not.

DdiStatus

Definition
struct DdiStatus {
 DdiElementId elemId;
 Label statusName;
 ushort height;
 ushort width;
 ushort currentStatus;
 OptAttrList optionals;
};

Description
This element is used to inform the controller and user that the target (device) is “busy”. This would
provide GUI functions such as “hourglass”, “barber pole”, incrementing bar, etc.

The currentStatus field indicates if the controller should show the element as “working” (=1)
or not working (=0). A controller is allowed to obscure (that is: not render) a “not working” Status
element. It is still useful for targets to specify such kind of element for reserving already the
required space when it is eventually switched to “working”.

Optional Attributes
! POSITION
! FONTSIZE
! HELP_PANEL_LINK

DdiIcon

Definition
struct DdiIcon {
 DdiElementId elemId;
 Label iconName;
 ushort height;
 ushort width;
 Interactivity interactivity;
 DdiContentId iconBitmap;
 OptAttrList optionals;

 283

HAVi SPECIFICATION Version 1.1

};

Description
This element is used to display a bitmap image for either selection or display only. If the controller
displays the bitmap; it is suggested that it does not display the label. An empty bitmap means that
the bitmap is absent.

Optional Attributes
! POSITION

! FOCUS_SOUND_LINK – used only if interactivity = ENABLED.
! FONTSIZE

! FOCUS_NAVIGATION – used only if interactivity = ENABLED.
! HELP_PANEL_LINK
! SELECT_SOUND_LINK

5.12.9 DDI Action Data Structures

DDI actions are only defined for interactive DDI elements. Actions can be placed on DDI elements
when the DDI element has the controller focus. How and when the focus is placed on a particular
DDI element is up to the controller. Typically, the focus would be shown by highlighting a box
around the DDI element or changing its color.

The DDI actions correspond to the DDI element types. In this way, the UserAction operation
can check the action taken is on the correct type of element.

ActType

Definition
enum ActType {
 ACT_BUTTON, ACT_TOGGLE, ACT_SETRANGE, ACT_ENTRY,
 ACT_CHOICE, ACT_SELECTED, ACT_ANIMATION
};

Description
These action types correspond with the DDI element types in the following way:

Table 12. DDI Action Types

Action Type
(ActType)

D
d
i
P
a
n
e
l

D
d
i
G
r
o
u
p

D
d
i
P
a
n
e
l
L
i
n
k

D
d
i
B
u
t
t
o
n

D
d
i
B
a
s
i
c
B
u
t
t
o
n

D
d
i
T
o
g
g
l
e

D
d
i
A
n
i
m
a
t
i
o
n

D
d
i
S
h
o
w
R
a
n
g
e

D
d
i
S
e
t
R
a
n
g
e

D
d
i
E
n
t
r
y

D
d
i
C
h
o
i
c
e

D
d
i
T
e
x
t

D
d
i
S
t
a
t
u
s

D
d
i
I
c
o
n

ACT_BUTTON X
ACT_TOGGLE X
ACT_ANIMATION X
ACT_SELECTED X X X X X
ACT_SETRANGE X
ACT_ENTRY X
ACT_CHOICE X

 284

HAVi SPECIFICATION Version 1.1

Note that the user actions of the indicated types only hold for DDI elements with the
interactivity attribute set to ENABLED.

ActButton
enum ActButton {PRESS, RELEASE};

ActToggle
typedef ushort ActToggle;

Indicates the state that has been set (>= 0 and < nr_of_states).

ActAnimation
typedef short ActAnimation;

Description
This value indicates the sequence number (starting from 0) of the AnimationElement that the
user has selected. In case the RepetitionType is PLAY_ONCE, the value -1 indicates that the
complete animation sequence has been shown to the user without selecting any specific element
(note that this is not a genuine user action). Any further (genuine) user selections will result in an
indication of the last AnimationElement.

ActSetRange
typedef ushort ActSetRange;

Indicates the value that has been set (>= 0 and <= value_range).

ActEntry
typedef EntryFormats ActEntry;

 Indicates the entry value.

ActChoiceList
typedef sequence<ushort> ActChoiceList;

Each number in ActChoiceList corresponds with the index of the “checked” entry; in case of
single choice, ActChoiceList contains only one number (the one selected).

ActSelected
typedef boolean ActSelected; // dummy value

DdiAction
union DdiAction switch (ActType) {
 case ACT_BUTTON: ActButton button;
 case ACT_TOGGLE: ActToggle toggle;
 case ACT_ANIMATION: ActAnimation animation;
 case ACT_SETRANGE: ActSetRange setRange;
 case ACT_ENTRY: ActEntry entry;

 285

HAVi SPECIFICATION Version 1.1

 case ACT_CHOICE: ActChoiceList choiceList;
 case ACT_SELECTED: ActSelected selected;
};

 286

HAVi SPECIFICATION Version 1.1

5.12.10 Resource Limitations

The following safe parameter size limits apply to DDI elements and associated data structures:

Table 13. DDI Resource Limitations

DDI Data Structure Safe Parameter Size Limit

DdiElementIdList defined by the relevant elements and APIs

DdiElementList defined by the relevant elements and APIs

Bitmap no limitation imposed by DDI

Sound no limitation imposed by DDI

Label wstring<16>

UnicodeText wstring<1024>

Hotlink wstring<256>

ActEntry wstring<256>

ActChoiceList 64 ushort values

OpAttrList 16 OptionalAttribute values

DdiPanel.elements 256 DdiElementId values

DdiGroup.elements 256 DdiElementId values

DdiAnimation 32 AnimationElement values

DdiChoice.choiceList 64 ChoiceElement values

5.12.11 Data Driven Interaction API

DdiTarget::Subscribe

Prototype
Status DdiTarget::Subscribe(
 in OperationCode opCode,
 in NotificationScope scope,
 out DdiElementId rootPanel
)

Parameters
! OpCode – the OperationCode provided by the controller. This is the value that the target

will place in the operation code of a NotifyDdiChange message it sends to the controller.
! scope – indicates whether the target should generate DDI change reports only for the current

panel and the elements within it (=CURRENT), for all panels and the elements within them
(=GLOBAL) or for elements within the set of panels retrieved since the last call to
DdiTarget::Subscribe or DdiTarget::ChangeScope (= ADD). The current panel is
always part of the notification scope.

! rootPanel – the DdiElementId of the initial (root) panel.

Description
Indicates to the target that this controller is starting a DDI subscription; i.e., that the target’s DDI is
going to be used by this controller. The target returns an initial or root panel. Note, the root panel

 287

HAVi SPECIFICATION Version 1.1

need not be the same for every Subscribe. A Subscribe also indicates to the target to which
controller it has to send back NotifyDdiChange messages. Note, the controller can use the fact
that the SEID of the sender of a message – here the controller – is always part of a message and is
available to the receiver – here the target (see the MsgCallback callback in section 5.3.3
Messaging System API). In the case where the target is a DCM, Subscribe also enables that
DCM to tell other system components whether it is “in use” (e.g., to the DCM Manager which
might want to uninstall the DCM).

After subscription the “current panel” is defined to be the root panel. Thereafter the “current panel”
is the panel which the controller most recently pulled using GetDdiPanel, GetDdiElement or
GetDdiElementList. If more than one panel is pulled by the GetDdiElementList then the
panel that is the last in the list will be the current panel.

If the controller tries to pull a DDI element not within the current notification scope (CURRENT or
ADD), the element is returned but the error code DdiTarget::ENOT_CUR is returned warning that
the controller will not receive change notifications for this DDI element.

Error codes
! DdiTarget::ENO_SUB – no DDI subscription is possible; e.g., the target has run out of the

resources necessary to keep track of another simultaneous subscription

DdiTarget::Unsubscribe

Prototype
Status DdiTarget::Unsubscribe()

Description
Indicates to the target that a currently open subscription from this controller has ended. The target
will no longer send NotifyDdiChange messages to this controller.

Error codes
! DdiTarget::ENO_SUB – no subscription for the DDI of this target is currently open from

this controller

DdiTarget::GetDdiElement

Prototype
Status DdiTarget::GetDdiElement(
 in DdiElementId elementId,
 out DdiElement element
)

Parameters
! elementId – the DdiElementId of the requested DDI element.
! element – the requested DDI element returned.

Description
Pulls the requested DDI element from the target.

Error codes
! DdiTarget::ENO_DEI – unknown DdiElementId

 288

HAVi SPECIFICATION Version 1.1

! DdiTarget::ENO_SUB – no subscription for the DDI of this target is currently open from this
controller

! DdiTarget::ENOT_CUR – scope violation, the pulled DDI element is not within the current
notification scope; the element, however, is still returned

DdiTarget::GetDdiPanel

Prototype
Status DdiTarget::GetDdiPanel(
 in DdiElementId elementId,
 out DdiPanel panel,
 out DdiElementList elementList
)

Parameters
! elementId – the DdiElementId of a panel element.
! panel – the panel referred to by elementId.
! elementList – the elements contained in that panel list for the DDI element structures. The

order of the elements in elementList must correspond to the order of elements in the
DdiPanel structure specified by elementId. The safe parameter size limit is 256
DdiElement values.

Description
Pulls the requested panel and its DDI elements from the target. Note that only elements directly
associated with the panel are pulled (i.e., elements associated with any groups inside the panel are
not pulled).

Error codes
! DdiTarget::ENO_DEI – unknown DdiElementId
! DdiTarget::ENO_PANEL – elementId is not the DdiElementId of a panel element
! DdiTarget::ENO_SUB – no subscription for the DDI of this target is currently open from this

controller

DdiTarget::GetDdiGroup

Prototype
Status DdiTarget::GetDdiGroup(
 in DdiElementId elementId,
 out DdiGroup group,
 out DdiElementList elementList
)

Parameters
! elementId – the DdiElementId of a group element.
! group – the group referred to by elementId.
! elementList – the elements contained in that group list for the DDI element structures. The

order of the elements in elementList must correspond to the order of elements in the
DdiGroup structure specified by elementId. The safe parameter size limit is 256
DdiElement values.

Description

 289

HAVi SPECIFICATION Version 1.1

Pulls the requested group and its DDI elements from the target. Note that only elements directly
associated with the group are pulled (i.e., elements associated with any groups inside the group are
not pulled).

Error codes
! DdiTarget::ENO_DEI – unknown DdiElementId
! DdiTarget::ENO_GROUP – elementId is not the DdiElementId of a group element
! DdiTarget::ENO_SUB – no subscription for the DDI of this target is currently open from this

controller
! DdiTarget::ENOT_CUR – notification scope violation, the pulled group element is not within

the current panel; the group and its elements, however, are still returned

DdiTarget::GetDdiElementList

Prototype
Status DdiTarget::GetDdiElementList(
 in DdiElementIdList elementIdList,
 out DdiElementList elementList
)

Parameters
! elementIdList – an arbitrary list of DdiElementId values. The safe parameter size limit is

256 DdiElementId values.
! elementList – the corresponding list of DDI element structures returned. The safe parameter

size limit is 256 DdiElement values.

Description
Pulls the requested arbitrary list of DDI elements from the device. Any type of DDI element can be
retrieved with this operation, including DdiPanel and DdiGroup. It is up to the controller how to
use the data once retrieved. In the case of ADD notification scope mode, all loaded panels should be
added to the scope of the DDI Controller.

If one or more of the DdiElementId are unknown from the target, the ENO_DEI error code is
returned. In such case, the output element list contains all the elements that could be found

Error codes
! DdiTarget::ENO_DEI – unknown DdiElementId
! DdiTarget::ENO_SUB – no subscription for the DDI of this target is currently open from this

controller
! DdiTarget::ENOT_CUR – notification scope violation, one or more of the pulled DDI

elements are not within the current panel; the elements, however, are still returned

DdiTarget::GetDdiContent

Prototype
Status DdiTarget::GetDdiContent (
 in DdiContentId ceid,
 out DdiContent content
)

Parameters

 290

HAVi SPECIFICATION Version 1.1

! ceid – the DdiContentId of the requested content.
! content – the requested content (i.e. text, bitmap or sound data) returned.

Description
Pulls the requested content from the target.

Error codes
! DdiTarget::ENO_DEI – unknown DdiContentId
! DdiTarget::ENO_SUB – no subscription for the DDI of this target is currently open from this

controller

DdiTarget::ChangeScope

Prototype
Status DdiTarget::ChangeScope (
 in NotificationScope scope
)

Parameters
! scope – the new scope to be used by the DDI Target for this DDI Controller

Description
Modifies on the target side the notification scope of the controller. The initial scope after the call of
DdiTarget::ChangeScope contains only the current panel except when set to GLOBAL which
contains all panels.

Error codes
! EINVALID_PARAMETER – invalid scope
! DdiTarget::ENO_SUB – no subscription for the DDI of this target is currently open from this

controller

DdiTarget::UserAction

Prototype
Status DdiTarget::UserAction(
 in DdiElementId elementId,
 in DdiAction action,
 out DdiElementId targetPanel,
 out DdiElementIdList report,
 out DdiElementIdList deletedPanelList
)

Parameters
! elementId – the DdiElementId of the DDI element associated with the user action.
! action – the user action information.
! targetPanel – the panel that the target suggests to the controller. It is recommended that the

controller retrieve the targetPanel (if not already retrieved beforehand) and show it to the
user.

! report – the change report for this action: the list of DdiElementId’s of DDI elements that
changed due to this user action. The safe parameter size limit is 256 DdiElementId values.

! deletedPanelList – list of DdiElementId’s of type DdiPanel that are no longer

 291

HAVi SPECIFICATION Version 1.1

available at the target.

Description
Sent by the controller to the target to indicate the user action the controller performed on the
specified DDI element. The response from the target indicates which DDI elements changed due to
this user action. Implicit changes in DDI elements that are already known to the controller (e.g., the
value change in a DdiSetRange element) should not be reported by the target to that controller, if
the target accepts the action. If the target does not accept, the report should indicate the DDI
element with the correct value. The target however needs to take these changes into account (if the
user action was accepted).

The report result will have a value based on the notification scope requested by the controller. In
the case where scope equals CURRENT, report will only contain changes within the current
panel. In the case where scope equals GLOBAL, report will contain all changes within the target
DDI data. In the case where scope equals ADD, report will contain changes within the set of
panels retrieved since the last call to DdiTarget::Subscribe or DdiTarget::ChangeScope.
In case of no changes, report will be empty.

Any non-organizational target DDI element that changes and is within the current notification
scope will be included in the change report. If DDI elements are added to or removed from
organizational target DDI elements then these organizational elements will be included in the
change report sent by the target to the controller. If both non-organizational and organizational
target DDI elements are changed, both changes will be included.

A targetPanel can be used by the target for (large) alerts, dialog boxes, etc. that do not fit well
on, for example, the current panel. In case the controller already retrieved this panel beforehand
(e.g. in case scope equals GLOBAL) it still indicates that this panel contains important information
for the user. The targetPanel can, but does not need to be, a different panel than the current
panel (the panel most recently retrieved by the controller).

GUI updates can be reported by the target to the controller via UserAction and/or
NotifyDdiChange. However, the DDI Controller shall not send the next message to the DDI
Target until it receives the report of the UserAction.

The deletedPanelList contains a list of “deleted” panels. A controller should not render these
panels anymore. It is recommended for the controller to render the target panel instead. It is
required for targets that no valid panel contains a panel link to a deleted panel. A
deletedPanelList can of course be empty and should not contain the root panel.

Error codes
! EINVALID_PARAMETER – invalid action
! DdiTarget::ENO_DEI – unknown DdiElementId
! DdiTarget::ENO_SUB – no subscription for the DDI of this target is currently open from this

controller
! DdiTarget::ENOT_CUR – notification scope violation, the specified DDI element is not

within the current notification scope

<Client>::NotifyDdiChange

Prototype
Status <Client>::NotifyDdiChange(
 in DdiElementId targetPanel,

 292

HAVi SPECIFICATION Version 1.1

 in DdiElementIdList report,
 in DdiElementIdList deletedPanelList
)

Parameters
! targetPanel – the panel that the target suggests to the controller. It is recommended that the

controller retrieve the targetPanel (if not already retrieved beforehand) and show it to the
user.

! report – the change report for this notification: the list of DdiElementId’s of DDI elements
that changed (since the previous change report within the current subscription or, if this is the
first change report, since subscription) in the target. The safe parameter size limit is 256
DdiElementId values.

! deletedPanelList – list of DdiElementId’s of type DdiPanel that are no longer
available at the target.

Description
During the subscription, the target (Client) can send a “message back” to the subscribing
controller. Such a NotifyDdiChange message is sent by the target to the controller to provide a
change report that indicates which of the target’s DDI elements have changed “spontaneously”.
Note, the target knows the controller from the sender’s SEID contained in the message
(DdiTarget::Subscribe), that is required to have been sent by the controller to the target in
order to open the current subscription with the target. The operation code value to be used for the
NotifyDdiChange message is the opCode parameter of DdiTarget::Subscribe.

The report result will have a value based on the notification scope requested by the controller. In
the case where scope equals CURRENT, report will only contain changes within the current
panel. In the case where scope equals GLOBAL, report will contain all changes within the target
DDI data. In the case where scope equals ADD, report will contain changes within the set of
panels retrieved since the last call to DdiTarget::Subscribe or DdiTarget::ChangeScope.
In case of no changes, a notification with an empty report can be used by the target to indicate a
(different) targetPanel.

Any non-organizational target DDI element that changes and is within the current notification
scope will be included in the change report. If DDI elements are added to or removed from
organizational target DDI elements then these organizational elements will be included in the
change report sent by the target to the controller. If both non-organizational and organizational
target DDI elements are changed, both changes will be included.

A targetPanel can be used by the target for (large) alerts, dialog boxes, etc. that do not fit well
on, for example, the current panel. In case the controller already retrieved this panel beforehand
(e.g. in case scope equals GLOBAL) it still indicates that this panel contains important information
for the user. The targetPanel can, but does not need to be, a different panel than the current
panel last retrieved by the controller.

The deletedPanelList contains a list of “deleted” panels. A controller should not render these
panels anymore. It is recommended for the controller to render the target panel instead. It is
required for targets that no valid panel contains a panel link to a deleted panel. A
deletedPanelList can of course be empty and should not contain the root panel.

 293

HAVi SPECIFICATION Version 1.1

5.13 APIs for Versioning

5.13.1 Services Provided

Service Comm
Type

Locality Access

Version::GetVersion M global all

5.13.2 Version Control API

Version::GetVersion

Prototype
Status Version::GetVersion(out Version version)

Description
All software elements are required to support GetVersion. This function returns the version
number of the software element which is queried. This value will reflect the version of the HAVi
specification to which the software element was designed.

GetVersion returns the version information of the software element which implements this
function. For display purposes versions are written as major.minor in base 10. These rules shall
be followed:

! The major value ranges from 1 to 255 (inclusive) with no leading zeros

! The minor value ranges from 0 to 99 (inclusive)

! Shall be displayed with a leading zero for values between 1 and 9, inclusive
! Shall never have any trailing zeros

Example Chart for Version Control

major minor display

1 0 1.0

1 1 1.01

2 5 2.05

20 12 20.12

20 50 20.5

20 100 illegal

The version value is encoded into four bytes as follows:

Table 14. Version Number Encoding

msb
byte 3

byte 2

byte 1

lsb
byte 0

0x00 major 0x00 minor

As an example, 00 06 00 0C hex would indicate Version 6.12.

 294

HAVi SPECIFICATION Version 1.1

5.14 APIs for Bulk Transfer

The Messaging System does not guaranty the ability to transfer very large messages. “Very large”
can have different meanings according to the target (FAV or IAV) design. Since IAVs implement
HAVi in full native code and according to the TAM specification, bulk transfer (with restrictions) is
possible by providing flow control through the IEEE 1394 specification. However for FAVs it is
more difficult since there is no way the Messaging System can provide flow control for a target
software element. Consequently the TAM receiving a very large message may not be able to
allocate memory as needed.

The problem is solved through an API which takes place over the Messaging System. Any
component which participates in bulk data transfers, is recommended to design its API according to
the following rules:

! a producer API has to offer a way for the client to indicate the maximum size of incoming
messages it can accept

! a consumer API has to offer a way for the client to indicate the maximum size of
incoming messages it can accept

! both APIs have to offer a way to partition bulk data transfers into a set of messages

According to the previous rules, the following example shows the design of an API which is able to
manage bulk transfer.

This hypothetical API allows any client to send (receive) bulk data to (from) a container. Only one
container can be open at a time. Since several containers may exist, the client must first perform an
OpenContainer call. Through this call the client gives the name of container to open, the
maximum message size it can process and an operation code the target module will use to send to
the client (see 5.1.1– “Message Back”). The target module returns back the maximum message size
it can process.

Once the OpenContainer call is performed the client can start bulk data transfer using the
WriteInContainer call. The client will perform this call as often as necessary – i.e., the bulk
data to be written is split into several messages. Each message size has to fit within the maximum
size constraint given by the target module as the return value of the OpenContainer call. A
parameter is used to signal to the target whether the transfer is starting, running or done. To control
the incoming flow the target module can send the response (status) of the incoming call
(WriteInContainer) when it is ready to accept the next part of the bulk data transfer.

The target module can also start bulk data transfer to the client. It calls the method identified by the
operation code previously given by the client through the OpenContainer call. The target module
will perform this call as many times as needed – i.e. the bulk data to be written to the client will be
split into several messages. Each message size has to fit within the maximum size constraint given
by the client as input parameter of the OpenContainer call. A parameter is used to signal to the
client whether the transfer is starting, running or done. To control the incoming flow the client can
send the response (status) of the incoming call when it is ready to accept the next part of bulk data
transfer.

The client can stop a transfer at any time using CloseContainer.

enum { START, MIDDLE, END } Location;
//
// if the data fits into one message

 295

HAVi SPECIFICATION Version 1.1

// the END value will be used

Status OpenContainer(
 in wstring containerName,
 in long clientMessageMaxSize,
 in OperationCode clientOpCode,
 out long targetMessageMaxSize)
//
// Status return code: SUCCESS, BADNAME, ALREADYOPEN

Status WriteInContainer(
 in Location loc,
 sequence<octet> dataPart)
//
// Status return code: SUCCESS, NOTAVAILABLE

void CloseContainer(in wstring containerName)

The following prototype has to be implemented by the client to allow the target module to send
bulk data transfers:
Status <clientOpCode>(
 in Location loc,
 in sequence<octet> dataPart)
//
// Status return code: SUCCESS, NOTAVAILABLE

 296

HAVi SPECIFICATION Version 1.1

6 APIs for Functional Component Modules

In this section, APIs for Functional Component Modules will be described. These APIs are, for
example, APIs for controls specific to the VCR functions within a device, such as PLAY,
RECORD, etc.

In the HAVi Architecture, these APIs are sent from an application to the Functional Component
Modules, and translated to a native language there. The native language command is then sent from
the FCM to the appropriate target device.

6.1 FCM Data Types

ForwardSpeed
enum ForwardSpeed {
 PLAY_PAUSE,
 SLOWEST_FORWARD,
 SLOW_FORWARD_5,
 SLOW_FORWARD_4,
 SLOW_FORWARD_3,
 SLOW_FORWARD_2,
 SLOW_FORWARD_1,
 FAST_FORWARD_1,
 FAST_FORWARD_2,
 FAST_FORWARD_3,
 FAST_FORWARD_4,
 FAST_FORWARD_5,
 FASTEST_FORWARD
};

ForwardSpeed values represent forward speed modes of tape and disc devices. Let X1 be normal
play speed. The actual speeds encoded by the these values have the following restrictions:

! X1 ≤ FAST_FORWARD_1 ≤ FAST_FORWARD_2 ≤ FAST_FORWARD_3 ≤ FAST_FORWARD_4
≤ FAST_FORWARD_5 ≤ FASTEST_FORWARD

! SLOWEST_FORWARD ≤ SLOW_FORWARD_5 ≤ SLOW_FORWARD_4 ≤ SLOW_FORWARD_3 ≤
SLOW_FORWARD_2 ≤ SLOW_FORWARD_1 ≤ X1

PLAY_PAUSE indicates the mode in which the device continuously produces a stream consisting of
the same frame of video content. It is usually called “still” mode.

ReverseSpeed
enum ReverseSpeed {
 SLOWEST_REVERSE,
 SLOW_REVERSE_5,
 SLOW_REVERSE_4,
 SLOW_REVERSE_3,
 SLOW_REVERSE_2,
 SLOW_REVERSE_1,

 297

HAVi SPECIFICATION Version 1.1

 X1_REVERSE,
 FAST_REVERSE_1,
 FAST_REVERSE_2,
 FAST_REVERSE_3,
 FAST_REVERSE_4,
 FAST_REVERSE_5,
 FASTEST_REVERSE
};

ReverseSpeed values represent reverse speed modes of tape and disc devices. The actual speeds
encoded by the these values have the following restrictions (X1_REVERSE indicates normal reverse
speed):

! X1_REVERSE ≤ FAST_REVERSE_1 ≤ FAST_REVERSE_2 ≤ FAST_REVERSE_3 ≤
FAST_REVERSE_4 ≤ FAST_REVERSE_5 ≤ FASTEST_REVERSE

! SLOWEST_REVERSE ≤ SLOW_REVERSE_5 ≤ SLOW_REVERSE_4 ≤ SLOW_REVERSE_3 ≤
SLOW_REVERSE_2 ≤ SLOW_REVERSE_1 ≤ X1_REVERSE

SkipDirection
enum SkipDirection { FORWARD, REVERSE };

SkipDirection controls the direction of skipping in tape and disc devices.

SkipMode
enum SkipMode {
 FRAME, SCENE, TRACK,
 VISS, GOP, INDEX, SKIP,
 PHOTO_PICTURE, PROGRAM,
 MARKER, RELATIVE_TIME, ABSOLUTE_TIME
};

SkipMode controls the unit of skipping in tape and disc devices.

! FRAME – video frames
! SCENE – video scenes
! TRACK – tracks (disc devices only)
! VISS – VHS Index Search System (tape devices only)
! GOP – MPEG “group of pictures”
! INDEX – index values (an index indicates the position marker used to search for the starting

position of a recorded program, or a user-specified position in a program. In the case of DVCR,
an index indicates an index ID defined by the HD Digital VCR Conference. In the case of D-
VHS VCR, an index indicates an index flag recorded on the medium. For other devices, INDEX
and MARKER may be equivalent).

! SKIP – skip over discarded regions
! PHOTO_PICTURE – photo/picture
! PROGRAM – program units
! MARKER – markers (a marker indicates the position marker used to search for the starting

position of a data area specified by the user. In the case of D-VHS VCR, a marker indicates a
marker flag recorded on the medium. For other devices, INDEX and MARKER may be
equivalent).

! ABSOLUTE_TIME – time (hours:minutes:seconds:frame) from the beginning of the tape or disc
! RELATIVE_TIME – time (hours:minutes:seconds:frame) from the beginning of the current

 298

HAVi SPECIFICATION Version 1.1

track (disc devices only)

TimeCode
struct TimeCode {
 octet hour;
 octet minute;
 octet sec;
 octet frame;
};

Time code of the form HH:MM:SS:FF (hours:minutes:seconds:frames). Each of the
HH,MM,SS,FF is encoded in 8-bit HEX format. Thus, the size of a time code value is 32 bits. The
most significant bit of hour indicates a sign (minus or plus), where the value of 1 indicates a minus
sign.

Example:
 “0x01172D0C” = (+) 01h:23m:45s:12f
 “0x81172D0C” = (-) 01h:23m:45s:12f

Valid values for HH: 0-127
Valid values for MM: 0-59
Valid values for SS: 0-59

The range of FF is:
 0 - 24 for PAL-based video content
 0 - 29 for NTSC-based video content (drop frame)
 0 - 99 for audio-only content

If an invalid TimeCode value is specified as an in parameter to an API call, an EINVALID_PARAM
error code may be returned.

WriteProtectStatus
enum WriteProtectStatus {
 WRITABLE,
 WRITE_PROTECTED,
 NOT_WRITEABLE,
 UNKNOWN_WRITABLE
};

! WRITABLE – OK to record on medium
! WRITE_PROTECTED – loaded medium is writable but write protected
! NOT_WRITEABLE – loaded medium is not writable (i.e. read-only medium)
! UNKNOWN_WRITABLE – writable status cannot be determined

 299

HAVi SPECIFICATION Version 1.1

6.2 Tuner FCM

The Tuner FCM APIs are meant to be applicable to a wide variety of tuners – from tuners used for
analog radio and television to digital tuners such as those for ATSC, DVB and DSS.

A Tuner FCM is capable of producing one or more service lists. Each entry in a service list
identifies a selectable entity called a service. The act of selecting a service results in a stream of
some type being associated with an output plug of the FCM. It should be stressed that “service” is
used here in a very general sense and encompasses both multiplexes of broadcast programs and
components of broadcast programs. For example, a service could be a multiplex containing several
AV streams and data streams (i.e., several broadcast programs), an AV multiplex (i.e., a single
broadcast program), or simply an elementary stream (i.e., a component of a broadcast program).
Whether a Tuner FCM supports selection of program multiplexes and/or program components is
tuner and Tuner FCM dependent. A Tuner FCM may implement an optional API which exposes
the relationship between a multiplex and its components.

Some tuners are capable of providing descriptions of specific programs being broadcast or
scheduled to be broadcast. For example, digital television tuners can determine the name and
start/stop times of programs, while some audio tuners can determine the title and artist of music
they receive. These descriptions are called service events. An optional API of the Tuner FCM
provides access to a simple form of service event information. (Service events should not be
confused with HAVi events; service events are merely descriptive and do not correspond to, or
trigger, HAVi events.)

6.2.1 Tuner Services

Service Comm
Type

Locality Access Resv
Prot

Tuner::GetServiceListInfo M global all

Tuner::GetServiceList M global all

Tuner::SetServiceList M global all yes

Tuner::GetService M global all

Tuner::GetServiceComponents M global all

Tuner::GetServiceEvents M global all

Tuner::SelectService M global all yes

Tuner::GetSelectedServices M global all

Tuner::GetCapability M global all

TunerServiceChanged E global Tuner (all)

6.2.2 Tuner Data Structures

ServiceListType
enum ServiceListType {
 TUNER_ASSOCIATED_NAMES,
 PROVIDER_ASSOCIATED_NAMES,
 USER_ASSOCIATED_NAMES,
};

 300

HAVi SPECIFICATION Version 1.1

Description
Each entry in a service list has a name. ServiceListType indicates the meaning and possible
usage of the names in the particular service list. For TUNER_ASSOCIATED_NAMES, the name is
assigned by the tuner or Tuner FCM and may be directly associated with underlying tuning
frequencies, for example “Channel 4” or “88.5 MHz”. For PROVIDER_ASSOCIATED_NAMES, the
name identifies the service using a well known commercial name or brand, for example “CNN” or
“BBC-1”. Often such a name is obtained from the service provider. TUNER_ASSOCIATED_NAMES
and PROVIDER_ASSOCIATED_NAMES give some means for interoperability between different
tuners (even between tuners of different type). Finally, USER_ASSOCIATED_NAMES are private
names chosen by a user of the tuner. A Tuner FCM is not obliged to provide service lists of all
types, but it shall provide at least one service list. Tuners may provide several lists of the same type.
Within a service list, the names of entries need not be unique unless the list is of type
TUNER_ASSOCIATED_NAMES.

ServiceListInfo
struct ServiceListInfo {
 wstring<64> title;
 ServiceListType type;
 ushort numEntries;
 uint sizeHint;
 boolean userOrdered;
};

Description
Each service list has a descriptive string – the title – which may be used when displaying the list.
This string is constructed by the tuner (or Tuner FCM) in a proprietary manner. The way the list is
ordered can be used for obtaining a consistent behavior of “channel-up/down” functionality
(provided by applications) between different tuners. In addition, a service list has a
ServiceListType, as described above, an indication of the number of entries, and a value called
sizeHint which gives an upper bound on the number of bytes needed to store the service list.
sizeHint of a service list of type USER_ASSOCIATED_NAMES should be the maximum number of
bytes that the tuner allows users to set (if Tuner::SetServiceList is supported). The
userOrdered field indicates whether the order of entries in the list has been determined by the
user (True) or tuner/provider (False).

ServiceLocator
typedef sequence<octet, 256> ServiceLocator;

Description
Services, and components of services, are associated with an opaque ServiceLocator assigned
by the tuner or Tuner FCM. It is recommended that service locators be persistent, i.e., a
ServiceLocator value should select the same service regardless of re-powering the tuner or
reinstalling the Tuner FCM. Construction of service locators is proprietary to the tuner or Tuner
FCM; there is no guarantee that a service locator obtained from one Tuner FCM will be resolvable
by another Tuner FCM even when the targeted tuners deal with the same type of broadcast.

Within the context of the Tuner FCM from which it was obtained, a ServiceLocator acts as a
unique key for a service. If a service appears in several lists provided by the FCM, or several times
in the same list, it will have the same locator.

 301

HAVi SPECIFICATION Version 1.1

Service
struct Service {
 ServiceLocator locator;
 StreamType type;
 octet[3] language;
 wstring<32> name;
};

Element Description

locator A value to uniquely identify the service within a Tuner FCM.
type Categorization of the service. For example,

DIGITAL_VIDEO__MPEG2_MP_ML indicates a MPEG2 video
stream while MULTIPLEX__DVB indicates a collection of streams
such as a transport multiplex or a program multiplex. If the Tuner FCM
is unable to determine a value for type.maxBandwidth it shall set
this field to 0.

language If the service is associated with a particular language (e.g., audio or
subtitles) this field contains an ISO-639 three character code. If the
service is not associated with a particular language (e.g., video or a
multiplex containing several audio components) the field may be empty.

name A descriptive name of the service.

Services are used as entries in service lists, but an entry in a service list can also be empty. Empty
entries can be used to facilitate index-based selection of services in an interoperable way on
different tuners. For example, a user may construct matching service lists on two different tuners by
inserting empty entries to indicate services one tuner can receive but the other cannot. Another use
of this facility is in “channel-based” service selection for skipping “un-receivable” channels.
union ServiceListEntry switch(boolean){
 case True: Service service;
 case False: ; // empty entry in service list

};

MuxAction
enum MuxAction { APPEND, REPLACE, REMOVE, CLEAR };

Specifies the multiplexer action to be carried out when a service is selected.

ServiceEvent
struct ServiceEvent {
 ServiceEventType type;
 wstring<64> eventName;
 DateTime startTime;
 DateTime stopTime;
 wstring<32> eventCategory;
 wstring<256> eventDescription;
};

Element Description

eventName A descriptive name of the service event.

mailto:MPEG2_MP@ML_VideoStream

 302

HAVi SPECIFICATION Version 1.1

startTime Start date and time of the service event. The DateTime fields are set to
“ignored” if this information is unavailable.

stopTime End date and time of the service event. The DateTime fields are set to
“ignored” if this information is unavailable.

eventCategory Text containing category description (e.g., “sports”, “movie, “news”).
An empty string if unavailable.

eventDescription Text containing extended description. An empty string if unavailable.

ServiceEventType
enum ServiceEventType {
 PROGRAM_EVENT,
 AV_EVENT,
 AUDIO_EVENT,
 DATA_EVENT,
 UNKNOWN_EVENT,
};

Element Description

PROGRAM_EVENT The event name identifies a broadcast program such as a television or
radio program. Start and stop times indicate the duration of the
program. Contents of the event description are unspecified but could
include names of actors, director, date of production, plot outline etc.

AV_EVENT The event name identifies an AV clip such as a piece of video being
shown in a television news program. Start and stop times indicate the
duration of the broadcast of the AV clip. Contents of the event
description are unspecified but could include date and location of the
clip etc.

AUDIO_EVENT The event name identifies an audio clip such as a piece of music. Start
and stop times indicate the duration of the broadcast of the audio clip.
Contents of the event description are unspecified but could include
names of musicians, composer, recording label, etc.

DATA_EVENT The event name identifies a data broadcast. Start and stop times
indicate the duration of the broadcast. Contents of the event description
are unspecified.

UNKNOWN_EVENT Contents of the event name, start and stop time, and description are
completely unspecified.

ServiceEventPeriod
enum ServiceEventPeriod{
 EV_CURRENT,
 EV_CURRENTNEXT,
 EV_TODAY,
 EV_WEEK,
 EV_ALL,
 };

Element Description

EV_CURRENT Current event information for a service.
EV_CURRENTNEXT Current event information and next event information for a service.
EV_TODAY Event information for the current date for a service.

 303

HAVi SPECIFICATION Version 1.1

EV_WEEK Event information for the week starting at the current date for a service.
EV_ALL All available event information for a service.

TunerCapability
enum TunerCapability {
 SET_SERVICE_LIST,
 GET_SERVICE_COMPONENTS,
 GET_SERVICE_EVENTS_CURRENT,
 GET_SERVICE_EVENTS_CURRENT_NEXT,
 GET_SERVICE_EVENTS_TODAY,
 GET_SERVICE_EVENTS_WEEK,
 GET_SERVICE_EVENTS_ALL,
};

6.2.3 Tuner API

Tuner::GetServiceListInfo

Prototype
Status Tuner::GetServiceListInfo(
 out sequence<ServiceListInfo> list)

Parameters
! list – a list of service list descriptors. The safe parameter size limit is 16

ServiceListInfo values.

GetServiceListInfo returns a list of service list descriptors (ServiceListInfo values) for
the service lists available from a Tuner FCM. The returned list shall contain at least one service list
descriptor.

Tuner::GetServiceList

Prototype
Status Tuner::GetServiceList(
 in ushort listNumber,
 in ushort first,
 in ushort entries,
 out sequence<ServiceListEntry> list)

Parameters
! listNumber – specifies the list number of the service list to be returned.
! first – specifies the number of the first entry to read (0 indicates first of the list).
! entries – specifies the number of entries to read (0 indicates all).
! list – a list of services. The safe parameter size limit is 4 kBytes.

Description
This API returns the service list indicated by listNumber. This value is an index into the
sequence returned by GetServiceListInfo, so, for example, the listNumber value of 0 would
obtain the first service list. The locators within the service list can be used when issuing the
Tuner::SelectService API. Within a service list of type TUNER_ASSOCIATED_NAMES or

 304

HAVi SPECIFICATION Version 1.1

PROVIDER_ASSOCIATED_NAMES, ServiceLocator values are unique. Components of services
may appear in a service list.

The list may be read in chunks by using the parameters first and entries. In this case, list
contains only the entries specified by the range first and entries. The API may return fewer
entries than requested if the request exceeds the end of the complete list or the chunk size exceeds
the safe parameter size.

If the Tuner FCM does not have the capability to provide a service list, it shall always return an
empty service list (list contains no entries) with SUCCESS. In this case GetServiceListInfo
returns ServiceListInfo of the empty service list. On the other hand, if the Tuner FCM has the
capability to provide a service list, it will return either a non-empty service list with SUCCESS, or
an empty service list with ELIST when the service list is not available.

Error codes
! Tuner::ELIST – if the Tuner FCM cannot currently provide a service list for the specified list

number.

Tuner::SetServiceList

Prototype
Status Tuner::SetServiceList(
 in ushort listNumber,
 in sequence<ServiceListEntry> list)

Parameters
! listNumber – specifies the list number of the service list to be filled.
! list – a list of services. The safe parameter size limit is the sizeHint value associated

with the service list (obtained via GetServiceListInfo).

Description
This API fills a service list indicated by listNumber, i.e. it replaces the existing contents with the
specified contents. As a side-effect, this API also updates the numEntries field and
userOrdered field (set to True) of the associated ServiceListInfo for the service list.

The value of listNumber is an index into the sequence returned by GetServiceListInfo, so,
for example, the listNumber value of 0 would specify the first service list. The service list shall
be of type USER_ASSOCIATED_NAMES. The services within the service list can be constructed
from other service lists obtained via the Tuner::GetServiceList API. Components of services
may appear in a service list.

Error codes
! ENOT_IMPLEMENTED – if the Tuner FCM does not support setting a service list.
! Tuner::ELIST – if the Tuner FCM cannot provide a service list for the specified list number.
! Tuner::ELIST_TYPE – if the service list for the specified list number is not of type

USER_ASSOCIATED_NAMES.
! Tuner::ESERVICE – if one or more of the services in the service list for the specified list

number are not correct (i.e. locator, type or language cannot be handled by the tuner).

 305

HAVi SPECIFICATION Version 1.1

Tuner::GetService

Prototype
Status Tuner::GetService(
 in ServiceLocator locator,
 out Service service)

Parameters
! locator – service for which stream type information is required.
! service – the Service structure for the specified service.

Description
This API returns the Service for a specific locator. This API can be used to determine
information about locators which have not been obtained from service lists. (For example, locators
obtained via GetServiceComponents, GetSelectedServices, or the
TunerServiceChanged event.) The resulting value of service.name is unspecified (i.e., there
is no implicit reference to a default service list). It is allowable that locator not appear on any
service list provided by the Tuner FCM (for example, locator refers to a service component and
the Tuner FCM does not include components in its service lists). However if the Tuner FCM
cannot resolve locator then an error is returned.

Error codes
! Tuner::ELOCATOR – if the Tuner FCM cannot resolve the locator.

Tuner::GetServiceComponents

Prototype
Status Tuner::GetServiceComponents(
 in ServiceLocator locator,
 out sequence<ServiceLocator> list)

Parameters
! locator – service for which component information is required.
! list – a list of locators of service components. The safe parameter size limit is 16

ServiceLocator values.

Description
A service may consist of several components, for example a video stream and several audio
streams for multiple languages. This API returns a list of components comprising a particular
service available from the tuner. The locators within the list can be used when issuing the
Tuner::SelectService API. If locator has no components (and the Tuner FCM supports
service components) an empty list is returned.

Error codes
! ENOT_IMPLEMENTED – if the Tuner FCM does not support service components.
! Tuner::ELOCATOR – if the Tuner FCM cannot resolve the locator.
! Tuner::EUNAVAILABLE – if the Tuner FCM cannot currently retrieve service components

for the locator.

 306

HAVi SPECIFICATION Version 1.1

Tuner::GetServiceEvents

Prototype
Status Tuner::GetServiceEvents(
 in ServiceLocator locator,
 in ServiceEventPeriod eventPeriod,
 out sequence<ServiceEvent> list)

Parameters
! locator – a service locator identifying the service for which event information is required.
! eventPeriod – duration of event information requested.
! list – a list of service events. The safe parameter size limit is 8 ServiceEvent values if

eventPeriod is EV_CURRENT, 16 ServiceEvent values if eventPeriod is
EV_CURRENTNEXT, 128 values if eventPeriod is EV_TODAY, 1024 values if eventPeriod
is EV_WEEK and 8192 values if eventPeriod is EV_ALL.

Description
This API returns a list of events carried by a particular service available from the tuner. These lists
are for information only; no selection is possible on an event. If locator has no events (and the
Tuner FCM supports service events) an empty list is returned.

Error codes
! ENOT_IMPLEMENTED – if the Tuner FCM does not support service events.
! Tuner::EPERIOD – the tuner does not support service events for this eventPeriod (but

does for some other period as indicated by Tuner::GetCapability).
! Tuner::ELOCATOR – if the Tuner FCM cannot resolve the locator.
! Tuner::EUNAVAILABLE – if the Tuner FCM cannot currently retrieve events for the locator.

Tuner::SelectService

Prototype
Status Tuner::SelectService(
 in ServiceLocator locator,
 in ushort plugNum, in MuxAction action)

Parameters
! locator – specifies the service to be selected.
! plugNum – the number of an output plug for the FCM.
! action – specifies the action to be carried out on the output plug. The following values can

be set:
APPEND – add (multiplex) the specified service to the output plug.
REPLACE – remove all current services from the output plug, and output the specified service.
REMOVE – remove the specified service from the output plug.
CLEAR – stop the output of all services on the specified plug. In this case the locator

parameter will be ignored.

Description
This API selects the service, which is identified by locator, and outputs (appends or removes, etc.)
it to the specified plug. This API returns after the tuner has been configured according to the
arguments given, regardless of whether or not the tuner has actually started to send the selected
service.

 307

HAVi SPECIFICATION Version 1.1

Once this call completes successfully, Tuner::GetSelectedServices will return values
appropriate to the tuner's new configuration.

For REMOVE, the locator may refer to a service present on the plug or to a component of a service
present on the plug.

Selecting a service for one plug may preempt a service being delivered to another plug, however it
is recommended that Tuner FCM implementations attempt to minimize such preemption. For
example, suppose an AV multiplex is selected for plug1, the audio component selected for plug2,
and then a different AV multiplex is selected for plug1. At least in the case that both AV
multiplexes belong to the same parent multiplex (e.g. the same DVB multiplex), it is preferable
that internal operation of the tuner be maintained so that the audio component of the second AV
multiplex is output on plug2.

Tuner::SelectService may change the stream type associated with plugs (as determined via
Dcm::GetStreamType) and so result in a StreamTypeChanged event.

Error codes
! Tuner::ELOCATOR – if the Tuner FCM cannot resolve the locator.
! Tuner::EPLUG – the plug does not exist.
! Tuner::EREMOVE – if the REMOVE action is requested when the service is not present on the

specified plug.
! Tuner::ENOT_COMPAT – the plug cannot accept the services that would result from an

APPEND, REPLACE or REMOVE action.

Tuner::GetSelectedServices

Prototype
Status Tuner::GetSelectedServices(
 in ushort plugNum, out sequence<ServiceLocator> list)

Parameters
! plugNum – the number of an FCM output plug.
! list – a list of services currently being output. The safe parameter size limit is 16

ServiceLocator values.

Description
This API returns a list of services currently being output via the specified plug.

If, through a series of service selections, all the components of a particular service are present on a
plug then list shall contain the locator of the service itself and not the locators of the
components.

Error codes
! Tuner::EPLUG – the plug does not exist.

Tuner::GetCapability

Prototype
Status Tuner::GetCapability(
 out sequence<boolean> capabilityList)

 308

HAVi SPECIFICATION Version 1.1

Parameters
! capabilityList – a list of capabilities supported by the Tuner FCM. The ith member of

capabilityList indicates the availability of the capability identified by
TunerCapability value i. The safe parameter size is 32 boolean values.

Description
This API returns the capabilities of the Tuner FCM.

6.2.4 Tuner Events

TunerServiceChanged

Prototype
void TunerServiceChanged(
 in ushort plugNum,
 in sequence<ServiceLocator> list)

Parameters
! plugNum – the number an FCM output plug.
! list – a list of services currently being output (after a change occurs). The safe parameter

size limit is 16 ServiceLocator values.

Description
This API notifies a change in services present on the output plug indicated by the plugNum
parameter.

 309

HAVi SPECIFICATION Version 1.1

6.3 VCR FCM

6.3.1 VCR Services

Service Comm
Type

Locality Access Resv
Prot

Vcr::Play M global all yes

Vcr::Record M global all yes

Vcr::FastForward M global all yes

Vcr::FastReverse M global all yes

Vcr::VariableForward M global all yes

Vcr::VariableReverse M global all yes

Vcr::Stop M global all yes

Vcr::RecPause M global all yes

Vcr::Skip M global all yes

Vcr::EjectMedia M global all yes

Vcr::GetState M global all

Vcr::GetRecordingMode M global all

Vcr::SetRecordingMode M global all yes

Vcr::GetFormat M global all

Vcr::GetPosition M global all

Vcr::ClearRTC M global all yes

Vcr::GetCapability M global all

Vcr::GetRejectInfo M global all

VcrStateChanged E global VCR (all)

6.3.2 VCR Data Structures

VcrRecordingMode
enum VcrRecordingMode {
 SPEED_SP,
 SPEED_LP,
 SPEED_EP,
 SPEED_VP
};

! SPEED_SP – “standard play” recording mode
! SPEED_LP – “long play” recording mode
! SPEED_EP – “extended play” recording mode
! SPEED_VP – “very long play” recording mode. For example, VHS/S-VHS has VP recording

mode for NTSC.

The VcrRecordingMode is specified by the track pitch used for recording.

 310

HAVi SPECIFICATION Version 1.1

VcrTransportMode
enum VcrTransportMode {
 PLAY, RECORD,
 FAST_FORWARD, FAST_REVERSE,
 VARIABLE_FORWARD, VARIABLE_REVERSE,
 STOP, RECPAUSE, SKIP, NO_MEDIA
};

VcrTransportState
enum TapePosition {
 BEGINNING_OF_TAPE,
 END_OF_TAPE,
 OTHER_POSITION,
 UNKNOWN,
};

union VcrTransportState switch (VcrTransportMode) {
 case PLAY: ;
 case RECORD: VcrRecordingMode rmode;
 case FAST_FORWARD: ;
 case FAST_REVERSE: ;
 case VARIABLE_FORWARD: ForwardSpeed fspeed;
 case VARIABLE_REVERSE: ReverseSpeed rspeed;
 case STOP: TapePosition tapePos;
 case RECPAUSE: ;
 case SKIP: SkipDirection skipDir;
 case NO_MEDIA: ;
};

VcrCounterType
enum VcrCounterType {
 RELATIVE_TIME, RELATIVE_COUNT,
 ABSOLUTE_TIME, ABSOLUTE_COUNT,
};

! RELATIVE_TIME – a relative time counter value (HH:MM:SS:FF)
! RELATIVE_COUNT – a relative counter number (decimal value)
! ABSOLUTE_TIME – an absolute time counter value (HH:MM:SS:FF)
! ABSOLUTE_COUNT – an absolute track number (decimal value)

VcrCounterValue
union VcrCounterValue switch (VcrCounterType) {
 case RELATIVE_TIME: TimeCode relTime;
 case RELATIVE_COUNT: long relCount;
 case ABSOLUTE_TIME: TimeCode absTime;
 case ABSOLUTE_COUNT: long absCount;
};

VcrRejectCondition
enum VcrRejectCondition {
 NO_CASSETTE,

 311

HAVi SPECIFICATION Version 1.1

 READ_ERR,
 WRITE_ERR,
 WRITE_PROTECTED,
 END_OF_TAPE,
 BEGINNING_OF_TAPE,
 LOCKED,
 NO_CONNECTION,
 CONDENSATION,
 TRANSITION_NOT_AVAILABLE,
 UNKNOWN,
 ABORTED
};

! NO_CASSETTE – no cassette is loaded
! READ_ERR – the cassette cannot be read (e.g., because of dust or a scratch)
! WRITE_ERR – the cassette cannot be written (e.g., because of dust or a scratch)
! WRITE_PROTECTED – a write-protected cassette is loaded
! END_OF_TAPE – the current position is the end of the tape
! BEGINNING_OF_TAPE – the current position is the beginning of the tape
! LOCKED – the VCR is “hold locked”. (Some portable mobile devices have a small mechanical

toggle switch called a “hold lock switch”. While this switch is ON, i.e., the VCR is hold
locked, the device is guarded against operations such as accidental power on when not in use,
or interruption of play or record from accidental pressing of a front panel button or a GUI
button.)

! NO_CONNECTION – no device connection exists to the sink FCM plug
! CONDENSATION – vapor condensation has formed
! TRANSITION_NOT_AVAILABLE – vendor dependent functionality that inhibits the control

command (e.g., the transition to or from a RECORD mode from any transport state except STOP)
! UNKNOWN – an unknown condition exists
! ABORTED – the operation invoked is not completed as intended because some other operation is

requested from front panel button, IR remote, or other application, etc.

VcrCapability
enum VcrCapability {
 SKIP,
 EJECT_MEDIA,
 SET_RECORDING_MODE,
 SPEED_EP,
 SPEED_LP,
 SPEED_SP,
 SPEED_VP,
 CLEAR_RTC
};

6.3.3 VCR API

Vcr::Play

Prototype
Status Vcr::Play()

Description

 312

HAVi SPECIFICATION Version 1.1

This API plays the data on the loaded tape at normal speed.

Error codes
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.

Vcr::Record

Prototype
Status Vcr::Record()

Description
This API records data on the loaded tape according to the current recording mode.

Error codes
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.

Vcr::FastForward

Prototype
Status Vcr::FastForward()

Description
This API simply fast-forwards the tape (without playing). This fast-forward action is continued
until the next API such as Vcr::Play or Vcr::Stop is issued or the end of the tape is reached.

Error codes
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.

Vcr::FastReverse

Prototype
Status Vcr::FastReverse()

Description
This API simply fast-rewinds the tape (without playing). This fast-reverse action is continued until
the next API such as Vcr::Play or Vcr::Stop is issued or the beginning of the tape is reached.

Error codes
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.

Vcr::VariableForward

Prototype
Status Vcr::VariableForward(in ForwardSpeed speed)

 313

HAVi SPECIFICATION Version 1.1

Parameter
! speed – forward speed mode

Description
This API plays the loaded tape back at variable-speeds according to speed. If the target device
does not support the specified FAST_FORWARD_x (or SLOW_FORWARD_x), then the device shall
interpret it as FASTEST_FORWARD (or SLOWEST_FORWARD).

This variable-forward action is continued until the next API such as Vcr::Play or Vcr::Stop is
issued or the end of the tape is reached.

Error codes
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.
! EINVALID_PARAMETER – speed contains an invalid value.

Vcr::VariableReverse

Prototype
Status Vcr::VariableReverse(in ReverseSpeed speed)

Parameter
! speed – reverse speed mode

Description
This API plays the loaded tape back at variable-speeds, in reverse, according to speed. The actual
speeds encoded by the speed have the following restrictions. If the target device does not support
the specified FAST_REVERSE_x (or SLOW_REVERSE_x), then the device shall interpret it as
FASTEST_REVERSE (or SLOWEST_REVERSE).

This variable-reverse action is continued until the next API such as Vcr::Play or Vcr::Stop is
issued or the beginning of the tape is reached.

Error codes
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.
! Vcr::ENOT_SUPPORTED – the target device does not support the specified reverse speed

mode which is any slow reverse or normal reverse.
! EINVALID_PARAMETER – speed contains an invalid value.

Vcr::Stop

Prototype
Status Vcr::Stop()

Description
This API stops all motion of the tape transport mechanism.

Error codes
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

 314

HAVi SPECIFICATION Version 1.1

Vcr::GetRejectInfo.

Vcr::RecPause

Prototype
Status Vcr::RecPause()

Description
This API pauses the recording operation. This pause action is stopped when the next API such as
Vcr::Record or Vcr::Stop is issued.

Error codes
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.

Vcr::Skip

Prototype
Status Vcr::Skip(
 in SkipDirection direction,
 in SkipMode mode, in uint count)

Parameters
! direction – direction to skip
! mode – skip mode
! count – number of items to be skipped, in accordance with the mode parameter. If mode is

TIME, the format of this parameter is the same as the counterValue parameter for the
Vcr::GetPosition API (in the case that the counterType is RELATIVE_TIME or
ABSOLUTE_TIME). See the Vcr::GetPosition API below.

Description
This API fast-forwards (fast-reverses) the tape in the skip-mode specified by the mode parameter,
skipping the number of items specified by the count parameter.

The SUCCESS response for this API should be returned after completion of skip operation. If the
skip operation is aborted before its completion because of user's operation through the front panel
button, IR remote or the other application, this API returns VCR::EREJECTED and set the reject
condition to ABORTED.

The VCR should be paused in playback mode immediately after advancing or reversing the
transport mechanism as the result of invoking this API.

This API is optional. Its support can be verified by the Vcr::GetCapability API.

Error codes
! ENOT_IMPLEMENTED – the target device does not support skip capability.
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.
! Vcr::ENOT_SUPPORTED – the target device does not support the specified skip mode.
! EINVALID_PARAMETER – skipDirection, skipMode or count contain invalid values.

 315

HAVi SPECIFICATION Version 1.1

Vcr::EjectMedia

Prototype
Status Vcr::EjectMedia()

Description
This API ejects the currently loaded tape from the VCR.

Error codes
! ENOT_IMPLEMENTED – the target device does not support the eject capability.
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.

Vcr::GetState

Prototype
Status Vcr::GetState(
 out VcrTransportState state)

Parameters
! state – status of the VCR’s transport mechanism

Description
This API returns the current status of the VCR’s transport mechanism (playing, recording, etc.)

Vcr::GetRecordingMode

Prototype
Status Vcr::GetRecordingMode(out VcrRecordingMode mode)

Parameters
! mode – recording mode

Description
This API returns the current recording mode. This recording mode applies to record operations
started by the Vcr::Record API and set by the Vcr::SetRecordingMode API.

Vcr::SetRecordingMode

Prototype
Status Vcr::SetRecordingMode(in VcrRecordingMode mode)

Parameters
! mode – specifies the recording mode

Description
This API sets the recording mode. This recording mode applies to record operations started by the
Vcr::Record API.

 316

HAVi SPECIFICATION Version 1.1

This API is optional. Its support can be verified by the Vcr::GetCapability API.

Error codes
! ENOT_IMPLEMENTED – the target device does not support setting the recording mode.
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.
! Vcr::ENOT_SUPPORTED – the target device does not support the requested recording mode.

Vcr::GetFormat

Prototype
Status Vcr::GetFormat(
 out MediaFormatId format,
 out WriteProtectStatus writeStatus)

Parameters
! format – the format of the tape loaded in the VCR. See Annex 11.10 for possible values
! writeStatus – write protect status of the tape loaded in the VCR

Description
This API returns information concerning the tape loaded in the VCR (tape type, whether the tape
can be recorded to, etc.)

Error codes
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.

Vcr::GetPosition

Prototype
Status Vcr::GetPosition(
 in VcrCounterType type, out VcrCounterValue value)

Parameters
! type – specifies the type of counter value to be returned
! value – the counter value returned

Description
This API returns the current value of the counter.

At least one of the counter types should be supported. If type is not supported then
Vcr::GetPosition returns Vcr::ENOT_SUPPORTED.

Error codes
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.
! Vcr::ENOT_SUPPORTED – the target VCR does not support the counter type.
! EINVALID_PARAMETER – counterType contains in invalid value.

 317

HAVi SPECIFICATION Version 1.1

Vcr::ClearRTC

Prototype
Status Vcr::ClearRTC()

Description
This API clears (sets to 0) the value of the relative (time) counter. Timer counters are optional, their
support can be verified by the Vcr::GetCapability API.

Error codes
! ENOT_IMPLEMENTED – the target device does not support timer counters.
! Vcr::EREJECTED – the API could not be executed. Reject conditions may be retrieved via

Vcr::GetRejectInfo.

Vcr::GetCapability

Prototype
Status Vcr::GetCapability(
 out sequence<boolean> capabilityList,
 out sequence<MediaFormatId> playFormats,
 out sequence<MediaFormatId> recordFormats)

Parameters
! capabilityList – a list of capabilities supported by the VCR Functional Component

Module. The ith member of capabilityList indicates the availability of the capability
identified by VcrCapability value i. The safe parameter size is 32 boolean values.

! playFormats – the tape formats the VCR is capable of playing. The safe parameter size limit
is 4 MediaFormatId values.

! recordFormats – the tape formats the VCR is capable of recording. The safe parameter size
limit is 4 MediaFormatId values.

Description
This API returns the capabilities of a VCR Functional Component Module.

Vcr::GetRejectInfo

Prototype
Status Vcr::GetRejectInfo (
 out sequence<VcrRejectCondition> rejectedConditions,
 out OperationCode rejectedOpcode,
 out sequence<VcrRejectCondition> currentRejectConditions)

Parameters
! rejectedConditions – contains one or more conditions for which the latest

Vcr::EREJECTED error occurred. It is independent of whether the conditions causing the
error still exist or have disappeared. Only if no Vcr::EREJECTED error has occurred will the
list be empty. The safe parameter size limit is n VcrRejectCondition values, where n is the
number of members of VcrRejectCondition.

! rejectedOpcode – the operation code of the last invoked API that caused a
Vcr::EREJECTED status. Undefined in case rejectedConditions is empty.

 318

HAVi SPECIFICATION Version 1.1

! currentRejectConditions – contains one or more conditions that currently exist that
would cause one or more APIs to return Vcr::EREJECTED. If no reject conditions currently
exist the list will be empty. The safe parameter size limit is n VcrRejectCondition values,
where n is the number of members of VcrRejectCondition.

The possible reject conditions for each VCR API service are listed below.

Service Possible Conditions

Vcr::Play NO_CASSETTE, READ_ERR,
END_OF_TAPE, LOCKED,
CONDENSATION,
TRANSITION_NOT_AVAILABLE

Vcr::Record

NO_CASSETTE, WRITE_ERR,
WRITE_PROTECTED, END_OF_TAPE,
LOCKED, NO_CONNECTION,
CONDENSATION,
TRANSITION_NOT_AVAILABLE

Vcr::FastForward NO_CASSETTE, END_OF_TAPE, LOCKED,
CONDENSATION,
TRANSITION_NOT_AVAILABLE

Vcr::FastReverse NO_CASSETTE, BEGINNING_OF_TAPE,
LOCKED, CONDENSATION,
TRANSITION_NOT_AVAILABLE

Vcr::VariableForward NO_CASSETTE, END_OF_TAPE, LOCKED,
CONDENSATION,
TRANSITION_NOT_AVAILABLE

Vcr::VariableReverse NO_CASSETTE, BEGINNING_OF_TAPE,
LOCKED, CONDENSATION,
TRANSITION_NOT_AVAILABLE

Vcr::Stop NO_CASSETTE, LOCKED
Vcr::RecPause NO_CASSETTE, WRITE_PROTECTED,

LOCKED, CONDENSATION,
TRANSITION_NOT_AVAILABLE

Vcr::Skip NO_CASSETTE, LOCKED, END_OF_TAPE,
BEGINNING_OF_TAPE, CONDENSATION,
TRANSITION_NOT_AVAILABLE, ABORTED

Vcr::EjectMedia NO_CASSETTE, LOCKED,
CONDENSATION,
TRANSITION_NOT_AVAILABLE

Vcr::SetRecordingMode LOCKED, TRANSITION_NOT_AVAILABLE
Vcr::GetFormat CONDENSATION
Vcr::GetPosition NO_CASSETTE, CONDENSATION
Vcr::ClearRTC LOCKED

Description
This API returns information on the conditions that caused or could cause Vcr::EREJECTED to be
returned as a result of the VCR APIs.

 319

HAVi SPECIFICATION Version 1.1

6.3.4 VCR Events

VcrStateChanged

Prototype
void VcrStateChanged(
 in VcrTransportState state,
 in MediaFormatId format)

Parameters
! state – status of the VCR’s transport mechanism
! format – format of tape currently loaded in the VCR

Description
This API notifies of changes in the state of a VCR’s transport mechanism.

6.3.5 VCR Notification Attributes

Vcr::currentState

Attribute
struct VcrCurrentState {
 VcrTransportState state;
 MediaFormatId format;
} currentState

Description
New setting of VcrTransportState.

Vcr::recordingMode

Attribute
VcrRecordingMode mode

Description
New setting of recording mode.

Vcr::counterSet

Attribute
boolean counterSet // the value is irrelevant

Description
Setting of the counter. Only useful with comparator ANY. Relates to reset (to zero) or setting of a
specific value, e.g. via front panel operation. Normal increase or decrease of the counter is not
notified.

 320

HAVi SPECIFICATION Version 1.1

Vcr::condensation

Attribute
boolean condensation

Description
Indicates whether vapor condensation has been detected in the VCR.

 321

HAVi SPECIFICATION Version 1.1

6.4 Clock FCM

6.4.1 Clock Services

Service Comm
Type

Locality Access Resv
Prot

Clock::GetDateTime M global all

Clock::SetDateTime M global all

Clock::GetTimezone M global all

Clock::SetTimezone M global all

Clock::EnableAutoDST M global all

Clock::IsEnabledAutoDST M global all

Clock::GetCapability M global all

Clock::CreateTimer M global all

Clock::GetTimerState M global all

Clock::SetTimerState M global all

Clock::DeleteTimer M global all

<Client>::TimerFired MB global Clock (all)

The Clock FCM provides a set of APIs for querying clocks and setting their values. The APIs allow
for clocks of varying capability. Examples of capabilities include self-power (e.g., battery powered
clocks) and the ability to automatically reset.

Clocks are in one of two states: 1) normal running state, and 2) in need of reset. When in the
running state the clock will return the current time (and possibly date and time zone). When in the
“needs reset” state, the clock will not return the current time. Transition from “needs reset” to
running occurs via Clock::SetDateTime or automatically if the clock has the capability to
“lock” on to an externally provided time signal.

Some clocks may also support timers. Timers can be set to fire at a specified time and date. When a
timer fires it sends a <Client>::TimerFired message to the SEID which set the timer.

6.4.2 Clock Data Structures

Timezone
struct Timezone {
 short gmtOffset; //in minutes
 boolean DST;
};

Time zones are represented by an offset, measured in minutes, from Greenwich Mean Time. The
offset is positive to the east and negative to the west. To convert from GMT to the local time, the
time zone is added, taking the sign of the offset into account. The DST flag indicates whether day
light savings time is in effect or not. If times were measured in elapsed minutes from some
reference time, the formula for converting from a GMT time to a local time would be: local =
gmt + gmtOffset + (DST * 60)

 322

HAVi SPECIFICATION Version 1.1

ClockCapabilityStatus
enum ClockCapabilityStatus {
 NOT_SUPPORTED,
 MANUAL_UNSET,
 MANUAL_SET,
 AUTOMATIC
};

ClockCapabilityStatus values indicate the capability of the various date, time and time zone
fields of a Clock FCM:

! NOT_SUPPORTED – the field is not supported by the Clock FCM
! MANUAL_UNSET – the field is manually settable but has not been set
! MANUAL_SET – the field is manually settable and has been set
! AUTOMATIC – the field is automatically set by hardware (or the Clock FCM), manual setting of

the value may be overwritten by the automatic setting

ClockCapability
struct ClockCapability {
 ClockCapabilityStatus year;
 ClockCapabilityStatus month;
 ClockCapabilityStatus day;
 ClockCapabilityStatus dayOfWeek;
 ClockCapabilityStatus hour;
 ClockCapabilityStatus minute;
 ClockCapabilityStatus sec;
 ClockCapabilityStatus msec;
 ClockCapabilityStatus timezone;
 ClockCapabilityStatus DSTEnableStyle;
 boolean selfPowered;
};

A Clock FCM implementation is required to support hour and minute fields (i.e., the
ClockCapabilityStatus values for these fields shall not be NOT_SUPPORTED).

The selfPowered flag indicates whether the clock will continue to run if the hosting device
looses power.

TimerId
typedef ushort TimerId;

6.4.3 Clock API

Clock::GetDateTime

Prototype
Status Clock::GetDateTime(out DateTime dateTime)

Parameters
! dateTime – the DateTime value to which the clock is currently set

Description

 323

HAVi SPECIFICATION Version 1.1

Clock::GetDateTime obtains the current date and time from the clock. If all values of the
DateTime structure are not set, this API will return Clock::EUNSET. If at least one value is set,
dateTime will be returned with unset values set as “ignored”.

Error codes
! Clock::EUNSET – the clock has not been set

Clock::SetDateTime

Prototype
Status Clock::SetDateTime(in DateTime dateTime)

Parameters
! dateTime – the DateTime value used to set the clock

Description
Clock::SetDateTime sets the current time of the clock. If a DateTime field within the clock
was previously set and the corresponding input DateTime field is set as “ignored”, the field will
remain set with its previous value.

For the clock to be validly set, the following conditions must apply:

! All supported time fields (hour, minute, sec, msec) must become, or previously have
been, set.

! If supported, the year, month and day fields may optionally be set, but they must
become set as complete group. In this case the dayOfWeek field is ignored.

! If dayOfWeek is supported, and the year, month and day are not set, then the
dayOfWeek field may be set.

If the clock does not become validly set, Clock::ESET is returned.

Changing the dateTime of the Clock may put the fireTime of one or more of the timers into the
past. All timers with their fireTime put into the past will be fired immediately.

Error codes
! Clock::ESET – invalid DateTime value

Clock::GetTimezone

Prototype
Status Clock::GetTimezone(out Timezone myZone)

Parameters
! myZone – the time zone currently used by the clock

Description
Clock::GetTimezone obtains the current time zone from the clock.

 324

HAVi SPECIFICATION Version 1.1

Error codes
! Clock::EZONE – the clock does not support time zones
! Clock::EUNSET – the time zone has not been set

Clock::SetTimezone

Prototype
Status Clock::SetTimezone(in Timezone myZone)

Parameters
! myZone – the Timezone value used to set the clock

Description
Clock::SetTimezone sets the time zone of the clock. Note that the day light savings time can be
turned on and off by using Clock::GetTimezone followed by Clock::SetTimezone with the
DST flag switched.

Error codes
! Clock::EZONE – the clock does not support time zones
! Clock::ESET – invalid Timezone value

Clock::EnableAutoDST

Prototype
Status Clock::EnableAutoDST(in boolean enable)

Parameters
! enable – a boolean flag

Description
Clock::EnableAutoDST controls whether or not the clock will perform automatic DST
adjustment. This request will change the status of ClockCapability.DSTEnableStyle
to AUTOMATIC if enabled is True and to MANUAL_SET if enabled is False.

Error codes
! Clock::EAUTO_DST – the clock does not support auto DST

Clock::IsEnabledAutoDST

Prototype
Status Clock::IsEnabledAutoDST(out boolean isEnabled)

Parameters
! isEnabled – a boolean flag

Description
Clock::IsEnabledAutoDST determines whether or not automatic DST adjustment is enabled.
The value of isEnabled is True if ClockCapability.DSTEnableStyle is AUTOMATIC and
False otherwise.

 325

HAVi SPECIFICATION Version 1.1

Error codes
! Clock::EAUTO_DST – the clock does not support auto DST

Clock::GetCapability

Prototype
Status Clock::GetCapability(out ClockCapability capability)

Parameters
! capability – a ClockCapability value

Description
Clock::GetCapability returns the basic capabilities of the clock.

Clock::CreateTimer

Prototype
Status Clock::CreateTimer(out TimerId timer)

Parameters
! timer – id of a timer

Description
Clock::CreateTimer returns the TimerId of an unused timer.

Error codes
! ENOT_IMPLEMENTED – if the target device does not support timers
! Clock::ENO_FREE – no timers are available

Clock::GetTimerState

Prototype
Status Clock::GetTimerState(
 in TimerId timer,
 out OperationCode opCode,
 out DateTime fireTime,
 out uint fireVal,
 out SEID owner)

Parameters
! timer – a timer id
! opCode – the operation code used to notify the client via <Client>::TimerFired
! fireTime – the date and time the timer will fire
! fireVal – the value passed in <Client>::TimerFired when the timer fires
! owner – who set the timer

Description
Clock::GetTimerState obtains the data associated with a timer.

 326

HAVi SPECIFICATION Version 1.1

Error codes
! ENOT_IMPLEMENTED – if the target device does not support timers
! Clock::ETIMER – timer is not a valid TimerId
! Clock::EUNSET – the timer is not set

Clock::SetTimerState

Prototype
Status Clock::SetTimerState(
 in TimerId timer,
 in OperationCode opCode,
 in DateTime fireTime,
 in uint fireVal)

Parameters
! timer – a timer id
! opCode – the operation code used to notify the client via <Client>::TimerFired
! fireTime – the date and time the timer will fire
! fireVal – the value passed in <Client>::TimerFired when the timer fires

Description
Clock::SetTimerState sets the data associated with a timer.

In order to set the timer, all supported DateTime fields must become, or previously have been, set.
Otherwise Clock::ESET is returned.

If fireTime is set to a time which has already passed, the timer will fire immediately.

Error codes
! ENOT_IMPLEMENTED – if the target device does not support timers
! Clock::ETIMER – timer is not a valid TimerId
! Clock::ESET – invalid DateTime value

Clock::DeleteTimer

Prototype
Status Clock::DeleteTimer(in TimerId timer)

Parameters
! timer – a timer id

Description
Clock::DeleteTimer deletes a timer which is in use. After a timer has been deleted, it shall not
call <Client>::TimerFired.

Error codes
! ENOT_IMPLEMENTED – if the target device does not support timers
! Clock::ETIMER – timer is not a valid TimerId
! Clock::ENOT_OWNER – the timer is set by another SEID than the caller

 327

HAVi SPECIFICATION Version 1.1

<Client>::TimerFired

Prototype
Status <Client>::TimerFired(
 in SEID clock,
 in TimerId timer,
 in uint fireVal)

Parameters
! clock – the SEID of the Clock FCM on which the timer resides
! timer – a timer id
! fireVal – the value specified via Clock::SetTimerState

Description
A <Client>::TimerFired message is sent by a Clock FCM to the SEID that has set a timer.
The operation code used by the Clock FCM to send this message is that provided by the client
when it invoked Clock::SetTimerState. The TimerFired message is sent when the timer
fires, the timer then becomes free. No event or error is generated by the Clock FCM if message
delivery fails (such as when the target SEID is no longer present).

6.4.4 Clock Notification Attributes

Clock::dateTime

Attribute
DateTime dateTime

Description
New setting of date and/or time.

Clock::timezone

Attribute
Timezone timezone

Description
New setting of timezone.

Clock::DSTEnabled

Attribute
boolean DSTEnabled

Description
New setting of DST: True if enabled, False if disabled.

 328

HAVi SPECIFICATION Version 1.1

6.5 Camera FCM

The HAVi Camera FCM enables an application to control camera functional components located
in devices connected to HAVi network. It provides APIs required to control the camera functional
components with minimal interoperability between various cameras from different manufacturers.

Scope – The HAVi Camera FCM supports both standalone camera devices and camera functional
components inside devices. Examples are the camera portion of camcorders, digital still cameras,
camera devices for of surveillance, and so on. These cameras are classified into “video cameras”
and “still cameras.” A video camera is a device that can be a source of video stream. It takes images
by its CCD and outputs a raw or compressed video stream with some kind of video signal
processing. A still camera is a device that can capture and store still images. The stored images can
be accessed from the application. Moreover, devices exist which support both the video camera
functionality and the still camera functionality.

The HAVi FCM covers functionality of both video cameras and still cameras.

Note – The current version of HAVi specification does not define APIs for file I/O or transferring
non-streaming data such as still images stored in a camera in an isochronous way from one FCM to
another. For this reason the HAVi Camera FCM provides APIs for transferring image data from the
FCM to another software element.

6.5.1 Camera Services

Service Comm
Type

Locality Access Resv
Prot

Camera::Zoom M global all yes

Camera::Pan M global all yes

Camera::Tilt M global all yes

Camera::SetVideoState M global all yes

Camera::GetVideoState M global all

CameraVideoStateChanged E global Camera (all)

Camera::Shoot M global all yes

Camera::GetImageList M global all

Camera::OpenImage M global all

Camera::ReadImage M global all

Camera::CloseImage M global all

Camera::EraseImage M global all yes

Camera::GetCapability M global all

6.5.2 Camera Data Structures

ZoomOperation
enum ZoomOperation { TELE, WIDE, STOP };

! TELE – starts to change zoom factor to get a larger image
! WIDE – starts to change zoom factor to get a smaller image

 329

HAVi SPECIFICATION Version 1.1

! STOP – stop zoom

PanOperation
enum PanOperation { LEFT, RIGHT, STOP };

! LEFT – starts to pan camera to left
! RIGHT – starts to pan camera to right
! STOP – stop pan

TiltOperation
enum TiltOperation { UP, DOWN, STOP };

! UP – starts to tilt camera upwards
! DOWN – starts to tilt camera downwards
! STOP – stop tilt

StoredImage
struct StoredImage {
 ushort index;
 wstring<12> imageString;
 ImageTypeId imageTypeId;
 ulong imageSize;
};

! index – unique number that identifies an image stored in the camera
! imageString – contains a string intended to describe the image. It is supplied in a proprietary

way.
! imageTypeId – one of the values given in Annex 11.13. It describes the type of image.
! imageSize – size in bytes of the stored image

CameraCapability
enum CameraCapability {
 ZOOM,
 PAN,
 TILT,
 VIDEO,
 STILL,
 SET_VIDEO_STATE
 };

6.5.3 Camera API

Camera::Zoom

Prototype
Status Camera::Zoom(in ZoomOperation zoom)

Parameters
! zoom – denotes the direction of change of the zoom factor

 330

HAVi SPECIFICATION Version 1.1

Description
Camera::Zoom provides application control of the zoom factor of image being shot or to be shot.
The parameter zoom denotes the actual zoom control to be performed. Issuing Zoom(TELE)
causes the camera to change zoom factor continuously in the direction that makes the image larger
until Zoom(STOP) is issued, while Zoom(WIDE) causes the camera to change zoom factor to
make the image smaller. This API returns ENOT_IMPLEMENTED if the corresponding capability is
not supported.

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the zoom capability.
! Camera::EREJECTED – The target device could not execute the zoom operation.
! EINVALID_PARAMETER – The value of zoom is invalid.

Camera::Pan

Prototype
Status Camera::Pan(in PanOperation pan)

Parameters
! pan – denotes the direction of change of the pan

Description
Camera::Pan provides application control of the horizontal angle of the camera. The parameter
pan denotes the actual pan control to be performed. Issuing Pan(LEFT) causes the camera to
move or rotate to the left until Pan(STOP) is issued, while Pan(RIGHT) causes it to move to
the right. Note that the images on the display screen move in the opposite direction to the parameter
pan. This API returns ENOT_IMPLEMENTED if the corresponding capability is not supported.

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the pan capability.
! Camera::EREJECTED – The target device could not execute the pan operation.
! EINVALID_PARAMETER – The value of pan is invalid.

Camera::Tilt

Prototype
Status Camera::Tilt(in TiltOperation tilt)

Parameters
! tilt – denotes the direction of change of the tilt

Description
Camera::Tilt provides application control of the vertical angle of the camera. The parameter
tilt denotes the actual tilt control to be performed. Issuing Tilt(UP) causes the camera to move
upwards until Tilt(STOP) is issued, while Tilt(DOWN) causes it to move downwards. Note that
the images on the display screen move in the opposite direction to the parameter tilt. This API
returns ENOT_IMPLEMENTED if the corresponding capability is not supported.

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the tilt capability.

 331

HAVi SPECIFICATION Version 1.1

! Camera::EREJECTED – The target device could not execute the tilt operation.
! EINVALID_PARAMETER – The value of tilt is invalid.

Camera::SetVideoState

Prototype
Status Camera::SetVideoState(inout boolean videoOn)

Parameters
! videoOn – identifies whether video is output or not

Description
Camera::SetVideoState provides application control of the camera’s video output. The
parameter videoOn denotes the application’s desired state of video output. Issuing
SetVideoState(True) causes the camera to send its video. Issuing
SetVideoState(False) turns the video off. This API returns ENOT_IMPLEMENTED for
target devices or FCMs which do not have the VIDEO camera capability. If a video camera does not
support video output on/off functionality then this API returns ENOT_IMPLEMENTED.

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the VIDEO camera capability

(as indicated by Camera::GetCapability) or it does not support video output on/off
functionality.

! Camera::EREJECTED – The target device could not change the state of video output. (This
error code shall not be returned if videoOn is True and video output is already on.)

Camera::GetVideoState

Prototype
Status Camera::GetVideoState(out boolean videoOn)

Parameters
! videoOn – identifies whether video output is on

Description
Camera::GetVideoState enables an application to know the current state of camera’s video
output. The parameter videoOn denotes the current state of the video output. This API returns
ENOT_IMPLEMENTED for target devices or FCMs which do not have the VIDEO camera capability.

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the VIDEO camera capability

(as indicated by Camera::GetCapability).

Camera::Shoot

Prototype
Status Camera::Shoot()

Description

 332

HAVi SPECIFICATION Version 1.1

This API is only valid for target devices or FCMs which have the STILL camera capability. Issuing
Camera::Shoot causes the camera to shoot an image and store it in the local storage media.

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the STILL camera capability

(as indicated by Camera::GetCapability).
! Camera::EREJECTED – The target device could not execute the shoot operation.

Note
Note that for a camcorder to record video onto its tape, the appropriate VCR and Stream Manager
APIs must be used to connect the Camera FCM and VCR FCMs. In case the video state of the
Camera FCM is False, it is left to the implementation what will be recorded on tape (black screen,
random data, …)

Camera::GetImageList

Prototype
Status Camera::GetImageList(out sequence<StoredImage> ilist)

Parameters
! ilist – a list containing indexes of stored images and other information. The safe parameter

size limit is 50 StoredImage values.

Description
Camera::GetImageList enables an application to get information necessary to manipulate the
images stored in the camera’s local storage media. The parameter ilist contains information
about each image such as file name or number, the data format, the size, and its index number. This
API is only valid for target devices or FCMs which have the STILL camera capability.

The image data stored in the camera may change when new images are shot or old images are
deleted, whether by Camera::Shoot or Camera::EraseImage, or by the user’s direct operation
to the device. To avoid having applications read or erase images other than intended due to
inconsistency of the index number of images between applications, the FCM shall not reuse the
index value of erased images for new images shot until all the index values which can be
represented by a 16-bit ushort integer have run out.

Example:

index image string ImageTypeId size (in Bytes)

1 aaa.jpg 0x0005 50,000

2 bbb.jpg 0x0005 60,000

5 ccc.bmp 0x0007 300,000

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the STILL camera capability

(as indicated by Camera::GetCapability).
! Camera::EREJECTED – The target device could not send the image list.

 333

HAVi SPECIFICATION Version 1.1

Camera::OpenImage

Prototype
Status Camera::OpenImage(
 in ushort index,
 out short iHandle
)

Parameters
! index – index of stored image to be opened.
! iHandle – denotes stored image to be selected.

Description
Camera::OpenImage is used to establish a data transfer path from a Camera FCM to an
application. The application calls this API and prepares a data buffer for receiving image data. The
image desired is specified by an index which can be obtained by Camera::GetImageList before
using this API. The FCM returns the handle of opened image data which is used for actual data
transfer operation by the Camera::ReadImage and Camera::CloseImage APIs. The handle is
used in case of multiple application access to the same image at the same time, though it is not
necessarily supported by all Camera FCMs. This API is only valid for target devices or FCMs
which have the STILL camera capability.

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the STILL camera capability

(as indicated by Camera::GetCapability).
! Camera::EREJECTED – The target device could not open the image.
! EINVALID_PARAMETER – The value of index is invalid, i.e. the target device does not have

an image corresponding to the index.

Camera::ReadImage

Prototype
Status Camera::ReadImage(
 in short iHandle,
 in short datalength,
 out short dataleft,
 out sequence<octet> imagedata
)

Parameters
! iHandle – denotes the image handle from which image data is read.
! datalength – the amount of image data to be transferred specified by the client.
! dataleft – the rest of image data to be transferred after this transfer.
! imagedata – denotes stored image to be selected. The safe parameter size limit is

datalength bytes.

Description
Camera::ReadImage allows an application to receive data from the Camera FCM using the
handle opened by OpenImage API. The iHandle value returned by Camera::OpenImage
denotes the actual source of image data. The application calls Camera::ReadImage with the
iHandle of the desired image, datalength specifies the length of data which is to be transferred

 334

HAVi SPECIFICATION Version 1.1

as a response message to this API call. The datalength should be determined by the application
related to its buffer size. The Camera FCM sends back the image data, or possibly the part of image
data that is requested by the ReadImage call. The amount of data that is specified by datalength
parameter but could not be transferred in the response is returned as the out parameter dataleft.
A dataleft value of zero indicates that all the image data specified by the API call has been
transmitted. Consequently, in order to acquire an entire image, an application must call ReadImage
until the sum of (datalength - dataleft) in each call reaches the imageSize of the desired
image. This API is only valid for target devices or FCMs which have the STILL camera capability.

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the STILL camera capability

(as indicated by Camera::GetCapability).
! Camera::EREJECTED – The target device is not ready to send a chunk of image data.
! EINVALID_PARAMETER – The value of iHandle or datalength is invalid.

Camera::CloseImage

Prototype
Status Camera::CloseImage(in short iHandle)

Parameters
! iHandle – denotes the image handle to be closed.

Description
Camera::CloseImage is used to terminate the data transfer from the Camera FCM to the
Application. This API is only valid for target devices or FCMs which have the STILL camera
capability.

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the STILL camera capability

(as indicated by Camera::GetCapability).
! Camera::EREJECTED – The target device could not close the image.
! EINVALID_PARAMETER – The value of iHandle is invalid.

Camera::EraseImage

Prototype
Status Camera::EraseImage(in ushort index)

Parameters
! index – denotes stored image to be erased.

Description
Camera::EraseImage is used by an application to erase an image specified by its index in the
camera device. The index has to be obtained by calling Camera::GetImageList before this API
is used. This API is only valid for target devices or FCMs which have the STILL camera capability.

Error codes
! ENOT_IMPLEMENTED – The target device or FCM does not have the STILL camera capability

(as indicated by Camera::GetCapability).

 335

HAVi SPECIFICATION Version 1.1

! Camera::EREJECTED – The target device could not erase the image.
! EINVALID_PARAMETER – The value of index is invalid, i.e. the target device does not have

the image that corresponds to the index.

Camera::GetCapability

Prototype
Status Camera::GetCapability(
 out sequence<boolean> capabilityList)

Parameters
! capabilityList – a list of capabilities supported by the Camera FCM. The ith member of

capabilityList indicates the availability of the capability identified by
CameraCapability value i. The safe parameter size is 32 boolean values.

Description
Camera::GetCapability returns the capability of the FCM. An application can get information
about the specific Camera FCM with this API before using other APIs which the FCM does not
support.

6.5.4 Camera Events

CameraVideoStateChanged

Prototype
void CameraVideoStateChanged(in boolean videoOn)

Parameters
! videoOn – identifies the current state of the video output

Description
CameraVideoStateChanged notifies an application of a change in state of camera’s video
output. The parameter videoOn denotes the current state of the video output.

6.5.5 Camera Notification Attributes

Camera::videoState

Attribute
boolean videoState

Description
Activation of video signal camera output. True if there is a video signal, False if there is no video
signal.

 336

HAVi SPECIFICATION Version 1.1

Camera::zoom

Attribute
ZoomOperation zoom

Description
Setting of zoom operation.

Camera::pan

Attribute
PanOperation pan

Description
Setting of pan operation.

Camera::tilt

Attribute
TiltOperation tilt

Description
Setting of tilt operation.

 337

HAVi SPECIFICATION Version 1.1

6.6 AV Disc FCM

This section specifies APIs for the AV Disc FCM.

Note: This FCM API supports a set of common operations for isochronous data discs (AV Discs)
only. When these APIs are used for a non-AV Disc (one which has a filesystem), they are not
guaranteed or may be handled in a proprietary manner.

6.6.1 AV Disc Services

Service Comm
Type

Locality Access Resv
Prot

AvDisc::GetItemList M global all

AvDisc::Play M global all yes

AvDisc::Record M global all yes

AvDisc::VariableForward M global all yes

AvDisc::VariableReverse M global all yes

AvDisc::Stop M global all yes

AvDisc::RecPause M global all yes

AvDisc::Skip M global all yes

AvDisc::InsertMedia M global all yes

AvDisc::EjectMedia M global all yes

AvDisc::GetState M global all

AvDisc::GetFormat M global all

AvDisc::GetPosition M global all

AvDisc::Erase M global all yes

AvDisc::PutItemList M global all yes

AvDisc::GetCapability M global all

AvDisc::GetRejectInfo M global all

AvDiscItemListChanged E global AV Disc (all)

AvDiscStateChanged E global AV Disc (all)

6.6.2 AV Disc Data Structures

ItemIndex
struct ItemIndex {
 ushort list;
 ushort index;
 wstring title;
 wstring artist;
 wstring genre;
 wstring contentType;
 TimeCode playbackTime;
 ulong contentSize;
 DateTime initialTimeStamp;

 338

HAVi SPECIFICATION Version 1.1

 DateTime lastUpdateTimeStamp;
};

Element Description

list List number to uniquely identify the child list. If the ItemIndex
refers to a child list, the value indicates the list number of the child list
and the ItemIndex contains the information of the child list. If the
ItemIndex does not refer to a child list, the value is 0xFFFF and
the ItemIndex contains the information of the track identified by
index.

The value corresponding to index=0 indicates the list that contains
the ItemIndex itself and the ItemIndex contains the same
information as the list. The value 0x0000 corresponding to index=0
always indicates the root list and the ItemIndex contains the
information of the disc media.

index The number of the index to uniquely identify the track.
title Title of contents.
artist Artist of contents.
genre Genre of contents.
contentType Type of contents(e.g. Video, Audio, Image, others).
playbackTime Playback time of contents.

The value corresponding to index=0 indicates the total playback
time of disc. In case of a writable disc, it indicates the original time
capacity of the disc media instead of total playback time.

contentSize Playback byte size of contents.

The value corresponding to index=0 indicates the total playback
byte size of disc. In case of a writable disc, it indicates the original
byte size capacity of the disc media instead of total playback byte
size.

initialTimeStamp The time when a content was first created on the disc media.

The value corresponding to index=0 indicates the oldest time
stamp on the disc.

lastUpdateTimeStamp The time when a content was last updated on the disc media. The
format of this parameter is the same as that of
initialTimeStamp.

The value corresponding to index=0 means the most recent time
stamp on the disc.

AvDiscPlayMode
enum AvDiscPlayMode {
 NORMAL, DIRECT_1, DIRECT,
 REPEAT_1, REPEAT_ALL, SHUFFLE,
 RANDOM
};

AvDiscRecordingMode
enum AvDiscRecordingMode {
 NORMAL, NEW,
 OVERWRITE, OVERWRITE_AND_JUMP

 339

HAVi SPECIFICATION Version 1.1

};

AvDiscTransportMode
enum AvDiscTransportMode {
 PLAY, RECORD,
 VARIABLE_FORWARD, VARIABLE_REVERSE,
 STOP, RECPAUSE, SKIP, NO_MEDIA
};

AvDiscTransportState
union AvDiscTransportState switch (AvDiscTransportMode) {
 case PLAY: AvDiscPlayMode pmode;
 case RECORD: AvDiscRecordingMode rmode;
 case VARIABLE_FORWARD: ForwardSpeed fspeed;
 case VARIABLE_REVERSE: ReverseSpeed rspeed;
 case STOP: ;
 case RECPAUSE: ;
 case SKIP: SkipDirection skipDir;
 case NO_MEDIA: ;
};

AvDiscCounterType
enum AvDiscCounterType {
 RELATIVE_TIME,
 ABSOLUTE_TIME,
 TRACK_NUMBER
};

! RELATIVE_TIME – relative time from the beginning of current track
! ABSOLUTE_TIME – absolute time from the beginning of first track (i.e., beginning of the disc)
! TRACK_NUMBER – current track

AvDiscCounterValue
union AvDiscCounterValue switch (AvDiscCounterType) {
 case RELATIVE_TIME: TimeCode relTime;
 case ABSOLUTE_TIME: TimeCode absTime;
 case TRACK_NUMBER: long track;
};

AvDiscCapability
enum AvDiscCapability {
 VARIABLE_FORWARD,
 VARIABLE_REVERSE,
 SKIP,
 REC_PAUSE,
 RECORD,
 GET_ITEM_LIST,
 PUT_ITEM_LIST,
 ERASE,
};

 340

HAVi SPECIFICATION Version 1.1

AvDiscRejectCondition
enum AvDiscRejectCondition {
 EMPTY_DISC,
 NO_DISC,
 SHORT_CAPACITY,
 READ_ERR,
 WRITE_ERR,
 WRITE_PROTECTED,
 DISC_FULL,
 TRACK_FULL,
 TOC_EDIT_BUSY,
 LOCKED,
 NO_CONNECTION,
 TRANSITION_NOT_AVAILABLE,
 UNKNOWN,
 ABORTED
};

! EMPTY_DISC – an empty disc is loaded
! NO_DISC – no disc is loaded
! SHORT_CAPACITY – the remaining capacity of the medium is smaller than the specified

recording time. In this case, nothing has been recorded.
! READ_ERR – the disc cannot be read (e.g., because of dust or scratch)
! WRITE_ERR – the disc cannot be written (e.g., because of dust or scratch)
! WRITE_PROTECTED – the write-protected disc is loaded
! DISC_FULL – the loaded disc is fully recorded. (No recordable capacity remains.)
! TRACK_FULL – no recordable track remains. (The recordable capacity is available, but the

track numbers are fully used.)
! TOC_EDIT_BUSY – the AV Disc is editing the disc’s TOC just now.
! LOCKED – the AV Disc is “hold locked” (Some portable mobile devices have a small

mechanical toggle switch called a “hold lock switch”. While this switch is ON, i.e., the AV
Disc is hold locked, the device is guarded against operations such as accidental power on when
not in use, or interruption of play or record from accidental pressing of a front panel button or a
GUI button.)

! NO_CONNECTION – no connection exists from the FCM plugs
! TRANSITION_NOT_AVAILABLE – vendor dependent functionality that inhibits the control

command (e.g., the transition to or from a RECORD mode from any transport state except STOP)
! UNKNOWN – an unknown condition exists
! ABORTED – the operation invoked is not completed as intended because some other operation is

requested from front panel button, IR remote, or other application, etc.

Direction

The AV Disc APIs use the Stream Manager Direction data type, see section 5.9.2.

6.6.3 AV Disc Terminology

track an item appearing in the list obtained via AvDisc::GetItemList

first track the item that has the lowest index which is not equal to zero

last track the item that has the highest index which is not equal to zero

current track the item that contains the current position

 341

HAVi SPECIFICATION Version 1.1

current
position

In case the transport mechanism is stopped it identifies the beginning of the
first track. In case the transport mechanism is rotating it identifies the
playback or recording position on the medium corresponding to a specific
FCM input or output plug.

6.6.4 AV Disc API

AvDisc::GetItemList

Prototype
Status AvDisc::GetItemList(
 in ushort listNumber,
 out sequence<ItemIndex> itemIndexList)

Parameters
! ushort list – specifies the list number of list to be returned.
! itemIndexList – a list of items and indexes. The safe parameter size limit is 512

ItemIndex values. Maximum size of HAVi message representing this API is 64 Kbytes

Description
This API returns a list containing information about contents in the loaded medium on the Disc
device. The structure of lists is hierarchical. All lists derive from the root list with list number zero,
and an item in a list may refer to a child list. This API is optional. Its support can be verified by the
AvDisc::GetCapability API.

In the root list, the ItemIndex with index zero contains general disc information (disc title, total
playback time of the disc, ...), while all other index values refer to individual lists. In the lists except
the root list, the item index with index zero contains the list information (list title, total playback
time of the list, …), while all other index value refer to individual tracks (track title, track playback
time, ...) or to a child list. The ItemIndex that refers to a child list in a parent list is identical to
the ItemIndex with index zero in the child list.

Error codes
! ENOT_IMPLEMENTED – the target device does not hold the itemIndex list internally.
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.

AvDisc::Play

Prototype
Status AvDisc::Play(
 in AvDiscPlayMode mode, in ushort plugNum,
 in ushort listNumber,
 in ushort indexNumber)

Parameter
! mode – specifies the playback mode
! plugNum – plug number of the source FCM plug used for playback
! listNumber– specifies the list number of the list of items.
! indexNumber – specifies the index number of the desired track. This parameter need not be

specified (i.e., the value can be 0) when mode is NORMAL, REPEAT_ALL, SHUFFLE or RANDOM.

 342

HAVi SPECIFICATION Version 1.1

When mode is DIRECT_1, DIRECT or REPEAT_1 it specifies the starting track.

Description
This API plays the data on the loaded medium using the specified playback mode. Depending upon
the value of mode, the following is performed:

! NORMAL – play from the current position. This mode is restricted to un-pause operation.
! DIRECT_1 – play the track specified by indexNumber, then stop.
! DIRECT – play tracks once from the track specified by indexNumber until the last track in

order of increasing index.
! REPEAT_1 – play the track specified by indexNumber and repeat the track continuously.
! REPEAT_ALL – play all tracks in order of increasing index from the first to the last track.

Repeat this action continuously.
! SHUFFLE – play each track once in random order, then stop.
! RANDOM – play each track in random order, continue playing indefinitely.

Error codes
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.
! EINVALID_PARAMETER – plugNum or indexNumber are not valid.
! AvDisc::ENOT_SUPPORTED – the target device does not support the specified playback

mode.

AvDisc::Record

Prototype
Status AvDisc::Record(
 in AvDiscRecordingMode mode, in ushort plugNum,
 in ushort listNumber,
 in ushort indexNumber,
 in TimeCode recordingTime, in uint64 recordingSize)

Parameter
! mode – specifies the recording mode
! plugNum – plug number of the sink FCM plug used for recording
! listNumber– specifies the list number of desired track.
! indexNumber – specifies the index number of desired track
! recordingTime – specifies the total time of the content to be recorded. This parameter may

be zero if it need not be specified.
! recordingSize – specifies the size (in bytes) of the content to be recorded. This parameter

may be zero if it need not be specified.

Description
This API records contents in a track specified by indexNumber using the specified recording
mode. This API is optional. Its support can be verified by the AvDisc::GetCapability API.
Depending upon the value of mode, the following is performed:

! NORMAL – record from the current position. In this mode, indexNumber need not be specified
(i.e., the value can be 0). No new track is created. This mode is restricted to the un-pause
operation of the AvDisc::RecPause API, and recording in previous NEW, or OVERWRITE, or
OVERWRITE_AND_JUMP mode.

! NEW – start a new track recording in an unused track. The new track becomes the last track with
an index that equals the index of the previous last track plus one or it becomes the first track for

 343

HAVi SPECIFICATION Version 1.1

an empty disc.
! OVERWRITE – start recording a new track at the beginning of the track specified by

indexNumber, or at the current position in case indexNumber is not specified (value 0).
Continue recording if the current position exceeds the track specified by indexNumber, or the
current track in case indexNumber is not specified.

! OVERWRITE_AND_JUMP – start recording a new track at the beginning of the track specified by
indexNumber, or at the current position in case indexNumber is not specified (value 0). If
the current position reaches the end of the specified track or the current track in case
indexNumber is not specified, continue recording in unused space on the medium.

Error codes
! ENOT_IMPLEMENTED – the target device does not implement this API.
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.
! EINVALID_PARAMETER – mode, plugNum or indexNumber are not valid.
! AvDisc::ENOT_SUPPORTED – the target device does not support the specified recording

mode.

AvDisc::VariableForward

Prototype
Status AvDisc::VariableForward(
 in ForwardSpeed speed, in ushort plugNum)

Parameter
! speed – forward speed mode
! plugNum – plug number of the source FCM plug used for playback

Description
This API plays the medium back at variable-speeds according to speed. The actual speeds
encoded by the speed have the following restrictions. If the target device does not support the
specified FAST_FORWARD_x (or SLOW_FORWARD_x) speed, then the device shall interpret it as
FASTEST_FORWARD (or SLOWEST_FORWARD).

This variable-forward action is continued until the next API such as AvDisc::Play or
AvDisc::Stop is issued or the end of the medium.

This API is optional. Its support can be verified by the AvDisc::GetCapability API.

Error codes
! ENOT_IMPLEMENTED – the target device does not implement this API.
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.
! EINVALID_PARAMETER – plugNum or speed are not valid.

AvDisc::VariableReverse

Prototype
Status AvDisc::VariableReverse(
 in ReverseSpeed speed, in ushort plugNum)

 344

HAVi SPECIFICATION Version 1.1

Parameter
! reverseSpeed – reverse speed mode
! plugNum – plug number of the source FCM plug used for playback

Description
This API plays the medium back at variable-speeds, in reverse, according to speed. The actual
speeds encoded by the speed have the following restrictions. If the target device does not support
the specified FAST_REVERSE_x (or SLOW_REVERSE_x) speed, then the device shall interpret it as
FASTEST_REVERSE (or SLOWEST_REVERSE).

This variable-reverse action is continued until the next API such as AvDisc::Play or
AvDisc::Stop is issued or the beginning of the medium.

This API is optional. Its support can be verified by the AvDisc::GetCapability API.

Error codes
! ENOT_IMPLEMENTED – the target device does not implement this API.
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.
! EINVALID_PARAMETER – plugNum or speed are not valid.

AvDisc::Stop

Prototype
Status AvDisc::Stop(
 in Direction dir, in ushort plugNum)

Parameter
! dir – direction of the FCM plug used for playback (or recording), indicates either a source

(OUT) or sink (IN) plug
! plugNum – plug number of the FCM plug used for playback (or recording)

Description
This API stops all transport mechanism motion.

Error codes
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.
! EINVALID_PARAMETER – plugNum is not valid.

AvDisc::RecPause

Prototype
Status AvDisc::RecPause(in ushort plugNum)

Parameter
! plugNum – plug number of the sink FCM plug used for recording

Description
This API pauses the recording operation. This pause action is stopped when the next API such as

 345

HAVi SPECIFICATION Version 1.1

AvDisc::Record or AvDisc::Stop is issued.

This API is optional. Its support can be verified by the AvDisc::GetCapability API. If the
AvDisc::Record API is supported this API should also be supported.

Error codes
! ENOT_IMPLEMENTED – the target device does not implement this API.
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.
! EINVALID_PARAMETER – plugNum is not valid.

AvDisc::Skip

Prototype
Status AvDisc::Skip(
 in SkipDirection direction, in SkipMode mode,
 in long count, in ushort plugNum)

Parameters
! direction – skip direction
! mode – skip mode
! count – number of items to be skipped, in accordance with the skipMode parameter. If the

skip mode is RELATIVE_TIME or ABSOLUTE_TIME, the format of this parameter is
0xHHMMSSFF where HH specifies hour, MM specifies minute, SS specifies second, and FF
specifies frame, each in one byte.

! plugNum – plug number of the source FCM plug used for playback.

Description
This API fast-forwards (or rewinds) the medium in the skip-mode specified by the mode parameter,
skipping the number of items (in accordance with the mode parameter) specified by the count
parameter, then playbacks.

The SUCCESS response for this API should be returned after completion of skip operation. If the
skip operation is aborted before its completion because of user's operation through the front panel
button, IR remote or the other application, this API returns AvDisc::EREJECTED and set the
reject condition to ABORTED.

This API is optional. Its support can be verified by the AvDisc::GetCapability API.

Error codes
! ENOT_IMPLEMENTED – the target device does not implement this API.
! EINVALID_PARAMETER – direction, mode, count or plugNum are not valid.
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.
! AvDisc::ENOT_SUPPORTED – the target device does not support the specified skip mode.

AvDisc::InsertMedia

Prototype
Status AvDisc::InsertMedia()

 346

HAVi SPECIFICATION Version 1.1

Description
This API inserts the medium into the Disc.

Error codes
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.

AvDisc::EjectMedia

Prototype
Status AvDisc::EjectMedia()

Description
This API ejects the currently loaded medium from the target device.

Error codes
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.

AvDisc::GetState

Prototype
Status AvDisc::GetState(
 out AvDiscTransportState state,
 in Direction dir, in ushort plugNum)

Parameters
! state – status of the target device’s transport mechanism
! dir – type of the plug to be examined, either a source (OUT) or sink (IN) FCM plug
! plugNum – plug number of the FCM plug desired to be examined

Description
This API returns the current status of the target device’s transport mechanism (playing, recording,
etc.) on the specified plug.

Error codes
! EINVALID_PARAMETER – plugNum is not valid.

AvDisc::GetFormat

Prototype
Status AvDisc::GetFormat(
 out MediaFormatId format,
 out WriteProtectStatus writeStatus)

Parameters
! format – type of the medium loaded in the target device. See Annex 11.10 for possible

values. Note – format is not relevant to whether there is isochronous data in the target device
or not.

 347

HAVi SPECIFICATION Version 1.1

! writeStatus – whether it is possible to write on the medium loaded in the target device

 Description
This API returns information concerning the medium loaded in the target device (medium type,
whether the medium can be recorded to, etc.)

Error codes
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.

AvDisc::GetPosition

Prototype
Status AvDisc::GetPosition(
 in AvDiscCounterType type,
 in Direction dir,
 in ushort plugNum,
 out AvDiscCounterValue value)

Parameters
! type – type of description used for indicating the current position
! dir – type of the plug to be examined, either a source (OUT) or sink (IN) FCM plug.
! plugNum – plug number of the FCM plug associated with stream desired to be examined.
! value – returned value which indicates the current position of the target device in the

description specified by type

Description
This API gets the current position of the target device in the format specified by the type
parameter for the specified plug. The counter type TRACK_NUMBER is mandatory and
RELATIVE_TIME and ABSOLUTE_TIME are optional. If type is either RELATIVE_TIME or
ABSOLUTE_TIME and the counter type is not supported then AvDisc::GetPosition returns
AVDISC::ENOT_SUPPORTED.

Error codes
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.
! AvDisc::ENOT_SUPPORTED – the requested type is not supported.
! EINVALID_PARAMETER – type or plugNum is not valid.

AvDisc::Erase

Prototype
Status AvDisc::Erase(
 In ushort listNumber,
 in ushort indexNumber)

Parameters
! listNumber – specifies the list number of desired track.
! indexNumber – specifies the index number of the contents desired to be erased. The value 0

indicates that all contents in the list are to be erased. If both listNumber and
indexNumber are 0, it indicates that all contents in the disc are to be erased.

 348

HAVi SPECIFICATION Version 1.1

Description
This API erases the contents specified by indexNumber (or all contents).

Error codes
! ENOT_IMPLEMENTED – the target device does not implement this API.
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.
! EINVALID_PARAMETER – indexNumber is not valid.

AvDisc::PutItemList

Prototype
Status AvDisc::PutItemList(
 In ushort listNumber,
 in sequence<ItemIndex> itemIndexList)

Parameters
! listNumber – specifies the list number of list to be written.
! itemIndexList – a list of items and indexes. The definitions of the ItemIndex structure are

described above. The safe parameter size limit is 512 ItemIndex values. Maximum size of
HAVi message representing this API is 64 Kbytes

Description
This API changes the specified itemIndexList and makes the target device write the
corresponding information on the disc media.

Error codes
! ENOT_IMPLEMENTED – the target device does not implement this API.
! AvDisc::EREJECTED – the API could not be executed. Reject conditions may be retrieved

via AvDisc::GetRejectInfo.

AvDisc::GetCapability

Prototype
Status AvDisc::GetCapability(
 out sequence<boolean> capabilityList,
 out sequence<MediaFormatId> playFormats,
 out sequence<MediaFormatId> recordFormats)

Parameters
! capabilityList – a list of capabilities supported by the AV Disc Functional Component

Module. The ith member of capabilityList indicates the availability of the capability
identified by AvDiscCapability value i. The safe parameter size is 32 boolean values.

! playFormats – the disc formats the AV Disc is capable of playing. The safe parameter size
limit is 14 MediaFormatId values.

! recordFormats – the disc formats the AV Disc is capable of recording. The safe parameter
size limit is 14 MediaFormatId values.

Description
This API returns the capabilities of the AV Disc Functional Component Module.

 349

HAVi SPECIFICATION Version 1.1

AvDisc::GetRejectInfo

Prototype
Status AvDisc::GetRejectInfo (
 out sequence<AvDiscRejectCondition> rejectedConditions,
 out OperationCode rejectedOpcode,
 out sequence<AvDiscRejectCondition> currentRejectConditions)

Parameters
! rejectedConditions – contains one or more conditions for which the latest

AvDisc::EREJECTED error occurred. It is independent of whether the conditions causing the
error still exist or have disappeared. Only if no AvDisc::EREJECTED error has occurred will
the list will be empty. The safe parameter size limit is n AvDiscRejectCondition values,
where n is the number of members of AvDiscRejectCondition.

! rejectedOpcode – the operation code of the last invoked API that caused a
AvDisc::EREJECTED status. Undefined in case rejectedConditions is empty.

! currentRejectConditions – contains one or more conditions that currently exist that
would cause one or more APIs to return AvDisc::EREJECTED. If no reject conditions
currently exist the list will be empty. The safe parameter size limit is n
AvDiscRejectCondition values, where n is the number of members of
AvDiscRejectCondition.

The possible reject conditions for each AV Disc API service are listed below.

Service Possible Conditions

AvDisc::GetItemList EMPTY_DISC, NO_DISC,
READ_ERR, TOC_EDIT_BUSY,
LOCKED

AvDisc::Play EMPTY_DISC, NO_DISC,
READ_ERR, TOC_EDIT_BUSY,
LOCKED, TRANSITION_NOT_AVAILABLE

AvDisc::Record SHORT_CAPACITY, NO_DISC,
WRITE_ERR, WRITE_PROTECTED,
DISC_FULL, TRACK_FULL,
TOC_EDIT_BUSY, LOCKED,
NO_CONNECTION,
TRANSITION_NOT_AVAILABLE

AvDisc::VariableForward EMPTY_DISC, NO_DISC,
READ_ERR, TOC_EDIT_BUSY,
LOCKED, TRANSITION_NOT_AVAILABLE

AvDisc::VariableReverse

EMPTY_DISC, NO_DISC,
READ_ERR, TOC_EDIT_BUSY,
LOCKED, TRANSITION_NOT_AVAILABLE

AvDisc::Stop NO_DISC, LOCKED
AvDisc::RecPause NO_DISC, WRITE_PROTECTED,

DISC_FULL, TRACK_FULL,
TOC_EDIT_BUSY, LOCKED,
NO_CONNECTION,
TRANSITION_NOT_AVAILABLE

AvDisc::Skip EMPTY_DISC, NO_DISC,
READ_ERR, TOC_EDIT_BUSY,
LOCKED,TRANSITION_NOT_AVAILABLE,
ABORTED

AvDisc::InsertMedia LOCKED, TRANSITION_NOT_AVAILABLE

 350

HAVi SPECIFICATION Version 1.1

AvDisc::EjectMedia NO_DISC, TOC_EDIT_BUSY,
LOCKED, TRANSITION_NOT_AVAILABLE

AvDisc::GetFormat LOCKED
AvDisc::GetPosition NO_DISC, LOCKED
AvDisc::Erase EMPTY_DISC, NO_DISC,

READ_ERR, WRITE_ERR,
WRITE_PROTECTED,
TOC_EDIT_BUSY, LOCKED,
TRANSITION_NOT_AVAILABLE

AvDisc::PutItemList EMPTY_DISC, NO_DISC,
WRITE_ERR, WRITE_PROTECTED,
DISC_FULL, TOC_EDIT_BUSY,
LOCKED,
TRANSITION_NOT_AVAILABLE

Description
This API returns information on the conditions that caused or could cause AvDisc::EREJECTED
to be returned as a result of the AV Disc APIs.

6.6.5 AV Disc Events

AvDiscItemListChanged

Prototype
void AvDiscItemListChanged()

Description
This API notifies changes of contents in the ItemIndex list the AV Disc holds internally.
Applications which use the ItemIndex list should retrieve it again.

AvDiscStateChanged

Prototype
void AvDiscStateChanged(
 in AvDiscTransportState state,
 in Direction dir,
 in ushort plugNum)

Parameters
! state – see the AvDisc::GetState API
! dir – type of the plug which has changed its state, i.e., either a source (OUT) or sink (IN) plug
! plugNum – plug number of the FCM plug which changed its state

Description
This API notifies changes in the value of the current state as defined in the GetState API.

 351

HAVi SPECIFICATION Version 1.1

6.6.6 AV Disc Notification Attributes

AvDisc::currentState

Attribute
struct AvDiscCurrentState {
 AvDiscTransportState state;
 Direction dir;
 ushort plugNum;
} currentState

Description
New setting of AvDiscTransportState. The plug involved is also indicated.

 352

HAVi SPECIFICATION Version 1.1

6.7 Amplifier FCM

This FCM supports basic functions of an audio amplifier device. It does not support advanced
functions such as surround sound. Basic function of Amplifier is to provide audio interface to users,
so it is recommended clients not to reserve Amplifier FCMs without specific purpose or reason,
according to recommendation described in 3.8.1.

6.7.1 Amplifier Services

Service Comm
Type

Locality Access Resv
Prot

Amplifier::SetVolume M global all yes

Amplifier::GetVolume M global all

Amplifier::SetMute M global all yes

Amplifier::GetMute M global all

Amplifier::SetBalance M global all yes

Amplifier::GetBalance M global all

Amplifier::SetLoudness M global all yes

Amplifier::GetLoudness M global all

Amplifier::GetCapability M global all

Amplifier::SetEqualizer M global all yes

Amplifier::GetEqualizer M global all

Amplifier::GetEqualizerCapability M global all

Amplifier::SetPresetMode M global all yes

Amplifier::GetPresetMode M global all

Amplifier::GetPresetCapability M global all

Amplifier::GetAudioLatency M global all

6.7.2 Amplifier Data Structures

AmplifierCapability

Definition
enum AmplifierCapability {
 BALANCE,
 LOUDNESS
};

Description
This defines a set of basic amplifier capabilities.

 353

HAVi SPECIFICATION Version 1.1

EqualizerFrequency

Definition
struct EqualizerFrequency {
 short lowestFrequency;
 short highestFrequency;
}

Description
This structure represents the lowest frequency (Hz) and the highest frequency (Hz) of one equalizer
band.

AmplifierPresetMode

Definition
enum AmplifierPresetMode {
 OFF, SPEECH, MOVIE,
 MUSIC_CLASSICAL, MUSIC_JAZZ, MUSIC_ROCK
};

Description
Each value represents a specific audio mode. The settings associated with each mode are
determined by the manufacturer.

Element Description

OFF Indicates that no preset is active.
SPEECH Indicates the preferred settings for reproducing human speech.
MOVIE Indicates the preferred settings for reproducing a movie sound track.

This typically is good for a combination of speech, music and sound
effects.

MUSIC_CLASSICAL Indicates the preferred settings for reproducing classical music. This
typically produces a clean, natural sound.

MUSIC_JAZZ Indicates the preferred settings for reproducing jazz music. This
typically produces a bright sound.

MUSIC_ROCK Indicates the preferred settings for reproducing rock or pop music. This
typically produces a powerful sound.

6.7.3 Amplifier API

Amplifier::SetVolume

Prototype
Status Amplifier::SetVolume(
 in octet volumeValue)

Parameters
! volumeValue – volume value of the amplifier device to be set

 0 : minimum volume
 255 : maximum volume

 354

HAVi SPECIFICATION Version 1.1

Description
This API sets the volume.

Amplifier::GetVolume

Prototype
Status Amplifier::GetVolume(
 out octet volumeValue)

Parameters
! volumeValue – current volume value

Description
This API gets the current volume value of the amplifier device.

Amplifier::SetMute

Prototype
Status Amplifier::SetMute(
 in boolean muteState)

Parameters
! muteState – mute state of amplifier device to be set

 True : mute on
 False : mute off

Description
This API sets the mute state of the amplifier device.

Amplifier::GetMute

Prototype
Status Amplifier::GetMute(
 out boolean muteState)

Parameters
! muteState – Current mute state

Description
This API gets the current mute state of amplifier device.

Amplifier::SetBalance

Prototype
Status Amplifier::SetBalance(
 in octet balanceValue)

Parameters

 355

HAVi SPECIFICATION Version 1.1

! balanceValue – LR balance value of amplifier device to be set
 0 : L only (L output is saturated, R output is silent)
 127 : center (both L and R outputs are saturated)
 254 : R only (R output is saturated, L output is silent)

Description
This API sets the LR balance value of the amplifier device.

Error codes
! ENOT_IMPLEMENTED – the amplifier does not support adjustable balance
! EINVALID_PARAMETER – the balance setting is invalid (= 255)

Amplifier::GetBalance

Prototype
Status Amplifier::GetBalance(
 out octet balanceValue)

Parameters
! balanceValue – current LR balance value

Description
This API gets current the LR balance value of the amplifier device.

Error codes
! ENOT_IMPLEMENTED – the amplifier does not support adjustable balance

Amplifier::SetLoudness

Prototype
Status Amplifier::SetLoudness(
 in boolean loudnessState)

Parameters
! loudnessState – loudness state to be set

Description
This API sets the loudness state of the amplifier device.

Error codes
! ENOT_IMPLEMENTED – the amplifier does not support loudness mode

Amplifier::GetLoudness

Prototype
Status Amplifier::GetLoudness(
 out boolean loudnessState)

Parameters
! loudnessState – current loudness state

 356

HAVi SPECIFICATION Version 1.1

Description
This API gets the current loudness state of the amplifier device.

Error codes
! ENOT_IMPLEMENTED – the amplifier does not support loudness mode

Amplifier::GetCapability

Prototype
Status Amplifier::GetCapability(
 out sequence<boolean> capabilityList)

Parameters
! capabilityList – list of amplifier capability types. The ith member of capabilityList

indicates the availability of the capability identified by AmplifierCapability value i. The
safe parameter size is 32 boolean values.

Description
Returns a list of amplifier capabilities.

Amplifier::SetEqualizer

Prototype
Status Amplifier::SetEqualizer(
 in sequence<octet> equalizerValue)

Parameters
! equalizerValue – equalizer values to be set. In this array of bytes, the first byte defines

the equalizer value for the lowest frequency band and the last byte defines the equalizer value
for the highest frequency band.
 0 : minimum output value
 127 : center (output value as in original input stream)
 254 : maximum output value.

The length of the equalizerValue list should be identical to the length of the
EqualizerFrequency list that can be obtained via GetEqualizerCapability (the error when
this is not the case is EINVALID_PARAMETER).

Description
This API sets the intensity of the equalizer bands.

Error codes
! ENOT_IMPLEMENTED – the amplifier does not support adjustable equalization
! EINVALID_PARAMETER – one or more equalizer settings are invalid (= 255)

Amplifier::GetEqualizer

Prototype
Status Amplifier::GetEqualizer(

 357

HAVi SPECIFICATION Version 1.1

 out sequence<octet> equalizerValue)

Parameters
! equalizerValue – current equalizer values for the amplifier device. In this array of bytes,

the first byte defines the equalizer value for the lowest frequency band and the last byte defines
the equalizer value for the highest frequency band.

Description
This API gets the intensity list of the equalizer bands.

Error codes
! ENOT_IMPLEMENTED – the amplifier does not support adjustable equalization

Amplifier::GetEqualizerCapability

Prototype
Status Amplifier::GetEqualizerCapability(
 out sequence<EqualizerFrequency> list)

Parameters
! list – The list of bandwidth information that the equalizer can support. The safe parameter

size limit is 20 EqualizerFrequency values.

Description
This API returns the list of bandwidth information that the equalizer can support. When an
amplifier device has no equalizer functionality, this API returns an empty EqualizerFrequency
list (length is zero).

Amplifier::SetPresetMode

Prototype
Status Amplifier::SetPresetMode(
 in AmplifierPresetMode amplifierPresetMode)

Parameters
! amplifierPresetMode – preset mode to be set

Description
This API sets the preset mode of the amplifier device.

Error codes
! ENOT_IMPLEMENTED – the amplifier does not support preset modes

Amplifier::GetPresetMode

Prototype
Status Amplifier::GetPresetMode(
 out AmplifierPresetMode amplifierPresetMode)

Parameters

 358

HAVi SPECIFICATION Version 1.1

! amplifierPresetMode – current preset mode

Description
This API gets the current preset mode of the amplifier device.

Error codes
! ENOT_IMPLEMENTED – the amplifier does not support preset modes

Amplifier::GetPresetCapability

Prototype
Status Amplifier::GetPresetCapability(
 out sequence<boolean> capabilityList)

Parameters
! capabilityList – capability list of preset modes. The ith member of capabilityList

indicates the availability of the capability identified by AmplifierPresetMode value i. The
safe parameter size is 32 boolean values.

Description
Returns a list of supported preset modes.

Amplifier::GetAudioLatency

Prototype
Status Amplifier::GetAudioLatency(out short latency)

Parameters
! latency – the number of milliseconds between the amplifier input and output.

Description
This API allows the nominal latency of the amplifier to be measured. This is useful in cases where
audio must be synchronized – especially when signal processing algorithms add long delays.

6.7.4 Amplifier Notification Attributes

Amplifier::volume

Attribute
octet volume

Description
New volume setting.

Amplifier::mute

Attribute

 359

HAVi SPECIFICATION Version 1.1

boolean mute

Description
New mute setting.

Amplifier::balance

Attribute
octet balance

Description
New balance setting.

Amplifier::loudness

Attribute
boolean loudness

Description
New loudness setting.

Amplifier::equalizer

Attribute
sequence<octet> equalizer

Description
New equalizer settings (only useful with comparator ANY).

 360

HAVi SPECIFICATION Version 1.1

6.8 Display FCM

The Display API supports the following functions:

! Filtering function for displaying the video.

! Set up of screen and window modes.

! Assignment of an input FCM plug to a logical window.

Basic function of displays is to provide visual interface to users, so it is recommended clients not to
reserve Display FCMs without specific purpose or reason, according to recommendation described
in 3.8.1.

6.8.1 Display Services

Service Comm
Type

Locality Access Resv
Prot

Display::SetContrast M global all yes

Display::GetContrast M global all

Display::SetTint M global all yes

Display::GetTint M global all

Display::SetColor M global all yes

Display::GetColor M global all

Display::SetBrightness M global all yes

Display::GetBrightness M global all

Display::SetSharpness M global all yes

Display::GetSharpness M global all

Display::GetCapability M global all

Display::GetStandardPictureValue M global all

Display::SetPresetMode M global all yes

Display::GetPresetMode M global all

Display::GetPresetCapability M global all

Display::SetScreenMode M global all yes

Display::GetScreenMode M global all

Display::SetWindowMode M global all yes

Display::GetWindowMode M global all

Display::SetActiveWindow M global all yes

Display::GetActiveWindow M global all

Display::GetWindowRectangle M global all

Display::AssignPlugToDisplay M global all yes

Display::GetVideoLatency M global all

 361

HAVi SPECIFICATION Version 1.1

6.8.2 Display Data Structures

DisplayCapability
enum DisplayCapability {
 PICTURE_CONTRAST ,
 PICTURE_TINT ,
 PICTURE_COLOR ,
 PICTURE_BRIGHTNESS ,
 PICTURE_SHARPNESS ,
 SCREEN_NORMAL ,
 SCREEN_WIDE ,
 WINDOW_SINGLE ,
 WINDOW_DOUBLE ,
 WINDOW_PinP
};

PictureAttribute
enum PictureAttribute {
 CONTRAST,
 TINT,
 COLOR,
 BRIGHTNESS,
 SHARPNESS
};

ScreenMode
enum ScreenMode {NORMAL, WIDE};

Description
Possible screen modes:

 NORMAL 4:3 aspect ratio

 WIDE 16:9 aspect ratio

WindowMode
enum WindowMode {SINGLE, DOUBLE, PinP};

Description
Possible window modes:

 SINGLE single window mode

 DOUBLE double window mode

 PinP PinP mode

 362

HAVi SPECIFICATION Version 1.1

DisplayPresetMode

Definition
enum DisplayPresetMode {
 NORMAL,
 USER_PRESET,
 MOVIE,
 GAME
};

Description
Each value represents a specific genre. The settings associated with each mode are determined by
the manufacturer.

Element Description

NORMAL Indicates the default settings for the display.
USER_PRESET Refers to settings which were configured by the user in a proprietary

way.
MOVIE Indicates the preferred settings for viewing a movie, and presenting the

“film” look.
GAME Indicates the preferred settings for viewing video games and computer

graphics.

6.8.3 Display API

Display::SetContrast

Prototype
Status Display::SetContrast(
 in octet contrastValue)

Parameters
! contrastValue – contrast value to be set

 0 : minimum contrast value
 127 : center
 255 : maximum contrast value

Description
This API sets the contrast value of the display device. Contrast is picture contrast.

Error codes
! ENOT_IMPLEMENTED
! EINVALID_PARAMETER

Display::GetContrast

Prototype
Status Display::GetContrast(
 out octet contrastValue)

 363

HAVi SPECIFICATION Version 1.1

Parameters
! contrastValue – current contrast value

Description
This API gets the contrast value of the display device.

Error codes
! ENOT_IMPLEMENTED

Display::SetTint

Prototype
Status Display::SetTint(
 in octet tintValue)

Parameters
! tintValue – tint value to be set

 0 : make skin tones purplish
 127 : center
 255 : make skin tones greenish

Description
This API sets the tint value of the display device.

Error codes
! ENOT_IMPLEMENTED
! EINVALID_PARAMETER

Display::GetTint

Prototype
Status Display::GetTint(
 out octet tintValue)

Parameters
! tintValue – current value of tint

Description
This API gets the current tint value of display device.

Error codes
! ENOT_IMPLEMENTED

Display::SetColor

Prototype
Status Display::SetColor(
 in octet colorValue)

Parameters

 364

HAVi SPECIFICATION Version 1.1

! colorValue – color value to be set
 0 : minimum color intensity
 127 : center
 255 : maximum color intensity

Description
 This API sets the color value of the display device. Color is color intensity.

Error codes
! ENOT_IMPLEMENTED
! EINVALID_PARAMETER

Display::GetColor

Prototype
Status Display::GetColor(
 out octet colorValue)

Parameters
! colorValue – current color value

Description
This API gets the current color value of the display device.

Error codes
! ENOT_IMPLEMENTED

Display::SetBrightness

Prototype
Status Display::SetBrightness(
 in octet brightnessValue)

Parameters
! brightnessValue – brightness value to be set

 0 : minimum brightness value
 127 : center
 255 : maximum brightness value

Description
This API sets the brightness value of the display device. Brightness is a level of blackness.

Error codes
! ENOT_IMPLEMENTED
! EINVALID_PARAMETER

Display::GetBrightness

Prototype
Status Display::GetBrightness (

 365

HAVi SPECIFICATION Version 1.1

 out octet brightnessValue)

Parameters
! brightnessValue – current brightness value

Description
This API gets the current brightness value of the display device.

Error codes
! ENOT_IMPLEMENTED

Display::SetSharpness

Prototype
Status Display::SetSharpness(
 in octet sharpnessValue)

Parameters
! sharpnessValue – sharpness value to be set

 0 : minimum sharpness value
 127 : center
 255 : maximum sharpness value

Description
This API sets the sharpness value of the display device. Sharpness is sharpness of outline.

Error codes
! ENOT_IMPLEMENTED
! EINVALID_PARAMETER

Display::GetSharpness

Prototype
Status Display::GetSharpness(
 out octet sharpnessValue)

Parameters
! sharpnessValue – current sharpness value

Description
This API gets the current sharpness value of the display device.

Error codes
! ENOT_IMPLEMENTED

Display::GetCapability

Prototype
Status Display::GetCapability(
 out sequence<boolean> capabilityList)

 366

HAVi SPECIFICATION Version 1.1

Parameters
! capabilityList – list of display capabilities. The ith member of capabilityList

indicates the availability of the capability identified by DisplayCapability value i. The safe
parameter size is 32 boolean values.

Description
Provides a list of capabilities supported by the display device.

Display::GetStandardPictureValue

Prototype
Status Display::GetStandardPictureValue(
 in PictureAttribute type,
 out octet standardValue)

Parameters
! type – the attribute for which the standard value is to be obtained
! standardValue – standard value of the specified picture attribute

Description
Returns a standard value for a specific picture attribute.

For attributes such as CONTRAST and BRIGHTNESS the standard value is not always 50% of the
maximum. The standard value of a given attribute may differ for each manufacture and model.

Error codes
! ENOT_IMPLEMENTED
! EINVALID_PARAMETER

Display::SetPresetMode

Prototype
Status Display::SetPresetMode(
 in DisplayPresetMode displayPresetMode)

Parameters
! displayPresetMode – preset mode to be set

Description
This API sets the display device to a preset mode.

Error codes
! ENOT_IMPLEMENTED
! EINVALID_PARAMETER

Display::GetPresetMode

Prototype
Status Display::GetPresetMode(
 out DisplayPresetMode displayPresetMode)

 367

HAVi SPECIFICATION Version 1.1

Parameters
! displayPresetMode – current preset mode

Description
This API gets the current preset mode of the display device.

Error codes
! ENOT_IMPLEMENTED

Display::GetPresetCapability

Prototype
Status Display::GetPresetCapability(
 out sequence<boolean> capabilityList)

Parameters
! capabilityList – capability list of preset modes. The ith member of capabilityList

indicates the availability of the capability identified by DisplayPresetMode value i. The safe
parameter size is 32 boolean values.

Description
Returns a list of supported preset modes.

Display::SetScreenMode

Prototype
Status Display::SetScreenMode(
 in ScreenMode type)

Parameters
! type – screen mode type to be set

Description
This API sets the screen mode of the display device. Normal mode (4:3 aspect ratio) and wide
mode (16:9 aspect ratio) are switched by setting the screen mode.

Error codes
! ENOT_IMPLEMENTED
! EINVALID_PARAMETER

Display::GetScreenMode

Prototype
 Status Display::GetScreenMode(
 out ScreenMode type)

Parameters
! type – current screen mode

Description

 368

HAVi SPECIFICATION Version 1.1

This API gets the current screen mode of the display device.

Error codes
! ENOT_IMPLEMENTED

Display::SetWindowMode

Prototype
Status Display::SetWindowMode(
 in WindowMode type)

Parameters
! type – window mode to be set

Description
This API supports multiple windows.

! In case of single window mode, the active window is displayed.

! In case of double window mode, the active window is displayed on the left side and the
inactive window on the right side.

! In case of PinP mode, the active window is on the main screen and the inactive window is
in the PinP window.

For swapping the active window and the inactive window see Display::SetActiveWindow.

Error codes
! ENOT_IMPLEMENTED
! EINVALID_PARAMETER

Display::GetWindowMode

Prototype
Status Display::GetWindowMode(
 out WindowMode type)

Parameters
! type – current window mode

Description
This API gets the current window mode of the display device.

Error codes
! ENOT_IMPLEMENTED

Display::SetActiveWindow

Prototype
Status Display::SetActiveWindow(

 369

HAVi SPECIFICATION Version 1.1

 in octet windowNum)

Parameters
! windowNum – active window number to be set

Description
This API sets the active window number.

A display device that supports double window mode and PinP mode has two logical windows. The
windows are called window 0 (windowNum = 0) and window 1 (windowNum = 1).

In case of double window mode and PinP mode, locations for the two windows are changed by
specifying the window number of the active window.

Error codes
! ENOT_IMPLEMENTED
! EINVALID_PARAMETER

Display::GetActiveWindow

Prototype
Status Display::GetActiveWindow(
 out octet windowNum)

Parameters
! windowNum – current active window number

Description
This API gets the current active window number of the display device.

Error codes
! ENOT_IMPLEMENTED

Display::GetWindowRectangle

Prototype
Status Display::GetWindowRectangle(
 in octet windowNum,
 out ushort xPosition,
 out ushort yPosition,
 out ushort width,
 out ushort height)

Parameters
! windowNum – number of the window
! xPosition – offset from the left edge of the display in pixels
! yPosition – offset from the top of the display in pixels
! width – width of the window in pixels
! height – height of the window in pixels

Description

 370

HAVi SPECIFICATION Version 1.1

This API returns the screen area of a window relative to the upper left corner of the display area. If
the WindowMode is SINGLE, a query on the secondary window will return a zero size width and
height.

Error codes
! EINVALID_PARAMETER – windowNum is not supported

Display::AssignPlugToDisplay

Prototype
Status Display::AssignPlugToDisplay(
 in ushort plugNum,
 in octet windowNum)

Parameters
! plugNum – input FCM plug number
! windowNum – window number which is assigned to the plug

Description
This API is used to apply a video substream from an input FCM plug to a specific logical window.
If the plug has multiple video substreams and window 1 is specified the second video substream
will be applied. In all other cases the first video substream will be applied to the window.

Error codes
! EINVALID_PARAMETER

Display::GetVideoLatency

Prototype
Status Display::GetVideoLatency(
 in octet windowNum,
 out short latency)

Parameters
! windowNum – the window for which the latency is to be measured
! latency – the number of milliseconds from the input FCM plug to visible display

Description
In the case of displays with decoders and other digital processing the latency can be high enough to
cause a noticeable lag between the sound and the picture. This API allows the lag to be measured,
so that it can be compensated elsewhere in the system.

Error codes
! EINVALID_PARAMETER

 371

HAVi SPECIFICATION Version 1.1

6.8.4 Display Notification Attributes

Display::contrast

Attribute
octet contrast

Description
New contrast setting.

Display::tint

Attribute
octet tint

Description
New tint setting.

Display::color

Attribute
octet color

Description
New color setting.

Display::brightness

Attribute
octet brightness

Description
New brightness setting.

Display::sharpness

Attribute
octet sharpness

Description
New sharpness setting.

Display::screenMode

Attribute

 372

HAVi SPECIFICATION Version 1.1

ScreenMode screenMode

Description
New screen mode setting.

Display::windowMode

Attribute
WindowMode windowMode

Description
New window mode setting.

Display::activeWindow

Attribute
octet activeWindow

Description
New active window setting.

Display::presetMode

Attribute
DisplayPresetMode presetMode

Description
New preset mode setting.

Display::windowRectangle

Attribute
struct WindowRectangle {
 octet windowNum;
 ushort xPosition;
 ushort yPosition;
 ushort width;
 ushort height;
} windowRectangle

! windowNum – number of the window
! xPosition – offset from the left edge of the display in pixels
! yPosition – offset from the top of the display in pixels
! width – width of the window in pixels
! height – height of the window in pixels

Description

 373

HAVi SPECIFICATION Version 1.1

New window size and position.

6.9 AV Display FCM

The AV Display FCM is a combination of the Display FCM and the Amplifier FCM. This is
offered to simplify the pairing of the display and amplifier, as in a normal television set. It also
allows the manufacturer to internally synchronize the audio and video, when these sources come
from a single transport stream.

The definition for the AV Display FCM is obtained by combining the APIs for the Display FCM
and the Amplifier FCM. Please refer to those sections for detailed definitions.

The only difference is that Display::SetActiveWindow selects the associated audio (sub)
stream as well as the video (sub) stream.

 374

HAVi SPECIFICATION Version 1.1

6.10 Modem FCM

The aim of this chapter is to define a Modem FCM interface and specify the basic operations that a
software element can use to establish asynchronous or isochronous connections over any outside
network and to transfer any amount of data.

Using a modem within an HAVi network is reduced to calls of the Modem FCM APIs. A software
element cannot know all features of every modem, thus should not need to know all commands for
controlling modems. The Modem FCM internally supports the details of modem control in order to
perform the communication required by the calling software element.

Typical applications:

! the Modem FCM can be used by all applications that need modem access: return channel,
fax, BBS, data, data/voice, Internet... applications (it can also be used by the Web Proxy
FCM).

! the Modem FCM can be used for isochronous connections, directly streaming data
between modem plugs and FCM plugs associated with the client.

! another use would be to interface calls coming from the outside (e.g. the user, while on
holiday location) and so receive remote commands intended for local HAVi devices.

6.10.1 Modem Protocol

6.10.1.1 Asynchronous Connections

This Modem FCM provides a software element with facilities to transfer data over a specified
network through a modem by opening one or several asynchronous connections between itself and
one Modem FCM. The number of connections that can be opened depends on the Modem FCM
capabilities (it may be possible for a Modem FCM to handle several modems).

Opening such connections might have two different meanings, from the point of view of a client
software element:

! the software element wants to initiate an outgoing call before transferring data (this is the
call mode), or

! the software element wants to wait for an incoming call, and then transfer data after
connection (this is the answer mode).

Once a connection is opened, and when the connection is established between the local modem and
the remote modem, the software element sends to the Modem FCM the message to transfer, along
with the needed transmission configuration (modem control for setup, off-hook and/or dialup,
connection, and disconnection are transparent from the client side). When the Modem FCM
receives data from the outside, it forwards the data to the client software element.

At the end of communication, the client software element has to close the connection between itself
and the Modem FCM.

 375

HAVi SPECIFICATION Version 1.1

Modem FCMClient
Software
Element Send (cid, data, START)

Send (cid, data, END)

OK

OK

cid, FCM buffer size

AsyncOpen (Comm setup, client buffer size)

Close (cid)

Send (cid, data, MIDDLE)

OK

Send (cid, data, MIDDLE)

OK

Receive (cid, data, END)

OK

Figure 35. Asynchronous Modem FCM Communication

In Figure 35, a client software element opens a connection with the Modem FCM, specifying the
communication setup (phone number to call, transfer rate...) and its buffer size (to segment message
data if needed). If the required connection is possible, the Modem FCM returns an identifier for this
communication, and its own buffer size.

The buffer size exchange between the client software element and the Modem FCM during Open
phase allows the data to be sent (or received) to be split into several write actions: START indicates
that the accompanying data is the first part of a multi-segment transfer, MIDDLE indicates that
another data segment will come afterwards, and END indicates that the accompanying data are the
last part of the data being transferred. Each message is sent after the response from the previous
transfer is received. “OK” in the picture represents the acknowledgement of a transfer(see the
description later in API section).

The client software element can close the connection when it wants.

6.10.1.2 Isochronous Connections

One or several isochronous connections can be established between a FCM associated with the
client software element and the Modem FCM (according to FCM Modem capabilities). Before
establishing these connections, the client software element must know which plugs (the plug
numbers of its associated FCM and the plug numbers of the modem FCM) will be used to transfer
isochronous data.

 376

HAVi SPECIFICATION Version 1.1

client

Modem
FCM

FCM
associated with

the client

Isochronous
Connections

Modem::IsoOpen

Figure 36. Isochronous Modem FCM Communication

Once a connection between these plugs is established (using the Stream Manager), the client
software element can open a connection between itself and the Modem FCM. Note that in the case
the client is a FCM, then the “FCM associated with the client” could be the client itself.

Supporting isochronous connections between the client software element and the Modem FCM is
optional.

6.10.2 Modem Services

Service Comm
Type

Locality Access Resv
Prot

Modem::AsyncOpen M global all

Modem::IsoOpen M global all

Modem::Send M global all

<Client>::Receive MB global Modem (all)

Modem::Close M global all

Modem::GetCapability M global all

Modem::SetConfiguration M global all

6.10.3 Modem Data Structures

ModemType

Prototype
enum ModemType {PSTN};

Description
Defines the type of modem. (PSTN indicates a modem for use on Public Switched Telephone
Networks.)

 377

HAVi SPECIFICATION Version 1.1

CommunicationSetup

Definition
struct PSTNSetup {
 long minDataRate;
 long maxDataRate;
 wstring<64> phoneNumber;
 boolean voice;
 boolean data;
 boolean fax;
 boolean SVD;
};

union CommunicationSetup switch (ModemType) {
 case PSTN: PSTNSetup pstn;
};

Parameters
! minDataRate – minimum rate at which the client software element needs communication

to be established (in bps). The value 0 indicates that communication must be performed at as
high a rate as possible, without exceeding maxDataRate.

! maxDataRate – maximum data rate at which the client wants communication to be
established (in bps). An application may need to specify this if it has to process incoming data,
but is limited by its own computation, buffering... capabilities.

! phoneNumber – ASCII string of dialing characters:
 – when filled with a valid phone number, it indicates that the client application
 wants to initiate an outgoing call (call mode).
 – when left empty, it means that the client application is waiting for an
 incoming call (answer mode)

! voice – when True, sets the modem in voice mode.
! data – when True, sets the modem in data mode.
! fax – when True, sets the modem in fax mode.
! SVD – when True, sets the modem in simultaneous voice and data mode.

The voice, data, fax, SVD booleans can be interpreted by the Modem FCM in call mode
(for instance, when an application wants to send a fax, the modem must be set in fax mode before
phone number dialing). In call mode, only one of the voice, data, fax, SVD booleans can be
set to True at the same time.

In answer mode, the Modem FCM is able to recognize the modulation scheme (during handshake,
via ring indicator...), and thus switch into the recommended mode. However, the voice, data,
fax, SVD booleans must have priority effect on the Modem FCM in answer mode (for instance to
forbid any incoming faxes, or to only accept incoming voice calls...). In answer mode, several of
the voice, data, fax, SVD booleans can be set to True at the same time in order to
enable/disable reception of several incoming call types.

Description
Defines the communication parameters.

ModemCapabilities

Definition

 378

HAVi SPECIFICATION Version 1.1

struct PSTNCapabilities {
 long maxLineSpeed;
 long maxCommunicationNumber;
 boolean isoOpenSupported;
 boolean setConfigSupported;
};

union ModemCapabilities switch(ModemType){
 case PSTN: PSTNCapabilities pstn;
};

Parameters
! maxLineSpeed – maximum line speed the FCM modem is able to support (in bps: e.g.

33600 bps for a V34 modem).
! maxCommunicationNumber – maximum number of connections between the client

application and the Modem FCM that the Modem FCM can support simultaneously for each
client (essentially depends on the hardware).

! isoOpenSupported – when True the modem supports the Modem::IsoOpen API.
! setConfigSupported – when True the modem supports the

Modem::SetConfiguration API.

Description
Modem capabilities.

ModemDisconnection

Prototype
struct ModemDisconnection {
 long cid;
};

Description
Used by the Modem::disconnection attribute.

ModemCallAccept

Prototype
struct ModemCallAccept {
 long cid;
};

Description
Used by the Modem::callAccept attribute.

FileLoc

Prototype
enum FileLoc {START, MIDDLE, END};

Description

 379

HAVi SPECIFICATION Version 1.1

Indicates whether the message from a producer to a consumer is the first of a transfer (START), in
the middle of a transfer (MIDDLE) or the last of a transfer (END). END is used if the transfer is
accomplished in a single message.

6.10.4 Modem API

Modem::AsyncOpen

Prototype
Status Modem::AsyncOpen(
 in CommunicationSetup commInfo,
 out long cid,
 in short clientBufferSize,
 in OperationCode opCode,
 out short modemFcmBufferSize)

Parameters
! commInfo – setup information.
! cid – identifier of the connection. It allows starting several connections from a single software

component and also permits matching a response with a request.
! clientBufferSize – indicates the maximum size (in bytes) of a message accepted by the

requester. The Modem FCM will take this parameter into account during the sending of
incoming transfers.

! opCode – operation code provided by the client that the Modem FCM will use to forward any
incoming data. The client function identified by this operation code must be designed
according to the <Client>::Receive API.

! modemFcmBufferSize – indicates the maximum size (in bytes) of a message accepted by
the node where resides the Modem FCM. The client software element will take this parameter
into account during the sending of outgoing transfers.

Description
This function allows a software element to open an asynchronous connection with the required
configuration parameters. Each Modem::AsyncOpen operation allows the Modem FCM to know
which function to call in order to forward data to its client.

Error codes
! Modem::ENETWORK – the modem is no longer connected to the external network .
! Modem::EBUSY – remote modem is busy.
! Modem::ESETUP – communication with the remote modem cannot be established with the

requested communication setup because the Modem FCM does not support this configuration,
or because line conditions do not allow it.

! Modem::EINVALID_MODE – connection is impossible because Modem FCM does not support
the required mode (Fax, Voice, data or SVD mode).

! Modem::ENUM_CONN – maximum number of opened connections is reached for this FCM.
! Modem::EFORBIDDEN – this phone number is not authorized to be called.

Modem::IsoOpen

Prototype
Status Modem::IsoOpen(

 380

HAVi SPECIFICATION Version 1.1

 in CommunicationSetup commInfo,
 out long cid,
 in FcmPlug modemFcmOutputPlug,
 in FcmPlug modemFcmInputPlug)

Parameters
! commInfo – setup information.
! cid – identifier of the connection. It allows starting several connections from a single software

component and also permits matching a response with a request.
! modemFcmOutputPlug – an output plug of the Modem FCM.
! modemFcmInputPlug – an input plug of the Modem FCM.

Description
This function allows a software element to open an isochronous connection between the client
software element plug and the Modem FCM plug, relying on Stream Manager facilities. Before
calling this Modem::IsoOpen function, the client software element should first:

! use the Fcm::GetPlugCount and Dcm::GetPlugStatus methods to know which plug
of the Modem FCM could be used for the connection between itself (client) and the
modem.

! use the StreamManager::FlowTo method to create an isochronous stream connection
between itself (client) and the modem.

Once the plugs have been connected by the Stream Manager, the client can call the
Modem::IsoOpen function to get an identifier for the modem connection.

This API is optional. Its support can be verified by the Modem::GetCapability API.

Error codes
! ENOT_IMPLEMENTED – the modem does not support isochronous connection.
! Modem::ENETWORK – the modem is no longer connected to the external network .
! Modem::EINVALID_PLUG – at least one of the specified plugs is invalid
! Modem::EBUSY – remote modem is busy.
! Modem::ESETUP – the Modem FCM does not support the communication setup.
! Modem::ENUM_CONN – maximum number of opened connections is reached for this FCM.
! Modem::EFORBIDDEN – this phone number is not authorized to be called.

Modem::Send

Prototype
Status Modem::Send (
 in long cid,
 in FileLoc where,
 in sequence<octet> data)

Parameters
! cid – identifier of the connection between the client application and the Modem FCM (issued

by a client application from a previous AsyncOpen or IsoOpen call).
! where – informs the Modem FCM that this message contains the first, the last or a middle

segment of the data to be transferred.
! data – contains a part of (a multi-segment transfer) or the entire data to be transferred.

 381

HAVi SPECIFICATION Version 1.1

Description
This function allows a client software element to send data to the Modem FCM.

Error codes
! Modem::ENETWORK – the modem is no longer connected to the external network .
! Modem::ESIZE – the data exceeds the size of the buffer in the receiver. The receiver has not

received or processed the data. It is left to the implementation how the sender reacts to this
status.

! Modem::EFAILED – the receiver has aborted the transfer of the current sequence of data
transfers. The sender shall abort the transfer of the current sequence.

! Modem::ECID – cid is not correct or unknown.

<Client>::Receive

Prototype
Status <Client>::Receive (
 in long cid,
 in FileLoc where,
 in sequence<octet> data)

Parameters
! cid – identifier of the connection between the client application and the Modem FCM (issued

by a client application from a previous AsyncOpen or IsoOpen call).
! where – informs the software element client that the message contains the first, the last or a

middle segment of the data to be transferred.
! data – contains a part (a multi-segment transfer) or the entire data transferred for the

connection identified by the cid parameter.

Description
<Client>::Receive is implemented in the client software element. This function allows the
Modem FCM to forward any incoming data to the client software element.

Error codes
! Modem::ESIZE – the data exceeds the size of the buffer in the receiver. The receiver has not

received or processed the data. It is left to the implementation how the sender reacts to this
status.

! Modem::EFAILED – the receiver has aborted the transfer of the current sequence of data
transfers. The sender shall abort the transfer of the current sequence.

! Modem::ECID – incorrect or unknown cid

Modem::Close

Prototype
Status Modem::Close (in long cid)

Parameters
! cid – identifier of the connection between the client software element and the Modem FCM

that has to be removed.

Description

 382

HAVi SPECIFICATION Version 1.1

This function allows a software element to close a modem connection. If an isochronous
connection has been opened, the client application should drop the isochronous stream between
itself and the Modem FCM using the appropriate Stream Manager method.

Error codes
! Modem::ECID – cid is not correct or unknown.

Modem::GetCapability

Prototype
Status Modem::GetCapability(
 out sequence<ModemType> typeList,
 out sequence<ModemCapabilities> capabilityList)

Parameters
! typeList – list of types supported by the queried Modem FCM.
! capabilityList – modem features corresponding to each different modem type of

typeList.

Description
This function allows a software element to get all modem types supported by the Modem FCM,
and the capabilities associated with each type.

Modem::SetConfiguration

Prototype
Status Modem::SetConfiguration (
 in long cid,
 in CommunicationSetup commInfo)

Parameters
! cid – connection identifier identifying the connection for which the configuration has to be

changed.
! commInfo – modem setup information

Description
This function allows a software element to set a modem and/or a connection into a particular
configuration (e.g., dynamically change the data transfer rate during a communication, switch from
data mode to voice mode during a multi-player game communication...)

However, to switch from call mode to answer mode (or conversely), the client application must
close the connection and re-open a new one.

This API is optional. Its support can be verified by the Modem::GetCapability API.

Error codes
! ENOT_IMPLEMENTED – the modem does not support this function.
! Modem::ECONN – the connection cannot be maintained with this new configuration. The setup

change request will not be taken into account, and old parameters will be kept. It is left up to
the application to resume the connection.

! Modem::ECID – cid is not correct or unknown.

 383

HAVi SPECIFICATION Version 1.1

6.10.5 Modem Notification Attributes

Modem::disconnection

Attribute
ModemDisconnection disconnection

Description
Occurrence of a network disconnection on the connection specified by the cid value. Only useful
with comparator ANY.

Modem::callAccept

Attribute
ModemCallAccept callAccept

Description
Occurrence of an incoming call on the connection specified by the cid value. Only useful with
comparator ANY.

 384

HAVi SPECIFICATION Version 1.1

6.11 Web Proxy FCM

The Web Proxy FCM offers sharable access to the Internet. It supports Internet protocols (for
example HTTP messages) between a Web client and a Web server.

The software element client has only to find a Web Proxy FCM in the HAVi network (using the
Registry service) and call the corresponding functions to initiate its Web connection. It can then
send or receive data according to an “Internet application protocol” (HTTP for example).

Software element
WEB CLIENT

HTTP

message passing message passing TCP/IP

WEB Proxy
FCM

internet access

TCP/IP

internet access

Web Server

HTTP

HAVi home network Internet

Gateway

Figure 37. Web Proxy Communication

The Web Proxy FCM has to support (at least one of) the commonly used Internet application
protocols like HTTP, FTP, NNTP, SNMP, POP and IMAP. Its API is sufficiently flexible to allow
the extension with future client/server protocols that run over an IP stack.

6.11.1 Overview

6.11.1.1 The Web Gateway

The Web gateway is any BAV, IAV or FAV device within the HAVi network. Figure 37 shows
the case where the Web Proxy FCM is on the gateway itself. However, the HAVi architecture
allows the Web Proxy FCM to be installed outside the gateway device (i.e., the gateway could be a
BAV device).

The Web Proxy FCM can be viewed as a general purpose proxy or user agent. Consequently the
current specification could be extended by defining constraints that provide facilities according to
the specification of particular application protocols. For example, a possible HTTP constraint
would be that the Web Proxy FCM interpret the URL (within HTTP requests) and use the protocol
corresponding to the scheme indicated in the URL.

The gateway has to contain the IP stack, according to IETF RFC 1122 and RFC 1123, and means
to access the Internet. Access (see Figure 37) could be:

! a link to a service provider through the PSTN or the ISDN (using a telephone modem)

! a link to service provider through a cable network (using a cable modem)

The Web Proxy FCM is associated with the gateway and, of course, a DCM. This DCM has to

 385

HAVi SPECIFICATION Version 1.1

offer a GUI through DDI or an uploadable havlet. This GUI allows a user to configure the gateway
(phone number of web service provider, modem speed for example).

6.11.1.2 The Web Client

The Web client is the software element that reaches a Web server using one of the supported
application protocols. It could be, for example, a Web browser or the DCM Manager (when it has
to upload a DCM).

6.11.1.3 Web Proxy FCM Protocol

6.11.1.3.1 Multiple Web Transactions

The Web Proxy FCM offers an API that allows one or more client software elements to send
transactions to a Web server. Moreover a client could manage several consecutive transactions.

To use the service of the Web Proxy FCM, the Web client opens a connection with the FCM
according to the desired application protocol (HTTP for example). It can then communicate: send
and receive (HTTP transactions for example). Finally it closes the connection.

Web client Web
Proxy FCMSend (cid, data, END)

OK

Receive (cid, data,

OK, cid, message_size

Close (cid)

OK

Open(HTTP, message_size)

Receive (cid, data,

OK

Receive (cid, data,

OK

Figure 38. Web Proxy and a Web Client Communication

In Figure 38, the Web client opens a connection with the Web Proxy FCM to use it as a proxy
HTTP agent. To open a connection the Web client has to provide the Internet application protocol
type, the address of the Web server and the maximum message buffer size (taking into account the
message passing protocol overhead – see section 5.14).

The Web Proxy FCM establishes the Internet connection (contacts its service provider if needed).
With the response of the Open request the Web Proxy FCM provides an identifier for the
connection (cid) and also its maximum message buffer size (taking into account the message
passing protocol overhead – see section 5.14).

 386

HAVi SPECIFICATION Version 1.1

Once the connection is established the Web client can start to use the link according to its protocol.
In Figure 38 the Web client sends a HTTP request (which fits within one HAVi message). The
Web Proxy FCM receives this message, performs a TCP connection4 with the HTTP server and
then forwards the request to the server, waits for the response and returns it using one or more
messages according to the response size.

The connection is closed by the Web client.

In the case of a lost message, the Web Proxy FCM will be blocked until reception of the response
and the client will also be blocked until the reception of the next message. In this case it is the
responsibility of the client to close the connection after a time out fixed by the client.

The way to map a client with the HTTP transaction is vendor dependent. (For example, the SEID
and connection identifier of the Web client could be mapped with a TCP connection5.)

6.11.1.4 Application Protocols

The Internet application protocol may be one of the following:

! HTTP1.1
! FTP
! SMTP
! POP3
! IMAP4
! NNTP

The API offered by the Web Proxy FCM is sufficiently flexible to accept new protocols. A “get
capability” service allows the client to determine the protocols supported by the Web Proxy FCM.

6.11.1.5 Application Protocol Constraints

This section gives, for each application protocol supported by the Web Proxy FCM, a list of
constraints, rules and actions the Web Proxy FCM must support.

6.11.1.5.1 HTTP Constraints

The Web Proxy FCM acts as an HTTP proxy server and interprets the URL and reacts in
conformance with the RFC 1738.

6.11.1.5.2 FTP Constraints

No constraints are defined.

6.11.1.5.3 SMTP Constraints

No constraints are defined.

4 It is not necessary to open a TCP connection for each HTTP request.
5 Typically the TCP connection identifier could be the socket ID using the socket API.

 387

HAVi SPECIFICATION Version 1.1

6.11.1.5.4 IMAP Constraints

No constraints are defined.

6.11.1.5.5 POP Constraints

No constraints are defined.

6.11.1.5.6 NNTP Constraints

No constraints are defined.

6.11.2 Web Proxy Services

Service Comm
Type

Locality Access Resv
Prot

WebProxy::Open M global all

WebProxy::Close M global all

WebProxy::Send M global all

<Client>::Receive MB global WebProxy (all)

WebProxy::GetCapability M global all

6.11.3 Web Proxy Data Structures

FileLoc

Prototype
enum FileLoc { START, MIDDLE, END};

Description
Indicates whether the message from a producer to a consumer is the first of a transfer (START), in
the middle of a transfer (MIDDLE) or the last of a transfer (END). END is used if the transfer is
accomplished in a single message.

InternetProtocolType

Prototype
enum InternetProtocolType { HTTP, FTP, SMTP, POP3, IMAP4,
NNTP};

Description
The list of Internet application protocols the Web Proxy FCM may support.

WebAddressType

Prototype

 388

HAVi SPECIFICATION Version 1.1

enum WebAddressType { DN, IP, LOCAL};

Description
Indicates the type of an Internet host address: either a domain name or an IP address, or the device
associated with the Web Proxy FCM (i.e., the gateway in Figure 37).

WebAddressTypeIP

Prototype
enum WebAddressTypeIP { IPV4, IPV6};

Description
Indicates the type of an IP address: either an IPv4 address (as defined in section 3.1 of IETF RFC
1738) or an IPv6 address (as defined in IETF RFC 2373).

WebAddressIP

Prototype
union WebAddressIP switch (WebAddressTypeIP)
{
 case IPV4: octet[4] v4Address;
 case IPV6: octet[16] v6Address;
};

Description
Indicates an IP address in either IPv4 address format or IPv6 address format.

WebAddressName

Prototype
typedef sequence <octet, 255> WebAddressName;

Description
Indicates a domain name (as defined in section 3.1 of IETF RFC 1738).

WebAddress

Prototype
union WebAddress switch(WebAddressType)
{
 case DN: WebAddressName name;
 case IP: WebAddressIP address;
 case LOCAL: ;
}

Description
Indicates an Internet host address which will be formatted either as an IP address or a domain
name. LOCAL refers to the device associated with the Web Proxy FCM (i.e., the gateway in Figure

 389

HAVi SPECIFICATION Version 1.1

37).

WebProxyDisconnection

Prototype
struct WebProxyDisconnection {
 long cid;
};

Description
Used by the WebProxy::disconnection attribute.

6.11.4 Web Proxy API

WebProxy::Open

Prototype
Status WebProxy::Open(
 in InternetProtocolType protocol,
 in short clientBufferSize,
 in OperationCode opCode,
 in WebAddress address,
 in uint portNumber,
 out long cid,
 out short proxyBufferSize)

Parameters
! protocol – the application protocol for the session the requester wants to open. The Web

Proxy FCM shall apply some well-known constraints according to this protocol described in
section 6.11.1.5.

! clientBufferSize – indicates the maximum size (in bytes) of a message accepted by the
requester. The Web Proxy FCM will take this parameter into account during the sending of the
responses to the client.

! opCode – this is the operation code the Web Proxy FCM will use to forward to the client an
incoming response. The client function identified by this operation code must be designed
according to the <Client>::Receive API.

! address – the address of the host with which the caller wants to communicate. If the address
type is LOCAL and the Web Proxy FCM does not support this option then the
WebProxy::EADDRESS error code shall be returned.

! portNumber – the port number for the underlying UDP or TCP communication. If this value
is 0 then the port number will be the default port number associated with protocol.

! cid – the identifier of this connection with the Web Proxy FCM. It allows several connections
from the same software component client and also permits matching a response with a request.

! proxyBufferSize – indicates the maximum size (in bytes) of messages accepted by the Web
Proxy FCM. The Web client will take this parameter into account during the sending of the
requests.

Description
This function allows a software element client (or Web client) to open a connection with a Web
Proxy FCM. This connection is characterized by the application protocol to be used over the

 390

HAVi SPECIFICATION Version 1.1

connection.

Error codes
! ERESOURCE_LIMIT – resource allocation error
! WebProxy::ENUM_CONN – maximum number of opened connections is reached for this FCM
! WebProxy::ENETWORK – the Web Proxy FCM is no longer connected to the external network
! WebProxy::EPROTOCOL – the protocol type is not supported by the Web client
! WebProxy::EADDRESS – the address is unknown

WebProxy::Close

Prototype
Status WebProxy::Close(in long cid)

Parameters
! cid – the identifier of this connection with the Web Proxy FCM.

Description
This function is used to close a connection with a Web Proxy FCM.

Error codes
! WebProxy::ECID – The cid is unknown.

WebProxy::Send

Prototype
Status WebProxy::Send(
 in long cid,
 in FileLoc where,
 in sequence<octet> webData)

Parameters
! cid – the identifier of the connection between the Web client and the Web Proxy FCM.

Issued to the Web client by a previous WebProxy::Open call.
! where – informs the Web Proxy FCM that this message contains the first, the last or a middle

segment of the data to be transferred.
! webData – contains a part (a multi-segment transfer) or the entire request according to the

application protocol used on the connection identified by the cid parameter.

Description
This function allows a software element client (or Web client) to send a request to a Web server
according to the application protocol (HTTP for example).

Error codes
! WebProxy::ESIZE – the data exceeds the size of the buffer in the receiver. The receiver has

not received or processed the data. It is left to the implementation how the sender reacts to this
status.

! WebProxy::ENETWORK – the Web Proxy FCM is no longer connected to the external
network..

! WebProxy::EFAILED – the receiver has aborted the transfer of the current sequence of data

 391

HAVi SPECIFICATION Version 1.1

transfers. The sender shall abort the transfer of the current sequence.
! WebProxy::ECID – the cid is unknown.

<Client>::Receive

Prototype
Status <Client>::Receive(
 in long cid,
 in FileLoc where,
 in sequence<octet> webData)

Parameters
! cid – the identifier of the connection between the Web client and the Web Proxy FCM.

Issued to the Web client by a previous Open call.
! where – informs the Web client that the message contains the first, the last or a middle

segment of the data to be transferred.
! webData – contains a part (a multi-segment transfer) or the entire response according to the

application protocol used on the connection identified by the cid parameter.

Description
<Client>::Receive is implemented in the client and allows the Web Proxy FCM to forward to
the client an incoming response according to the application protocol (HTTP for example).

Error codes
! WebProxy::ESIZE – the data exceeds the size of the buffer in the receiver. The receiver has

not received or processed the data. It is left to the implementation how the sender reacts to this
status.

! WebProxy::EFAILED – the receiver has aborted the transfer of the current sequence of data
transfers. The sender shall abort the transfer of the current sequence.

! WebProxy::ECID – the cid is unknown.

WebProxy::GetCapability

Prototype
Status WebProxy::GetCapability(
 out sequence<boolean> protocolList,
 out sequence<boolean> typeList)

Parameters
! protocolList – the list of Web application protocols which are available through this FCM.

The ith member of protocolList indicates the availability of the protocol identified by
InternetProtocolType value i. The safe parameter size is 32 boolean values.

! typeList – the list of Web address types that are supported by this FCM. The ith member of
typeList indicates the availability of the address type identified by WebAddressType value
i. The safe parameter size is 32 boolean values.

Description
This function permits a Web client to discover the protocols supported by the Web Proxy FCM.

 392

HAVi SPECIFICATION Version 1.1

6.11.5 Web Proxy Notification Attributes

WebProxy::disconnection

Attribute
WebProxyDisconnection disconnection

Description
Occurrence of a disconnection on the connection specified by the cid value. Only useful with
comparator ANY.

 393

HAVi SPECIFICATION Version 1.1

7 HAVi Java API Description

7.1 Overview

To allow flexible and future-proof CE platforms, HAVi supports the uploading of Device Control
Modules, Application Modules and havlets on HAVi FAV devices. The uploadable entities are
written in Java bytecode and an FAV supports a Java virtual machine on which these entities can
run. This chapter describes the definitions necessary to guarantee interoperability with respect to
the uploading and execution of Java bytecode.

7.2 Profiles

HAVi FAV nodes support the uploading of different types of HAVi Java entities. Each FAV must
be able to host DCMs of BAV devices, and so must be able to upload and execute DCM code
units. Moreover, each FAV itself decides whether it uploads Application Modules or havlets. To
guarantee that a HAVi Java entity shall be able to execute on each HAVi FAV to which it may be
uploaded, two FAV profiles are defined indicating which classes and packages an FAV must
support.

! Profile #1: Packages and classes that are (may be) used in DCM code units and
Application Modules code units, and therefore must be supported by every FAV.

! Profile #2: Packages and classes that are (may be) used by havlets and therefore, need to
be supported by each FAV that uploads and execute havlets. This set of packages and
classes is an extension of the set of Profile #1.

Note that whether an FAV uploads havlets is a decision it makes on its own and is not influenced or
ordered by other HAVi nodes in the network. Therefore, it is not necessary for other nodes, or for
(DCM/Application Module/havlet) code units to know whether an FAV is of profile #1 or #2.

The uploadable code unit shall not include classes which are in the org.havi package name-space or
any package name-space which begins with 'org.havi'. FAVs shall not execute any bytecode
contained in such classes. The mechanism by which they achieve this (and hence the time when
rejection of the class occurs) is implementation dependent. It is recommended that platforms
consider using the checkPackageDefinition method of java.lang.SecurityManager to accomplish this.

7.2.1 Java API Referencing Rules

There are a number of situations in this specification where there are references from Java APIs
which are mandatory in the HAVi specification to Java APIs which are not mandatory in the HAVi
specification. These include the following :

! Methods where at least one of the arguments is a class or interface which is not
mandatory in the HAVi specification.

! Methods whose return value is specified as a class or interface which is not mandatory in
the HAVi specification.

! Methods which throw an exception which is not mandatory in the HAVi specification.

 394

HAVi SPECIFICATION Version 1.1

! Fields whose type is a class or interface which is not mandatory in the HAVi
specification.

In these situations, the HAVi specification does not require the method or field concerned to be
present in implementations.

Their presence or otherwise is a technical and licensing issue for implementations. Implementations
may include more than is specified here. However DCM code units, Application Module code
units, and havlet code units are not compliant if they require more classes or interfaces than defined
in this specification.

7.2.2 Profile #1: DCMs and Application Modules

The following packages and classes must be supported by each FAV and may be used in DCM and
Application Module code units:

! java.lang, as defined in the Java 1.1 Core API (reference [8])

! java.util, as defined in the Java 1.1 Core API (reference [8])

! org.havi.constants, as defined in Appendix A

! org.havi.types, as defined in Appendix A

! org.havi.system, as defined in Appendix A

! org.havi.Iec61883, as defined in Appendix A

! org.havi.fcm.*, as defined in Appendix A

! java.io as defined in the Java 1.1 Core API (reference [8]) apart from the following classes
File, FileInputStream, FileNotFoundException, FileOutputStream, FileReader, FileWriter,
FilenameFilter and RandomAccessFile. These named classes are not mandatory in this
specification.

! java.net.URL, MalformedURLException as defined in the Java 1.1 Core API (reference [8])

The external forms used by objects implementing java.io.Serializable is not fixed by this specification
or any of its referenced specifications. Hence there is no requirement for the classes
java.io.ObjectInputStream and java.io.ObjectOutputStream to be inter-operable between HAVi
implementations.

Support of java.net package is required for at least one implementation dependent protocol for
use with instances of the java.net.URL class. The methods Class.getResource() and
ClassLoader.getResource() shall return instances of java.net.URL using this protocol when used to
access files carried in the JAR file of an uploaded code unit.

The method URL.getContent shall work as specified in its specification even though the reference to
the URLConnection is not required to be valid. Except as specified in the list below, this method shall
return instances of java.io.InputStream for all content types.

! For images, java.awt.image.ImageProducer shall be returned

 395

HAVi SPECIFICATION Version 1.1

Moreover, to upload and install code units (see next section) an FAV may need to support (parts of)
the following packages:

! java.util.zip, as defined in the Java 1.1 Core API (reference [8])

An FAV only needs to provide parts of these packages to properly implement the uploading and
installation of HAVi code units, it does not need to provide these classes to uploaded Java entities.
So, writers of DCM and Application Module code units shall not rely on the availability of the
java.io and java.util.zip packages.

All interfaces added as proprietary extensions to org.havi.* shall have default (package) access. All
classes, methods and fields added as proprietary extensions to org.havi.* shall have default (package)
or private access.

As long as the defined contracts (specification) are respected and kept, it is an allowable option to
override protected, public and package level methods in the org.havi.* package using the standard
java inheritance conventions.

The following restrictions apply to the use of the java.lang package by uploaded code units.
Uploaded code units shall not violate these restrictions. The behavior of FAVs should an uploaded
code unit violate these restrictions is not specified. These restrictions do not remove any class or
method signatures concerned from the platform.

! The following methods shall not be called:

! Runtime.exec()
! Runtime.load()
! Runtime.loadLibrary()
! Runtime.runFinalizersOnExit()
! System.exit()
! System.load()
! System.loadLibrary()
! System.runFinalizersOnExit()
! Thread.stop()
! Thread.suspend()
! Thread.resume()

! The following fields shall not be used:

! System.in

! Methods in the following classes shall not be called:

! java.lang.Process

! Uploaded code units shall be able to use:

! System.out
! System.err
! Runtime.traceInstructions()
! Runtime.traceMethodCalls()

for debugging without any adverse effects to the code unit. The output shall not be visible to
normal end users and shall not conflict with any other API or feature of the platform. It is an
allowed implementation option to not generate any output. It is not an allowed implementation to
stall or block until some implementation specific debugging device is connected.

! The java.lang.Compiler class and following methods shall be taken as hints from an
application to the system however there is no guarantee of what happens:

 396

HAVi SPECIFICATION Version 1.1

! Runtime.gc()
! System.gc()

! The System.setProperties() and System.setSecurityManager() methods will always throw an
exception when called by uploaded code units.

! SecurityManager.checkCreateClassLoader() shall always throw a SecurityException if an
application attempts to create its own subclass of java.lang.ClassLoader.

7.2.3 Profile #2: Havlets

Besides the packages defined in Profile #1, the following packages must be supported by each FAV
that uploads havlets and may be used in havlet code units:

! A subset of Java AWT as defined in section 8.2.2

! org.havi.ui and org.havi.ui.event, as defined in Appendix A

7.3 Mapping HAVi IDL to Java

7.3.1 Introduction

The HAVi specification uses a subset of IDL to represent data types, structures and API’s (IDL
operations). The intent is to provide a normative way of representing the API’s. The HAVi
Messaging System will send data in big-endian order and the mapping of data types is based on
CDR (Common Data Representation) from GIOP (General Inter Orb Protocol) version 1.1 as
described in section 3.2.3.4.

This section explains the rules applied to derive classes that form the basis of the HAVi Java APIs.
The rules are mostly derived from Object Management Group’s IDL to Java mapping document.
However, to keep with the requirement that the HAVi Java APIs be of a small memory foot-print
and provide high performance, the rules have been slightly modified. This requirement is consistent
with the requirements of consumer electronic devices.

7.3.2 const

An IDL const with constructed type is mapped to a public interface with the same name as the type
of the constant with the prefix “Const”. The value of the const is mapped to a public static final
field in the interface with the same name as the constant. All tables with constant values in the
annex of this specification are mapped to appropriate “Const” interfaces.

 397

HAVi SPECIFICATION Version 1.1

An example of mapping a const of a constructed type to Java is given below:

IDL JAVA

const TypeX A = 0x0005;
const TypeX B = 0x0008;

public interface ConstTypeX {
 public static final TypeX A = 0x0005;
 public static final TypeX B = 0x0008;
}

7.3.3 Basic Types

7.3.3.1 boolean

The IDL boolean type correspond to the boolean Java type.

7.3.3.2 char, wchar and octet

The IDL type char is mapped to the Java type byte.

The IDL type wchar is mapped to the Java type char. Since HAVi states that wchar size is 2 bytes
long and is in the UNICODE char set then the mapping is natural. HAVi recommends using the
IDL wchar type for printable characters.

The IDL type octet is mapped to the Java type byte.

7.3.3.3 string and wstring

OMG IDL defines the string type string to be consisting of all possible 8-bit quantities except
null. A string is similar to a sequence of char. Hence the mapping to Java is a sequence of
bytes.

The IDL type wstring is mapped to the Java.lang.String. A wstring in HAVi only contains
UNICODE characters (two bytes per character)

7.3.3.4 Integers

The IDL integer types are mapped to the Java integer types as the followings:

IDL Java

short short

unsigned short short

long int

unsigned long int

long long long

unsigned long long long

As the unsigned qualifier does not exist in Java, the programmer will have to take care of
comparisons, which will involve an IDL integer.

The corresponding Java class (Integer, Long) will be used as help for unsigned comparisons.

 398

HAVi SPECIFICATION Version 1.1

7.3.3.5 Floating Points

The IDL floating-point types (float and double) are mapped with the corresponding Java
floating point types.

7.3.4 Constructed Types

The IDL struct and union types defined in HAVi are mapped to class definitions in Java. These
class definitions can be found in org.havi.types. These classes extend either the HAVi defined
HaviObject abstract class or HaviImmutableObject abstract class.

The HaviObject class extends the java.lang.Object class and implements both of the
org.havi.Marshallable interface and the java.lang.Cloneable interface. The HaviObject class implements
an equals method, a hashCode method, a marshal method, an unmarshal method and a clone method
as abstract methods.

The HaviImmutableObject class extends the HaviObject class and implements an unmarshal method as a
final method which always throw the HaviUnmarshallingException exception.

If the classes extend the HaviObject class, then they implement an equal method, a hashCode method,
a marshal method, an unmarshal method and a clone method as concrete methods.

If the classes extend the HaviImmutableObject class, then they implement an equals method, a
hashCode method, a marshal method, and a clone method as concrete methods.

Also the classes must provide a constructor for constructing an instance of the object from a
HaviByteArrayInputStream. This is further explained in the Marshalling and Unmarshalling section.
Classes extending HaviImmutableObject do not permit any methods that change the member values
once the object is constructed. That is, there must be no accessor methods to change any value of
the object.

The equals method concerns semantic equality of objects, i.e., equality of all fields. If the argument
of the equals method is null, the equals method shall return false. The hashCode method shall return
a hash code value for the object and shall provide the same contract as specified in the description
of hashCode method in java.lang.Object. The clone method of the class which extends the HaviObject
class shall provide recursive cloning of objects and return the clone object, i.e., if object X refers to
an object Y, a clone of X refers to a clone of Y. The clone method of the class which extends the
HaviImmutableObject class shall return the object itself for which the clone method is called.
Marshalling and unmarshalling are explained in Section 7.3.7.

7.3.4.1 enum

The IDL enum type is mapped to a public Java interface. The Java interface name is the name of the
IDL enum type with the prefix “Const”. Each enum value corresponds to a public static final field.
If no specific value is provided for the enum then the value assigned will start from 0 and will be
incremented in units of 1 for succeeding values.

An example of mapping an enum to Java is given below:

IDL JAVA

enum TypeX { A, B, C }

public interface ConstTypeX{
 public static final int A =0,
 B=1,

 399

HAVi SPECIFICATION Version 1.1

 C=2;
}

7.3.4.2 struct

The IDL struct type is mapped to a final Java class. The Java class name is the name of the IDL
struct type. Each struct member corresponds to a pair of an accessor method and a modifier
method for an internal private field which keeps the member value. The Java class provides a
constructor to initialize the struct object and additionally a null constructor (the struct fields could
be updated after the object creation) if it extends from HaviObject.

In addition all classes defined for struct must extend from either the abstract HaviObject class or
the abstract HaviImmutableObject class. They must implement the methods equals, hashCode, marshal
and clone. In addition, the unmarshal method must be implemented if the classes defined for struct
extends HaviObject. Also the classes must provide a constructor for constructing an instance of the
object from a HaviByteArrayInputStream. This is further explained in section 7.3.7 on marshalling and
unmarshalling.

An example of mapping a struct to Java is given below:

IDL JAVA

struct TypeStruct
{
 AType A;
 Btype B;
 Ctype C;
};

public final class TypeStruct extends HaviObject {
 private AType A;
 private Btype B;
 private Ctype C;

 public final TypeStruct(){}
 public final TypeStruct(AType _A, Btype _B, Ctype _C){
 A = _A;
 B = _B;
 C = _C;
 }

 public final TypeStruct(HaviByteArrayInputStream hi)
 throws HaviUnmarshallingException {
 …
 }

 public void marshal(HaviByteArrayOutputStream ho)
 throws HaviMarshallingException {
 ...
 }

 public void unmarshal(HaviByteArrayInputStream hi)
 throws HaviUnmarshallingException {
 …
 }

 public boolean equals(Object o) {

 }

 public int hashCode() {
 …
 }

 public Object clone() {
 ...
 }

}

 400

HAVi SPECIFICATION Version 1.1

The behavior of accessor methods getting each struct member value, modifier methods setting each
struct member value, and constructors initializing instances shall be as follows:

! If the Java class extends the HaviObject class

! If the field is a class other than subclasses of the HaviImmutableObject class, a reference
to the object is got/set.

! If the field is a subclass of the HaviImmutableObject class, a reference to the object is
got/set.

! If the field is of the basic data type, the basic data is got/set by value

! If the Java class extends the HaviImutableObject class

! If the field is a class other than subclasses of the HaviImmutableObject class, a deep copy
of the object is created and got/set.

! If the field is a subclass of the HaviImmutableObject class, a reference to the object is
got/set.

! If the field is of the basic data type, the basic data is got/set by value

7.3.4.3 union

The IDL union is mapped to a final Java class with the same name that has:

! a default constructor (only if extending from HaviObject)
! one constructor method for each branch
! an accessor method for the discriminator, named getDiscriminator()
! an accessor method for each branch
! a modifier method for each branch (only if extending from HaviObject)
! a modifier method for each branch that has more than one case label (only if extending

from HaviObject)
! a default modifier method if needed (only if extending from HaviObject)

The normal name conflict resolution rule is used (prepend an “_”) for the discriminator if there is a
name clash with the mapped union type name or any of the field names.

The branch accessor and modifier methods are overloaded and named after the branch. Accessor
methods shall raise the HaviUnionException if the expected branch is not set.

One modifier method exists for each member accepting as unique parameter the member’s value;
thus, the discriminator is automatically set to a legal value for that union member. One accessor
method exists for each union member. It will return the value of the current member. Attempt to
access a member which is not the current one (regarding the discriminator value) will generate an
exception. The member’s constructors initialize the discriminator to a specified value
corresponding to a legal value (in case of unique non-default case label, then that label is used as
the implicit discriminator). The default class constructor does not initialize the union. Thus it is
necessary to use a member modifier method or member constructor method before using any
accessor method.

All the classes mapped from unions will have a set of constructors which can initialize the class to
any branch of the union. These constructors will have a parameter called switchType to specify the
branch.

In addition all classes defined for union must extend either the abstract HaviObject class or the
abstract HaviImmutableObject class. They must implement the abstract methods equals, hashCode,
marshal and clone. In addition, the unmarshal method must be implemented if the classes defined
for union extends HaviObject.. All classes must provide a constructor for constructing an instance of
the object from a HaviByteArrayInputStream. This is further explained in section 7.3.7 on marshalling

 401

HAVi SPECIFICATION Version 1.1

and unmarshalling.

An example of mapping a union to Java is given below:

IDL JAVA

union TypeUnion switch
(long)
{
 case 1: AType A;
 case 2: Btype B;
 case 3:
 default:Ctype C;

};

public final class TypeUnion extends HaviObject {

 private int discriminator; // the discriminator

 private AType A;
 private Btype B;
 private Ctype C;

 public int getDiscriminator () throws
HaviUnionException{...}

 public TypeUnion (HaviByteArrayInputStream hi)
 throws HaviUnmarshallingException { ... }

 public TypeUnion (int switchType, AType _A)
 throws HaviInvalidValueException { ... }
 public void setA (AType _A)
 throws HaviInvalidValueException { ... }
 public Atype getA ()
 throws HaviUnionException { ... }

 public TypeUnion (int switchType, BType _B)
 throws HaviInvalidValueException { ... }
 public void setB (Btype _B)
 throws HaviInvalidValueException { ... }
 public BType getB ()
 throws HaviUnionException { ... }

 public TypeUnion (int switchType)
 throws HaviInvalidValueException { ... }

 public TypeUnion (int switchType, CType _C)
 throws HaviInvalidValueException { ... }
 public void setC(Ctype _C)
 throws HaviInvalidValueException { ... }
 public CType getC ()
 throws HaviUnionException { ... }

 public boolean equals (Object o) {

 }

 public int hashCode() {
 …
 }

 public void marshal (HaviByteArrayOutputStream hbaos)
 throws HaviMarshallingException {

 }

 public void unmarshal(HaviByteArrayInputStream hbais)
 throws HaviUnmarshallingException {
 …
 }

public Object clone () {

 }

 402

HAVi SPECIFICATION Version 1.1

}

The behavior of accessor methods getting each union member value, modifier methods setting each
union member value, and constructors initializing instances shall be as follows:

! If the Java class extends the HaviObject class

! If the field is a class other than subclasses of the HaviImmutableObject class, a reference
to the object is got/set.

! If the field is a subclass of the HaviImmutableObject class, a reference to the object is
got/set.

! If the field is of the basic data type, the basic data is got/set by value

! If the Java class extends the HaviImutableObject class

! If the field is a class other than subclasses of the HaviImmutableObject class, a deep copy
of the object is created and got/set.

! If the field is a subclass of the HaviImmutableObject class, a reference to the object is
got/set.

! If the field is of the basic data type, the basic data is got/set by value

7.3.4.4 sequence

The IDL sequence type is mapped to a Java array of the mapped type. Bounded sequences imply
a bound check during marshalling of IDL operation parameters. Holder classes (explained later)
for the sequences are defined by using the same name as the type of the sequence with “SeqHolder”
appended to it. However, sequence<octet> shall be mapped into HaviByteArrayOutputStream if it
needs to be marshalled using CDR. And sequence<octet> shall be mapped into
HaviByteArrayInputStream if it needs to be unmarshalled using CDR (See the section 7.3.7).
Otherwise sequence <octet> shall be mapped into byte[].

7.3.4.5 array

The IDL array type is mapped to the Java array. Bounded arrays imply a bound check during
marshalling and unmarshalling of IDL operation parameters.

7.3.4.6 typedef

Java does not have a typedef construct.

7.3.4.6.1 Simple IDL Types

Any typedef that is a type declaration for a simple type is mapped to the original (mapped type)
everywhere the typedef type appears. Thus an IDL construct typedef ushort ElementId
does not generate a corresponding ElementId class. Wherever ElementId appears in the IDL it is
assumed to be replaced with ushort and the appropriate mapping rules are further applied.

7.3.4.6.2 Complex IDL Types

Typedefs for non-arrays and sequences are “unwound” to their original type until a simple IDL
type or user-defined IDL type (of the non typedef variety) is encountered. Typedefs for arrays
and sequences are converted to corresponding named classes. Thus the IDL typedef

 403

HAVi SPECIFICATION Version 1.1

sequence<octet> Bitmap is converted to a corresponding Bitmap class. An example of a Bitmap
class is given below:
// Java
package org.havi.types;
public final class Bitmap extends HaviObject {
 private byte[] value;

 public Bitmap() {…}

 public Bitmap(byte[] value) throws HaviInvalidValueException {
 …
 this.value = value;
 …
 }

 public Bitmap(HaviByteArrayInputStream hbais) throws HaviUnmarshallingException {
 …
 this.unmarshal(hbais);
 …
 }

 public byte[] getValue() {
 return(value.clone());
 }

 public void setValue(byte[] value) throws HaviInvalidValueException {
 this.value = value;
 }

 public Object clone() {…}
 public boolean equals(Object o) {…}
 public int hashCode() {…}
 public void marshal(HaviByteArrayOutputStream hbaos) throws HaviMarshallingException {…}
 public void unmarshal(HaviByteArrayInputStream hbais) throws HaviUnmarshallingException {…}
}

In addition all classes defined for typedef must extend either the abstract HaviObject class or the
abstract HaviImmutableObject class. They must implement the abstract methods equals, hashCode,
marshal and clone. In addition, the unmarshal method must be implemented if the classes defined
for typedef extends HaviObject. All the classes must provide a constructor for constructing an
instance of the object from a HaviByteArrayInputStream. This is further explained in the Marshalling
and Unmarshalling section.

7.3.5 Holder Classes

Support for out and inout parameter passing modes requires the use of additional “holder”
classes. These classes are available for all the basic IDL datatypes and sequences. For user defined
IDL types, such as struct and union, if the types are mutable, no additional holder classes are
required. For user defined IDL types, such as struct and union, if the types are immutable, the
holder class name is the Java type name (with its initial letter capitalized) to which the datatype is
mapped with an appended Holder. For the basic IDL datatypes, the holder class name is the Java
type name (with its initial letter capitalized) to which the datatype is mapped with an appended
Holder. (E.g. IntHolder for an int.) For sequence the holder class is defined by using the same
name as the type of the sequence with SeqHolder appended to it.

Each holder class must extend from the HaviHolder class. Each holder class has a pair of the accessor
method named getValue and the modifier method named setValue for an internal private field named
"value" which holds a basic data value, an array instance or an immutable instance. Each holder
class provides a constructor to initialize the value field of a holder instance, and additionally
provides a default constructor (the value field can be updated after the object creation). The default

 404

HAVi SPECIFICATION Version 1.1

constructor sets the value field to the default value for the type of the value field as defined by the
Java language: FALSE for boolean, 0 for numeric and char types and null for arrays and other
classes. Each holder class must implement equals, hashCode, marshal and unmarshal methods. In
addition each holder class must provide a constructor for constructing a holder instance from a
HaviByteArrayInputStream. This is further explained in section 7.3.7 on marshalling and
unmarshalling. The behavior of the accessor method getValue(), the modifier method setValue(), and
the constructor initializing the value field shall be as follows:

! If the value field is a subclass of the HaviImmutableObject class, a reference to the object is
got/set.

! If the value field is an array class, a reference to the object is got/set.

! If the value field is of the basic data type, the basic data is got/set by value

An example of a holder class for a basic type and a sequence type is given below:
// Java
package org.havi.types;
public final class ShortHolder extends HaviHolder {
 private short value;

 public ShortHolder() { …}

 public ShortHolder(short value) throws HaviInvalidValueException {
 …
 this.value = value;
 …
 }

 public ShortHolder(HaviByteArrayInputStream hbais) throws HaviUnmarshallingException {
 …
 this.unmarshal(hbais);
 …
 }

 public short getValue() {
 return(value);
 }

 public void setValue(short value) throws HaviInvalidValueException {
 this.value = value;
 }

 public boolean equals(Object o) { … }
 public int hashCode() { … }
 public void marshal(HaviByteArrayOutputStream hbaos)throws HaviMarshallingException { … }
 public void unmarshal(HaviByteArrayInputStream hbais) throws HaviUnmarshallingException { … }

}

// Java
package org.havi.types;
public final class SeidSeqHolder extends HaviHolder {
 private SEID[] value;

 public SeidSeqHolder() { …}

 public SeidSeqHolder(SEID[] value) throws HaviInvalidValueException {
 …
 this.value = value;
 …

 405

HAVi SPECIFICATION Version 1.1

 }

 public SeidSeqHolder (HaviByteArrayInputStream hbais) throws HaviUnmarshallingException {
 …
 this.unmarshal(hbais);
 …
 }

 public SEID[] getValue() {
 return(value.clone());
 }

 public void setValue(SEID[] value) throws HaviInvalidValueException {
 this.value = value;
 }

 public boolean equals(Object o) { …}
 public int hashCode() { … }
 public void marshal(HaviByteArrayOutputStream hbaos) throws HaviMarshallingException { … }
 public void unmarshal(HaviByteArrayInputStream hbais) throws HaviUnmarshallingException { … }
}

7.3.6 Exceptions

The IDL exceptions are not supported. However, the HAVi Java APIs define a HaviException
corresponding to each error code and in addition define a number of other exceptions. All
exceptions corresponding to HAVi error codes in HAVi Java APIs are extended from the base class
HaviException. These classes are described in detail in Appendix A. Refer to section 7.3.8.3 on
Error Codes to note when exceptions are raised.

7.3.6.1 Exception Throwing and Handling

The following section applies to all packages in the org.havi package namespace with the exception
of org.havi.ui and sub-packages of that package. Exceptions to be thrown in HJA are divided into the
following two categories: Subclasses of the HaviException class and Subclasses of the Exception
class.

Exceptions which are the subclasses of the HaviException class correspond to the return error codes
of HAVi API (See Section 7.3.8.3.). An exception in this category is thrown if an error code was
received from another software element or if an error code should be returned to another software
element. And since a client shall interpret a received unknown error code as
EUNIDENTIFIED_FAILURE, HaviUnidentifiedFailureException shall be thrown if an unknown error
code is received. In addition, Java clients shall catch any HaviException to avoid termination on an
unknown HaviException thrown by a HaviClient of a newer FAV (See Section 5.1.7.).

The subclasses of the Exception class are for notifying of abnormalities or exceptional events
among the instances of the classes defined in HJA. There are the following six exceptions in this
category:

! HaviInvalidValueException
! HaviMarshallingException
! HaviUnmarshallingException
! HaviUnionException
! HaviMsgListenerExistsException
! HaviMsgListenerNotFoundException

On execution of a constructor or a modifier method in a subclass of the HaviObject class,
HaviInvalidValueException is thrown if at least one argument is invalid.

 406

HAVi SPECIFICATION Version 1.1

On execution of any constructor or any method other than constructors and modifier methods in
subclasses of the HaviObject class, java.lang.IllegalArgumentException (and not
HaviInvalidValueException) is thrown if at least one argument is invalid.

On execution of any constructor or any method in HJA, unless the HAVi Specification or the
Javadoc explicitly states that null can be used in the constructor or method,
java.lang.NullPointerException (and not HaviInvalidValueException) is thrown if at least one argument is
null (regardless of whether the class which provides these constructor or method extends the
HaviObject class or not.).

If HaviInvalidValueException is caught on execution of a constructor or a method in subclasses of the
HaviClient class, HaviServerHelper class, or HaviListener class, the constructor or method shall handle
this exception in one of the following ways:

! solve the exceptional event within the method itself
! throw the exception HaviInvalidParameterException
! send the error code EINVALID_PARAMETER to an appropriate software element

On execution of a marshal method in a subclass of the HaviObject or HaviHolder class
HaviMarshallingException is thrown if marshalling fails for some reason. Some possible reasons could
be, use of invalid data (e.g. marshalling a null instance) or the lack of resources (e.g. marshalling
extremely long array data).

On execution of an unmarshal method or an unmarshal constructor in a subclass of the HaviObject or
HaviHolder class HaviUnmarshallingException is thrown if unmarshalling fails for some
reason. Some possible reasons could be, use of invalid data (e.g., the message data is shorter than
expected or the first value of a sequence is negative) or the lack of resources (e.g., unmarshalling
extremely long array data).

 If HaviMarshallingException or HaviUnmarshallingException is caught, it is impossible to
determine whether the cause of this exception is the use of invalid data or an abnormality in
execution environments. Thus, the constructor or method which caught HaviMarshallingException or
HaviUnmarshallingException shall handle this exception in one of the following ways:

! solve the exceptional event by the method itself
! throw the exception HaviUnidentifiedFailureException
! send the error code EUNIDENTIFIED_FAILURE to an appropriate software element

On execution of an accessor method in a subclass of the HaviObject to which union is mapped,
HaviUnionException is thrown if the discriminator value is different from the value corresponding to
the accessor method. For example, EventId.getSystemEid() throws HaviUnionException if this method
is executed when EventId is not a system event (See Section 7.3.4.3).

On execution of the addHaviListener method in the SoftwareElement class,
HaviMsgListenerExistsException is thrown if the instance of subclasses of the HaviListener class
specified as argument has already been attached to the instance of the SoftwareElement class.

On execution of the removeHaviListener method in the SoftwareElement class,
HaviMsgListenerNotFoundException is thrown if the instance of subclasses of the HaviListener class
specified as argument has not been attached to the instance of the SoftwareElement class.

7.3.6.2 States of Instance and Arguments

When an exception is thrown from a method of an instance, the state of the instance and the state of
each argument of the method shall be defined by the following rules:

 407

HAVi SPECIFICATION Version 1.1

1) For any classes in HJA:

1-1) When any exception is thrown by any constructor or method and unless the HAVi
Specification or the Javadoc explicitly describes the states of the instance or the arguments:

! The state of the instance which threw the exception is indeterminate.
! The state of each argument of the method is indeterminate.

2) For subclasses of the HaviObject class, subclasses of the HaviHolder class, the
HaviByteArrayOutputStream class, and the HaviByteArrayInputStream class:

2-1) When a HaviUnionException is thrown by any method:

! The state of the instance which threw the exception does not change.

2-2) When a HaviInvalidValueException is thrown by any constructor or method:

! The state of the instance which threw the exception does not change.
! The state of each argument of the method does not change.

2-3) When a HaviMarshallingException is thrown by any method:

! The state of the instance which threw the exception does not change.

3) For the SoftwareElement class:

3-1) When a HaviMsgListenerExistsException, a HaviMsgListenerNotFoundException, or any exception
which is of a subclass of the HaviException class is thrown by any method:

! The state of the instance which threw the exception does not change.
! The set of the attached listeners of the instance which threw the exception does

not change.
! Each state of the attached listeners of the instance which threw the exception does

not change.

3-2) When any exception other than a HaviMsgListenerExistsException, a
HaviMsgListenerNotFoundException, or an exception which is of a subclass of the HaviException class is
thrown by any method:

! The set of the attached listeners of the instance which threw the exception does
not change.

! Each state of the attached listeners of the instance which threw the exception does
not change.

4) For the subclasses of the HaviClient class and the HaviServerHelper class:

4-1) When any exception which is of a subclass of the HaviException class is thrown by any
message-sending method:

! The state of the instance which threw the exception does not change.

7.3.7 Marshalling and Unmarshalling

HAVi requires that messages are sent and received following the Common Data Representation
standard (see section 3.2.3.4). To facilitate sending of Java objects around the HAVi network, all
data type classes used in the HAVi Java APIs, including “holder” classes, shall implement
“marshalling” of the objects into output data stream and also implement “unmarshalling” of the
input data. Every class for a type shall implement the marshal and unmarshal methods. In cases of
classes extending from HaviImmutableObject class, the unmarshal method shall just throw
HaviUnmarshallingException. All classes shall also provide a constructor, which accepts an input data
stream and constructs itself by reading it. When marshalling bounded arrays and sequences, the
marshal method shall raise a HaviMarshallingException if the size of the array or the sequence exceeds

 408

HAVi SPECIFICATION Version 1.1

the specified limit. Similarly while unmarshalling HaviUnmarshallingException shall be raised if the
incoming stream has more data then the specified limit. HaviUnmarshallingException shall be also
raised when a value of unmarshalled data is invalid with respect to the class.

7.3.7.1 HaviByteArrayInputStream & HaviByteArrayOutputStream

HAVi Java APIs provides two stream classes that provide methods for “marshalling” and
“unmarshalling” messages.

HaviByteArrayInputStream class extends the java.io.ByteArrayInputStream class and provides for reading
incoming data that is in Common Data Representation (CDR) format as specified in section 3.2.3.4.

HaviByteArrayOutputStream class extends the java.io.ByteArrayOutputStream class and provides for
writing out data that is in CDR format.

7.3.8 HaviClient and HaviServerHelper

7.3.8.1 Client and Server

In the HAVi specification, several IDL interfaces are defined. Each interface defines several
operations. For example, Cmm1394::GetGuidList, where Cmm1394 is the IDL interface and
GetGuidList is the operation. Each IDL interface is basically mapped to a Java client class and a
server helper class. Client classes and server helper classes are explained below.

The HAVi Java APIs can be used to implement client objects (software elements which would like
to reach a server’s software element API, as havlets, Application Modules, DCMs, FCMs, or
system software elements) and server objects (DCMs or FCMs for example).

7.3.8.1.1 Client Classes

To implement client objects, the HAVi Java APIs provide “client classes”.

There are two kinds of client classes. The first kind are called “remote client classes” or simply
“client classes”. The second kind are called “local client classes”. (Some APIs have only “remote
client classes” because such APIs does not distinguish remote access and local access.)

Remote client classes provide methods to access software elements of a specified type. The
methods construct appropriate messages and send them to the specified software elements. In the
case of asynchronous methods the result is returned to all listeners installed by the caller. In the case
of synchronous methods the resulting byte stream is parsed back and returned to the caller. All
remote client classes are extended from the HaviClient class.

Local client classes provide methods to access local software elements of a specified type. In the
case of asynchronous methods the result is returned to all listeners installed by the caller. In the case
of synchronous methods the resulting byte stream is parsed back and returned to the caller. All local
client classes are extended from the corresponding remote client class.

For example, the remote client class of the Cmm1394 API is defined as follows:

// Java

public class Cmm1394Client extends HaviClient {
 …

 409

HAVi SPECIFICATION Version 1.1

}

And the local client class of the Cmm1394 API is defined as follows:

// Java

public class Cmm1394LocalClient extends Cmm1394Client {
 …
}

In the client classes, each IDL operation is mapped to two Java methods: one with the same name
(except starting in lowercase), the other one with the same name (again starting in lowercase)
suffixed with Sync. For example:
//IDL
Status Cmm1394::GetGuidList(
 out sequence<GUID> activeGuidList,
 out sequence<GUID> nonactiveGuidList)

//Java

public class Cmm1394LocalClient extends Cmm1394Client {
 …

 public final void getGuidList(IntHolder transactionId)
 throws HaviGeneralException,
 HaviMsgException { ... }

 public final void getGuidListSync(int timeout,
 GuidSeqHolder activeGuidList,
 GuidSeqHolder nonactiveGuidList)
 throws HaviGeneralException,
 HaviMsgException,
 HaviCmm1394NotReadyException { ... }
 …
}

The first method, getGuidList, will send the message that corresponds to the IDL
Cmm1394::GetGuidList API using the Messaging System’s MsgSendRequest API. The
method does not wait for, or handle, the reply message coming back. The result is returned to all
listeners installed by the caller. Therefore, the signature only has the in and inout parameter of
the IDL definition. Moreover, it returns the transactionId used by the Messaging System in
sending the message; this allows the caller to match the corresponding incoming reply later on.

The second method, getGuidListSync, sends the call via the Messaging System’s
MsgSendRequestSync API. The method waits for the reply message and handles the reply by
providing the result in the out and inout parameters. Therefore, the signature provides all in,
out and inout parameters. Moreover, the signature provides a parameter to specify the timeout to
be used in the MsgSendRequestSync API. A value of “0” for timeout would result in the default
timeout of the Messaging System.

In case of a local API such as the above case, note that this message transfer is merely a logical
model and whether MsgSendRequest or MsgSendRequestSync API is actually called and the
corresponding message is actually sent is implementation dependent.

Client classes only contain the methods accessible by non-system components, i.e. methods that
may be accessed from any uploaded entity. They do not contain methods that can only be called by
a system component and which may be handled in a proprietary way.

 410

HAVi SPECIFICATION Version 1.1

7.3.8.1.2 Server Helper Classes

To help the designer of a non-system software elements (e.g., DCMs and FCMs) the HAVi Java
APIs provide “server helper classes”. These classes contain methods to send back responses to
incoming requests and also methods to call message back APIs (see section 5.1.1). All server helper
classes are extended from the HaviServerHelper class.

A response method gets as parameters a destination SEID, a return code, a transaction ID (as
defined in MsgSendResponse) and all output parameters defined in the specific IDL API. The
instance of the SoftwareElement class which provides the MsgSendResponse API and the transfer
mode of the MsgSendResponse API are given through the constructor of the server helper class.
The SoftwareElement class is described in section 7.3.9.

The following example is the server helper class for a VCR FCM. The response method
corresponding to the API Vcr::Play is described. The instance of the SoftwareElement class and
the transfer mode are given through the constructor of the VcrServerHelper class.

// Java

public class VcrServerHelper extends HaviServerHelper {

 public VcrServerHelper(SoftwareElement se,
 int transferMode) { ... }

 public final void playResp(SEID destSeid,
 Status returnCode,
 int transactionId)
 throws HaviGeneralException,
 HaviMsgException { ... }
 …
}

The following example is the server helper class for an FCM. The response method corresponding
to the Fcm::SubscribeNotification API is described. The two methods corresponding to the
message back for the <Client>::FcmNotification (which is implemented in the client) are
also described.
// Java

public class FcmServerHelper extends HaviServerHelper {

 public FcmServerHelper(SoftwareElement se,
 int transferMode) { ... }

 public final void subscribeNotificationResp(SEID destSeid,
 Status returnCode,
 int transactionId,
 HaviByteArrayOutputStream currentValue,
 short notificationId)
 throws HaviGeneralException,
 HaviMsgException { ... }

 …

 void fcmNotification(
 SEID destId,
 IntHolder transactionId,
 OperationCode opCode,
 short notificationId,
 short attributeIndicator,
 HaviByteArrayOutputStream value)
 throws HaviGeneralException,

 411

HAVi SPECIFICATION Version 1.1

 HaviMsgException { ... }

 void fcmNotificationSync(
 SEID destId,
 int timeOut,
 OperationCode opCode,
 short notificationId,
 short attributeIndicator,
 HaviByteArrayOutputStream value)
 throws HaviGeneralException,
 HaviMsgException { ... }

 …
}

7.3.8.2 Parameter Passing Modes

IDL in parameters, which implement call-by-value semantics, are mapped to normal Java actual
parameters. If an operation has a return value other than SUCCESS in a HAVi message, then a
corresponding HaviXXXException is raised in the code of the operation caller (usually the client-side,
but the server-side in the case of a MB, or “message back”, operation). Note that an exception may
be thrown at either the client-side or the server-side, but never on both sides. in parameters are not
modified by the procedure.

IDL out and inout parameters, which implement call-by-result and call-by-value/result
semantics, cannot be mapped directly into the Java parameter passing mechanism for basic types
and sequences. This mapping defines additional holder classes for all the IDL basic and sequence
types, which are used to implement these parameter modes in Java. The client supplies an instance
of the appropriate Java holder class that is passed (by value) for each IDL out or inout parameter.
The contents of the holder instance (but not the instance itself) are modified by the invocation, and
the client uses the (possibly) changed contents after the invocation returns. In the case of user-
defined types such as struct and union, there are no additional holder classes needed and the
client supplies an instance of the appropriate Java class itself.

Parameters defined as out or inout in the IDL description may be modified by the procedure.
This concerns the object passed as parameters as well as all (sub) objects to which the parameter
refers. This allows the caller to allocate and reuse the classes needed for the reply and alleviates the
need for creating new objects by the method on each call.

All types of variables (in, out and inout) shall not be changed by the environment (in a separate
thread) during the complete duration of the call.
// IDL
module Example {
 interface Modes {
 void operation (in long inArg,
 out long outArg,
 inout long inoutArg);
 }
}

// Java
package Example;
public interface Modes {
 void operation(int inArg,
 IntHolder outArg,
 IntHolder inoutArg);
 }

 412

HAVi SPECIFICATION Version 1.1

}

In the above the actual in parameter comes in as only an ordinary value. But for the out and
inout parameters, an appropriate holder, if necessary, must be constructed. A typical use case
might look as follows:
// use Java code
// select a target object
Example.Modes target = …;

// get the in actual value
int inArg = 57;

// prepare to receive out
IntHolder outHolder = new IntHolder();

// set up the in side of the inout
IntHolder inoutHolder = new IntHolder(131);

// make the invocation
int result = target.operation(inArg, outHolder, inoutHolder);

// use the value of the outHolder
… outHolder.setValue() …

// use the value of the inoutHolder
… inoutHolder.getValue() …
… inoutHolder.setValue() …

Before the invocation, the input value of the inout parameter must be set in the holder instance
that will be the actual parameter. The inout holder can be filled in either by constructing a new
holder from a value or by assigning to the value of an existing holder of the appropriate type. After
the invocation, the client uses the outHolder.setValue() to set the value of the out parameter, and the
inoutHolder.getValue() to access the output value of the inout parameter. The return result of the
IDL operation is available as the result of the invocation.

7.3.8.3 Error Codes

The return error codes in the HAVi specification are mapped to exceptions of similar name
prefixed with HAVi, suffixed with Exception and the beginning “E” removed and “_” removed. Each
word is started with uppercase and the remaining letters are in lowercase. Thus the error code
ENOT_READY is translated to a HaviNotReadyException class. If the error code belongs to a particular
API then the API name is inserted immediately after the prefix HAVi. Thus Msg::ENOT_READY
would translate to HaviMsgNotReadyException. The HAVi Java APIs define in addition several other
exceptions. These exception classes can be found in the org.havi.types package.

Note that it might be the case that an exception is raised but that the out and inout parameters still
have proper values.

7.3.8.4 Parameter Checking

7.3.8.4.1 Parameter Checking Before Sending Messages

 Before any message is sent, all parameters in the message shall be checked as follows:

! On execution of a constructor or a modifier method in a subclass of the HaviObject class or
a subclass of the HaviImmutableObject class:

! when a value which is not allowed by the HAVi Specification is attempted to be set to

 413

HAVi SPECIFICATION Version 1.1

any "basic data type" field of the instance, a HaviInvalidValueException shall be thrown.
! when null is attempted to be set to any “class” field of the instance, a

java.lang.NullPointerException shall be thrown.

! On execution of a message-sending method in the SoftwareElement class, a subclass of the
HaviClient class, or a subclass of the HaviServerHelper class:

! when a value which is not allowed by the HAVi Specification is specified as any
"basic data type" "in" parameter of the method, a HaviInvalidParameterException shall be
thrown.

! when a holder instance which is specified as any "basic data type holder class",
"out/inout" parameter of the method turns out to hold a value which is not allowed by
the HAVi Specification, a HaviInvalidParameterException shall be thrown.

! when a holder instance which is specified as any "basic data type sequence holder
class", "out/inout" parameter of the method turns out to hold a value which is not
allowed by the HAVi Specification, a HaviInvalidParameterException shall be thrown.

! when null is specified as any "class" parameter of the method, a
java.lang.NullPointerException shall be thrown.

7.3.8.4.2 Parameter Checking After Receiving Message

After any message is received, all parameters in the message shall be checked as follows:

! On execution of an unmarshall constructor in any classes:

! when a value which is not allowed by the HAVi Specification is attempted to be set to
any "basic data type" field of the instance, a HaviUnmarshallingException shall be
thrown.

! On execution of a synchronous message-sending method in the SoftwareElement class, a
subclass of the HaviClient class, or a subclass of the HaviServerHelper class:

! when a value which is not allowed by the HAVi Specification is set as the held value
of any "basic data type holder class", "out/inout" parameter of the method, a
HaviInvalidParameterException shall be thrown.

! when a value which is not allowed by the HAVi Specification is set as at least one of
the held values of any "basic data type sequence holder class", "out/inout" parameter
of the method, a HaviInvalidParameterException shall be thrown.

7.3.9 SoftwareElement

The SoftwareElement class implements safe access to the HAVi Messaging System for a single
software element. A fresh SEID is created for a software element during construction of a
SoftwareElement object. To send messages, class SoftwareElement implements the Messaging System
send API primitives, without the SEID sourceSeid parameter. The SEID of the source (or
sender) of a message is implicitly contained in the SoftwareElement object.

To handle incoming messages, HAVi defines the notion of a HAVi listener. All HAVi listener
classes extend the HaviListener class and implement one abstract method called receiveMsg. This
receiveMsg method generally filters and processes a message, received from the underlying system
(the message dispatcher).

A listener is installed through the addHaviListener methods of the SoftwareElement class or via the
SoftwareElement(HaviListener) constructor.. A listener can specify reception of all incoming messages
for the software element, or only messages originating from a particular sender SEID.

Received messages are delivered to all HaviListener objects installed for the associated

 414

HAVi SPECIFICATION Version 1.1

SoftwareElement object (and optionally sender SEID).

 Received messages are delivered to all HaviListener objects installed for the associated
SoftwareElement object (and optionally sender SEID). The receiveMsg method of the listeners are
invoked in the order that the listeners have been installed.

For a given message received by a SoftwareElement object, the haveReplied argument of the listeners'
receiveMsg method shall be set to false until a listener has returned true. After a listener has returned
true, all following listeners' receiveMsg shall have haveReplied set to true.

In the case that the message is a request, and all listeners have returned false, the SoftwareElement
shall send a response with the error code UNKNOWN_MESSAGE. If one or more listeners return true
the SoftwareElement shall not send a response.

The implementor of the listener should be aware that during the time that the receiveMsg method
blocks, the related SoftwareElement may not be able to process other incoming messages.

How messages incoming to a device are dispatched to the relevant SoftwareElement objects is
implementation dependent. Also, whether and how a receiving Messaging System implements the
noack (Msg::ETARGET_REJECT) message/mechanism is SoftwareElement (or Messaging System)
implementation dependent.

A SoftwareElement object has its own thread to call the HaviListener.receiveMsg callbacks; it does not
block other SoftwareElement objects or the underlying Messaging System while performing these
callbacks. Consequently, there are no restrictions on the implementations of the (application
provided) HaviListener.receiveMsg method: the method does not have to be treated as an interrupt.
However, one must be careful when using SoftwareElement.msgSendRequestSync in the
HaviListener.receiveMsg method, since this will block the calling software element until the response
to the supplied request is received. While the msgSendRequestSync is blocked no other incoming
messages can be processed by the software element. This may result in a deadlock.

For example, suppose that a registry is implemented in such a way that it uses msgSendRequestSync
within its HaviListener.receiveMsg to forward GetElement requests to other registries. When two
applications on two different nodes (A1 and A2, respectively) happen to query their registries (R1
and R2, respectively) at approximately the same time, a deadlock may occur. R1 is busy handling
the request of A1 and waits for the response to the GetElement forwarded to R2. During this
period, R1 cannot process incoming messages. Furthermore, R2 is busy handling the request of A2
and waits for the response to the GetElement forwarded to R1. Also, during this period, R2 cannot
process incoming messages. This is a deadlock situation which will result in timeouts of the
msgSendRequestSync call in both R1 and R2.

A general solution is to avoid synchronous sends in cases where it might lead to deadlock, or to add
sufficient threads in the Messaging System clients. For example, to avoid the scenario described
above, one additional thread per Registry would suffice.

Java programs will access the class SoftwareElement in a multi-threaded fashion. To avoid
unnecessary EBUSY exceptions it is preferable that the implementation of the class SoftwareElement
either supports outstanding messages as defined in chapter 3.2.1.2.8 or serializes any parallel
messages.

7.4 Code Units

HAVi Java code units are entities for uploading Java bytecode by FAV nodes. Basically, the format
of a Java code unit is the Java archive or “JAR” format as specified in Java 1.1 [7][8]. The class

 415

HAVi SPECIFICATION Version 1.1

loader of an FAV resolves class and resource names relative to the root directory of the archive. For
the different type of code units, i.e., DCM code units, Application Module code units and havlet
code units, there are different requirements on the actual class definitions that must be in the JAR
file. The way they are handled by an FAV is basically the same:

! The FAV loads the classes in code unit JAR file such that they are available for the code
unit. Classes in package <none> are located in the root directory of the archive.

! The FAV finds a specific class definition with the predefined name (the different types of
code units are specified below) and makes a new instance of the specified class.

! The FAV calls the install method of the newly created object with proper parameters for
that type of class. Also, the FAV provides a reference to an UninstallationListener interface
(see below) by which the installed object can indicate when it has uninstalled itself.

! When the installed object indicates its installation via an UninstallationListener, the FAV
releases the reference to the object to allow the removal via the Java garbage collector.

To allow indication of uninstallation, the FAV provides an UninstallationListener which has the
following interface (in package org.havi.system):
public interface UninstallationListener{

 /*
 * To be called by the installed object to indicate
 * that it has removed itself completely (removed
 * all subscriptions, unregistered and closed its
 * message handle) and that the reference to the
 * object can be removed and the object can be
 * destroyed by the garbage collector.
 */
 public void uninstalled();
}

7.4.1 DCM Code Units

A DCM code unit is a code unit consisting of code to install a DCM. As for all code units, the
format is a Java JAR file. Specific for DCM code units is that they must contain a concrete class
named DcmCodeUnit in package <none> that implements DcmCodeUnitInterface:
public class DcmCodeUnit
 implements org.havi.system.DcmCodeUnitInterface {
 …
}

This allows the DCM manager to find the proper class for installation of the DCM code unit.

The interface DcmCodeUnitInterface is an interface defined in org.havi.system as:
public interface DcmCodeUnitInterface {

 public int install(GUID nodeId, UninstallationListener listener);

 public void uninstall();
}

DcmCodeUnit::install

Prototype
public int install(

 416

HAVi SPECIFICATION Version 1.1

 GUID nodeId,
 UninstallationListener listener);

Parameters
! nodeId the GUID referring to the device the DCM corresponds to
! listener reference to a listener to be called on uninstallation

Description
Installs a DCM code unit. The GUID provides means to communicate with a guest device via the
CMM. The install() method shall install exactly one DCM and zero or more FCMs associated with
the DCM. The uninstalled() method of the provided listener is invoked by the DCM code unit to
notify its installer (the local DCM Manager) that all its software elements have unsubscribed their
subscriptions, have been unregistered, have closed their messages handles and released access to
the corresponding guest device. This allows removal of the object by the garbage collector and a
new DCM code unit to be installed for the guest device, if appropriate.

The install method should only take care of installation and should return as soon as possible (it shall
not provide a thread for execution).

Return value
! 0: if the DCM code unit has been successfully installed.
! 1: if the installation failed and no DCM software elements have been installed.

DcmCodeUnit::uninstall

Prototype
public void uninstall();

Description
This method makes the DCM code unit abort its activities at once. The code unit takes care that all
its software elements have unsubscribed their subscriptions, have been unregistered, have closed
their messages handles and have released access to the corresponding guest device. It indicates its
uninstallation via the uninstalled() method of the provided listener.

7.4.2 Application Module Code Units

An Application Module code unit is a code unit consisting of code to install an Application
Module. As for all code units, the format is a Java JAR file. Specific for Application Module code
units is that they must contain a concrete class named AMCodeUnit in package <none> that
implements AMCodeUnitInterface:
public class AMCodeUnit
 implements org.havi.system.AMCodeUnitInterface {
 …
}

This allows an FAV to find the proper class for installation of the Application Module’s code unit.

The interface AMCodeUnitInterface is an interface defined in org.havi.system as:
public interface AMCodeUnitInterface {

 public int install(
 TargetId targetId,
 boolean n1Uniqueness,
 UninstallationListener listener);

 417

HAVi SPECIFICATION Version 1.1

 public void uninstall();
}

AMCodeUnit::install

Prototype
public int install(
 TargetId targetId,
 boolean n1Uniqueness,
 UninstallationListener listener);

Parameters
! targetId Target ID of the Application Module
! n1Uniqueness indication of whether the n1 field in targetId has been assigned so as to be

persistently unique to this application
! listener reference to a listener to be called on uninstallation

Description
Installs an Application Module code unit The install() method shall install exactly one AM. The
Target ID of this Application module is the Target ID provided by the caller of this method (the
host on which this Application Module is installed) in the targetId parameter. The targetID has been
constructed by the host according to the description given in the Target ID definition in section
5.6.2.

The Application Module constructs its HAVi Unique ID based on values of the parameters
provided by the host. The targetId and the n1Uniqueness field of the HUID of this Application
Module shall be the same as the targetId and n1Uniqueness field provided by the caller, the other
fields of the HUID may be decided by this Application Module itself (according to the rules for
HUIDs).

The unInstalled() method of the provided listener is invoked by the Application Module code unit to
notify to its installer that all its software elements have unsubscribed their subscriptions, have been
unregistered and have closed their messages handles. This allows removal of the object by the
garbage collector.

The install method should only take care of installation and should return as soon as possible (it shall
not provide a thread for execution).

Return value
! 0: if the Application Module code unit has been successfully installed.
! 1: if the installation failed and no Application Module software elements have been installed.

AMCodeUnit::uninstall

Prototype
public void uninstall();

Description
This method makes the Application Module code unit abort its activities at once. The code unit
takes care that all its software elements have unsubscribed their subscriptions, have been
unregistered and have closed their messages handles. It indicates its uninstallation via the
uninstalled() method of the provided listener.

 418

HAVi SPECIFICATION Version 1.1

7.4.3 Havlet Code Units

A havlet code unit is a code unit consisting of Java bytecode to install a havlet. As for all Java code
units, the format is a Java JAR file. Specific for havlet code units is that they must contain a
concrete class named HavletCodeUnit in package <none> that implements HavletCodeUnitInterface:
public class HavletCodeUnit
 implements org.havi.system.HavletCodeUnitInterface {
 …
}

This allows an FAV to find the proper class for installation of the havlet code unit.

The interface HavletCodeUnitInterface is an interface defined in org.havi.system as:
public interface HavletCodeUnitInterface {

 public int install(
 SEID source,
 UninstallationListener listener);

 public void uninstall();
}

HavletCodeUnit::install

Prototype
public int install(
 SEID source,
 UninstallationListener listener);

Parameters
! source SEID of the source where the code unit has been uploaded from
! listener reference to a listener to be called on uninstallation

Description
Install the havlet code unit. source must be the SEID of the source (DCM or Application Module)
from which the havlet code unit has been retrieved. This provides the havlet with a communication
mechanism to its source, via standard HAVi messaging. The install() method shall install exactly one
havlet. The uninstalled() method of the provided listener is invoked by the havlet code unit to notify to
its installer that all its software elements have unsubscribed their subscriptions, have been
unregistered and have closed their messages handles This allows removal of the object by the
garbage collector.

Return value
! 0: the havlet code unit has been successfully installed.
! 1: no havlet code unit has been installed.

HavletCodeUnit::uninstall

Prototype
public void uninstall();

Description
This method makes the havlet code unit abort its activities at once. The code unit takes care that all
its software elements have unsubscribed their subscriptions, have been unregistered and have

 419

HAVi SPECIFICATION Version 1.1

closed their messages handles. It indicates its uninstallation via the uninstalled() method of the
provided listener.

7.5 Isochronous Data Processing

Virtual FCMs, introduced in section 3.5.2.5, allow the construction of HAVi applications that
process isochronous data. This section describes the APIs provided by HAVi for such applications.

Implementation of an FCM in general depends on whether the FCM is embedded (implemented in
native code) or uploaded (implemented in Java bytecode). HAVi does not specify native APIs, so
implementation of an embedded FCM (whether physical or virtual) is entirely platform dependent
(however the embedded FCM must respond to the HAVi messages specified in section 5.7.3). In
the case of uploaded FCMs, which are platform independent, HAVi must specify the Java APIs
needed for their implementation. The org.havi.system package provides interfaces to the main HAVi
system components: the Messaging System, Communication Media Manager, Event Manager and
Registry. This package is sufficient for developing an uploaded physical FCM. Uploaded virtual
FCMs, on the other hand, require additional support. The org.havi.system package provides
sufficient functionality for implementing a control interface (note, this includes controlling the
content interface) but does not support implementation of the content interface itself.

For example, consider a virtual FCM which sinks isochronous data. The Stream Manager can be
used to establish a connection, resulting in data flowing to the FCM, but neither the Stream
Manager nor other HAVi system components include APIs which expose isochronous data. In
order to process isochronous data, virtual FCMs must use the org.havi.Iec61883 package.

The org.havi.Iec61883 package supports the IEC 61883.1 protocol for transmission of isochronous
data over IEEE 1394. It consists of the following classes:
 Iec61883InputStream
 Iec61883OutputStream

Iec61883InputStream
public class Iec61883InputStream
 extends java.io.InputStream

Iec61883InputStream allows virtual FCMs to consume data from a 1394 isochronous channel. The
read() method provides the virtual FCM with the payload data from IEC 61883.1 CIP packets.
Depacketization of CIP packets is handled by Iec61883InputStream.

Iec61883OutputStream
public class Iec61883OutputStream
 extends java.io.OutputStream

Iec61883OutputStream allows virtual FCMs to produce data on a 1394 isochronous channel. The
write() method provides the payload data for IEC 61883.1 CIP packets. Packetization and
transmission timing are handled by Iec61883OutputStream.

7.5.1 An Example

The following example illustrates how the above classes could be used in the implementation of a
virtual FCM. This example is not complete and is merely intended to illustrate how the
org.havi.Iec61883 classes relate to each other and to give a possible template for their use.
import org.havi.constants;
import org.havi.types;

 420

HAVi SPECIFICATION Version 1.1

import org.havi.system;
import org.havi.Iec61883;

class ExampleVirtualFCM extends FcmServerHelper {
 // this virtual FCM has N input plugs and M output plugs
 private Iec61883InputStream[] src = new Iec61883InputStream[N];
 private Iec61883OutputStream[] sink = Iec61883OutputStream[M];

 public void IecAttachResp(SEID destSeid, Status returnCode, int transactionId,
 IecPlug pcr, InternalPlug plug)
 {
 // check for error conditions, if ok make stream
 // first find channel, assume myDcm is DcmClient for parent DCM
 //
 myDcm.getChannelUsageSync(new IntHolder tid, pcr, new ShortHolder channel);
 if(pcr.getDir() == ConstDirection.IN)
 src[plug.getPlugNum()] = new Iec61883InputStream(channel.getValue());
 else
 sink[plug.getPlugNum()] = new Iec61883OutputStream(channel.getValue());
 }
 public void iecDetachResp(SEID destSeid, Status returnCode, int transactionId,
 IecPlug pcr, InternalPlug plug)
 {
 // check for error conditions, if ok destroy stream
 if(pcr.getDir() == ConstDirection.IN)
 src[plug.getPlugNum()] = null;
 else
 sink[plug.getPlugNum() = null;
 }
}

7.5.2 Relationship with the Stream Manager

In the above example, the “plug control register” to be processed by ExampleVirtualFcm, is passed as
a parameter in iecAttachResp. Typically this parameter is not selected by the application but rather
by the Stream Manager. The DCM is then informed of this selection via Dcm::Connect. A virtual
FCM should be handled, by the Stream Manager, in the same manner as a physical FCM. Thus the
recommended implementation for virtual FCMs is that Dcm::Connect invoke Fcm::IecAttach
with the plug control register selected by the Stream Manager. Processing this request by the FCM
will result in the invocation of iecAttachResp.

7.6 Example: A DCM Code Unit and DCM (Informative)

This section gives an example of the use of the HAVi Java APIs to implement a bytecode DCM
and its DCM code unit. This example is provided for informative purposes and is not intended as
an implementation blueprint. The example is not a full DCM implementation, but does demonstrate
use of the HAVi Messaging System and Registry by a bytecode DCM.

The example consists of the following classes:

! MyDcm – implements the DCM APIs

! MyDcmListener – the HaviListener used by MyDcm

! DcmCore – dispatches HAVi messages for MyDcm

! MyDcmCodeUnit – the code unit used to install an instance of MyDcm

 421

HAVi SPECIFICATION Version 1.1

7.6.1 MyDcm.java
// package com.someone.dcm.test;

import org.havi.types.*;
import org.havi.constants.*;
import org.havi.system.*;

public class MyDcm {
 // fields
 //
 public HUID dcmId;
 public GUID nodeId;

 public MyDcmListener listener;
 public SoftwareElement mySe;
 public SEID mySeid;

 private Cmm1394LocalClient cmm;
 private RegistryLocalClient registry;

 private int deviceClass = ConstDeviceClass.BAV;
 private String manufacturer = “Sample”;
 private String userName = “SampleName”;

 // constructor
 //
 public MyDcm(HUID _dcmId, GUID _nodeId) {
 try {
 dcmId = _dcmId;
 nodeId = _nodeId;
 listener = new MyDcmListener(this);
 mySe = new SoftwareElement(listener);
 mySeid = mySe.getSeid();

 cmm = new Cmm1394LocalClient(mySe);
 registry = new RegistryLocalClient(mySe);

 // use cmm to read SDD and to initialize
 // manufacturer, userName, deviceClass
 // now set in the HAVi Registry
 //
 Attribute[] at = new Attribute[10];
 HaviByteArrayOutputStream hbaos = new HaviByteArrayOutputStream();

 hbaos.reset(); hbaos.writeHaviString(manufacturer);
 at[0] = new Attribute(ConstAttributeName.ATT_DEVICE_MANUF, hbaos);

 hbaos.reset(); hbaos.writeHaviString(userName);
 at[1] = new Attribute(ConstAttributeName.ATT_USER_PREF_NAME, hbaos);

 hbaos.reset(); hbaos.writeInt(deviceClass);
 at[2] = new Attribute(ConstAttributeName.ATT_DEVICE_CLASS, hbaos);

 // … initialization of other Registry attributes

 registry.registerElementSync(0, mySeid, at);

 // now registered so start listening
 //
 mySe.addHaviListener(listener);
 }
 catch(Exception e) {}
 }

 // examples of some DCM APIs
 //

 422

HAVi SPECIFICATION Version 1.1

 public int getDeviceClass() {
 return this.deviceClass;
 }

 public String getUserPreferredName() {
 return this.userName;
 }

 public void setUserPreferredName(String name) {
 this.userName = name;

 HaviByteArrayOutputStream data = new HaviByteArrayOutputStream();
 data.writeHaviString(userName);

 // determine SDD offset
 //
 long offset = 0x0abcd;

 try {
 // write to SDD using the CMM client API
 //
 cmm.writeSync(0, nodeId, offset, data);
 }
 catch(Exception e){}
 }
}

7.6.2 MyDcmListener.java
// package com.someone.dcm.test;

import org.havi.types.*;
import org.havi.system.*;

public class MyDcmListener extends HaviListener {
 private MyDcm myDcm;

 // constructor
 //
 public MyDcmListener(MyDcm _myDcm) throws HaviException {
 myDcm = _myDcm;
 }

 // methods
 //

 public final boolean receiveMsg(boolean haveReplied, byte protocolType,
 SEID sourceId, SEID destId, Status state, HaviByteArrayInputStreampayload) {

 if (haveReplied) {
 return false;
 }
 DcmCore core = new DcmCore(protocolType, sourceId, destId, state, payload, myDcm);

 return core.handleRequest();
 }

}

7.6.3 DcmCore.java
// package com.someone.dcm.test;

import org.havi.types.*;
import org.havi.constants.*;
import org.havi.system.*;
import java.io.*;

 423

HAVi SPECIFICATION Version 1.1

public class DcmCore {
 // fields
 //
 private byte protocolType;
 public SEID sourceId;
 private SEID destId;
 private Status state;
 private HaviByteArrayInputStream payload;
 private MyDcm myDcm;

 // constructor
 //
 public DcmCore(byte _protocolType,
 SEID _sourceId, SEID _destId, Status _state,
 HaviByteArrayInputStream _payload,
 MyDcm _myDcm) {

 protocolType = _protocolType;
 sourceId = _sourceId;
 destId = _destId;
 state = _state;
 payload = _payload;
 myDcm = _myDcm;
 };

 // methods
 //
 public boolean handleRequest{

 try {
 OperationCode opCode = new OperationCode(payload);
 if (opCode.getApiCode() == ConstApiCode.DCM) {

 byte controlFlag = payload.readByte();
 int transferMode = ConstTransferMode.RELIABLE;
 if(controlFlag == 0) {
 // this is an incoming command
 //
 DcmServerHelper dcms = new DcmServerHelper(myDcm.mySe, transferMode);
 int transactionId = payload.readInt();

 switch(opCode.getOperationId()) {
 case ConstDcmOperationId.GET_USER_PREFERRED_NAME:
 Status returnCode = new Status(ConstApiCode.DCM,
 ConstGeneralErrorCode.SUCCESS);
 dcms.getUserPreferredNameResp(sourceId, returnCode, transactionId,
 myDcm.getUserPreferredName());
 return true;
 // case …
 }
 }
 }
 }
 catch (Exception e){}
 }
 return false;
}

7.6.4 DcmCodeUnit.java
// import com.someone.dcm.test.*;

import org.havi.system.*;
import org.havi.types.*;

 424

HAVi SPECIFICATION Version 1.1

public class DcmCodeUnit implements DcmCodeUnitInterface {
 private HUID dcmId;

 public int install(GUID nodeId, UninstallationListener listener) {
 // initialize dcmId, the HUID
 MyDcm mdcm = new MyDcm(dcmId, nodeId);
 return 1;
 }

 public void uninstall() {}
}

 425

HAVi SPECIFICATION Version 1.1

8 HAVi Level 2 User Interface

This chapter provides a specification of the Home Audio/Video Interoperability
Architecture User-Interface, (also called the HAVi User-Interface). This HAVi User-
Interface is designed as a “TV-friendly” user-interface framework and is explicitly
designed to be suitable for use and implementation on a variety of consumer electronic
(CE) devices. The application programming interfaces (APIs) for the HAVi User-
Interface are contained in the org.havi.ui and org.havi.ui.event packages described in
Appendix A: HAVi Java APIs. In case of conflicts between the specification and the
Java APIs, the Java APIs shall be the normative reference.

8.1 HAVi User-Interface Design (informative)

The HAVi User-Interface allows applications, written in Java, to determine the user interface
capabilities of its host display device, accept input from the user, draw to the screen and play audio
clips. It uses a subset of the AWT as defined in the Java 1.1 Core API (reference [8]) and extends
this with packages and classes specific to the HAVi platform. This subset is supported in
PersonalJava as defined in PersonalJava 1.1 specification (reference [9]).

8.1.1 Remote Control

The user input model from java.awt is extended to support an optional remote control. A large
number of events are optional, allowing manufacturers to customize and add value to their
products.

8.1.2 Television Specific Support

HAVi also adds classes to support graphics and video display functions that are available in typical
television-based systems, including: support for non-square pixels, and graphics / video overlays.

8.2 java.awt Subset

Only a subset of the Java 1.1 java.awt package is required to be present on a HAVi platform. This
subset is described within this section in more detail.

8.2.1 Required Elements from AWT

Since most of the widget set in the java.awt package is not “TV friendly”, these classes are not
required to be present in systems supporting the HAVi UI framework. TV friendly equivalents of
these are provided through the HAVi User-Interface framework, which can be extended to support
alternative look and feel. Classes of the java.awt package not included in this specification cannot
be expected to be present in devices supporting the HAVi User Interface framework. Interoperable
HAVi applications shall not make use of these classes. Where an application uses classes which
fall outside of the scope of the HAVi specification, the behavior is not determined by this HAVi
User Interface specification, rather it shall be determined by the implementation of the underlying
platform. This specification does not prevent a manufacturer implementing a particular device
using all of AWT, and any applications intended to execute solely in a particular device may
exploit any classes or packages known to be in that device, but both the device and application
shall not be regarded as interoperable and shall be considered to be proprietary in nature.

 426

HAVi SPECIFICATION Version 1.1

The specified set of classes have been chosen such that HAVi applications can implement any
missing widget functionality using these classes.

! The main base classes, such as java.awt.Component, are required in order to build the
HAVi widgets.

! Other classes, such as java.awt.Color and java.awt.Font, are required for all general drawing
and painting.

! The layout classes, such as java.awt.FlowLayout and java.awt.BorderLayout are retained to
provide flexible layout of components on various output devices.

The classes from java.awt that are listed in Table 15 are the classes that an HAVi application author
can reliably interact with, and use within a HAVi compliant application. Interoperable applications
must not use any references from classes in this list to classes not in this list.

Table 15. java.awt Classes Available to Interoperable HAVi Applications

java.awt java.awt.event java.awt.image
Adjustable(intf) ActionListener(intf) ImageConsumer(intf)
ItemSelectable(intf) AdjustmentListener(intf) ImageObserver(intf)
LayoutManager(intf) ComponentListener(intf) ImageProducer(intf)
LayoutManager2(intf) ContainerListener(intf) ColorModel
 MenuContainer (intf) FocusListener(intf) DirectColorModel
AWTError ItemListener(intf) IndexColorModel
AWTEvent KeyListener(intf) MemoryImageSource
AWTEventMulticaster MouseListener(intf) PixelGrabber
AWTException MouseMotionListener(intf)
BorderLayout TextListener(intf)
CardLayout WindowListener(intf)
Color ActionEvent
Component AdjustmentEvent
Container ComponentAdapter
Cursor ContainerEvent
Dimension FocusAdapter
Event FocusEvent
EventQueue InputEvent
FlowLayout ItemEvent
Font KeyAdapter
FontMetrics KeyEvent
Graphics MouseAdapter
GridLayout MouseEvent
IllegalComponentStateException MouseMotionAdapter
Image PaintEvent
Insets TextEvent
MediaTracker WindowAdapter
Point WindowEvent
Polygon ComponentEvent
Rectangle ContainerAdapter
Shape
Toolkit

The classes in Table 15 are not necessarily sufficient to enable a full implementation of a HAVi
compliant device, for example a device implementing the HAVi User-Interface could be
implemented using Java 1.1, Personal Java , etc., which might require additional requirements on
the implementation. The specification is intentionally silent on the mechanisms used to implement
the Java environment for a HAVi implementation.

 427

HAVi SPECIFICATION Version 1.1

8.2.2 User Input Preference Interfaces

Personal Java 1.1 includes some interfaces which are not found in JDK 1.1 but are useful for a TV
friendly user-interface API. The HAVi specification includes a number of interfaces intended to
allow Java applications to adapt to mouseless environments like systems operated by remote
control. These input preference interfaces allow component developers to specify how users can
navigate among and interact with their components. They are only available to components which
inherit from org.havi.ui.HComponent. The specification is intentionally silent on the mechanisms
used to implement the Java environment for a HAVi implementation. An extra HAVi specific
interface org.havi.ui.HAdjustmentInputPreferred is also included.

The org.havi.ui.HNoInputPreferred interface disallows user navigation, and hence actioning, etc.

A component that implements org.havi.ui.HNoInputPreferred indicates that the user may not navigate
to this component. However, note that if a component which implements this interface is extended,
so that the sub-classed component may implement another “XxxInputPreferred” interface, then in all
cases, this other interface may take precedence. In contrast, the method isFocusTraversable shall
always return true for components implementing the interfaces org.havi.ui.HActionInputPreferred,
org.havi.ui.HAdjustmentInputPreferred, org.havi.ui.HKeyboardInputPreferred,
org.havi.ui.HNavigationInputPreferred and org.havi.ui.HSelectionInputPreferred.

The org.havi.ui.HKeyboardInputPreferred interface indicates that it is intended to accept component
specific keyboard input from the user. Platforms without keyboards may provide another means for
generating such input when this component is edited, for example, by offering an on-screen
keyboard.

The org.havi.ui.HActionInputPreferred interface indicates that it is intended to be actioned by the user.

The org.havi.ui.HAdjustmentInputPreferred interface indicates that it is intended to offer increment and
decrement functionality to the user.

The org.havi.ui.HNavigationInputPreferred interface indicates that it is intended to offer focus traversal
between org.havi.ui.HComponents to the user.

The org.havi.ui.HSelectionInputPreferred interface indicates that it is intended to offer selection and
deselection to the user.

8.3 HAVi Extensions to AWT

8.3.1 General API Issues

In this package, passing null to a method or constructor shall generate a java.lang.NullPointerException
except in the following circumstances :

! Where null is explicitly documented as being an allowed parameter
! Where the class where the method or constructor is defined inherits from

java.util.EventObject or java.lang.Exception
It is an allowable option to override protected, public and package level methods in HAVi using the
standard java inheritance conventions.

8.3.2 User Input

Java Applications in HAVi can accept input from a keyboard, a mouse or a remote control. The

 428

HAVi SPECIFICATION Version 1.1

keyboard and mouse inputs are supported by functions in the java.awt and java.awt.event packages.
Remote control input is provided with classes in the org.havi.ui.event package. The org.havi.ui and
org.havi.ui.event packages include classes that allow the application to determine the user-input
capabilities of the platform on which the application is running.

8.3.2.1 Remote Control Support

The HAVi remote control classes are extended from the java.awt.event key event classes. All of the
events that are added for the remote control are optional. The remote control keys fall into two
categories: colored keys and dedicated keys. The intention of these keys is to provide the user direct
access to various functions; however, the platform may implement a virtual (on-screen) mechanism
to generate these events, but shall take care in this case not to hide the application. Note that it is an
implementation option if (remote control) key events are repeated.

8.3.2.1.1 Remote Control Colored Keys

Up to six colored soft keys can be included on a remote control. These are optional, and are to be
identified with a color. If implemented, these keys are to be oriented from left to right, or from top
to bottom in ascending order. The application can determine how many colored keys are
implemented, and what colors are to be used, so that the application can match the controls.

The following identifiers are available for colored key events: VK_COLORED_KEY_0,
VK_COLORED_KEY_1, VK_COLORED_KEY_2, VK_COLORED_KEY_3, VK_COLORED_KEY_4,
VK_COLORED_KEY_5.

8.3.2.1.2 Remote Control Dedicated Keys

The org.havi.ui.HRcEvent class defines a number of dedicated remote control events that can be used
by applications. Although none of the events in the org.havi.ui.event.HRcEvent class are required to be
implemented, events for power (VK_POWER), volume up and down (VK_VOLUME_UP and
VK_VOLUME_DOWN), and channel up and down (VK_CHANNEL_UP and VK_CHANNEL_DOWN) are
highly recommended.

However, whilst the dedicated remote control events are themselves device independent, the
precise set of dedicated keys that is implemented is device dependent. The
org.havi.ui.event.HRcCapabilities class enables an application to discover which events are
implemented and how these are to be labeled to match the platform implementation.

8.3.2.2 Keyboard

HAVi supports keyboards via the java.awt.event package. The events supported on a keyboard can
be determined by the org.havi.ui.event.HKeyCapabilities class.

Note that systems that do not include a physical keyboard can check each component to see if it
implements org.havi.ui.HKeyboardInputPreferred. If this interface is implemented, the system may
enable user input of alphanumeric key events, for example, via a “soft” on-screen keyboard.

8.3.2.3 Mouse

Mouse support is optional. The presence of a mouse can be detected with the
org.havi.ui.event.HMouseCapabilities class.

 429

HAVi SPECIFICATION Version 1.1

Mouse functionality is provided by the java.awt.event package. HAVi applications must be written
in such a way that a free roaming cursor is not required for correct operation. This does not mean
that a HAVi application could not implement, e.g. a drawing program, but rather that the user
should not be able to put the application into a state that cannot be exited without a mouse. (A user-
friendly drawing package would also notify the user that a mouse is required to use this application
properly.)

8.3.2.4 User Input Capabilities

Three classes are available to determine the capabilities of the user input for a given platform:
org.havi.ui.event.HKeyCapabilities, org.havi.ui.event.HMouseCapabilities, org.havi.ui.event.HRcCapabilities.
Each of these classes includes a method called getInputDeviceSupported, which returns true if the
particular device is known to be available.

8.3.2.5 User Input Representation

The org.havi.ui.event.HRcCapabilities class includes a method called getRepresentation, which returns
an object of type org.havi.ui.event.HEventRepresentation. This class defines an event as having a
known representation as a string, color or symbol, or having no supported representation. The
particular text, color, or symbol can be determined by calling getString, getColor or getSymbol
respectively. This allows an application to describe a button on an input device correctly for a given
platform. All available events should have a text representation from getString.

The six colored key events (VK_COLORED_KEY_0 -- VK_COLORED_KEY_5), if implemented, must
also be represented by a color – the getColor method returns a java.awt.Color object.

Key events may also be represented as a symbol – if the platform does not support a symbolic
representation for a given event, then the application is responsible for rendering the symbol itself.
Application rendering of keys without a symbolic representation, but with a commonly known
representation, should follow the guidelines as defined in the Javadoc definition of the class.

8.3.3 Graphics Devices and Configurations

8.3.3.1 Background

There are some specialized requirements for running applications within a consumer electronic
environment, rather than the simpler situation that occurs when an Applet is displayed within a
web-browser. Most notably the screen dimensions and aspect ratios are significantly different
between PCs and CE devices. In the current on-screen display (OSD) graphics model of today’s
set-top box units, video may be output in a number of different configurations, e.g. traditional 4:3
TV display, or 16:9 widescreen TV displays, etc. The graphics resolution and aspect ratio are often
locked to the video resolution and aspect ratio. If the video aspect pixel ratio changes then the
graphics pixel aspect ratio may also change. Thus, there are requirements to:

! Determine the resolution and physical characteristics of the current display device.

! Detect modifications to the resolution and physical characteristics of the current display
device.

 430

HAVi SPECIFICATION Version 1.1

8.3.3.2 The HAVi Screen Reference Model

HAVi provides a model for the video output from a consumer electronics device. Instances of the
class HScreen represent each independent final video output signal from a device. Each independent
final video output signal is made up from the sum of graphics devices, video devices and
backgrounds. These are represented by instances of the classes HGraphicsDevice, HVideoDevice and
HBackgroundDevice respectively. All of these classes inherit from a common parent class -
HScreenDevice.

The HAVi User-Interface specification provides limited support for applications to be displayed so
that they are split across multiple concurrent display devices – the HSceneFactory class allows the
HGraphicsDevice to be specified in the HSceneTemplate used to generate the HScene's for the
application.

8.3.3.3 The HAVi Screen Device Discovery Classes

HAVi defines a means to allow applications to discover the range of display devices available. The
model followed by HAVi is based on the model used in Java2 as described by the following three
classes in the java.awt package - GraphicsDevice, GraphicsConfiguration and GraphicsConfigTemplate. In
HAVi, this model is generalized to apply to video devices and to background devices.

8.3.3.3.1 Querying the Configuration of a Display Device

For each display device class (HVideoDevice, HGraphicsDevice and HBackgroundDevice), there are
classes whose name ends in “Configuration” which represent distinct possible configurations of a
single device. Applications may obtain a list of all possible configurations of a particular device.
Applications may also obtain the current configuration using the getCurrentConfiguration method.
Subject to security and resource management issues, applications may also set the configuration of
a device using methods found on each device class.

Applications that are interested in a particular configuration of a device can request configurations
matching a specific set of constraints. The first step in this process is to construct objects whose
name ends in “ConfigTemplate”. Instances of these classes can then be populated with the properties
by the application and then used to request a configuration supporting those properties. Properties
can also have priorities attached to allow applications to express whether support for that property
is required by the application, whether support for that property is only preferred by that
application, whether support for that property is required to be absent or whether support for that
property is preferred to be absent. In some cases, properties such as PIXEL_ASPECT_RATIO require
extra information. This extra information can be provided as part of the method used to add the
property to the configuration template.

The Configuration for a Device can be acquired, using the getCurrentConfiguration method. A
description of this Configuration can be obtained using the getConfigTemplate method that yields a
ConfigTemplate that uniquely identifies the given Configuration. Individual properties in this
ConfigTemplate can then be examined using the getPreferencePriority and getPreferenceObject methods
– features that are implemented will return REQUIRED, features that are not implemented will return
REQUIRED_NOT. Values of some properties may also be obtained through a limited set of query
methods provided on HScreenConfiguration.

8.3.3.3.2 Compatibility with Existing java.awt Methods

The java.awt.Toolkit.getScreenSize method shall be equivalent to the pixel resolution of the current
configuration of the default screen device returned by HScreen.getDefaultGraphicsDevice.

 431

HAVi SPECIFICATION Version 1.1

The value of the java.awt.Toolkit.getScreenResolution method is implementation specific. This method
shall not be used by applications.

Where the screen aspect ratio is unknown (such as in the case where a set-top box is connected to
an analog display), the default aspect ratio is 4:3. In the case where an analog monitor is used with a
HAVi compliant set-top box the resolution returned shall be based on the raster of the set-top box,
ignoring any interpolation or other processing that may be present in the monitor.

The java.awt.Toolkit.getNativeContainer method shall return null; interoperable applications should not
rely on this method.

Where an input parameter to a method call is specified to be more restrictive than its Java type
allows (e.g. only a restricted set of numbers are allowed as inputs), providing values outside the
allowed range shall result in a java.lang.IllegalArgumentException being thrown.

8.3.3.4 Detecting Configuration Changes on a Display Device

It is important for CE devices to be able to detect variations in their settings, since they may be
subject to “on-the-fly” modifications of these settings, for example, they may be heavily influenced
by the nature of some input video streams. Hence, the HScreenDevice class provides support for
detecting when its configuration (settings) have been changed, using the
HScreenDevice.addScreenConfigurationListener methods and the HScreenConfigurationListener and
HScreenConfigurationEvent classes.

When an HScreenDevice's configuration is modified, then an HScreenConfigurationEvent is generated.
Note that after a HScreenConfigurationEvent is obtained any HScreenConfiguration (or
HScreenConfigTemplate) associated with that HScreenDevice must be reacquired to obtain the current
settings for the device.

In general, a modification to the HScreenDevice might require that the displayed user-interface be
modified, e.g. if the resolution has changed, or the pixel aspect ratio has been modified.

8.3.3.5 Emulated Display Devices

The HAVi User-Interface introduces extra sub-classes that are used to indicate that a device may
perform emulations of other device capabilities:

! HEmulatedGraphicsDevice

! HEmulatedGraphicsConfiguration

Instances of these classes can be returned by the same methods that would return the corresponding
class without “Emulated” in the class name. Returning the sub-class indicates that the
implementation is emulating the requested configuration on one of its actual supported
configurations. The class HEmulatedGraphicsConfiguration includes methods to allow applications to
compare the configuration being emulated and the actual underlying configuration being really
used. The extent of support for emulated configurations is a profile issue. All possible emulated
configurations are not required, or guaranteed to be supported. Emulated configurations may have a
significant performance penalty with respect to those supported natively on the device.

8.3.3.5.1 Mapping from Authoring to Device Coordinates

A special case of device emulation is the emulation of various graphics coordinate systems on a

 432

HAVi SPECIFICATION Version 1.1

single physical device. The HAVi User-Interface provides mechanisms that allow devices to
perform such emulations, e.g. by down-sampling a high-resolution system to match the limitations
of a standard definition display. Thus, authors can rely on seamless mapping between authoring
and device coordinates by the use of the HEmulatedGraphicsDevice class. Authors may determine an
appropriate graphics device and request the best configuration that matches their requirements, as in
a standard device discovery mechanism – or examine configurations themselves (both emulation
and implementation) to determine appropriate settings. The extent to which devices are required to
support emulation of other coordinate systems is profile dependent.

8.3.3.6 Integrating HAVi Video Support into Platforms

The HAVi specification includes several classes to represent video in the user interface system.
This representation of video devices only includes the display of video. The setup of the video
decoder and the video pipeline is not included in this specification.

The class HVideoComponent is intended to be returned by a platform specific controller for video. In
platforms based on the Java Media Framework, the Player.getVisualComponent method shall return
objects of this class. The class HVideoDevice provides two hooks to platform specific APIs for this
setup, the methods getVideoController and getVideoSource. On platforms based on the Java Media
Framework (JMF), the getVideoController method shall return a JMF Player. The getVideoSource
method shall return a platform specific class encapsulating a reference to the source of the video.
Possible examples of the class to be returned here could include java.net.URL or
javax.media.MediaLocator.

8.3.3.7 Backgrounds

The HAVi specification includes several classes to represent the background of a screen, i.e. the
area that is behind the running graphics and video and not covered by those. Using the same
naming convention as video and graphics, these are called HBackgroundDevice,
HBackgroundConfiguration and HBackgroundConfigTemplate. The basic HBackgroundConfiguration allows
applications to control a single full screen background color.

The HAVi specification includes support for more sophisticated backgrounds - still images.
Applications wishing to use these shall request an HBackgroundConfiguration supporting them by
using the STILL_IMAGE property in an HBackgroundConfigTemplate. If this feature is supported by the
platform concerned, when such a configuration is requested, an instance of the class
HStillImageBackgroundConfiguration shall be returned. This class adds two extra methods, over the
standard background configuration, which support the loading of background images. This loading
is done through the HBackgroundImage class.

Using the HBackgroundImage class rather than the standard java.awt.Image allows for image formats
that are decoded using hardware outside of the graphics system. One specific example of this is the
decoding of still MPEG I frames using an MPEG video decoder. This is a commonly used feature
in some devices since it provides good quality backgrounds without using software decoders or
system memory. In systems where the same underlying MPEG video decoder can be used to
decode both video and MPEG I frames, this decoder shall be represented both by an HVideoDevice
instance and by an HBackgroundDevice instance for each application. Where an HBackgroundDevice
and an HVideoDevice both map onto the same underlying real resource in the device, the
ZERO_VIDEO_IMPACT property in HBackgroundConfigTemplate shall be used to discover and limit
any impact of one on the other.

 433

HAVi SPECIFICATION Version 1.1

! An application requesting a HBackgroundConfiguration using a HBackgroundConfigTemplate
containing the ZERO_VIDEO_IMPACT property with priority REQUIRED shall only be
returned one which would have absolutely no impact on any HVideoDevice if that
HBackgroundConfiguration was set for its HBackgroundDevice. For example, only systems
where a separate decoder is used for HBackgroundImages from video shall return a
HBackgroundImage for such a template.

! An application requesting a HBackgroundConfiguration using a HBackgroundConfigTemplate
containing the ZERO_VIDEO_IMPACT property with priority PREFERRED shall only be
returned one which would have no permanent impact on any HVideoDevice if that
HBackgroundConfiguration was set for its HBackgroundDevice. For example, systems where
the same underlying hardware is used for decoding both video and HBackgroundImages but
where once decoded, the HBackgroundImage is copied into a separate decoder memory
from video and video decoding resumes, shall return an HBackgroundConfiguration in this
case but not the previous case.

! Implementations where decoding of HBackgroundImages interrupts the video for the
duration of the still image shall not support any HBackgroundConfiguration where
ZERO_VIDEO_IMPACT is either REQUIRED or PREFERRED.

On implementations where the same underlying MPEG video decoder is used for both video and
HBackgrounds, the most recent request of an application shall always be granted where the single
underlying decoder is already being used by that application.

8.3.3.8 Control of Screen Configurations

The HAVi specification is silent about whether a single display device is shared between multiple
applications or not. For the case where a display device may be shared between applications, it
provides a mechanism for applications to assert control over the right to change the configuration of
the display device. The HScreenDevice class includes methods to allow applications to reserve and
release the right to control this configuration. It also allows an application to register and remove
listeners for events that are generated when the applications reserve and release this right.

Applications wishing to be able to control the configuration of an HScreenDevice must define a class
implementing the ResourceClient interface and pass an instance of this class to the reserveDevice
method of the HScreenDevice that they wish to control. If the reserveDevice method succeeds then
the application obtains control over the device configuration. When an application calls the
HScreenDevice.getClient method this will return the ResourceClient passed in to the last call to the
reserve method on that HScreenDevice instance.

Where there is a conflict between applications, this specification includes a mechanism to allow the
platform to arbitrate between conflicting applications. The policy for this arbitration is intentionally
not defined in this specification. When it is decided to remove the right to control a screen from an
application, this is notified through the ResourceClient interface, the notifyRelease method will always
be called. The requestRelease method will only be called when the existing owner of the resource
and the application requesting the resource are authenticated to have a secure relationship of some
form. This specification is silent about the details of this authentication.

 434

HAVi SPECIFICATION Version 1.1

8.3.4 Graphics and Video Integration

8.3.4.1 Configurations

The HAVi specification allows applications to express the relationship between video, graphics and
backgrounds. The method HScreen.getCoherentScreenConfigurations allows applications to express a
common set of constraints for video, graphics and backgrounds and get back a coherent answer.

In addition to this, there are several means to express constraints between video and graphics.
These can be used for applications which already have running video to fit a graphics configuration
to that video or which have already running graphics to fit video to that graphics. In
HGraphicsConfigTemplate, the constant VIDEO_MIXING allows applications to request configurations
where graphics is super-imposed above video but without any requirement for pixels to be aligned.
In HScreenConfigTemplate, there are constants to allow applications to ask for configurations as
follows:

! VIDEO_GRAPHICS_PIXEL_ALIGNED - video & graphics pixels are the same size and
aligned

! ZERO_VIDEO_IMPACT - a new graphics configuration must not change the existing video
configuration

! ZERO_GRAPHICS_IMPACT - a new video configuration must not change the existing
graphics configuration

8.3.4.2 Coordinate Spaces

The HAVi specification includes a normalized screen coordinate system that represents the
coordinates on the screen as floating point numbers between zero and one. This coordinate system
is not pixel based. Such a non-pixel-based coordinate system enables the following:

! meaningful results, even when the graphics configuration has not been determined

! meaningful results when presented video does not have a java.awt component.

! meaningful results when the video display and the graphics display are not necessarily
aligned / share the same origin / share the same resolution, etc.

This screen-based coordinate system is encapsulated in the HScreenRectangle and HScreenPoint
classes. This specification is silent about conversion between normalized and video coordinates.
This should be addressed as part of the API providing support for control of video.

For graphics, these conversion mechanisms are found on the HGraphicsConfiguration class, since the
conversion from screen to graphics coordinates is dependent on the current graphics device settings
(Configuration) – especially if e.g. the graphics resolution can be varied independently of the video
resolution, etc.

The HScreenRectangle mechanisms can be used to enable the alignment of (portions of) video and
(portions of) graphics. The HScreenLocationModifiedListener and HScreenLocationModifiedEvent allow
mechanisms to determine if the on-screen location of an HVideoComponent is modified (rather than
its relative location within its enclosing container).

 435

HAVi SPECIFICATION Version 1.1

8.3.4.3 Transparency between Graphics and Video

The HAVi specification includes support for applications to request transparency between graphics
and video. This is provided by the getPunchThroughToBackgroundColor method on the
HGraphicsConfiguration class. These methods provide a factory that enables applications to provide
an opaque java.awt.Color and obtain a java.awt.Color supporting some form of transparency between
graphics and video. These Color objects may be used in the drawing methods in the java.awt.Graphics
class to cause video to appear in the graphics system.

8.3.5 HSceneFactory, HSceneTemplate and HScene

The HAVi User-Interface is deliberately agnostic concerning the implementation of a
“coordinating” environment that provides the mechanism for a user to choose and run one or more
applications. In HAVi, this “coordinating” environment is known as a “home navigation shell”.
Application writers cannot make any assumptions that their application GUI will always be
immediately visible. For example, valid implementations of a coordinating environment might
include:

! A simple “full-screen” view on a single application at any one time (with some undefined
mechanism to switch between them).

! A multi-window system, where windows may obscure each other.

! A “paned” system where each application occupies an area on-screen – i.e. each
application is always visible, but they may be resized if other applications are installed.

Thus, mechanisms are required to initiate an on-screen display and to indicate “user-interest”, or
other modifications to the rendering area. These mechanisms should:

! Enable an application to request an area on-screen – however, given the possibility of
differing styles of coordinating environment, an application cannot reasonably expect that
its request will always be honored perfectly, and thus, a mechanism is required to indicate
preferences for the application location “on-screen”.

! Indicate whether the current application is the one which the user is specifically interested
in. For example, a “well-behaved” application which the user is not currently using might
release, or reduce its consumption of any limited resources.

! Indicate to an application that its extent and position on-screen have been modified
somehow by the home navigation shell.

! Allow an application to indicate to the system, that it requires the user’s attention. For
example, the system may either indicate to the user that the user should choose the
indicating application, or might simply automatically switch to that application.

8.3.5.1 Requesting an Area On-screen

8.3.5.1.1 HSceneFactory and HSceneTemplate

The HSceneFactory is a factory class that is used to generate HScene objects. An application can
indicate the location and dimensions of the HScene in the associated HSceneTemplate, although it is
not guaranteed that the resulting HScene will necessarily match all of these preferences – since this

 436

HAVi SPECIFICATION Version 1.1

is dependent on the implementation of the controlling shell and its associated policies, etc.

The application should call HSceneFactory.resizeScene if it wishes to re-size the HScene.

8.3.5.1.2 HScene

An HScene is an HContainer representing the displayable area on-screen within which the
application can display itself and thus interact with the user. However, HScene does not paint itself
on-screen, only its added “child” components and hence there is no requirement to allocate “pixels”
to the HScene directly – its only effect is to “clip” its child components. Hence, HScene may be
regarded as a simple connection to the window management policy within the device, acting as a
“screen resource reservation mechanism” denoting the area within which an application may wish
to present a component, at some point in the future. Since an HScene is by definition not painted,
i.e. it is effectively transparent, the area behind (all) HScene's in the z-ordering may be exposed by
the platform as an HBackgroundDevice, and/or HVideoDevice's. However, HAVi does not require
platforms to provide such device capabilities, this is platform specific. The HScene semantics for
transparency need to be specified exactly on a per-platform basis, for example, on some platforms
an HScene might be transparent to other HScene's due to other separate applications.

For all interoperable applications, the HScene is considered the main top-level component of the
application. No parent component to an HScene should be accessible to applications. Interoperable
applications should not use the getParent method in HScene, since results are implementation
dependent and valid implementations may generate a run-time error.

In terms of delegation, the HScene shall behave like a java.awt.Window with a native peer
implementation, in that it will not appear to delegate any functionality to any parent object.
Components which do not specify default characteristics inherit default values transitively from
their parent objects. Therefore, the implementation of HScene must have valid defaults defined for
all characteristics, e.g. Font, foreground Color, background Color, ColorModel, Cursor and Locale.

The HScene has a null LayoutManager by default – all widgets are placed using an X, Y co-ordinate,
specified by the widget.

When created an HScene is not initially visible, and a call to setVisible is required to display the
HScene (and also to hide it).

The application should call HSceneFactory.dispose if it wishes to destroy the HScene (and all of its
currently added Components) and therefore release their associated resources for future garbage
collection by the platform.

8.3.5.2 Modifications to the HScene: Focus and Resize events

The HScene object accepts java.awt.event.WindowEvent's, and interprets them as a java.awt.Window,
however it is not required for the home navigation shell to generate all types of
java.awt.event.WindowEvent.

Applications can use the java.awt.Component.requestFocus method on the HScene to indicate to the
home navigation shell that the HScene should be receiving input focus. This request should be
treated as a request to make the entire application visible and ready for user input, e.g. by
expanding an icon, or changing the stacking order between competing overlapping applications.
The decision as to whether or whenever the HScene (application) gains the input focus is entirely
platform specific in terms of policy, etc. The java.awt.Component must be visible on the screen for
this request to be granted – note that visibility in this context refers to whether the application has
called the HScene.setVisible method, rather than any possible non-application-defined-behavior, due

 437

HAVi SPECIFICATION Version 1.1

to the action of the coordinating shell hiding an application.

The java.awt.event.ComponentEvent's COMPONENT_MOVED and COMPONENT_RESIZED will be
received by the HScene when the controlling shell has modified the position of the HScene or
changed its dimensions on screen, respectively.

8.3.5.3 Application “user-interface” Lifecycle

! Outside the scope of the HAVi User-Interface:

! The application is acquired by the platform.
! The application is validated and security checked (possibly including authentication,

byte-code verification, etc.).
! The virtual machine is initialized, ClassLoader created, etc.
! The application is executed
! If the application does not require a user-interface, then it may continue as per normal.

! If a user-interface, and hence some screen resource is required, then the application
traverses the HScreen, HGraphicsDevice, HGraphicsConfiguration space to determine an
appropriate configuration, using HGraphicsConfigTemplate e.g. video-mixable, full-screen
graphics, square pixel aspect ratio, resolution 1280 by 1024.

! The application configures the HGraphicsDevice appropriately, using the
setGraphicsConfiguration method.

! The application requests that the HSceneFactory effectively grant it access to part of the
screen for that device, using HSceneTemplate, e.g. full-screen display.

! The HSceneFactory returns an appropriate HScene container within which the application
can display itself.

! The application uses the HScene container to add all of its components to make its user-
interface.

! The application may take advantage of java.awt.WindowEvent’s, to determine whether it has
the user’s (input) focus.

! The application may take advantage of the events COMPONENT_RESIZED and
COMPONENT_MOVED, to determine when its HScene extent / location has been modified
and to tailor its presentation accordingly.

! The application resizes the HScene by using HSceneFactory.resizeScene – if it wishes to
resize the HScene, with the caveat that this may not be allowed by the external
environment, e.g. due to window-manager policy, etc.

! The application terminates its on-screen presentation by calling the HScene.dispose
method

! Outside of the scope of the HAVi User-Interface:

! The application itself terminates.

 438

HAVi SPECIFICATION Version 1.1

8.3.6 Effects and Visual Composition using Component Mattes

8.3.6.1 Component Mattes

With org.havi.ui, the user interface is constructed from a set of components arranged in a hierarchy.
The root of the hierarchy is an instance of HScene, leaf nodes are instances of HComponent and
intermediate nodes are instances of HContainer. Components within a container are ordered from
back to front. An example is shown in Figure 39, where c3, a container, is the back most
component and c1 the front most.

c2 c1

c3

scene

Figure 39. Scene Hierarchy

With the HMatte interface, the scene hierarchy can be modified by the inclusion of mattes
(additional alpha sources), potentially for each member, i.e.:

matte

matte

matte

c2

matte

c1

c3

scene

Figure 40. Scene Hierarchy with Mattes

The mattes influence the rendering of the scene, their operation can be visualized using a 2½D or
layering model. The example below corresponds to the hierarchy in Figure 40 (for simplicity, the
scene matte is not shown).

 439

HAVi SPECIFICATION Version 1.1

scene

c3

c3 matte

c1 matte

c2c1

c2 matte

Figure 41. Component Mattes

Where pixels in a component already have an alpha value (e.g., from a PNG image), the alpha
value from the component and the alpha value from the matte are multiplied together to obtain the
actual alpha value to be used for that pixel.

8.3.6.2 Component Grouping

A container is either “grouped” or “ungrouped”. When a container is ungrouped, its matte only
influences the appearance of those regions of the container not covered by members of the
container (i.e., exposed regions of the container’s background). When a container is grouped, its
matte influences the appearance of its background and all members of the container. For example,
grouping a container and setting its matte to indicate 50% transparency will fade the container’s
background and all members of the container. If it is ungrouped only the background will fade.

An HContainer may be rendered as follows:

! If the container is ungrouped, the container’s background is first rendered and then
composited with the container’s matte (i.e., the RGBA value of the container’s
background is combined with the alpha value from the matte). Then, in back to front
order, each member of the container is rendered, composited with its matte, and then
composited with the container.

! If the container is grouped, the container’s background is first rendered. Then, in back to
front order, each member of the container is rendered, composited with its matte, and then
composited with the container. The result is then composited with the container’s matte.

After an HContainer is rendered, it is composited with its parent. Compositing of an HScene is
determined by the configuration of display devices.

 440

HAVi SPECIFICATION Version 1.1

8.3.6.3 Examples of Mattes and Component Composition

a) Bar matte for lower component.

c) Circular mattes for top components.

d) As in c), with bar matte for lower component.

b) As in a), with top components grouped to lower.

e) As in d), with top components grouped to lower.

Figure 42. Visual Composition Examples

8.3.6.4 Effects

A great variety of effects (e.g., wipes and fades) can be performed by using matte animations –

 441

HAVi SPECIFICATION Version 1.1

sequences of mattes where the “active” element is changed over time. Matte animations can be
combined with other techniques, such as component movement, to produce additional effects. The
construction of matte animations is facilitated by the following classification of mattes:

HFlatMatte – the matte is constant over space and time, it can be specified by a float (0.0 is fully
transparent and 1.0 fully opaque)

HImageMatte – the matte varies over space but is constant over time, it can be specified by an
“image mask” (a single channel image) where the pixels indicate matte transparency

HFlatEffectMatte – the matte is constant over space but varies over time, it can be specified by a
sequence of floats

HImageEffectMatte – the matte varies over space and time, it can be specified by a sequence of image
masks

8.3.6.5 Matte Sizes and Offsets

When a HImageMatte or HImageEffectMatte is assigned to a component, the associated image (or
images) is by default aligned with the component so that their origins – the pixel at (0,0) – coincide.
The offset of the matte with respect to the component can be altered using the setOffset method of
HImageMatte and HImageEffectMatte. Regions of the component outside the matte (resulting from
either a matte being smaller than the component, or from shifting the matte) are not matted.

8.4 HAVi Widget Framework

The HAVi widget framework is designed to allow maximum flexibility to implementers of
applications. It also provides the necessary extensibility to allow the widget framework to be used
as the basis for other application types, such as broadcast applications. By default, the HAVi widget
framework only copies object references, and does not clone objects. Cases where objects are clone'd
shall be marked explicitly.

8.4.1 HAVi Event Mechanism

The HAVi event mechanism is composed of the seven classes listed in Table 16:

Table 16. HUI Events

Event Use
HActionEvent Interact with a component implementing the HActionInputPreferred interface
HFocusEvent Interact with a component implementing the HNavigationInputPreferred

interface

HRcEvent Provide remote control event capabilty

HKeyEvent Interact with a component implementing the HKeyboardInputPreferred
interface

HAdjustmentEvent Interact with a component implementing the HAdjustmentValue interface

HItemEvent Interact with a component implementing the HSelectionInputPreferred interface

HTextEvent Interact with a component implementing the HKeyboardInputPreferred
interface

These classes serve as the mechanism by which HAVi components inform each other of event
occurrences. They are not intended to be generated from applications.

 442

HAVi SPECIFICATION Version 1.1

A HAVi widget must respond to these events in addition to other applicable user-input mechanisms.
However, interoperable widgets must not respond to specific key codes received through the Java
AWT KeyEvent mechanism.

HXXXEvents are generated and dispatched by the HComponent base class. For example, this class
must intercept suitable Java key events and generate HKeyEvents from them. This means that
widgets will receive two events - the original KeyEvent and a new HKeyEvent. Although it is possible
to "discover" the platform-specific implementation of HXXXEvents via this mechanism,
interoperable widgets may not use this information. Widgets may ignore the KeyEvent in favor of
only handling the HKeyEvent.

8.4.2 Abstraction of “Feel”

In order to provide the necessary flexibility, the HAVi User-Interface widget framework is defined
around a core of abstract Component Behaviors. These effectively define the functionality (or
“feel”) of each widget which is derived from one of the Component Behaviors. Behaviors are
defined for widget types having a number of states, which may be used to mimic the behavior of
typical widgets.

In summary these Component Behaviors are:

! HVisible – Behavior providing basic display functionality.

! HNavigable– Behavior enabling widgets to receive navigational focus, and to define some
kind of display change associated with focus change.

! HActionable– Behavior providing functionality to be invoked in response to an action.

! HSwitchable– Behavior allowing a widget to be actioned and to retain internal state
information in addition to simple action behavior.

! HAdjustmentValue, HItemValue, HTextValue - Behaviors permitting the definition of widgets
that return values to applications in response to user interaction.

Based upon these fundamental abstract Behaviors, all necessary HAVi functionality can be
provided through derived concrete widgets, either for the provision of HAVi specific user-
interfaces, or for HAVi specific widgets. In addition, these abstractions form the basis upon which
other interactive applications may be built without the requirement for the use of HAVi specific
widgets. Thus, the HAVi widget framework is more generally applicable to interactive application
execution, rather than exclusively focused upon HAVi. The Javadoc describes these states in more
detail, including any valid DISABLED states.

8.4.3 Framework Class Hierarchy

The HAVi widget framework consists of a base class (HVisible) and a set of interfaces that model
the behaviors different types of widget may exhibit. The behavior is modeled on the number of
states a widget may represent. For each such state a widget can present a particular representation
(graphical, textual and sound) to the user.

The widget framework allows for simple user interface development by application authors. It also
reduces the size of the developed application, since most of the presentation and interaction

 443

HAVi SPECIFICATION Version 1.1

capability is resident on the device – developers can concentrate on the specific functionality of
their application.

8.4.3.1 HContainer

Components in the HAVi User-Interface are explicitly allowed to overlap each other. Hence, the
HAVi User-Interface extensions adds additional Z-ordering related methods to
org.havi.ui.HContainer:

Additional semantics related to transparency of the HContainer itself and its Components, are also
defined via the HMatteLayer interface.

The org.havi.ui.HContainer class also adds the ability to determine whether hardware double buffering
is present, using the isDoubleBuffered method.

The org.havi.ui.HContainer class also adds the ability to determine whether it is completely opaque,
by applications overriding the isOpaque method.

Additionally, the default LayoutManager for HContainer is defined to be null, i.e. absolute positioning,
in contrast to the FlowLayout used in java.awt.Container.

8.4.3.2 HComponent

The base class for all HAVi widgets.

The org.havi.ui.HComponent class extends java.awt.Component to include additional semantics related
to transparency of the HComponent, defined via the HMatteLayer interface.

The org.havi.ui.HComponent class also adds the ability to determine whether hardware double
buffering is present, using the isDoubleBuffered method.

The org.havi.ui.HComponent class also adds the ability to determine whether it is completely opaque,
by applications overriding the isOpaque method.

8.4.3.3 HVisible

Represents a widget that has only two states, for example HStaticText or HStaticIcon. This widget can
be in either a “normal” state or a “disabled” state.

8.4.3.4 HNavigable

An interface that is implemented by classes that are derived from HVisible for adding an additional
state that is used to indicate if the widget is currently focused.

The HNavigable interface also provides the functionality necessary to manage the focus navigation
between widgets assuming a remote control style UP, DOWN, LEFT, RIGHT form of navigation,
using the setFocusTraversal method.

The precise semantics of the HNavigable interface are defined in the supporting Javadoc.

 444

HAVi SPECIFICATION Version 1.1

8.4.3.5 HActionable

The HActionable interface extends HNavigable by adding an additional state that is used to indicate
when the widget has been actioned.

The HActionable interface provides the functionality necessary to associate HActionListeners with the
widget, using the addHActionListener and removeHActionListener methods. These HActionListeners will
be called when the widget is actioned.

A widget that implements the HActionable interface is actioned when it receives a
havi.ui.event.HActionEvent key event. The widget will move into its Actioned state by presenting its
Actioned look. Any associated HActionListeners will be called by the widget calling its
HActionInputPreferred.processHActionEvent method. When the HActionListeners have returned the
widget will return to its focused state.

The precise semantics of the HActionable interface are defined in the supporting Javadoc.

8.4.3.6 HSwitchable

The HSwitchable interface extends HActionable by adding an additional state that is used to maintain
an internal (on/off) value.

The state transitions for HSwitchable are as follows:

Figure 43. HSwitchable Transitions

The precise semantics of the HSwitchable interface are defined in the supporting Javadoc. Note that
any state is permitted to change to the “disabled” state.

 445

HAVi SPECIFICATION Version 1.1

8.4.3.7 HAdjustmentValue, HItemValue, HTextValue

These interfaces extend HNavigable by adding support for managing a widget with an internal value
that can be manipulated by user interaction.

All HAVi UI components that require adjustable numerical values, such as range controls, have
implemented the HAdjustmentValue interface. Here, the value responds to unit & block
increments, and has an optional sound associated with such adjustments.

All HAVi UI components that have selectable content, such as list groups, have implemented the
HItemValue interface. An optional sound can be associated with item selection.

All HAVi UI components that have editable text content, such as text entry controls, have
implemented the HTextValue interface.

The precise semantics of the HValue interface are defined in the supporting Javadoc.

8.4.4 Separation of “Look”

The flexibility of the HAVi widget framework is further enhanced by separating the “look”
component from that for “feel”. This allows easy construction of many styles of presentation
associated with each of the abstract Component Behaviors defined previously.

Content can be associated with each state of a widget. For each widget state, textual, graphical and
user defined content can be associated with the widget. The HLook interface defines the mechanism
by which the content for the particular state of the widget can be rendered.

The HLook method showLook is used to provide the rendering of the content for the widget. Note
that since this method is separated from the widget class, there is no need to subclass the widget to
change its look. The showLook method is responsible for repainting the entire component, including
its background, subject to the clipRect of the Graphics object passed to it. The showLook method
should not modify the clipRect of the Graphics object that is passed to it.

An HLook may also provide some form of border decoration, for example, drawing a rectangle
around the widget when it has focus. To allow for predictable layout and presentation the HLook
interface provides methods that are used to indicate the size of such a border area.

To support layout managers the HLook interface also defines the following methods, which allow
the associated HVisible to query the HLook for its maximum, minimum and preferred sizes:
getMaximumSize, getMinimumSize, getPreferredSize.

8.4.5 Pluggable Looks

The HAVi Widget framework provides a set of standard classes that implement the HLook interface.
These can be regarded as the set of default looks that will be provided by all implementations. The
particular rendering of a look is not defined and is manufacturer dependent.

Pluggable Look is defined in such a way as to allow implementers to extend the number of “looks”
available to their application. By doing so, new “looks” are automatically available for every
Component Behavior and for all widget types derived from those Behaviors. This is described in
the Pluggable Look Interface.

To facilitate application development and to limit the size of applications, a set of pre-defined
“looks” is provided. These are:

 446

HAVi SPECIFICATION Version 1.1

! HAnimateLook – presentation of an animated image sequence.

! HGraphicLook – presentation of graphical content.

! HRangeLook – presentation of a value within a range.

! HListGroupLook - presentation of both the ListGroup itself and the items held on the list.

! HTextLook – a simple presentation mechanism for textual content.

! HSinglelineEntryLook – presentation of a single line of textual content that can be edited by
the user.

! HMultilineEntryLook – presentation of multiple lines of textual content that can be edited by
the user.

This basic set allows the construction of most typical interactive user interfaces when used in
conjunction with the Component Behaviors to define a widget set. It can however be extended in a
general fashion to provide new categories of “look”.

When a widget is constructed, it is provided with a default look. This default HLook will be one of
the standard set of looks listed above. For example, the HGraphicButton is created with the
HGraphicLook by default. The default look that is used when the widget is constructed can be
changed by calling the static method setDefaultLook that is provided on all widget types. Any widget
of that type created after the call will be created with the new HLook that was passed in as the
parameter to setDefaultLook. The look of an individual widget can be modified by using the method
HVisible.setLook.

The Pluggable Look mechanism is flexible enough so that the application developer can create new
HLooks. For example a combined HGraphicLook and HTextLook, where the Text may overlay the
Graphic, or be shown in place of the Graphic while the Graphic is being loaded.

8.4.6 Content Behavior

Content is associated with the widget through the following methods on HVisible: setTextContent,
setGraphicContent, setAnimateContent and setContent. Hence, multiple content (Text, Graphics,
Animations and user-defined content) can be associated with a widget. The way multiple content is
rendered is dependent on the HLook associated with the widget. The default looks provided by the
platform may not render all the content types.

Different content can be associated with the different states of the widget. For example, an
HGraphicButton might have six different images to represent its six different states
(NORMAL_STATE, FOCUSED_STATE, ACTIONED_STATE, ACTIONED_FOCUSED_STATE,
DISABLED_STATE and DISABLED_FOCUSED_STATE) to the user, using the setGraphicContent. The
same content can be applied to all states of the widget by using the HState constant ALL_STATES
when calling setTextContent, setGraphicContent, setAnimateContent and setContent.

! By default, content associated with a widget is not modified to fit the dimensions of the
widget. Refer to the alignment and scaling methods in HVisible to address this issue.

Mechanisms are also available that allow (graphic) content to be resized to match the widget
dimensions, etc.

 447

HAVi SPECIFICATION Version 1.1

8.5 HAVi Resident Widgets

Using the Component Behaviors (HVisible, HNavigable, HActionable and HSwitchable) defined in the
previous section a set of resident widgets is provided.

Note that implementations of the HAVi widget set shall be implemented (and behave) as
lightweight components. HAVi widgets do not include an associated peer class, irrespective of the
exact mechanism for their implementation, i.e., directly implemented in Java, or via some platform
specific mechanism.

8.5.1 Simple Text/Graphic/Animate Widgets

The HAVi set of resident widgets includes both visible and navigable versions of the HText, HIcon
and HAnimation classes:

! Applications providing simple “display-only” non-navigable text, image, or animations
may employ the “Static” versions of these classes.

! Applications wishing to provide additional feedback, e.g. “tooltips”, or audio feedback –
for example, a commentary – may employ the navigable versions of these classes.

Widget Type Description Static Navigable
Animation Displays a simple sequence of images HStaticAnimation HAnimation

Text Displays a text label HStaticText HText

Graphic Displays an Image HStaticIcon HIcon

Refer to the supporting Javadoc for a more detailed description of these widgets.

8.5.2 Buttons

The HAVi set of resident widgets includes both textual and graphical version of a push button:
HTextButton and HGraphicButton. These buttons implement the HActionable interface that defines their
behavior.

The HToggleButton is used to represent a graphical control that has a boolean state that can be
toggled on and off by the user (e.g. Checkbox or Radio Button). The HToggleButton implements the
HSwitchable interface that defines its behavior. A HToggleButton widget does not have an associated
text label as part of the widget. If a text label is required, a separate HStaticText widget should be
created.

A set of HToggleButtons can be associated with a HToggleGroup. A HToggleGroup will ensure that a
maximum of one HToggleButton is chosen at any time (i.e. a group of radio buttons).

Refer to the supporting Javadoc for a more detailed description of these widgets.

8.5.3 Range Widgets

The HAVi set of resident widgets include a group of controls to represent a particular integer value
in a range of values i.e. a slider control, or scroll bar. The HStaticRange widget is a non navigable
widget, HRange widget is navigable (implements the HNavigable interface) and the HRangeValue is

 448

HAVi SPECIFICATION Version 1.1

navigable and its value can be modified by user interaction (implements the HAdjustmentValue
interface).

Refer to the supporting Javadoc for a more detailed description of these widgets.

8.5.4 List Widgets

A HListGroup is a visible that manages a dynamic set of vertically or horizontally scrollable
HListElements, allowing either single or multiple HListElements to be chosen by the user. The
HListGroup will automatically scroll the HListElements when the user navigates to an element that is
currently not visible within the list group.

Refer to the supporting Javadoc for a more detailed description of these widgets.

8.5.5 Text Entry Widgets

The HSinglelineEntry component allows a user to enter a single line text string. A typical rendering is
as a text entry field, e.g. with an associated on-screen keyboard. The HMultilineEntry widget extends
the HSinglelineEntry widget and allows text to be entered over multiple lines. Both these widgets
implement the HTextValue interface resulting in the widgets firing HTextEvents when starting to edit,
finishing editing, and whenever the content changes.

Refer to the supporting Javadoc for a more detailed description of these widgets.

8.6 Profiles

Implementations of the HAVi User-Interface on an FAV should:

! have a minimum screen resolution of 320 by 240 pixels (quarter VGA)

! include support for the image and sound content types, as defined in DDI.

! either provide a physical keyboard or provide a virtual keyboard supporting at least the
entry of alphanumeric codes

8.7 General Approach to Error Behavior

Where a method call is specified as taking an object as one of its input parameters, if null is passed
as a parameter and not explicitly identified as a valid input for that parameter of that method then a
java.lang.NullPointerException shall be thrown. Where an input parameter to a method call is specified
to be more restrictive than its Java type allows (e.g. only a restricted set of numbers are allowed as
inputs), providing values outside the allowed range shall result in a java.lang.IllegalArgumentException
being thrown.

8.8 Register of Constants
public final static int org.havi.ui.HAdjustableLook.ADJUST_THUMB = -6;
public final static int org.havi.ui.HAdjustableLook.ADJUST_PAGE_MORE = -5;
public final static int org.havi.ui.HAdjustableLook.ADJUST_PAGE_LESS = -4;
public final static int org.havi.ui.HAdjustableLook.ADJUST_BUTTON_MORE = -3;
public final static int org.havi.ui.HAdjustableLook.ADJUST_BUTTON_LESS = -2;
public final static int org.havi.ui.HAdjustableLook.ADJUST_NONE = -1;

 449

HAVi SPECIFICATION Version 1.1

public final static int org.havi.ui.HAnimateEffect.REPEAT_INFINITE = -1;
public final static int org.havi.ui.HAnimateEffect.PLAY_REPEATING = 1;
public final static int org.havi.ui.HAnimateEffect.PLAY_ALTERNATING = 2;
public final static int org.havi.ui.HBackgroundConfigTemplate.CHANGEABLE_SINGLE_COLOR = 10;
public final static int org.havi.ui.HBackgroundConfigTemplate.STILL_IMAGE = 11;
public final static int org.havi.ui.HFontCapabilities.BASIC_LATIN = 1;
public final static int org.havi.ui.HFontCapabilities.LATIN_1_SUPPLEMENT = 2;
public final static int org.havi.ui.HFontCapabilities.LATIN_EXTENDED_A = 3;
public final static int org.havi.ui.HFontCapabilities.LATIN_EXTENDED_B = 4;
public final static int org.havi.ui.HFontCapabilities.IPA_EXTENSIONS = 5;
public final static int org.havi.ui.HFontCapabilities.SPACING_MODIFIER_LETTERS = 6;
public final static int org.havi.ui.HFontCapabilities.COMBINING_DIACRITICAL_MARKS = 7;
public final static int org.havi.ui.HFontCapabilities.BASIC_GREEK = 8;
public final static int org.havi.ui.HFontCapabilities.GREEK_SYMBOLS_AND_COPTIC = 9;
public final static int org.havi.ui.HFontCapabilities.CYRILLIC = 10;
public final static int org.havi.ui.HFontCapabilities.ARMENIAN = 11;
public final static int org.havi.ui.HFontCapabilities.BASIC_HEBREW = 12;
public final static int org.havi.ui.HFontCapabilities.HEBREW_EXTENDED = 13;
public final static int org.havi.ui.HFontCapabilities.BASIC_ARABIC = 14;
public final static int org.havi.ui.HFontCapabilities.ARABIC_EXTENDED = 15;
public final static int org.havi.ui.HFontCapabilities.DEVANAGARI = 16;
public final static int org.havi.ui.HFontCapabilities.BENGALI = 17;
public final static int org.havi.ui.HFontCapabilities.GURMUKHI = 18;
public final static int org.havi.ui.HFontCapabilities.GUJARATI = 19;
public final static int org.havi.ui.HFontCapabilities.ORIYA = 20;
public final static int org.havi.ui.HFontCapabilities.TAMIL = 21;
public final static int org.havi.ui.HFontCapabilities.TELUGU = 22;
public final static int org.havi.ui.HFontCapabilities.KANNADA = 23;
public final static int org.havi.ui.HFontCapabilities.MALAYALAM = 24;
public final static int org.havi.ui.HFontCapabilities.THAI = 25;
public final static int org.havi.ui.HFontCapabilities.LAO = 26;
public final static int org.havi.ui.HFontCapabilities.BASIC_GEORGIAN = 27;
public final static int org.havi.ui.HFontCapabilities.GEORGIAN_EXTENDED = 28;
public final static int org.havi.ui.HFontCapabilities.HANGUL_JAMO = 29;
public final static int org.havi.ui.HFontCapabilities.LATIN_EXTENDED_ADDITIONAL = 30;
public final static int org.havi.ui.HFontCapabilities.GREEK_EXTENDED = 31;
public final static int org.havi.ui.HFontCapabilities.GENERAL_PUNCTUATION = 32;
public final static int org.havi.ui.HFontCapabilities.SUPERSCRIPTS_AND_SUBSCRIPTS = 33;
public final static int org.havi.ui.HFontCapabilities.CURRENCY_SYMBOLS = 34;
public final static int org.havi.ui.HFontCapabilities.COMBINING_DIACTRICAL_MARKS_FOR_SYMBOLS =
35;
public final static int org.havi.ui.HFontCapabilities.LETTERLIKE_SYMBOLS = 36;
public final static int org.havi.ui.HFontCapabilities.NUMBER_FORMS = 37;
public final static int org.havi.ui.HFontCapabilities.ARROWS = 38;
public final static int org.havi.ui.HFontCapabilities.MATHEMATICAL_OPERATORS = 39;
public final static int org.havi.ui.HFontCapabilities.MISCELLANEOUS_TECHNICAL = 40;
public final static int org.havi.ui.HFontCapabilities.CONTROL_PICTURES = 41;
public final static int org.havi.ui.HFontCapabilities.OPTICAL_CHARACTER_RECOGNITION = 42;
public final static int org.havi.ui.HFontCapabilities.ENCLOSED_ALPHANUMERICS = 43;
public final static int org.havi.ui.HFontCapabilities.BOX_DRAWING = 44;
public final static int org.havi.ui.HFontCapabilities.BLOCK_ELEMENTS = 45;
public final static int org.havi.ui.HFontCapabilities.GEOMETRICAL_SHAPES = 46;
public final static int org.havi.ui.HFontCapabilities.MISCELLANEOUS_SYMBOLS = 47;
public final static int org.havi.ui.HFontCapabilities.DINGBATS = 48;
public final static int org.havi.ui.HFontCapabilities.CJK_SYMBOLS_AND_PUNCTUATION = 49;
public final static int org.havi.ui.HFontCapabilities.HIRAGANA = 50;
public final static int org.havi.ui.HFontCapabilities.KATAKANA = 51;
public final static int org.havi.ui.HFontCapabilities.BOPOMOFO = 52;
public final static int org.havi.ui.HFontCapabilities.HANGUL_COMPATIBILITY_JAMO = 53;
public final static int org.havi.ui.HFontCapabilities.CJK_MISCELLANEOUS = 54;
public final static int org.havi.ui.HFontCapabilities.ENCLOSED_CJK_LETTERS_AND_MONTHS = 55;
public final static int org.havi.ui.HFontCapabilities.CJK_COMPATIBILITY = 56;
public final static int org.havi.ui.HFontCapabilities.HANGUL = 57;
public final static int org.havi.ui.HFontCapabilities.HANGUL_SUPPLEMENTARY_A = 58;
public final static int org.havi.ui.HFontCapabilities.HANGUL_SUPPLEMENTARY_B = 59;
public final static int org.havi.ui.HFontCapabilities.CJK_UNIFIED_IDEOGRAPHS = 60;
public final static int org.havi.ui.HFontCapabilities.PRIVATE_USE_AREA = 61;

 450

HAVi SPECIFICATION Version 1.1

public final static int org.havi.ui.HFontCapabilities.CJK_COMPATIBILITY_IDEOGRAPHS = 62;
public final static int org.havi.ui.HFontCapabilities.ALPHABETIC_PRESENTATION_FORMS_A = 63;
public final static int org.havi.ui.HFontCapabilities.ARABIC_PRESENTATION_FORMS_A = 64;
public final static int org.havi.ui.HFontCapabilities.COMBINING_HALF_MARKS = 65;
public final static int org.havi.ui.HFontCapabilities.CJK_COMPATIBILITY_FORMS = 66;
public final static int org.havi.ui.HFontCapabilities.SMALL_FORM_VARIANTS = 67;
public final static int org.havi.ui.HFontCapabilities.ARABIC_PRESENTATION_FORMS_B = 68;
public final static int org.havi.ui.HFontCapabilities.HALFWIDTH_AND_FULLWIDTH_FORMS = 69;
public final static int org.havi.ui.HFontCapabilities.SPECIALS = 70;
public final static int org.havi.ui.HGraphicsConfigTemplate.VIDEO_MIXING = 12;
public final static int org.havi.ui.HGraphicsConfigTemplate.MATTE_SUPPORT = 13;
public final static int org.havi.ui.HGraphicsConfigTemplate.IMAGE_SCALING_SUPPORT = 14;
public final static int org.havi.ui.HImageHints.NATURAL_IMAGE = 1;
public final static int org.havi.ui.HImageHints.CARTOON = 2;
public final static int org.havi.ui.HImageHints.BUSINESS_GRAPHICS = 3;
public final static int org.havi.ui.HImageHints.LINE_ART = 4;
public final static int org.havi.ui.HKeyboardInputPreferred.INPUT_NUMERIC = 1;
public final static int org.havi.ui.HKeyboardInputPreferred.INPUT_ALPHA = 2;
public final static int org.havi.ui.HKeyboardInputPreferred.INPUT_ANY = 4;
public final static int org.havi.ui.HKeyboardInputPreferred.INPUT_CUSTOMIZED = 8;
public final static int org.havi.ui.HListGroup.DEFAULT_ICON_HEIGHT = -4;
public final static int org.havi.ui.HListGroup.DEFAULT_ICON_WIDTH = -3;
public final static int org.havi.ui.HListGroup.DEFAULT_LABEL_HEIGHT = -2;
public final static int org.havi.ui.HListGroup.ITEM_NOT_FOUND = -1;
public final static int org.havi.ui.HListGroup.ADD_INDEX_END = -1;
public final static int org.havi.ui.HListGroup.DEFAULT_LABEL_WIDTH = -1;
public final static int org.havi.ui.HOrientable.ORIENT_LEFT_TO_RIGHT = 0;
public final static int org.havi.ui.HOrientable.ORIENT_RIGHT_TO_LEFT = 1;
public final static int org.havi.ui.HOrientable.ORIENT_TOP_TO_BOTTOM = 2;
public final static int org.havi.ui.HOrientable.ORIENT_BOTTOM_TO_TOP = 3;
public final static int org.havi.ui.HScene.IMAGE_NONE = 0;
public final static int org.havi.ui.HScene.NO_BACKGROUND_FILL = 0;
public final static int org.havi.ui.HScene.IMAGE_STRETCH = 1;
public final static int org.havi.ui.HScene.BACKGROUND_FILL = 1;
public final static int org.havi.ui.HScene.IMAGE_CENTER = 2;
public final static int org.havi.ui.HScene.IMAGE_TILE = 3;
public final static int org.havi.ui.HSceneTemplate.GRAPHICS_CONFIGURATION = 0;
public final static int org.havi.ui.HSceneTemplate.REQUIRED = 1;
public final static int org.havi.ui.HSceneTemplate.SCENE_PIXEL_DIMENSION = 1;
public final static int org.havi.ui.HSceneTemplate.PREFERRED = 2;
public final static int org.havi.ui.HSceneTemplate.SCENE_PIXEL_LOCATION = 2;
public final static int org.havi.ui.HSceneTemplate.UNNECESSARY = 3;
public final static int org.havi.ui.HSceneTemplate.SCENE_SCREEN_DIMENSION = 4;
public final static int org.havi.ui.HSceneTemplate.SCENE_SCREEN_LOCATION = 8;
public final static int org.havi.ui.HScreenConfigTemplate.REQUIRED = 1;
public final static int org.havi.ui.HScreenConfigTemplate.ZERO_BACKGROUND_IMPACT = 1;
public final static int org.havi.ui.HScreenConfigTemplate.PREFERRED = 2;
public final static int org.havi.ui.HScreenConfigTemplate.ZERO_GRAPHICS_IMPACT = 2;
public final static int org.havi.ui.HScreenConfigTemplate.DONT_CARE = 3;
public final static int org.havi.ui.HScreenConfigTemplate.ZERO_VIDEO_IMPACT = 3;
public final static int org.havi.ui.HScreenConfigTemplate.PREFERRED_NOT = 4;
public final static int org.havi.ui.HScreenConfigTemplate.INTERLACED_DISPLAY = 4;
public final static int org.havi.ui.HScreenConfigTemplate.REQUIRED_NOT = 5;
public final static int org.havi.ui.HScreenConfigTemplate.FLICKER_FILTERING = 5;
public final static int org.havi.ui.HScreenConfigTemplate.VIDEO_GRAPHICS_PIXEL_ALIGNED = 6;
public final static int org.havi.ui.HScreenConfigTemplate.PIXEL_ASPECT_RATIO = 7;
public final static int org.havi.ui.HScreenConfigTemplate.PIXEL_RESOLUTION = 8;
public final static int org.havi.ui.HScreenConfigTemplate.SCREEN_RECTANGLE = 9;
public final static int org.havi.ui.HState.FOCUSED_STATE_BIT = 1;
public final static int org.havi.ui.HState.ACTIONED_STATE_BIT = 2;
public final static int org.havi.ui.HState.DISABLED_STATE_BIT = 4;
public final static int org.havi.ui.HState.ALL_STATES = 7;
public final static int org.havi.ui.HState.FIRST_STATE = 128;
public final static int org.havi.ui.HState.NORMAL_STATE = 128;
public final static int org.havi.ui.HState.FOCUSED_STATE = 129;
public final static int org.havi.ui.HState.ACTIONED_STATE = 130;
public final static int org.havi.ui.HState.ACTIONED_FOCUSED_STATE = 131;

 451

HAVi SPECIFICATION Version 1.1

public final static int org.havi.ui.HState.DISABLED_STATE = 132;
public final static int org.havi.ui.HState.DISABLED_FOCUSED_STATE = 133;
public final static int org.havi.ui.HState.DISABLED_ACTIONED_STATE = 134;
public final static int org.havi.ui.HState.DISABLED_ACTIONED_FOCUSED_STATE = 135;
public final static int org.havi.ui.HState.LAST_STATE = 135;
public final static int org.havi.ui.HStaticRange.SLIDER_BEHAVIOR = 0;
public final static int org.havi.ui.HStaticRange.SCROLLBAR_BEHAVIOR = 1;
public final static int org.havi.ui.HVideoConfigTemplate.GRAPHICS_MIXING = 15;
public final static int org.havi.ui.HVisible.NO_DEFAULT_WIDTH = -1;
public final static int org.havi.ui.HVisible.NO_DEFAULT_HEIGHT = -1;
public final static int org.havi.ui.HVisible.HALIGN_LEFT = 0;
public final static int org.havi.ui.HVisible.VALIGN_TOP = 0;
public final static int org.havi.ui.HVisible.RESIZE_NONE = 0;
public final static int org.havi.ui.HVisible.NO_BACKGROUND_FILL = 0;
public final static int org.havi.ui.HVisible.FIRST_CHANGE = 0;
public final static int org.havi.ui.HVisible.TEXT_CONTENT_CHANGE = 0;
public final static int org.havi.ui.HVisible.HALIGN_CENTER = 1;
public final static int org.havi.ui.HVisible.RESIZE_PRESERVE_ASPECT = 1;
public final static int org.havi.ui.HVisible.BACKGROUND_FILL = 1;
public final static int org.havi.ui.HVisible.GRAPHIC_CONTENT_CHANGE = 1;
public final static int org.havi.ui.HVisible.HALIGN_RIGHT = 2;
public final static int org.havi.ui.HVisible.RESIZE_ARBITRARY = 2;
public final static int org.havi.ui.HVisible.ANIMATE_CONTENT_CHANGE = 2;
public final static int org.havi.ui.HVisible.HALIGN_JUSTIFY = 3;
public final static int org.havi.ui.HVisible.CONTENT_CHANGE = 3;
public final static int org.havi.ui.HVisible.VALIGN_CENTER = 4;
public final static int org.havi.ui.HVisible.STATE_CHANGE = 4;
public final static int org.havi.ui.HVisible.CARET_POSITION_CHANGE = 5;
public final static int org.havi.ui.HVisible.ECHO_CHAR_CHANGE = 6;
public final static int org.havi.ui.HVisible.EDIT_MODE_CHANGE = 7;
public final static int org.havi.ui.HVisible.VALIGN_BOTTOM = 8;
public final static int org.havi.ui.HVisible.MIN_MAX_CHANGE = 8;
public final static int org.havi.ui.HVisible.THUMB_OFFSETS_CHANGE = 9;
public final static int org.havi.ui.HVisible.ORIENTATION_CHANGE = 10;
public final static int org.havi.ui.HVisible.TEXT_VALUE_CHANGE = 11;
public final static int org.havi.ui.HVisible.VALIGN_JUSTIFY = 12;
public final static int org.havi.ui.HVisible.ITEM_VALUE_CHANGE = 12;
public final static int org.havi.ui.HVisible.ADJUSTMENT_VALUE_CHANGE = 13;
public final static int org.havi.ui.HVisible.LIST_CONTENT_CHANGE = 14;
public final static int org.havi.ui.HVisible.LIST_ICONSIZE_CHANGE = 15;
public final static int org.havi.ui.HVisible.LIST_LABELSIZE_CHANGE = 16;
public final static int org.havi.ui.HVisible.LIST_MULTISELECTION_CHANGE = 17;
public final static int org.havi.ui.HVisible.LIST_SCROLLPOSITION_CHANGE = 18;
public final static int org.havi.ui.HVisible.SIZE_CHANGE = 19;
public final static int org.havi.ui.HVisible.BORDER_CHANGE = 20;
public final static int org.havi.ui.HVisible.REPEAT_COUNT_CHANGE = 21;
public final static int org.havi.ui.HVisible.ANIMATION_POSITION_CHANGE = 22;
public final static int org.havi.ui.HVisible.LIST_SELECTION_CHANGE = 23;
public final static int org.havi.ui.HVisible.UNKNOWN_CHANGE = 24;
public final static int org.havi.ui.HVisible.LAST_CHANGE = 24;
public final static int org.havi.ui.event.HAdjustmentEvent.ADJUST_FIRST = 2000;
public final static int org.havi.ui.event.HAdjustmentEvent.ADJUST_START_CHANGE = 2000;
public final static int org.havi.ui.event.HAdjustmentEvent.ADJUST_LESS = 2001;
public final static int org.havi.ui.event.HAdjustmentEvent.ADJUST_MORE = 2002;
public final static int org.havi.ui.event.HAdjustmentEvent.ADJUST_PAGE_LESS = 2003;
public final static int org.havi.ui.event.HAdjustmentEvent.ADJUST_PAGE_MORE = 2004;
public final static int org.havi.ui.event.HAdjustmentEvent.ADJUST_LAST = 2005;
public final static int org.havi.ui.event.HAdjustmentEvent.ADJUST_END_CHANGE = 2005;
public final static int org.havi.ui.event.HBackgroundImageEvent.BACKGROUNDIMAGE_FIRST = 1;
public final static int org.havi.ui.event.HBackgroundImageEvent.BACKGROUNDIMAGE_LOADED = 1;
public final static int org.havi.ui.event.HBackgroundImageEvent.BACKGROUNDIMAGE_FILE_NOT_FOUND
= 2;
public final static int org.havi.ui.event.HBackgroundImageEvent.BACKGROUNDIMAGE_IOERROR = 3;
public final static int org.havi.ui.event.HBackgroundImageEvent.BACKGROUNDIMAGE_INVALID = 4;
public final static int org.havi.ui.event.HBackgroundImageEvent.BACKGROUNDIMAGE_LAST = 4;
public final static int org.havi.ui.event.HEventRepresentation.ER_TYPE_NOT_SUPPORTED = 0;
public final static int org.havi.ui.event.HEventRepresentation.ER_TYPE_STRING = 1;

 452

HAVi SPECIFICATION Version 1.1

public final static int org.havi.ui.event.HEventRepresentation.ER_TYPE_COLOR = 2;
public final static int org.havi.ui.event.HEventRepresentation.ER_TYPE_SYMBOL = 4;
public final static int org.havi.ui.event.HFocusEvent.NO_TRANSFER_ID = -1;
public final static int org.havi.ui.event.HFocusEvent.HFOCUS_FIRST = 2029;
public final static int org.havi.ui.event.HFocusEvent.FOCUS_TRANSFER = 2029;
public final static int org.havi.ui.event.HFocusEvent.HFOCUS_LAST = 2029;
public final static int org.havi.ui.event.HItemEvent.ITEM_FIRST = 2006;
public final static int org.havi.ui.event.HItemEvent.ITEM_START_CHANGE = 2006;
public final static int org.havi.ui.event.HItemEvent.ITEM_TOGGLE_SELECTED = 2007;
public final static int org.havi.ui.event.HItemEvent.ITEM_SELECTED = 2008;
public final static int org.havi.ui.event.HItemEvent.ITEM_CLEARED = 2009;
public final static int org.havi.ui.event.HItemEvent.ITEM_SELECTION_CLEARED = 2010;
public final static int org.havi.ui.event.HItemEvent.ITEM_SET_CURRENT = 2011;
public final static int org.havi.ui.event.HItemEvent.ITEM_SET_PREVIOUS = 2012;
public final static int org.havi.ui.event.HItemEvent.ITEM_SET_NEXT = 2013;
public final static int org.havi.ui.event.HItemEvent.SCROLL_MORE = 2014;
public final static int org.havi.ui.event.HItemEvent.SCROLL_LESS = 2015;
public final static int org.havi.ui.event.HItemEvent.SCROLL_PAGE_MORE = 2016;
public final static int org.havi.ui.event.HItemEvent.SCROLL_PAGE_LESS = 2017;
public final static int org.havi.ui.event.HItemEvent.ITEM_END_CHANGE = 2018;
public final static int org.havi.ui.event.HItemEvent.ITEM_LAST = 2018;
public final static int org.havi.ui.event.HRcEvent.RC_FIRST = 400;
public final static int org.havi.ui.event.HRcEvent.VK_COLORED_KEY_0 = 403;
public final static int org.havi.ui.event.HRcEvent.VK_COLORED_KEY_1 = 404;
public final static int org.havi.ui.event.HRcEvent.VK_COLORED_KEY_2 = 405;
public final static int org.havi.ui.event.HRcEvent.VK_COLORED_KEY_3 = 406;
public final static int org.havi.ui.event.HRcEvent.VK_COLORED_KEY_4 = 407;
public final static int org.havi.ui.event.HRcEvent.VK_COLORED_KEY_5 = 408;
public final static int org.havi.ui.event.HRcEvent.VK_POWER = 409;
public final static int org.havi.ui.event.HRcEvent.VK_DIMMER = 410;
public final static int org.havi.ui.event.HRcEvent.VK_WINK = 411;
public final static int org.havi.ui.event.HRcEvent.VK_REWIND = 412;
public final static int org.havi.ui.event.HRcEvent.VK_STOP = 413;
public final static int org.havi.ui.event.HRcEvent.VK_EJECT_TOGGLE = 414;
public final static int org.havi.ui.event.HRcEvent.VK_PLAY = 415;
public final static int org.havi.ui.event.HRcEvent.VK_RECORD = 416;
public final static int org.havi.ui.event.HRcEvent.VK_FAST_FWD = 417;
public final static int org.havi.ui.event.HRcEvent.VK_PLAY_SPEED_UP = 418;
public final static int org.havi.ui.event.HRcEvent.VK_PLAY_SPEED_DOWN = 419;
public final static int org.havi.ui.event.HRcEvent.VK_PLAY_SPEED_RESET = 420;
public final static int org.havi.ui.event.HRcEvent.VK_RECORD_SPEED_NEXT = 421;
public final static int org.havi.ui.event.HRcEvent.VK_GO_TO_START = 422;
public final static int org.havi.ui.event.HRcEvent.VK_GO_TO_END = 423;
public final static int org.havi.ui.event.HRcEvent.VK_TRACK_PREV = 424;
public final static int org.havi.ui.event.HRcEvent.VK_TRACK_NEXT = 425;
public final static int org.havi.ui.event.HRcEvent.VK_RANDOM_TOGGLE = 426;
public final static int org.havi.ui.event.HRcEvent.VK_CHANNEL_UP = 427;
public final static int org.havi.ui.event.HRcEvent.VK_CHANNEL_DOWN = 428;
public final static int org.havi.ui.event.HRcEvent.VK_STORE_FAVORITE_0 = 429;
public final static int org.havi.ui.event.HRcEvent.VK_STORE_FAVORITE_1 = 430;
public final static int org.havi.ui.event.HRcEvent.VK_STORE_FAVORITE_2 = 431;
public final static int org.havi.ui.event.HRcEvent.VK_STORE_FAVORITE_3 = 432;
public final static int org.havi.ui.event.HRcEvent.VK_RECALL_FAVORITE_0 = 433;
public final static int org.havi.ui.event.HRcEvent.VK_RECALL_FAVORITE_1 = 434;
public final static int org.havi.ui.event.HRcEvent.VK_RECALL_FAVORITE_2 = 435;
public final static int org.havi.ui.event.HRcEvent.VK_RECALL_FAVORITE_3 = 436;
public final static int org.havi.ui.event.HRcEvent.VK_CLEAR_FAVORITE_0 = 437;
public final static int org.havi.ui.event.HRcEvent.VK_CLEAR_FAVORITE_1 = 438;
public final static int org.havi.ui.event.HRcEvent.VK_CLEAR_FAVORITE_2 = 439;
public final static int org.havi.ui.event.HRcEvent.VK_CLEAR_FAVORITE_3 = 440;
public final static int org.havi.ui.event.HRcEvent.VK_SCAN_CHANNELS_TOGGLE = 441;
public final static int org.havi.ui.event.HRcEvent.VK_PINP_TOGGLE = 442;
public final static int org.havi.ui.event.HRcEvent.VK_SPLIT_SCREEN_TOGGLE = 443;
public final static int org.havi.ui.event.HRcEvent.VK_DISPLAY_SWAP = 444;
public final static int org.havi.ui.event.HRcEvent.VK_SCREEN_MODE_NEXT = 445;
public final static int org.havi.ui.event.HRcEvent.VK_VIDEO_MODE_NEXT = 446;
public final static int org.havi.ui.event.HRcEvent.VK_VOLUME_UP = 447;

 453

HAVi SPECIFICATION Version 1.1

public final static int org.havi.ui.event.HRcEvent.VK_VOLUME_DOWN = 448;
public final static int org.havi.ui.event.HRcEvent.VK_MUTE = 449;
public final static int org.havi.ui.event.HRcEvent.VK_SURROUND_MODE_NEXT = 450;
public final static int org.havi.ui.event.HRcEvent.VK_BALANCE_RIGHT = 451;
public final static int org.havi.ui.event.HRcEvent.VK_BALANCE_LEFT = 452;
public final static int org.havi.ui.event.HRcEvent.VK_FADER_FRONT = 453;
public final static int org.havi.ui.event.HRcEvent.VK_FADER_REAR = 454;
public final static int org.havi.ui.event.HRcEvent.VK_BASS_BOOST_UP = 455;
public final static int org.havi.ui.event.HRcEvent.VK_BASS_BOOST_DOWN = 456;
public final static int org.havi.ui.event.HRcEvent.VK_INFO = 457;
public final static int org.havi.ui.event.HRcEvent.VK_GUIDE = 458;
public final static int org.havi.ui.event.HRcEvent.VK_TELETEXT = 459;
public final static int org.havi.ui.event.HRcEvent.VK_SUBTITLE = 460;
public final static int org.havi.ui.event.HRcEvent.RC_LAST = 460;
public final static int org.havi.ui.event.HTextEvent.TEXT_FIRST = 2019;
public final static int org.havi.ui.event.HTextEvent.TEXT_START_CHANGE = 2019;
public final static int org.havi.ui.event.HTextEvent.TEXT_CHANGE = 2020;
public final static int org.havi.ui.event.HTextEvent.TEXT_CARET_CHANGE = 2021;
public final static int org.havi.ui.event.HTextEvent.TEXT_END_CHANGE = 2022;
public final static int org.havi.ui.event.HTextEvent.CARET_NEXT_CHAR = 2023;
public final static int org.havi.ui.event.HTextEvent.CARET_NEXT_LINE = 2024;
public final static int org.havi.ui.event.HTextEvent.CARET_PREV_CHAR = 2025;
public final static int org.havi.ui.event.HTextEvent.CARET_PREV_LINE = 2026;
public final static int org.havi.ui.event.HTextEvent.CARET_NEXT_PAGE = 2027;
public final static int org.havi.ui.event.HTextEvent.TEXT_LAST = 2028;
public final static int org.havi.ui.event.HTextEvent.CARET_PREV_PAGE = 2028;

 454

HAVi SPECIFICATION Version 1.1

9 SDD Data

9.1 References

At the beginning of this document is a collection of references. Each of the IEEE 1212 ROM fields
defined in this section includes the reference indicator, either [1], [2] or [4] for convenience to the
reader. Fields which are defined in this document specifically for the HAVi architecture will be
appended with [HAVi] as the reference indicator.

9.2 Introduction

This section describes the SDD data for HAVi-compliant 1394 devices. This information is stored
in the configuration ROM of the device, according to the layout rules defined by [1] and [2].

About the IEEE 1212 specification: the current official draft is [1]. However, the specification is
currently undergoing a revision process as part of its 5-year re-evaluation. Some of the newly
defined items for this revision are necessary for the HAVi architecture. The newly defined data
structures are in [2]. Additional HAVi-specific data structures are defined in this document.

9.3 Text Encoding Formats

1212 reference [1] defines only a minimal English ASCII text encoding format. The 1212 revision
[2] defines several additional 2-byte formats, including UNICODE. The text fields of SDD use
UNICODE encoding.

9.4 HAVi Key Values

Each of the keys in the following table is defined within the scope of the HAVi Unit Directory. The
definitions for each of these keys are presented in subsequent sections of this document.

Table 17. HAVi Unit Directory Key Values

HAVi Key Name Key ID Valid Key Types

HAVi_Device_Profile_Key 3816 Immediate

HAVi_DCM_Key 3916 Leaf offset

HAVi_DCM_Reference_Key 3A16 Leaf offset

HAVi_DCM_Profile_Key 3B16 Leaf offset

HAVi_Device_Icon_Bitmap_Key 3C16 Leaf offset

HAVi_Message_Version_Key 3D16 Immediate

9.5 Minimum Required Data

The fields described in this document are the minimum required for HAVi-compliant devices, but
these may not be all that is necessary for the device being implemented. Depending on other
standards supported by the device, additional fields may be required.

 455

HAVi SPECIFICATION Version 1.1

If a device changes any of the HAVi defined fields, except the user preferred name, it shall generate
a 1394 bus reset. Moreover, a HAVi controller must also generate a bus reset after initialization or
self-test, i.e., when the first quadlet of its configuration ROM transits from a zero to non-zero value.
This bus reset is necessary to re-detect HAVi controller devices and restart HAVi specific protocols
between controllers.

The following table illustrates the required and optional HAVi-specific data:

Table 18. HAVi Configuration ROM Requirements

HAVi Key Name Requirement

HAVi_Device_Profile_Key Required for all HAVi-compliant device classes

modifiable descriptor for
HAVi_Device_Profile

Required for all HAVi-compliant device classes

HAVi_DCM_Key Strongly recommended for BAV
Does not apply for IAV, FAV

HAVi_DCM_Reference_Key Strongly recommended for BAV
Does not apply for IAV, FAV

HAVi_DCM_Profile_Key Required if DCM is included (BAV)
Does not apply for IAV, FAV

HAVi_Device_Icon_Bitmap_Key Optional for all HAVi-compliant device classes

HAVi_Message_Version_Key Required for IAV, FAV, does not apply for BAV

The following table illustrates the required non-HAVi-specific data (defined by other standards,
such as [1] and [2]):

Table 19. Non-HAVi Configuration ROM Requirements

Key_ID Key Name Requirement Directory Described in
[2]

1816 Instance_Directory Required for all HAVi device classes Root directory 7.7.15

1716 Model_ID Required for all HAVi device classes Root directory
(exceptionally
vendor or
instance
directory)

7.7.14

1116 HAVi_Unit_Directory Required for all HAVi device classes Instance
directory (and
possibly root)

7.7.9

1116 IEC_61883_Unit_Dire
ctory

Required for HAVi devices supporting
multiple 61883 protocols

Root and
instance
directory

7.7.9

1216 Specifier_ID Required for all HAVi device classes HAVi unit
directory

7.7.10

1316 Version Required for all HAVi device classes HAVi unit
directory

7.7.11

9.6 ROM Format

Devices shall implement the general ROM format as defined in [1].

 456

HAVi SPECIFICATION Version 1.1

9.7 The GUID and the Bus_Info_Block

In the Bus_Info_Block of the configuration ROM, the 8 bit chip_id_hi field is concatenated with the
32 bit chip_id_lo to create a 40 bit chip ID value. The vendor specified by the node_vendor_id
value shall administer the chip ID value. When appended to the node_vendor_id value, these shall
form a unique 64-bit value called EUI-64 (Extended Unique Identifier, 64 bits). The HAVi GUID
(Global Unique Identifier) reflects that EUI-64 value.

9.8 Root Directory

Devices shall implement a root directory with the following fields:

9.8.1 Vendor_ID [2]

The Vendor_ID is a 24-bit immediate value (registration ID), assigned by the IEEE, which is
globally unique. This value identifies the vendor that manufactured the device.

9.8.2 HAVi_Unit_Directory [1]

1394 devices conformant with the HAVi specification are required to support the IEC 61883
standard for data transmission formats. All devices shall implement a Unit_Directory field which
points to a 1212 Unit Directory which specifies the IEC 61883 protocol and the HAVi protocol.
This structure is described in more detail below.

The HAVi_Unit_Directory entry is mandatory in the instance directory. A second entry in the root
directory is present only to allow older devices compatible with the current version of the IEC
61883 standard to find this unit directory. If present, the HAVi_Unit_Directory entry shall be the only
unit directory entry in the root, i.e., the HAVi_Unit_Directory entry will be present in the root only if
no other IEC_61883_Unit_Directory (see section 9.8.3) is present in the root. Since the p1212
revision [2] obsoletes this entry, HAVi devices shall rely only on the HAVi_Unit_Directory entry of
the instance directory.

9.8.3 Other IEC_61883_Unit_Directory [1] [4]

HAVi devices may optionally implement further protocols specified by the IEC 61883 CTS code.
If this is the case, a separate unit directory is needed for those non-HAVi protocols.

9.8.4 Instance_Directory [2]

The newly defined Instance_Directory is an offset reference to a directory structure. An instance
directory is mandatory for every HAVi device, since it contains the link for the HAVi Unit
Directory.

9.8.5 Model_ID [2]

The Model_ID field is a binary value which identifies the device model. The format of this field is
24-bit immediate. The contents of the Model_ID are defined by the device vendor. The Model_ID
value should represent a family or class of products and should not be unique to individual devices.

HAVi devices shall, if possible, have the Model_ID entry in the root directory. If this is not possible,

 457

HAVi SPECIFICATION Version 1.1

e.g., for multi-standard devices, the Model_ID may exceptionally be present in a root dependent
vendor directory or the instance directory that contains the HAVi Unit Directory. If a Model_ID is
present in both (and not in the root directory), the entries (and dependent descriptors) shall be
identical. If a Model_ID entry is present in the root and elsewhere, the entries (and dependent
descriptors) should be identical as HAVi considers only the root directory.

9.9 Instance Directory

Devices shall implement an Instance_Directory with the following fields:

9.9.1 HAVi_Unit_Directory [1][2]

This entry points to the same HAVi_Unit_Directory (see below). A second entry pointing to the
HAVi_Unit_Directory may under certain conditions be present in the root directory. According to [2]
HAVi devices shall rely only on the HAVi_Unit_Directory entry in the instance directory, the entry in
the root directory is needed only for backwards compatibility.

9.10 HAVi Unit Directory

Devices shall declare a unit architecture with the following fields as a minimum:

9.10.1 Specifier_ID [1]

The Specifier_ID shall be the first entry of the Unit Directory.

The Specifier_ID in the HAVi Unit Directory is a 24-bit immediate value, and shall be that of the
1394 Trade Association, as follows:

first octet 0016

second octet A016

third octet 2D16

9.10.2 Version [1]

The Version entry shall be the second entry in the Unit Directory.

In the Version field the two least significant bytes specify the version of the SDD fields which are
defined in this device, as described below:

first octet 0116

second octet 0016

third octet 0816

The combination of Specifier_ID and Version defines the meaning of all subsequent keys in the
range of 3816 to 3F16 inclusive.

9.10.3 HAVi_Message_Version [HAVi]

The HAVi_Message_Version is a 24-bit immediate value, which specifies the version of the HAVi
Messaging System supported by this device. It has the following definition:

 458

HAVi SPECIFICATION Version 1.1

first octet Reserved (currently 0016)

second octet Major Version Number (currently 0116)

third octet Minor Version Number (currently 0A 16)

9.10.4 HAVi_Device_Profile [HAVi]

The HAVi_Device_Profile is a 24-bit immediate value specifying the main capabilities of the device.
The value is interpreted as a field of 24 bits with individual meanings, in the following description
bits are numbered from Bit 0 for the LSB to Bit 23 for the MSB.

9.10.4.1 HAVi_Device_Class [Bit0..3]

The HAVi_Device_Class is a 4-bit immediate value specifying which of the non-LAV device
categories this device conforms to. The following values are defined:

HAVi_Device_Class value Meaning

00002 reserved

00012 BAV Device

00102 IAV Device

00112 FAV Device

other values reserved

9.10.4.2 HAVi_DCM_Manager [Bit4]

The HAVi_DCM_Manager is a 1-bit immediate value specifying for IAV devices whether a DCM
Manager is implemented. For a BAV this bit shall be 0, for a FAV this bit shall be 1.

HAVi_DCM_Manager value Meaning

0 DCM Manager absent

1 DCM Manager present

9.10.4.3 HAVi_Stream_Manager [Bit5]

The HAVi_Stream_Manager is a 1-bit immediate value specifying for IAV devices whether a Stream
Manager is implemented. For a BAV this bit shall be 0, for a FAV this bit shall be 1.

HAVi_Stream_Manager value Meaning

0 Stream Manager absent

1 Stream Manager present

9.10.4.4 HAVi_Resource_Manager [Bit6]

The HAVi_Resource_Manager is a 1-bit immediate value specifying for IAV devices whether a
Resource Manager is implemented. For a BAV this bit shall be 0, for a FAV this bit shall be 1.

HAVi_Resource_Manager value Meaning

0 Resource Manager absent

 459

HAVi SPECIFICATION Version 1.1

1 Resource Manager present

9.10.4.5 HAVi_Display_Capability [Bit7]

The HAVi_Display_Capability is a 1-bit immediate value specifying for IAV devices whether a DDI
Controller is implemented, and for FAV devices whether a DDI Controller and a Level 2 User
Interface capability is implemented. For a BAV this bit shall be 0.

HAVi_Display_Capability value Meaning

0 does not have display capability

1 has display capability

9.10.4.6 HAVi_Device_Status [Bit8]

This bit specifies the status of the device. For an IAV or FAV, a value of one indicates that the
HAVi Messaging System and other system components are running – the device is prepared to
receive and process incoming HAVi messages. For a BAV, a value of one indicates that the device
is ready to accept native commands (e.g., AV/C) over 1394.

HAVi_Device_Status value Meaning

0 inactive

1 active

9.10.4.7 Reserved Bits [Bit9..23]

The upper 15 bits of the HAVi_Device_Profile are reserved and shall read as 0.

9.10.5 HAVi_User_Preferred_Name [2][HAVi]

The HAVi_User_Preferred_Name entry is mandatory for all devices. It is coded as a single
modifiable textual descriptor to the HAVi_Device_Profile. The device shall allow this textual
descriptor to be modified and should store it persistently. When it is modified, the DCM must
update the HAVi Registry. The means by which the device informs the DCM of an update (polling,
notification …) is implementation dependent.

From HAVi devices, this field is modified by Dcm::SetUserPreferredName. The DCM then
writes the user preferred name into the node’s address space, while respecting the rules for
modifiable descriptors. Non-HAVi controllers shall directly modify the user preferred name in the
node’s address space, while respecting the rules for modifiable descriptors. Both HAVi and non-
HAVi controllers shall ensure that Width and Character Set are always set to fixed two byte
unicode characters, the language field shall be set to all 0, to indicate “undefined”. Note that the
parameter leaf referenced by the HAVi_User_Preferred_Name entry contains a fixed
max_descriptor_size value of 11, to allow values of up to 16 2-byte Unicode characters.

In multi-standard devices, nicknames in addition to the HAVi_User_Preferred_Name may exist (e.g.,
textual descriptors to the Model_ID). HAVi-aware controllers may in this case update all names in a
coherent manner, using the same text with the appropriate character set. But other controllers may
not be HAVi aware, and may update the “foreign” nickname without modifying the
HAVi_User_Preferred_Name. Furthermore, some HAVi controllers may update only the
HAVi_User_Preferred_Name. To avoid inconsistency it is expected that in such cases the device
itself attempts updating its unmodified names.

 460

HAVi SPECIFICATION Version 1.1

9.10.6 HAVi_DCM [HAVi]

The HAVi_DCM is a 24-bit offset to a 1212 leaf structure. The leaf contains the DCM bytecode unit.
DCM code units shall be encoded as described in section 7.4.1. This field and the leaf structure are
not applicable for the IAV and FAV device classes; they are recommended for the BAV device
class.

9.10.7 HAVi_DCM_Profile [HAVi]

The HAVi_DCM_Profile is a leaf structure which contains information about the DCM. It is
structured as follows (the following diagram represents a quadlet-aligned structure with the least
significant bytes on the right):

Figure 44. HAVi_DCM_Profile Leaf Structure

Leaf length CRC

Transferred_DCM_Code_Unit_Size

Installed_DCM_Code_Space

Installed_DCM_Working_Space

reserved Message_Version

The Transferred_DCM_Code_Unit_Size field specifies the size, in bytes, of the DCM code unit as it
would be transferred from source to destination (i.e., JAR file size). The
Installed_DCM_Code_Space designates the required memory size of the installed code unit part
(read-only), not including the amount of working space the code unit requires. The
Installed_DCM_Working_Space is an estimate of the working space (read/write) the code unit
requires. Note that an installed DCM code unit includes installed DCM and FCMs embedded in the
code unit.

The Message_Version field specifies the lowest version of the HAVi Messaging System required
by this DCM. This field is interpreted as defined in the HAVi Messaging System description.

9.10.8 HAVi_DCM_Reference [HAVi]

The HAVi_DCM_Reference is a URL which provides remote access to a BAV DCM code unit and
its profile. This field is implemented as a leaf structure. It is a free-standing text string which
contains the URL. The HAVi_DCM_Reference field and the associated URL leaf structure are not
applicable for the IAV and FAV device classes; they are recommended for the BAV device class.

For more details on the use of the URL, please refer to the DCM Manager chapter of this
document.

The HAVi_DCM_Reference leaf offset points to a 1212 leaf structure which contains the URL for a
remotely stored DCM code unit and its profile. It shall not contain the file name extension of either
bytecode unit or profile. It is encoded as follows:

 461

HAVi SPECIFICATION Version 1.1

Figure 45. HAVi_DCM_Reference Leaf Structure

leaf length CRC

begin URL data

 end URL data pad bytes if necessary

The HAVi_DCM_Reference is simply a stream of ASCII text bytes that describe a complete URL.
The string shall be NULL-terminated. If the last quadlet is not completely filled with URL data,
then null pad bytes shall be added to the end, to fill the last quadlet.

Here’s an example of the web address http://www.mycompany.com/pub/misc/digitalcam
stored in the leaf structure:

Figure 46. Example of HAVi_DCM_Reference Leaf Structure

leaf length CRC

“h” “t” “t” “p”

“:” “/” “/” “w”

“w” “w” “.” “m”

“y” “c” “o” etc.

Note – the format of the leaf containing a URL is not a textual descriptor, and therefore does not
have to be formatted as such. The simple embedding of ASCII characters for the URL is sufficient.

9.10.9 HAVi_Device_Icon_Bitmap [HAVi]

The HAVi_Device_Icon_Bitmap is a 24-bit offset address which points to a leaf; the leaf contains the
bitmap data. The format of the bitmap encoding is described in section 5.12.5.2.

9.11 Examples (Informative)

The following examples illustrate the concepts of defining 1212 ROM structures for HAVi devices.

9.11.1 Using Keys in the Range of 3816 to 3F16

Data fields in the 1212 ROM are segregated by keys, which are indicators of the data which
follows. The {key, data} pair allows a controller to parse a 1212 ROM and skip around those fields
which it does not understand.

While most of the 6 bit key_IDs are allocated for definition by the IEEE 1212 standard, the
meaning of the last eight keys (3816…3F16) is defined by the organization or vendor identified by
the directory’s Specifier_ID entry. The meaning of these keys depends on the Specifier_ID and the
Version entry present in the same directory as the keys.

The HAVi keys described in the present specification are defined for exclusive use inside the HAVi
Unit Directory. This directory contains as Specifier_ID that of the 1394 Trade Association (00 A0
2D) and in the Version field the value 01 00 08, identifying the HAVi specification as the one ruling

 462

HAVi SPECIFICATION Version 1.1

the use of all the keys in the range of 3816 to 3F16.

For example, HAVi defines key 3916 to mean HAVi_DCM_Key. Also, Company X might define key
3916 to mean private_device_information pointer. When a controller is scanning the ROM, if it sees
the HAVi Specifier_ID (1394_ta_spec_id), the Version (01 00 08 for HAVi) and then key 3916, it
understands the meaning as HAVi_DCM_Key. If anywhere else in the ROM hierarchy, the controller
finds the key 3916, the controller will either understand the key’s meaning or it will know that it
does not understand the key’s meaning and so can ignore the key.

Note that the revised 1212 also specifies extended keys, of 24-bit length, but these are not used in
the present version of the HAVi specification.

9.11.2 HAVi 1212 ROM Encoding

The following diagram illustrates a HAVi 1212 ROM, using the fields defined in this document.
Note that there may be several other structures required, based on other protocols to which the
device conforms. This diagram contains information for a device which also complies to the IEC
61883 protocol.

9.11.2.1 Bus_Info_Block and Root Directory

The ROM header (Bus_Info_Block) and root directory appear as follows:

offset (Base Address FFFF F000 000016)
 Bus_Info_Block

04 0016 0416 crc_length rom_crc_value

04 0416 “1394”

04 0816 I
r
m
c

c
m
c

i
s
c

b
m
c

p
m
c

r (3) cyc_clk_acc (8) max_rec
(4)

r
(2)

m
ax
_r
o
m
(2)

Generati
on (4)

r link_
spd
(3)

04 0C16 node_vendor_id (24) chip_id_hi (8)

04 1016 chip_id_lo (32)

 Root_Directory
04 1416 root_length CRC

04 1816 0316 model_vendor_id

04 1C16 0C16 node_capabilities

 1716 Model_ID

 D816 instance directory offset

 D116 unit directory offset (HAVi or other IEC 61883)
(for 61883 compatibility only)

 << possibly other manufacturer-specific definitions here >>

9.11.2.2 lnstance_Directory

The Instance_Directory portion of the ROM is referenced by the instance directory offset field in the
root directory. It appears as follows.

 463

HAVi SPECIFICATION Version 1.1

Figure 47. Instance_Directory (Root Dependent Directory)

directory length CRC

D116 unit directory offset (HAVi)

D116 unit directory offset (other IEC 61883)

….. << possibly other fields >>

….. …..

9.11.2.3 HAVi_Unit_Directory

The HAVi Unit Directory, referenced by the field labeled “unit directory offset (HAVi)” in the
instance directory appears as follows:

Figure 48. HAVi_Unit_Directory (Instance Dependent Directory)

directory length CRC

1216 Unit_Spec_ID (1394 TA = 00 A0 2D16)

1316 Unit_SW_Version (= 01 00 0816)

3D16 HAVi_Message_Version immediate value (= 00 01 0116)

3816 HAVi_Device_Profile value

9F16 offset to modifiable descriptor parameter leaf

B916 HAVi_DCM leaf offset

BB16 HAVi_DCM_Profile leaf offset

BA16 HAVi_DCM_Reference leaf offset

BC16 HAVi_Device_Icon_Bitmap leaf offset

….. << possibly other fields >>

…..

9.11.2.4 Other IEC_61883_Unit_Directory

Figure 49. Unit_Directory (IEC 61883) Root Dependent Directory

directory length CRC

1216 Unit_Spec_ID (1394 TA = 00 A0 2D16)

1316 Unit_SW_Version (= 01 XX XX16)

….. << possibly other fields >>

…..

In the Unit_SW_Version field the least significant bytes specify any non-HAVi CTS codes specified
in [4].

 464

HAVi SPECIFICATION Version 1.1

9.11.2.5 Modifiable Descriptor Entries for User Preferred Name

Figure 50. Descriptor Parameter Leaf

leaf length (=2) CRC

max_name_size (11) descriptor_address_hi

descriptor_address_lo

Figure 51. User Preferred Name Leaf in a Modifiable Region of Configuration
ROM

leaf length (4) CRC

descriptor_type(
0)

specifier_ID (0)

width(1) char_set (1000) language (0)

004116 "A" 006216 "b"

004316 "C" 000016

This example shows the name “AbC”, written with 2-byte UNICODE characters.

 465

HAVi SPECIFICATION Version 1.1

10 Scenarios

The purpose of this chapter is to describe the interactions between the HAVi system components
for various scenarios. The main objective is to help the reader understand the role played by each
software component. Explanations of these typical scenario cases are not normative unless
indicated otherwise (e.g., by wording including “must” or “shall”).

10.1 IAV or FAV Bootstrap

This scenario describes the operations that occur in system components when a device already
connected to the home network is powered-on. It considers the case of an FAV or IAV, because
passive devices (BAV or LAV) do not feature HAVi system elements.

10.1.1 System Startup & System Ready

The following rules must be followed during the software bootstrap of a HAVi FAV or IAV
device:

! Device Powers ON

! System Elements Start

Examples:

! Driver initiated
! Communication Media Manager (CMM) starts up & is initiated
! Messaging System/Event Manager/Registry start-up completed and
! Device Control Module Manager/Stream Manager/Resource Manager, start-up

completed (Optional for IAV)

! Messaging System (MS) becomes ready only when all the System Elements are ready.

! Set SDD HAVi_Device_Status Flag to high [DEVICE IS ACTIVE]

! Bus Reset occurs

! Messaging System generates ready SystemReady event.

10.1.2 Local Software Elements Register

! Using Cmm1394::GetGuidList, the Registry gets the list of GUIDs and extracts the list
of IAV and FAV GUIDs (using an implementation dependent mechanism) to obtain the
list of other Registry SEIDs on the network.

! Any non-system software element wanting to be known on the network registers through
its local Registry (by sending a Registry::RegisterElement message).

 466

HAVi SPECIFICATION Version 1.1

10.1.3 Interoperation of the Devices within the Network

! DCM Manager enters a DCM installation process according to the protocol described in
section 3.6 on DCM Management.

At this stage, the device is ready to interoperate with other devices in the network, since any
software element is able to accept incoming messages.

10.2 A BAV or LAV is Plugged into the Network

In this scenario, a new BAV or LAV device is plugged into the 1394 bus (LAV devices not
connected to the 1394 network should be handled by FAV/IAV devices in a proprietary manner).
The following operations take place on any FAV or IAV device:

! The CMM of each FAV or IAV generates locally a NetworkReset event (and also the
NewDevices event).

! DCM Managers have previously registered interest in the NetworkReset event and so
receive the event. Using the Cmm1394::GetGuidList method, they get the GUIDs of
the new and gone devices on the network.

! Each DCM Manager reads the SDD of the newly connected device and detects whether it
is a new BAV or LAV.

! One DCM Manager will obtain the right to control this new device, according to the
protocol described in section 3.6 on DCM Management (the case of a new guest
appearing on the network), and installs a DCM for the new device. The DCM Manager
posts a DcmInstallIndication event.

! The new DCM components of the new device register through the Registry API after
getting software element identifiers from the Messaging System. Then the Registry
generates NewSoftwareElement events.

! Stream Managers perform their connection restoration process.

10.3 An FAV or IAV is Plugged into the Network

In this scenario, a new FAV or IAV device is plugged into the 1394 bus. Hereafter is described
what happens on an FAV or IAV of the network:

! The CMM of each FAV or IAV generates locally a NetworkReset event (and also the
NewDevices event).

! DCM Managers have previously registered interest in the NetworkReset event and so
receive the event. Using the Cmm1394::GetGuidList method, they construct lists of the
GUIDs of the new and gone devices on the network.

! The DCM Managers read the SDD of new devices and detects whether they are FAV or
IAV.

 467

HAVi SPECIFICATION Version 1.1

! According to the protocol described in section 3.6 on DCM Management, the DCM
installation process may be re-started since former DCM installations for BAV or LAV
devices may have disappeared.

! Stream Managers perform their connection restoration process.

10.4 A BAV or LAV is Removed from the Network

In this scenario, a BAV or LAV device is unplugged from the 1394 bus.

! The CMM of each FAV or IAV generates locally a NetworkReset event (and also the
GoneDevices event).

! DCM Managers have previously registered interest in the NetworkReset event and so
receive the event. Using the Cmm1394::GetGuidList method, they construct lists of the
GUIDs of the new and gone devices on the network.

! As explained in section 3.6 on DCM Management, the DCM Manager of the host
uninstalls the associated DCM of the BAV or LAV. The DCM components then
unregister themselves, through Registry::UnregisterElement, and close their
message communications via the MsgClose API of the Messaging System. (Note that a
DCM cannot unregister itself after it has performed a MsgClose.) Consequently the
Messaging System generates the MsgLeave event and the Registry generates the
GoneSoftwareElement event.

! The DCM Manager posts a DcmUninstallIndication event.

! The Messaging System of each device informs locally all software elements that
requested notification if the DCM components (with their associated SEIDs) are no
longer available.

! Stream Managers perform their connection restoration process.

10.5 An FAV or IAV is Removed from the Network

In this scenario, an FAV or IAV device is unplugged from the 1394 bus:

! The CMM of each FAV or IAV generates locally a NetworkReset event (and also the
GoneDevices event).

! DCM Managers have previously registered interest in the NetworkReset event and so
receive the event. Using the Cmm1394::GetGuidList method, they construct lists of the
GUIDs of the new and gone devices on the network.

! The Messaging System of each device informs locally all software elements that
requested notification if the DCM components (with their associated SEIDs) hosted by
the disappeared device are no longer available.

! Each DCM Manager goes through the DCM allocation process described in section 3.6
(the case of a disappeared host).

 468

HAVi SPECIFICATION Version 1.1

! For each DCM previously hosted by the removed device, one DCM Manager will obtain
the right to control and install the DCM. The DCM Manager posts a
DcmInstallIndication event.

! Once installed the DCM registers through the Registry API after getting a software
element identifier from the Messaging System. Then the Registry generates a
NewSoftwareElement event.

! Stream Managers perform their connection restoration process.

10.6 An Application Communicates with an FCM

Once an application has found a functional component corresponding to its needs (by querying the
Registry service), this application can contact the FCM to send it commands through the
Messaging System. Once the FCM has been contacted, it knows the identifier of the source that
sent the command, and thus is able to return responses.

A practical example is given below: an application located on an IAV needs to communicate with a
DCM located on another IAV. This DCM can represent the remote IAV itself, or else it can be a
BAV/LAV DCM hosted by the IAV.

10.6.1 Initialization

On power-on, the IAV devices perform initialization. The Messaging System is initialized (the
SystemReady event is generated). The DCMs and FCMs of each device are registered through
Registry API (number 1 in Figure 52).

10.6.2 An IAV Searches for a Device or Functional Component

Suppose that the IAV1 application searches for a VCR. It sends a message to its Registry to query
for a VCR FCM (2). The Registry returns a list (which may be empty) of SEIDs of FCMs which fit
the criteria (3). Suppose the FCM on IAV2 is a member of this list. Now the IAV1 application can
contact the IAV2 FCM and send it commands. The target FCM on reception of a command can
send a response according to the definition of the VCR API (section 6.3).

 469

HAVi SPECIFICATION Version 1.1

Appl.

IAV 1 IAV 2

CMM

FCM1,2

5

3

1
2

6

Registry

Message layer

Registry

Message layer

4
7

8

9

CMM

Figure 52. Application and FCM Communication

10.6.3 An IAV Sends an FCM Command

The IAV1 application uses the Messaging System API to send a Vcr::Play command using a
SEID previously returned (4). The message layer encapsulates the Vcr::Play command and the
software element identifier in a message and sends it to the CMM with the GUID of IAV2
(included within the SEID). The CMM sends the message using IEC 61883/1394 packets with the
1394 network address associated with IAV2’s GUID (5).

(In the example shown in Figure 52, the Messaging System makes use of the CMM. This is an
implementation choice.)

10.6.4 An IAV Receives an FCM Command

The IAV2 Messaging System receives the message and checks the destination software element
identifier. It then invokes the callback function associated with the destination software element.
The IAV2 FCM receives the command and the software element identifier of the source software
element (i.e. application which has sent the message) (6). The FCM then performs the requested
action and returns the response as specified in the VCR API (7, 8, 9).

10.7 Two Applications Communicate with the Same DCM

A typical example of this scenario would be two applications offering to two different users access
of the same device through the same DCM using the DDI protocol.

! Suppose that neither of the applications is aware of the other. The DCM then has to
maintain different (user) contexts in order to fulfill incoming commands.

! The DCM has also to ensure the synchronization that may be needed between these two
applications. For example, consider applications A and B controlling a VCR. When user
A strikes the PLAY key, the PLAY button must be shown pressed on both graphical UIs
(A and B) in order to maintain coherence.

10.8 A DCM Communicates with its Target

When a DCM communicates with its target BAV or LAV device, communication is made in a
private manner, on the 1394 bus, using CMM services.

 470

HAVi SPECIFICATION Version 1.1

This scenario can be illustrated by the example presented below: the DCM of the BAV has been
installed within an FAV.

FAV

CMM

DCM

BAV

1394

1

2

3

read, write,
enroll

4

5

Figure 53. DCM and Target Communication

! When a DCM wants to send an outgoing command to its device, it calls the appropriate
function of 1394 CMM API (Read, Write or Lock) (1, 2).

! To receive an incoming command, the DCM uses Cmm1394::EnrollIndication (3).

! When an incoming message from the BAV arrives, the CMM will dispatch the message
to the DCM, using <Client>::Cmm1394Indication, relying on the GUID of the
sender (4).

! Then the DCM may then send back a response to the device, again using the appropriate
function of the CMM (5).

 471

HAVi SPECIFICATION Version 1.1

11 Annexes

11.1 HAVi Protocol Types

All HAVi messages include a 8-bit field called the protocol type. The values from 0x00 to 0x7f are
reserved for HAVi. The currently defined values of this field are listed in the table below.

HAVi Protocol Type Value

HAVi_RMI 0x00

11.2 HAVi Registry Attributes

A Registry attribute is associated with an 32-bit AttributeName. HAVi reserves the range 0x0 to
0x7fff ffff for system attributes. The following table lists the values in this range currently defined.

Attribute Name Value

ATT_SE_TYPE 0x0000 0000

ATT_VENDOR_ID 0x0000 0001

ATT_HUID 0x0000 0002

ATT_TARGET_ID 0x0000 0003

ATT_INTERFACE_ID 0x0000 0004

ATT_DEVICE_CLASS 0x0000 0005

ATT_GUI_REQ 0x0000 0006

ATT_MEDIA_FORMAT_ID 0x0000 0007

ATT_DEVICE_MANUF 0x0000 0008

ATT_DEVICE_MODEL 0x0000 0009

ATT_SE_MANUF 0x0000 000a

ATT_SE_VERS 0x0000 000b

ATT_AV_LANG 0x0000 000c

ATT_USER_PREF_NAME 0x0000 000d

 472

HAVi SPECIFICATION Version 1.1

11.3 HAVi Software Element Types

The HAVi Registry includes an attribute for storing the “software element type” of each registered
software element. This attribute is a 32-bit value and can be used to distinguish between software
elements. HAVi specifies the following values of this field. Note – for system software elements,
the two low order bytes of the software element type are the same as the software handle given in
Annex 11.4. Software elements whose software element type is in the range 0x0 to 0x007f ffff are
trusted (those with software element type outside this range may or may not be trusted).

HAVi reserves the software element types from 0x0 to 0x7fff ffff. Values above this may be used
by application developers and device vendors to create vendor extensions based on the VendorId,
as stored in the Registry, of the software element.

HAVi Software Element Type ATT_SE_TYPE Value Trusted System
Element

MESSAGING_SYSTEM 0x0000 0000 yes yes

COMMUNICATION_MEDIA_MANAGER 0x0000 0001 yes yes

REGISTRY 0x0000 0002 yes yes

EVENT_MANAGER 0x0000 0003 yes yes

DCM_MANAGER 0x0000 0004 yes yes

STREAM_MANAGER 0x0000 0005 yes yes

RESOURCE_MANAGER 0x0000 0006 yes yes

GENERIC_FCM 0x0000 0100 yes no

TUNER_FCM 0x0000 0101 yes no

VCR_FCM 0x0000 0102 yes no

CLOCK_FCM 0x0000 0103 yes no

CAMERA_FCM 0x0000 0104 yes no

AVDISC_FCM 0x0000 0105 yes no

AMPLIFIER_FCM 0x0000 0106 yes no

DISPLAY_FCM 0x0000 0107 yes no

AVDISPLAY_FCM 0x0000 0108 yes no

MODEM_FCM 0x0000 0109 yes no

WEBPROXY_FCM 0x0000 010a yes no

DCM 0x0000 8000 yes no

APPLICATION_MODULE 0x0080 0001 possibly no

 473

HAVi SPECIFICATION Version 1.1

11.4 HAVi SEIDs

SEIDs include a 16-bit field called the software element handle. The following table gives the
values of this field for system software elements (those belonging a system software element type).
The values from 0x0000 to 0x00ff are reserved for HAVi system software elements.

HAVi Software Element Type Software Element Handle

MESSAGING_SYSTEM 0x0000

COMMUNICATION_MEDIA_MANAGER 0x0001

REGISTRY 0x0002

EVENT_MANAGER 0x0003

DCM_MANAGER 0x0004

STREAM_MANAGER 0x0005

RESOURCE_MANAGER 0x0006

 474

HAVi SPECIFICATION Version 1.1

11.5 HAVi API Codes

HAVi messages include a 24-bit OperationCode. The high order 16 bits are used for an API
code and the low order 8 bits for an Operation ID. The API code is also used in the Status
structure that is returned by many APIs.

HAVi reserves the API code values from 0x0 to 0x7fff. Values above this may be used by
application developers and device vendors to create vendor extensions based on the VendorId, as
stored in the Registry, of the software element providing the API.

HAVi API Name API Code

Msg 0x7fff

Version 0x0000

Cmm1394 0x0001

EventManager 0x0002

Registry 0x0003

Dcm 0x0004

Fcm 0x0005

DcmManager 0x0007

StreamManager 0x0008

ResourceManager 0x0009

DdiTarget 0x000a

unused 0x000b

ApplicationModule 0x000c

Tuner 0x000d

Vcr 0x000e

Clock 0x000f

unused 0x0010

Camera 0x0011

AvDisc 0x0012

Amplifier 0x0013

Display 0x0014

Modem 0x0015

WebProxy 0x0016

 475

HAVi SPECIFICATION Version 1.1

11.6 HAVi Operation Codes

HAVi messages include a 24-bit OperationCode. The high order 16 bits are used for an API
code and the low order 8 bits for an Operation ID. HAVi reserves the Operation ID values from
0x0 to 0x7f when used in combination with a HAVi reserved API code. Values above this may be
used by application developers and device vendors to create vendor extensions based on the
VendorId, as stored in the stored in the Registry, of the software element providing the API.

The following table gives the values of OperationCode for messages sent to HAVi software
elements.

HAVi Message API Code Operation ID

Msg::Ping 0x7fff 0x00

Version::GetVersion 0x0000 0x00

Cmm1394::GetGuidList 0x0001 0x00

Cmm1394::Write 0x0001 0x01

Cmm1394::Read 0x0001 0x02

Cmm1394::Lock 0x0001 0x03

Cmm1394::EnrollIndication 0x0001 0x04

Cmm1394::DropIndication 0x0001 0x05

EventManager::Subscribe 0x0002 0x00

EventManager::Unsubscribe 0x0002 0x01

EventManager::Replace 0x0002 0x02

EventManager::AddEvent 0x0002 0x03

EventManager::RemoveEvent 0x0002 0x04

EventManager::PostEvent 0x0002 0x05

EventManager::ForwardEvent 0x0002 0x06

Registry::RegisterElement 0x0003 0x00

Registry::RetrieveAttributes 0x0003 0x01

Registry::UnregisterElement 0x0003 0x02

Registry::GetElement 0x0003 0x03

Registry::MultipleGetElement 0x0003 0x04

Dcm::GetDeviceIcon 0x0004 0x00

Dcm::GetHuid 0x0004 0x01

Dcm::GetFcmCount 0x0004 0x02

Dcm::GetFcmSeidList 0x00x4 0x03

Dcm::GetDeviceClass 0x0004 0x04

Dcm::GetDeviceManufacturer 0x0004 0x05

 476

HAVi SPECIFICATION Version 1.1

Dcm::GetUserPreferredName 0x0004 0x06

Dcm::SetUserPreferredName 0x0004 0x07

Dcm::GetPowerState 0x0004 0x08

Dcm::SetPowerState 0x0004 0x09

Dcm::NativeCommand 0x0004 0x0a

Dcm::GetControlCapability 0x0004 0x0b

Dcm::GetHavletCodeUnitProfile 0x0004 0x0c

Dcm::GetHavletCodeUnit 0x0004 0x0d

Dcm::GetPlugCount 0x0004 0x0e

Dcm::GetPlugStatus 0x0004 0x0f

Dcm::Connect 0x0004 0x10

Dcm::Disconnect 0x0004 0x11

Dcm::GetConnectionList 0x0004 0x12

Dcm::GetChannelUsage 0x0004 0x13

Dcm::GetPlugUsage 0x0004 0x14

Dcm::SetIecBandwidthAllocation 0x0004 0x15

Dcm::IecSprayOut 0x0004 0x16

Dcm::IecTapIn 0x0004 0x17

Dcm::GetSupportedTransmissionFormats 0x0004 0x18

Dcm::GetTransmissionFormat 0x0004 0x19

Dcm::SetTransmissionFormat 0x0004 0x1a

Dcm::GetContentIconList 0x0004 0x1b

Dcm::SelectContent 0x0004 0x1c

Dcm::StopContent 0x0004 0x1d

Dcm::ScheduleReservation 0x0004 0x1e

Dcm::UnscheduleReservation 0x0004 0x1f

Dcm::GetScheduledActionReferences 0x0004 0x20

Dcm::AddVirtualFcm 0x0004 0x21

Dcm::RemoveVirtualFcm 0x0004 0x22

Dcm::GetAvailableStreamTypes 0x0004 0x23

Dcm::GetStreamType 0x0004 0x24

Dcm::SetStreamTypeId 0x0004 0x25

Fcm::GetHuid 0x0005 0x00

Fcm::GetDcmSeid 0x0005 0x01

Fcm::GetFcmType 0x0005 0x02

 477

HAVi SPECIFICATION Version 1.1

Fcm::GetPowerState 0x0005 0x03

Fcm::SetPowerState 0x0005 0x04

Fcm::NativeCommand 0x0005 0x05

Fcm::SubscribeNotification 0x0005 0x06

Fcm::UnsubscribeNotification 0x0005 0x07

Fcm::GetPlugCount 0x0005 0x08

Fcm::GetSupportedStreamTypes 0x0005 0x09

Fcm::Wink 0x0005 0x0c

Fcm::Unwink 0x0005 0x0d

Fcm::CanWink 0x0005 0x0e

Fcm::Reserve 0x0005 0x0f

Fcm::Release 0x0005 0x10

Fcm::GetReservationStatus 0x0005 0x11

Fcm::GetWorstCaseStartupTime 0x0005 0x12

Fcm::SetPlugSharing 0x0005 0x13

Fcm::IecAttach 0x0005 0x14

Fcm::IecDetach 0x0005 0x15

DcmManager::SetPreference 0x0007 0x00

DcmManager::GetPreference 0x0007 0x01

DcmManager::GetDeviceIcon 0x0007 0x02

DcmManager::InstallDcm 0x0007 0x03

DcmManager::UninstallDcm 0x0007 0x04

DcmManager::DMInitialization 0x0007 0x05

DcmManager::DMInitialInquiry 0x0007 0x06

DcmManager::DMInquiry 0x0007 0x07

DcmManager::DMCommand 0x0007 0x08

DcmManager::DMGetDcm 0x0007 0x09

StreamManager::FlowTo 0x0008 0x00

StreamManager::SprayOut 0x0008 0x01

StreamManager::TapIn 0x0008 0x02

StreamManager::Drop 0x0008 0x03

StreamManager::GetLocalConnectionMap 0x0008 0x04

StreamManager::GetGlobalConnectionMap 0x0008 0x05

StreamManager::GetConnection 0x0008 0x06

StreamManager::GetStream 0x0008 0x07

 478

HAVi SPECIFICATION Version 1.1

ResourceManager::Reserve 0x0009 0x00

ResourceManager::Release 0x0009 0x01

ResourceManager::Negotiate 0x0009 0x02

ResourceManager::ScheduleAction 0x0009 0x03

ResourceManager::UnscheduleAction 0x0009 0x04

ResourceManager::GetLocalScheduledActions 0x0009 0x05

ResourceManager::GetScheduledActionData 0x0009 0x06

ResourceManager::TriggerNotification 0x0009 0x07

ResourceManager::GetScheduledConnections 0x0009 0x08

DdiTarget::Subscribe 0x000a 0x00

DdiTarget::Unsubscribe 0x000a 0x01

DdiTarget::GetDdiElement 0x000a 0x02

DdiTarget::GetDdiPanel 0x000a 0x03

DdiTarget::GetDdiGroup 0x000a 0x04

DdiTarget::GetDdiElementList 0x000a 0x05

DdiTarget::GetDdiContent 0x000a 0x06

DdiTarget::ChangeScope 0x000a 0x07

DdiTarget::UserAction 0x000a 0x08

ApplicationModule::GetIcon 0x000c 0x00

ApplicationModule::GetHuid 0x000c 0x01

ApplicationModule::GetHavletCodeUnitProfile 0x000c 0x02

ApplicationModule::GetHavletCodeUnit 0x000c 0x03

Tuner::GetServiceListInfo 0x000d 0x00

Tuner::GetServiceList 0x000d 0x01

Tuner::SetServiceList 0x000d 0x02

Tuner::GetService 0x000d 0x03

Tuner::GetServiceComponents 0x000d 0x04

Tuner::GetServiceEvents 0x000d 0x05

Tuner::SelectService 0x000d 0x06

Tuner::GetSelectedServices 0x000d 0x07

Tuner::GetCapability 0x000d 0x08

Vcr::Play 0x000e 0x00

Vcr::Record 0x000e 0x01

Vcr::FastForward 0x000e 0x02

Vcr::FastReverse 0x000e 0x03

 479

HAVi SPECIFICATION Version 1.1

Vcr::VariableForward 0x000e 0x04

Vcr::VariableReverse 0x000e 0x05

Vcr::Stop 0x000e 0x06

Vcr::RecPause 0x000e 0x07

Vcr::Skip 0x000e 0x08

Vcr::EjectMedia 0x000e 0x09

Vcr::GetState 0x000e 0x0a

Vcr::GetRecordingMode 0x000e 0x0b

Vcr::SetRecordingMode 0x000e 0x0c

Vcr::GetFormat 0x000e 0x0d

Vcr::GetPosition 0x000e 0x0e

Vcr::ClearRTC 0x000e 0x0f

Vcr::GetCapability 0x000e 0x10

Vcr::GetRejectInfo 0x000e 0x11

Clock::GetDateTime 0x000f 0x00

Clock::SetDateTime 0x000f 0x01

Clock::GetTimezone 0x000f 0x02

Clock::SetTimezone 0x000f 0x03

Clock::EnableAutoDST 0x000f 0x04

Clock::IsEnabledAutoDST 0x000f 0x05

Clock::GetCapability 0x000f 0x06

Clock::CreateTimer 0x000f 0x07

Clock::GetTimerState 0x000f 0x08

Clock::SetTimerState 0x000f 0x09

Clock::DeleteTimer 0x000f 0x0a

Camera::Zoom 0x0011 0x00

Camera::Pan 0x0011 0x01

Camera::Tilt 0x0011 0x02

Camera::SetVideoState 0x0011 0x03

Camera::GetVideoState 0x0011 0x04

Camera::Shoot 0x0011 0x05

Camera::GetImageList 0x0011 0x06

Camera::OpenImage 0x0011 0x07

Camera::ReadImage 0x0011 0x08

Camera::CloseImage 0x0011 0x09

 480

HAVi SPECIFICATION Version 1.1

Camera::EraseImage 0x0011 0x0a

Camera::GetCapability 0x0011 0x0b

AvDisc::GetItemList 0x0012 0x00

AvDisc::Play 0x0012 0x01

AvDisc::Record 0x0012 0x02

AvDisc::VariableForward 0x0012 0x03

AvDisc::VariableReverse 0x0012 0x04

AvDisc::Stop 0x0012 0x05

AvDisc::RecPause 0x0012 0x06

AvDisc::Skip 0x0012 0x07

AvDisc::InsertMedia 0x0012 0x08

AvDisc::EjectMedia 0x0012 0x09

AvDisc::GetState 0x0012 0x0a

AvDisc::GetFormat 0x0012 0x0b

AvDisc::GetPosition 0x0012 0x0c

AvDisc::Erase 0x0012 0x0d

AvDisc::PutItemList 0x0012 0x0e

AvDisc::GetCapability 0x0012 0x0f

AvDisc::GetRejectInfo 0x0012 0x10

Amplifier::SetVolume 0x0013 0x00

Amplifier::GetVolume 0x0013 0x01

Amplifier::SetMute 0x0013 0x02

Amplifier::GetMute 0x0013 0x03

Amplifier::SetBalance 0x0013 0x04

Amplifier::GetBalance 0x0013 0x05

Amplifier::SetLoudness 0x0013 0x06

Amplifier::GetLoudness 0x0013 0x07

Amplifier::GetCapability 0x0013 0x08

Amplifier::SetEqualizer 0x0013 0x09

Amplifier::GetEqualizer 0x0013 0x0a

Amplifier::GetEqualizerCapability 0x0013 0x0b

Amplifier::SetPresetMode 0x0013 0x0c

Amplifier::GetPresetMode 0x0013 0x0d

Amplifier::GetPresetCapability 0x0013 0x0e

Amplifier::GetAudioLatency 0x0013 0x0f

 481

HAVi SPECIFICATION Version 1.1

Display::SetContrast 0x0014 0x00

Display::GetContrast 0x0014 0x01

Display::SetTint 0x0014 0x02

Display::GetTint 0x0014 0x03

Display::SetColor 0x0014 0x04

Display::GetColor 0x0014 0x05

Display::SetBrightness 0x0014 0x06

Display::GetBrightness 0x0014 0x07

Display::SetSharpness 0x0014 0x08

Display::GetSharpness 0x0014 0x09

Display::GetCapability 0x0014 0x0a

Display::GetStandardPictureValue 0x0014 0x0b

Display::SetPresetMode 0x0014 0x0c

Display::GetPresetMode 0x0014 0x0d

Display::GetPresetCapability 0x0014 0x0e

Display::SetScreenMode 0x0014 0x0f

Display::GetScreenMode 0x0014 0x10

Display::SetWindowMode 0x0014 0x11

Display::GetWindowMode 0x0014 0x12

Display::SetActiveWindow 0x0014 0x13

Display::GetActiveWindow 0x0014 0x14

Display::GetWindowRectangle 0x0014 0x15

Display::AssignPlugToDisplay 0x0014 0x16

Display::GetVideoLatency 0x0014 0x17

Modem::AsyncOpen 0x0015 0x00

Modem::IsoOpen 0x0015 0x01

Modem::Send 0x0015 0x02

Modem::Close 0x0015 0x03

Modem::GetCapability 0x0015 0x04

Modem::SetConfiguration 0x0015 0x05

WebProxy::Open 0x0016 0x00

WebProxy::Close 0x0016 0x01

WebProxy::Send 0x0016 0x02

WebProxy::GetCapability 0x0016 0x03

 482

HAVi SPECIFICATION Version 1.1

11.7 HAVi Error Codes

The Status value returned by HAVi APIs consists of a 16-bit API code and a 16-bit error code.
HAVi reserves the error code values from 0x0 to 0x7fff, the values 0x0 to 0x7f are used for general
error messages that may be returned by several APIs. Error codes above 0x7fff may be used by
application developers and device vendors to create vendor extensions based on the VendorId, as
stored in the stored in the Registry, of the software element returning the error.

HAVi Error Name API Code Error Code

SUCCESS any 0x0000

EUNKNOWN_MESSAGE any 0x0001

EACCESS_VIOLATION any 0x0002

EUNIDENTIFIED_FAILURE any 0x0003

ENOT_IMPLEMENTED any 0x0004

ERESERVED any 0x0005

EINVALID_PARAMETER any 0x0006

ERESOURCE_LIMIT any 0x0007

EPARAMETER_SIZE_LIMIT any 0x0008

EINCOMPLETE_MESSAGE any 0x0009

EINCOMPLETE_RESULT any 0x000a

ELOCAL any 0x000b

ESTANDBY any 0x000c

Msg::EFAIL 0x7fff 0x0080

Msg::EALLOC 0x7fff 0x0081

Msg::ESEND 0x7fff 0x0082

Msg::EUNKNOWN 0x7fff 0x0083

Msg::EBUSY 0x7fff 0x0084

Msg::EOVERFLOW 0x7fff 0x0085

Msg::EACK 0x7fff 0x0086

Msg::EELEMENT 0x7fff 0x0087

Msg::ETARGET_REJECT 0x7fff 0x0088

Msg::ESEID 0x7fff 0x0089

Msg::ESOURCE_SEID 0x7fff 0x008a

Msg::EDEST_SEID 0x7fff 0x008b

Msg::ENOT_READY 0x7fff 0x008c

Msg::ESUPER_EXISTS 0x7fff 0x008d

Msg::ETIMEOUT 0x7fff 0x008e

 483

HAVi SPECIFICATION Version 1.1

Msg::EPROTOCOL 0x7fff 0x008f

Msg::ESIZE 0x7fff 0x0090

Msg::EDEST_UNREACHABLE 0x7fff 0x0091

Cmm1394::ENOT_READY 0x0001 0x0080

Cmm1394::EADDRESS 0x0001 0x0081

Cmm1394::EHARDWARE 0x0001 0x0082

Cmm1394::ETYPE 0x0001 0x0083

Cmm1394::ESIZE 0x0001 0x0084

Cmm1394::ENOT_INTERESTED 0x0001 0x0085

Cmm1394::ENOT_FOUND 0x0001 0x0086

Cmm1394::EDATA 0x0001 0x0087

Cmm1394::ECONFLICT 0x0001 0x0088

Cmm1394::EUNKNOWN_GUID 0x0001 0x0089

Cmm1394::ETIMEOUT 0x0001 0x008a

Cmm1394::EINVALID_OFFSET 0x0001 0x008b

Cmm1394::EBUSRESET 0x0001 0x008c

Cmm1394::ERETRY 0x0001 0x008d

Cmm1394::EGUID_NOT_EXIST 0x0001 0x008e

EventManager::EEXIST 0x0002 0x0080

EventManager::EDELIVERY 0x0002 0x0081

EventManager::EFORWARDING 0x0002 0x0082

EventManager::ENOT_FOUND 0x0002 0x0083

Registry::ELOCATION 0x0003 0x0080

Registry::EATTRIBUTE_NAME 0x0003 0x0081

Registry::EIDENTIFIER 0x0003 0x0082

Registry::ENETWORK 0x0003 0x0083

Dcm::ENO_PROT 0x0004 0x0080

Dcm::ENO_ADDR 0x0004 0x0081

Dcm::ENOT_SUPPORTED 0x0004 0x0082

Dcm::ENOT_POSS 0x0004 0x0083

Dcm::ENOT_SET 0x0004 0x0084

Dcm::ENO_CONT 0x0004 0x0085

Dcm::ECOMMANDS 0x0004 0x0086

Dcm::ECONNECTIONS 0x0004 0x0087

Dcm::ENONE 0x0004 0x0088

 484

HAVi SPECIFICATION Version 1.1

Dcm::ESCHED_OVERLAP 0x0004 0x0089

Dcm::ENOT_RUN 0x0004 0x008a

Dcm::ENO_COMMAND 0x0004 0x008b

Dcm::ESINK_FCM 0x0004 0x008c

Dcm::ESINK_PLUG 0x0004 0x008d

Dcm::ENO_CONNECTION 0x0004 0x008e

Dcm::EINSUFF_BANDWIDTH 0x0004 0x008f

Dcm::EINSUFF_CHANNEL 0x0004 0x0090

Dcm::EDEV_BUSY 0x0004 0x0091

Dcm::ENO_ATTACH 0x0004 0x0092

Fcm::ENO_NOT 0x0005 0x0080

Fcm::ENO_PROT 0x0005 0x0081

Fcm::ENO_ADDR 0x0005 0x0082

Fcm::ENOT_SET 0x0005 0x0083

Fcm::EWAS_WINKING 0x0005 0x0084

Fcm::EWAS_NOT_WINKING 0x0005 0x0085

Fcm::ENOT_SUPPORTED 0x0005 0x0086

Fcm::ENO_RESERVE 0x0005 0x0087

Fcm::ENO_RELEASE 0x0005 0x0088

Fcm::ENO_COMMAND 0x0005 0x0089

Fcm::EATTACH 0x0005 0x008a

Fcm::ENOT_POSS 0x0005 0x008b

DcmManager::EFAIL 0x0007 0x0080

DcmManager::EVOLATILE 0x0007 0x0081

StreamManager::ECONN_ID 0x0008 0x0080

StreamManager::ESOURCE_FCM 0x0008 0x0081

StreamManager::ESINK_FCM 0x0008 0x0082

StreamManager::ESOURCE_PLUG 0x0008 0x0083

StreamManager::ESINK_PLUG 0x0008 0x0084

StreamManager::EUNSUP_TRANSPORT 0x0008 0x0085

StreamManager::EUNSUP_STREAM 0x0008 0x0086

StreamManager::ENO_MATCH_STREAM 0x0008 0x0087

StreamManager::ENO_MATCH_FMT 0x0008 0x0088

StreamManager::ENO_MATCH_TRANSPORT 0x0008 0x0089

StreamManager::ENO_MATCH_DIR 0x0008 0x008a

 485

HAVi SPECIFICATION Version 1.1

StreamManager::ESOURCE_BUSY 0x0008 0x008b

StreamManager::ESINK_BUSY 0x0008 0x008c

StreamManager::EDEV_BUSY 0x0008 0x008d

StreamManager::EINSUFF_BANDWIDTH 0x0008 0x008e

StreamManager::EINSUFF_CHANNEL 0x0008 0x008f

StreamManager::EACCESS_VIOLATION 0x0008 0x0090

StreamManager::ENETWORK 0x0008 0x0091

StreamManager::EINVALID_CHANNEL 0x0008 0x0092

StreamManager::ENO_MATCH_BW 0x0008 0x0093

StreamManager::ENO_MATCH_SPEED 0x0008 0x0094

StreamManager::EINVALID_FMT 0x0008 0x0095

StreamManager::ECHANNEL_BUSY 0x0008 0x0096

StreamManager::EASYNC_CHANNEL 0x0008 0x0097

StreamManager::ESTATICBW 0x0008 0x0098

StreamManager::EBROADCAST 0x0008 0x0099

StreamManager::ERESERVED_SOURCE 0x0008 0x009a

StreamManager::ERESERVED_SINK 0x0008 0x009b

StreamManager::EDEV_CONN 0x0008 0x009c

StreamManager::ESHARE 0x0008 0x009d

StreamManager::EANY_CHANNEL 0x0008 0x009e

ResourceManager::ECOMM_CHECK 0x0009 0x0080

ResourceManager::ECONT_SEID 0x0009 0x0081

ResourceManager::ETIME 0x0009 0x0082

ResourceManager::EINV_PLUG 0x0009 0x0083

ResourceManager::EINSUFF_BANDWIDTH 0x0009 0x0084

ResourceManager::EINV_INDEX 0x0009 0x0085

ResourceManager::EMISSING_RES 0x0009 0x0086

ResourceManager::ENOT_SUPPORTED 0x0009 0x0087

ResourceManager::EREJECTED 0x0009 0x0088

ResourceManager::ESCHED_OVERLAP 0x0009 0x0089

ResourceManager::ETRIGG_SEID 0x0009 0x008a

ResourceManager::ERESERVE_FAILED 0x0009 0x008b

DdiTarget::ENO_DEI 0x000a 0x0080

DdiTarget::ENO_SUB 0x000a 0x0081

DdiTarget::ENO_PANEL 0x000a 0x0082

 486

HAVi SPECIFICATION Version 1.1

DdiTarget::ENO_GROUP 0x000a 0x0083

DdiTarget::ENOT_CUR 0x000a 0x0084

Tuner::ELIST 0x000d 0x0080

Tuner::ELOCATOR 0x000d 0x0081

Tuner::EUNAVAILABLE 0x000d 0x0082

Tuner::EPERIOD 0x000d 0x0083

Tuner::EPLUG 0x000d 0x0084

Tuner::EREMOVE 0x000d 0x0085

Tuner::ENOT_COMPAT 0x000d 0x0086

Tuner::ELIST_TYPE 0x000d 0x0087

Tuner::ESERVICE 0x000d 0x0088

Vcr::EREJECTED 0x000e 0x0080

Vcr::ENOT_SUPPORTED 0x000e 0x0081

Clock::EUNSET 0x000f 0x0080

Clock::ESET 0x000f 0x0081

Clock::EZONE 0x000f 0x0082

Clock::EAUTO_DST 0x000f 0x0083

Clock::ENO_FREE 0x000f 0x0084

Clock::ETIMER 0x000f 0x0085

Clock::ENOT_OWNER 0x000f 0x0086

Camera::EREJECTED 0x0011 0x0080

AvDisc::EREJECTED 0x0012 0x0080

AvDisc::ENOT_SUPPORTED 0x0012 0x0081

Modem::ENETWORK 0x0015 0x0080

Modem::EBUSY 0x0015 0x0081

Modem::ESETUP 0x0015 0x0082

Modem::EINVALID_MODE 0x0015 0x0083

Modem::ENUM_CONN 0x0015 0x0084

Modem::EFORBIDDEN 0x0015 0x0085

Modem::EINVALID_PLUG 0x0015 0x0086

Modem::ESIZE 0x0015 0x0087

Modem::EFAILED 0x0015 0x0088

Modem::ECID 0x0015 0x0089

Modem::ECONN 0x0015 0x008a

WebProxy::EPROTOCOL 0x0016 0x0080

 487

HAVi SPECIFICATION Version 1.1

WebProxy::ESIZE 0x0016 0x0081

WebProxy::EFAILED 0x0016 0x0082

WebProxy::ECID 0x0016 0x0083

WebProxy::ENUM_CONN 0x0016 0x0084

WebProxy::ENETWORK 0x0016 0x0085

WebProxy::EADDRESS 0x0016 0x0086

 488

HAVi SPECIFICATION Version 1.1

11.8 HAVi FCM Attribute Indicators

The FCM notification mechanism is based on the use of 16-bit “attribute indicators” which refer to
state variables. Each FCM must specify the attribute indicators it supports and the bit syntax of the
corresponding attribute value.

HAVi reserves the attribute indicator values from 0x0 to 0x7fff. Values above this may be used by
application developers and device vendors to create vendor extensions based on the VendorId, as
stored in the Registry, of the FCM providing the attribute.

FCM API
Name

FCM Attribute FCM
Attribute
Indicator

FCM Attribute
Value Syntax

Vcr currentState 0x0001 VcrCurrentState

Vcr recordingMode 0x0002 VcrRecordingMode

Vcr counterSet 0x0003 boolean

Vcr condensation 0x0004 boolean

Clock dateTime 0x0001 DateTime

Clock timezone 0x0002 Timezone

Clock DSTEnabled 0x0003 boolean

Camera videoState 0x0001 boolean

Camera zoom 0x0002 ZoomOperation

Camera pan 0x0003 PanOperation

Camera tilt 0x0004 TiltOperation

AvDisc currentState 0x0001 AvDiscCurrentState

Amplifier volume 0x0001 octet

Amplifier mute 0x0002 boolean

Amplifier balance 0x0003 octet

Amplifier loudness 0x0004 boolean

Amplifier equalizer 0x0005 sequence<octet>

Display contrast 0x0101 octet

Display tint 0x0102 octet

Display color 0x0103 octet

Display brightness 0x0104 octet

Display sharpness 0x0105 octet

Display screenMode 0x0106 ScreenMode

Display windowMode 0x0107 WindowMode

Display activeWindow 0x0108 octet

Display presetMode 0x0109 DisplayPresetMode

Display windowRectangle 0x010a WindowRectangle

 489

HAVi SPECIFICATION Version 1.1

Modem disconnection 0x0001 ModemDisconnection

Modem callAccept 0x0002 ModemCallAccept

WebProxy disconnection 0x0001 WebProxyDisconnection

 490

HAVi SPECIFICATION Version 1.1

11.9 HAVi System Event Types

An event type is associated with an EventId. For system events (EventId is a SystemEventId)
events are identified by a 16-bit base event number. The following table lists the base event number
for all system event types used by HAVi software elements.

HAVi System Event Type Posted By Distribution Base Event
Number

NewDevices Communication Media
Manager

local 0x0001

GoneDevices Communication Media
Manager

local 0x0002

NetworkReset Communication Media
Manager

local 0x0003

SystemReady Messaging System global 0x0004

MsgLeave Messaging System global 0x0005

MsgTimeout Messaging System global 0x0006

MsgError trusted global 0x0007

NewSoftwareElement Registry global 0x0008

GoneSoftwareElement Registry global 0x0009

UserPreferredNameChanged DCMs global 0x000a

PowerStateChanged DCMs, FCMs global 0x000b

PowerFailureImminent DCMs, FCMs global 0x000c

DeviceConnectionAdded DCMs global 0x000d

DeviceConnectionDropped DCMs global 0x000e

DeviceConnectionChanged DCMs global 0x000f

TransmissionFormatChanged DCMs global 0x0010

BandwidthRequirementChan
ged

DCMs global 0x0011

ContentListChanged DCMs global 0x0012

StreamTypeChanged DCMs global 0x0013

ReserveIndication FCMs global 0x0014

ReleaseIndication FCMs global 0x0015

PlugSharingChanged FCMs global 0x0016

DcmInstallIndication DCM Manager global 0x0017

DcmUninstallIndication DCM Manager global 0x0018

ConnectionDropped Stream Manager global 0x0019

ConnectionAdded Stream Manager global 0x001a

ConnectionChanged Stream Manager global 0x001b

InvalidScheduledAction DCM, Resource Manager global 0x001c

AbortedScheduledAction Resource Manager global 0x001d

ErroneousScheduledAction Resource Manager global 0x001e

 491

HAVi SPECIFICATION Version 1.1

TunerServiceChanged Tuner global 0x001f

VcrStateChanged VCR global 0x0020

CameraVideoStateChanged Camera global 0x0021

AvDiscItemListChanged AV Disc global 0x0022

AvDiscStateChanged AV Disc global 0x0023

GuidListReady Communication Media
Manager

local 0x0024

 492

HAVi SPECIFICATION Version 1.1

11.10 HAVi Media Formats

A media format is associated with a 64-bit MediaFormatId. For media formats specified by
HAVi, only the least 40 bits are available, the remaining are set to 0. The following table lists the
value of the 40 bits used by HAVi media formats, these are divided into one 8-bit field, format
category, and two 16-bit fields, major type and minor type. Format category is a broad
classification – examples are tape or disc. A major type identifies a particular family within a
format category, the CD family or the MD family for example. A minor type then identifies a
particular format within a family, CD-DA and Video CD would be examples for the CD family.

HAVi Media Format Category Major Type Minor Type

NO_MEDIA_PRESENT 0xff 0xffff 0xffff

UNKNOWN_FORMAT 0x00 0x0000 0x0000

TAPE__NO_MEDIA_PRESENT 0x01 0xffff 0xffff

TAPE__UNKNOWN_FORMAT 0x01 0x0000 0x0000

TAPE__DV 0x01 0x0001 0x0001

TAPE__DV__SMALL 0x01 0x0001 0x0002

TAPE__VHS 0x01 0x0002 0x0001

TAPE__VHS__S_VHS 0x01 0x0002 0x0002

TAPE__VHS__D_VHS 0x01 0x0002 0x0003

TAPE__VHSC 0x01 0x0003 0x0001

TAPE__VIDEO8 0x01 0x0004 0x0001

TAPE__HI8 0x01 0x0005 0x0001

DISC__NO_MEDIA_PRESENT 0x02 0xffff 0xffff

DISC__UNKNOWN_FORMAT 0x02 0x0000 0x0000

DISC__CD__DA 0x02 0x0001 0x0001

DISC__CD__VIDEO 0x02 0x0001 0x0002

DISC__CD__PHOTO 0x02 0x0001 0x0003

DISC__CD__ROM 0x02 0x0001 0x0004

DISC__CD__R 0x02 0x0001 0x0005

DISC__MD__AUDIO 0x02 0x0002 0x0001

DISC__MD__PICTURE 0x02 0x0002 0x0002

DISC__DVD 0x02 0x0003 0x0001

DISC__DVD__R 0x02 0x0003 0x0002

DISC__DVD__RAM 0x02 0x0003 0x0003

DISC__DVD__RW 0x02 0x0003 0x0004

DISC__HDD 0x02 0x0004 0x0001

 493

HAVi SPECIFICATION Version 1.1

11.11 HAVi Stream Types

A stream type is associated with a StreamTypeId, which is a struct containing a VendorId field
and a typeNo field. For stream types specified by HAVi, the VendorId field is set to all zeros.
The 16 bits of the typeNo field are divided into a major type number and minor type number each
of 8 bits. The following table lists the value of the major type and minor type for the HAVi stream
types.

HAVi Stream Type Major
Type

Minor
Type

Description

UNKNOWN_STREAM 0x00 0x00

CABLE_STREAM 0x01 0x00

NO_SIGNAL 0x02 0x00

DIGITAL_AUDIO__UNKNOWN_STREAM 0x04 0x00

DIGITAL_AUDIO__CD_PCM 0x04 0x01

DIGITAL_AUDIO__DVC_NLPCM 0x04 0x02

DIGITAL_AUDIO__DVD_PCM 0x04 0x03

DIGITAL_AUDIO__DSS_PCM 0x04 0x04

DIGITAL_AUDIO__MD_ATRAC 0x04 0x05

DIGITAL_AUDIO__MPEG1_LAYER_II 0x04 0x06

DIGITAL_AUDIO__MPEG1_LAYER_III 0x04 0x07

DIGITAL_AUDIO__MPEG2 0x04 0x08

DIGITAL_AUDIO__AC3 0x04 0x09

DIGITAL_AUDIO__DTS 0x04 0x0a

DIGITAL_VIDEO__UNKNOWN_STREAM 0x05 0x00

DIGITAL_VIDEO__YUV_422 0x05 0x01 SDI / CCIR 601

DIGITAL_VIDEO__MPEG1 0x05 0x02

DIGITAL_VIDEO__MPEG2_MP_ML 0x05 0x03

DIGITAL_VIDEO__MPEG2_MP_HL 0x05 0x04

DIGITAL_VIDEO__DVC 0x05 0x05

DATA_STREAM__UNKNOWN_STREAM 0x06 0x00

DATA_STREAM__DVB 0x06 0x01

DATA_STREAM__DSS 0x06 0x02

DATA_STREAM__DVD 0x06 0x03

DATA_STREAM__ATSC 0x06 0x04

DATA_STREAM__DAB 0x06 0x05

MULTIPLEX__UNKNOWN_STREAM 0x07 0x00

MULTIPLEX__MPEG2_TS 0x07 0x01 MPEG2 transport stream as defined in
MPEG-2 Systems (ISO/IEC 13818-1)

MULTIPLEX__MPEG2_PS 0x07 0x02 MPEG2 program stream as defined in
MPEG-2 Systems (ISO/IEC 13818-1)

MULTIPLEX__DVB 0x07 0x03 complete DVB multiplex

 494

HAVi SPECIFICATION Version 1.1

MULTIPLEX__DVB_PTS 0x07 0x04 partial DVB multiplex as defined in
EN 300 468 V1.3.1

MULTIPLEX__DSS 0x07 0x05

MULTIPLEX__DVD 0x07 0x06

MULTIPLEX__ATSC 0x07 0x07 complete ATSC multiplex

MULTIPLEX__ATSC_SPTS 0x07 0x08 ATSC single program transport stream
as defined in EIA-775

MULTIPLEX__DAB 0x07 0x09

MULTIPLEX__DVC 0x07 0x0a

 495

HAVi SPECIFICATION Version 1.1

11.12 HAVi CABLE Transmission Formats

CABLE transmission formats are identified by 16-bit values. The following table lists the CABLE
transmission formats used by HAVi.

HAVi CABLE Transmission Format Value

CABLE_FORMAT 0x0000

 496

HAVi SPECIFICATION Version 1.1

11.13 HAVi Image Types

An image type is associated with a 40-bit ImageTypeId. For image types specified by HAVi, only
the 16 least significant bits are available, the remaining are set to 0. The following table lists the
value of the 16 bits used for the HAVi image types.

HAVi Image Type Value

UNKNOWN_IMAGE 0x0000

HAViRAW 0x0001

PNG 0x0002

GIF87 0x0003

GIF89 0x0004

JPEG 0x0005

TIFF 0x0006

DIB 0x0007

11.14 HAVi Transport Types

Transport types have a 16-bit identifier. The following table gives the value of these identifiers for
the three transport types used by HAVi.

HAVi Transport Type Value

CABLE 0x0001

INTERNAL 0x0002

IEC61883 0x0003

 497

HAVi SPECIFICATION Version 1.1

11.15 HAVi DDI Element Types

DDI element types have a 16-bit identifier. HAVi reserves the element type values from 0x0 to
0x7fff. DDI element type values above 0x7fff may be used by application developers and device
vendors. The following table gives the value of these identifiers for the DDI element types used by
HAVi.

DdiElementType Value

DDI_PANEL 0x0001

DDI_HELP_PANEL 0x0002

DDI_ALERT_PANEL 0x0003

DDI_GROUP 0x0004

DDI_PANELLINK 0x0005

DDI_BUTTON 0x0006

DDI_BASICBUTTON 0x0007

DDI_TOGGLE 0x0008

DDI_ANIMATION 0x0009

DDI_SHOWRANGE 0x000a

DDI_SETRANGE 0x000b

DDI_ENTRY 0x000c

DDI_CHOICE 0x000d

DDI_TEXT 0x000e

DDI_STATUS 0x000f

DDI_ICON 0x0010

 498

HAVi SPECIFICATION Version 1.1

11.16 HAVi DDI Optional Attributes

DDI optional attribute types have a 16-bit identifier. HAVi reserves the optional attribute type
values from 0x0 to 0x7fff. Optional attribute values above 0x7fff may be used by application
developers and device vendors. The following table gives the value of these identifiers for the DDI
optional attributes used by HAVi.

OptionalAttribute Value

POSITION 0x0000

SAFETY_AREA_POSITION 0x0001

BACKGROUND_COLOR 0x0002

BACKGROUND_PATTERN 0x0003

BACKGROUND_PICTURE_LINK 0x0004

AUDIO_VIDEO 0x0005

AUDIO 0x0006

DEVICE_ICON_BITMAP 0x0007

CONTENT_ICON_BITMAP 0x0008

PRESSED_BITMAP_LINK 0x0009

RELEASED_BITMAP_LINK 0x000a

HOTLINK 0x000b

FOCUS_NAVIGATION 0x000c

INITIAL_FOCUS 0x000d

SHOW_WITH_PARENT 0x000e

TITLE 0x000f

FONTSIZE 0x0010

VALUE_OFFSET 0x0011

VALUE_POWER10 0x0012

MAX_LABEL 0x0013

MIN_LABEL 0x0014

CENTER_LABEL 0x0015

UNIT_LABEL 0x0016

FOCUS_SOUND_LINK 0x0017

PRESSED_SOUND_LINK 0x0018

RELEASED_SOUND_LINK 0x0019

SELECT_SOUND_LINK 0x001a

HELP_PANEL_LINK 0x001b

PLAYBACK_DURATION 0x001c

RECORDED_DATETIME 0x001d

BROADCAST_DATETIME 0x001e

 499

HAVi SPECIFICATION Version 1.1

11.17 HAVi Comparison Operators

Both the Registry and FCMs support a mechanism for comparing attribute values. Several
comparison operators may be used, each identified by a 16-bit quantity as specified below. The
most significant bit indicates whether the comparison operator acts on byte rows or sequences.

Comparator Value Meaning

ANY 0x0000 any value

EQU 0x0001 equal

NEQU 0x0002 not equal

GT 0x0003 greater than

GE 0x0004 greater than or equal

LT 0x0005 less than

LE 0x0006 less than or equal

BWA 0x0007 bitwise AND

BWO 0x0008 bitwise OR

SEQU 0x8001 equal on sequences

SNEQU 0x8002 not equal on sequences

SGT 0x8003 greater than on sequences

SGE 0x8004 greater than or equal on sequences

SLT 0x8005 less than on sequences

SLE 0x8006 less than or equal on sequences

SBWA 0x8007 bitwise AND on sequences

SBWO 0x8008 bitwise OR on sequences

	General
	Scope
	References
	Terminology
	Compliance

	Overview
	The Home Network
	Requirements
	Legacy Device Support
	Future-Proof Support
	Plug-and-Play Support
	Flexibility

	System Model
	Control Model
	Device Model
	Device Classification
	Full AV Devices
	Intermediate AV Devices
	Base AV Devices
	Legacy AV Devices

	HAVi Software Architecture
	Object-Based
	Software Element Identifiers
	Message-Based Communication
	Software Elements

	User Interface Support
	Level 1 UI
	Layout Mechanism
	Navigation Mechanism

	Level 2 UI
	User Notification

	Home Network Configurations
	LAV and BAV Only
	IAV or FAV as Controller
	IAV or FAV as Display
	Peer-to-Peer Architecture between FAVs and IAVs
	IAV as Controller and Display

	Interoperability in the HAVi Architecture
	Level 1 Interoperability
	Level 2 Interoperability

	Versioning
	Security
	Access Levels
	Signature Verification

	Software Element Descriptions
	Communication Media Manager
	Messaging System
	Description
	Software Element Identifier Allocation
	Software Element Handle Allocation
	Well-known Software Element Handles
	Trusted and Untrusted Software Element Handles

	Message Transfer Service
	Message Transfer Supervision
	Message Transfer Modes
	Acknowledgements
	General Message Format
	Ack Message Format
	Noack Message Format
	HAVi Message Version
	Outstanding Message

	Transport Adaptation Module (TAM)
	Service Description
	Fragmentation
	Message Ordering
	Mapping of TAM onto the 1394 Transaction Layer
	IEC 61883 FCP Packet
	TAM Data Packet Structure

	Reliable TAM Packet Transmission
	TAM Sequence Number Synchronization

	Mapping of Function Calls into Messages
	Mapping of an IDL Interface into the Messaging System API
	Mapping of Function Calls into Messages
	Mapping of Function Returns into Messages
	Mapping of IDL Types and Parameters to Bitflows
	Synchronous Message Transfer Mode

	Implementation Guidelines and Suggestions
	GUID to phy_id Mapping
	Connection Tree Construction
	Example
	Translation Table Construction

	Message Size Guidelines
	Software Element Design
	Unknown source GUID / node ID (informative)

	Event Manager
	Mapping IDL Events to the Event Manager API

	Registry
	Registry Database
	Registry Attributes

	Device Control
	Device Control Modules
	General
	HAVi Unique Identification
	User Preferred Name
	Native Commands
	Connection Management
	Level 1 User Interaction
	Level 2 User Interaction
	Resource Management

	Functional Component Modules
	General
	Notifications
	Connection Management
	Resource Management
	Virtual FCMs

	Havlets

	Device Control Module Manager
	DCM Code Unit Installation and Uninstallation
	Preferences
	Interaction between DCM Code Unit and DCM Manager

	Stream Manager
	Objectives
	Design Decisions
	Definitions
	Streams
	Connections
	Device Connections
	Internal Connections
	External Connections
	Global Connection Map
	Connection Examples

	Transport Types
	Stream Types
	Plug Compatibility Checking
	Connection Restoration: Network Reset
	Connection Restoration: Power Off
	Connection Dropped
	Connection Changed
	Connection Establishment and Drop Order
	Connection Overlay

	Resource Manager
	Resource Reservation
	Resource Sharing
	Resource Negotiation and Preemption
	Scheduled Action Management
	Scheduled Action Data
	Scheduled Action Model
	Scheduled Action
	Schedule Reservation and DCM Checking
	Bandwidth Checks
	Usage of Timers and Triggers
	Executing the Scheduled Action
	Ending the Scheduled Action

	Query and Modification of Scheduled Actions
	Network Changes

	Application Modules
	Code Unit Authentication
	Outline of digital signature algorithm
	EMSA-PKCS1-v1_5 encoding method in HAVi

	Code Unit Format
	Hash file
	Signature File
	Certificate File
	Certificate Revocation List File
	Implementation note on keys, digest values and signatures encoding

	Certificate Generation Procedure
	Code Unit Authentication Procedure
	DCM code unit install
	havlet code unit install
	Verifier Implementation Note

	Revocation
	HAVi certification procedures

	Data Driven Interaction
	Data Driven Interaction Protocol
	User Output and Input Device Models
	Output Device Model
	Input Device Model

	DDI Elements
	Organizational DDI Elements
	Uses of Organizational DDI Elements
	Non-Organizational DDI Elements

	Navigation of the DDI Hierarchy
	Controller-Driven Navigation
	User-Driven Navigation

	Notification Scope for Target DDI Changes

	Software Element APIs and Protocols
	HAVi Type Definitions and API Categories
	HAVi API Descriptions
	Basic HAVi Types
	uint64
	uint
	ushort
	uchar
	GUID
	VendorId
	SEID
	ApiCode
	OperationCode
	Status
	Version
	MediaFormatId
	ImageTypeId
	StreamTypeId
	CompOperation
	DateTime

	Error Handling
	Parameter Size and Resource Limitations
	Optional APIs
	Vendor and Third Party Extensions
	Guidelines for API Updates in HAVi Versions

	Communication Media Manager
	Services Provided
	Cmm1394::GetGuidList
	Cmm1394::Write
	Cmm1394::Read
	Cmm1394::Lock
	Cmm1394::EnrollIndication
	Cmm1394::DropIndication
	<Client>::Cmm1394Indication

	CMM1394 Private API
	Cmm1394::GetBusGenerationNumber
	Cmm1394::GetSpeedMap
	Cmm1394::GetTopologyMap

	CMM1394 Events
	NewDevices
	GoneDevices
	NetworkReset
	GuidListReady

	Messaging System
	Services Provided
	TransferMode
	ProtocolType

	Messaging System API
	MsgCallback
	MsgOpen
	MsgClose
	MsgIsTrusted
	MsgGetSystemSeid
	MsgWatchOn
	MsgWatchOff
	Msg::Ping
	MsgSendSimple
	MsgSendReliable
	MsgSendRequest
	MsgSendResponse
	MsgSendRequestSync

	Messaging System Private API
	MsgSysOpen

	Messaging System Events
	SystemReady
	MsgLeave
	MsgTimeout
	MsgError

	Event Manager
	Services Provided
	EventId

	Event Manager API
	EventManager::Subscribe
	EventManager::Unsubscribe
	EventManager::Replace
	EventManager::AddEvent
	EventManager::RemoveEvent
	EventManager::PostEvent
	EventManager::ForwardEvent
	<Client>::EventManagerNotification

	Event Manager Events
	Event Manager Protocol

	Registry
	Services Provided
	Attribute
	AttributeName
	SoftwareElementType
	VendorId
	HUID
	TargetId
	InterfaceId
	DeviceClass
	GuiReq
	MediaFormatId
	DeviceManufacturer
	DeviceModel
	SoftwareElementManufacturer
	SoftwareElementVersion
	AvLanguage
	UserPreferredName
	SimpleQuery
	BoolOperation
	ComplexQuery

	Registry API
	Registry::RegisterElement
	Registry::UnregisterElement
	Registry::RetrieveAttributes
	Registry::GetElement
	Registry::MultipleGetElement

	Registry Events
	NewSoftwareElement
	GoneSoftwareElement

	Registry Protocol

	Device Control Module
	Services Provided
	DeviceIcon
	ContentIcon
	TargetId
	InterfaceId
	HUID
	ByteRow
	NativeProtocol
	ContentType
	ContentIconRef
	NO_CHANNEL
	DeviceConnectionDropReason
	Stream Manager Types
	Resource Manager Types

	Device Control Module API
	Dcm::GetDeviceIcon
	Dcm::GetHuid
	Dcm::GetFcmCount
	Dcm::GetFcmSeidList
	Dcm::GetDeviceClass
	Dcm::GetDeviceManufacturer
	Dcm::GetUserPreferredName
	Dcm::SetUserPreferredName
	Dcm::GetPowerState
	Dcm::SetPowerState
	Dcm::NativeCommand
	Dcm::GetControlCapability
	Dcm::GetHavletCodeUnitProfile
	Dcm::GetHavletCodeUnit
	Dcm::GetPlugCount
	Dcm::GetPlugStatus
	Dcm::Connect
	Dcm::Disconnect
	Dcm::GetConnectionList
	Dcm::GetChannelUsage
	Dcm::GetPlugUsage
	Dcm::SetIecBandwidthAllocation
	Dcm::IecSprayOut
	Dcm::IecTapIn
	Dcm::GetSupportedTransmissionFormats
	Dcm::GetTransmissionFormat
	Dcm::SetTransmissionFormat
	Dcm::GetContentIconList
	Dcm::SelectContent
	Dcm::StopContent
	Dcm::ScheduleReservation
	Dcm::UnscheduleReservation
	Dcm::GetScheduledActionReferences
	Dcm::AddVirtualFcm
	Dcm::RemoveVirtualFcm
	Dcm::GetAvailableStreamTypes
	Dcm::GetStreamType
	Dcm::SetStreamTypeId

	Device Control Module Events
	UserPreferredNameChanged
	PowerStateChanged
	PowerFailureImminent
	DeviceConnectionAdded
	DeviceConnectionDropped
	DeviceConnectionChanged
	TransmissionFormatChanged
	BandwidthRequirementChanged
	ContentListChanged
	InvalidScheduledAction
	StreamTypeChanged

	Functional Component Module
	Services Provided
	FcmAttributeIndicator
	FcmAttributeValue
	NotificationId
	DCM Types
	Stream Manager Types
	Resource Manager Types
	ClientRecord

	Functional Component Module API
	Fcm::GetHuid
	Fcm::GetDcmSeid
	Fcm::GetFcmType
	Fcm::GetPowerState
	Fcm::SetPowerState
	Fcm::NativeCommand
	Fcm::SubscribeNotification
	Fcm::UnsubscribeNotification
	<Client>::FcmNotification
	Fcm::GetPlugCount
	Fcm::GetSupportedStreamTypes
	Fcm::Wink
	Fcm::Unwink
	Fcm::CanWink
	Fcm::Reserve
	Fcm::Release
	Fcm::GetReservationStatus
	Fcm::GetWorstCaseStartupTime
	Fcm::SetPlugSharing
	Fcm::IecAttach
	Fcm::IecDetach

	Functional Component Module Events
	PowerStateChanged
	PowerFailureImminent
	ReserveIndication
	ReleaseIndication
	PlugSharingChanged

	Device Control Module Manager
	Services Provided
	VMID
	GuestId
	PreferenceId
	PreferenceValue
	ProfileRecord
	URLString
	DMCommandType
	DMCommandResult
	DMGetDcmResult
	DcmInstallResult
	DcmInstallConflict
	DcmUninstallResult

	DCM Manager API
	DcmManager::SetPreference
	DcmManager::GetPreference
	DcmManager::GetDeviceIcon
	DcmManager::InstallDcm
	DcmManager::UninstallDcm
	DcmManager::DMInitialization
	DcmManager::DMInitialInquiry
	DcmManager::DMInquiry
	DcmManager::DMCommand
	DcmManager::DMGetDcm

	DCM Manager Events
	DcmInstallIndication
	DcmUninstallIndication

	DCM Management Protocol
	Leader Election
	Autonomous Operation
	Protocol Details

	Stream Manager
	Services Provided
	Direction
	OperationalStatus
	FailureReason
	ConnectionState
	DropReason
	ChangeReason
	TransportType
	Plug
	ANY_PLUG
	DeviceConnection
	TransmissionFormat
	PlugStatus
	Channel
	IsocChannel
	FcmPlug
	ConnectionId
	ConnectionType
	Connection
	StreamType
	Stream
	ConnectionHint

	Stream Manager API
	StreamManager::FlowTo
	StreamManager::SprayOut
	StreamManager::TapIn
	StreamManager::Drop
	StreamManager::GetLocalConnectionMap
	StreamManager::GetGlobalConnectionMap
	StreamManager::GetConnection
	StreamManager::GetStream

	Stream Manager Events
	ConnectionAdded
	ConnectionDropped
	ConnectionChanged

	Stream Manager Procedures
	Stream Type Matching
	Transmission Format Matching
	NO_SIGNAL Stream Type
	IEC 61883 Connections
	Bandwidth Allocation
	Static and Dynamic Bandwidth Allocation
	Overlays
	Usage of Special Channels

	Resource Manager
	Services Provided
	ClientRole
	ReservationResult
	NegotiationResult
	ResourceRequestRecord
	ResourceStatusRecord
	ResourceNegotiateRecord
	SAReference
	Command
	SAConnection
	SAPeriod
	RMConnection

	Resource Manager API
	ResourceManager::Reserve
	ResourceManager::Release
	ResourceManager::Negotiate
	<Client>::PreemptionRequest
	ResourceManager::ScheduleAction
	ResourceManager::UnscheduleAction
	ResourceManager::GetLocalScheduledActions
	ResourceManager::GetScheduledActionData
	ResourceManager::TriggerNotification
	<Client>::AwakeNotification
	ResourceManager::GetScheduledConnections

	Resource Manager Events
	InvalidScheduledAction
	AbortedScheduledAction
	ErroneousScheduledAction

	Bandwidth Checking Protocol

	Application Module
	Services Provided
	HUID

	Application Module API
	ApplicationModule::GetIcon
	ApplicationModule::GetHuid
	ApplicationModule::GetHavletCodeUnitProfile
	ApplicationModule::GetHavletCodeUnit

	APIs for Data Driven Interaction
	Services Provided
	General Presentation Requirements for DDI Controllers
	General Presentation Recommendations for DDI Controllers
	Panel Scaling
	Element Scaling

	DDI Data Structures Overview
	Basic DDI Types
	DdiElementType
	DdiElementId
	DdiContentId
	DdiElementIdList and DdiElementList
	DdiColor
	Bitmap and Sound
	AudioVideo
	Audio
	Label
	NotificationScope
	Interactivity
	InformTarget
	Pattern
	Fontsize
	Position
	SafetyAreaPosition
	FocusNavigation
	DdiTitle
	DdiContentType
	DdiContent

	DDI Content Formats
	Text data
	Image data
	Sound data

	DDI Mandatory Attributes
	DDI Optional Attributes
	OptAttrType
	OptionalAttribute
	OptAttrList

	Individual DDI Elements
	DdiElement
	DdiPanel
	Help Panels and Alert Panels
	DdiGroup
	DdiPanelLink
	DdiButton
	DdiBasicButton
	DdiToggle
	DdiAnimation
	DdiShowRange
	DdiSetRange
	DdiEntry
	DdiChoice
	DdiText
	DdiStatus
	DdiIcon

	DDI Action Data Structures
	ActType
	ActButton
	ActToggle
	ActAnimation
	ActSetRange
	ActEntry
	ActChoiceList
	ActSelected
	DdiAction

	Resource Limitations
	Data Driven Interaction API
	DdiTarget::Subscribe
	DdiTarget::Unsubscribe
	DdiTarget::GetDdiElement
	DdiTarget::GetDdiPanel
	DdiTarget::GetDdiGroup
	DdiTarget::GetDdiElementList
	DdiTarget::GetDdiContent
	DdiTarget::ChangeScope
	DdiTarget::UserAction
	<Client>::NotifyDdiChange

	APIs for Versioning
	Services Provided
	Version::GetVersion

	APIs for Bulk Transfer

	APIs for Functional Component Modules
	FCM Data Types
	
	ForwardSpeed
	ReverseSpeed
	SkipDirection
	SkipMode
	TimeCode
	WriteProtectStatus

	Tuner FCM
	Tuner Services
	Tuner Data Structures
	ServiceListType
	ServiceListInfo
	ServiceLocator
	Service
	MuxAction
	ServiceEvent
	ServiceEventType
	ServiceEventPeriod
	TunerCapability

	Tuner API
	Tuner::GetServiceListInfo
	Tuner::GetServiceList
	Tuner::SetServiceList
	Tuner::GetService
	Tuner::GetServiceComponents
	Tuner::GetServiceEvents
	Tuner::SelectService
	Tuner::GetSelectedServices
	Tuner::GetCapability

	Tuner Events
	TunerServiceChanged

	VCR FCM
	VCR Services
	VCR Data Structures
	VcrRecordingMode
	VcrTransportMode
	VcrTransportState
	VcrCounterType
	VcrCounterValue
	VcrRejectCondition
	VcrCapability

	VCR API
	Vcr::Play
	Vcr::Record
	Vcr::FastForward
	Vcr::FastReverse
	Vcr::VariableForward
	Vcr::VariableReverse
	Vcr::Stop
	Vcr::RecPause
	Vcr::Skip
	Vcr::EjectMedia
	Vcr::GetState
	Vcr::GetRecordingMode
	Vcr::SetRecordingMode
	Vcr::GetFormat
	Vcr::GetPosition
	Vcr::ClearRTC
	Vcr::GetCapability
	Vcr::GetRejectInfo

	VCR Events
	VcrStateChanged

	VCR Notification Attributes
	Vcr::currentState
	Vcr::recordingMode
	Vcr::counterSet
	Vcr::condensation

	Clock FCM
	Clock Services
	Clock Data Structures
	Timezone
	ClockCapabilityStatus
	ClockCapability
	TimerId

	Clock API
	Clock::GetDateTime
	Clock::SetDateTime
	Clock::GetTimezone
	Clock::SetTimezone
	Clock::EnableAutoDST
	Clock::IsEnabledAutoDST
	Clock::GetCapability
	Clock::CreateTimer
	Clock::GetTimerState
	Clock::SetTimerState
	Clock::DeleteTimer
	<Client>::TimerFired

	Clock Notification Attributes
	Clock::dateTime
	Clock::timezone
	Clock::DSTEnabled

	Camera FCM
	Camera Services
	Camera Data Structures
	ZoomOperation
	PanOperation
	TiltOperation
	StoredImage
	CameraCapability

	Camera API
	Camera::Zoom
	Camera::Pan
	Camera::Tilt
	Camera::SetVideoState
	Camera::GetVideoState
	Camera::Shoot
	Camera::GetImageList
	Camera::OpenImage
	Camera::ReadImage
	Camera::CloseImage
	Camera::EraseImage
	Camera::GetCapability

	Camera Events
	CameraVideoStateChanged

	Camera Notification Attributes
	Camera::videoState
	Camera::zoom
	Camera::pan
	Camera::tilt

	AV Disc FCM
	AV Disc Services
	ItemIndex
	AvDiscPlayMode
	AvDiscRecordingMode
	AvDiscTransportMode
	AvDiscTransportState
	AvDiscCounterType
	AvDiscCounterValue
	AvDiscCapability
	AvDiscRejectCondition
	Direction

	AV Disc Terminology
	AV Disc API
	AvDisc::GetItemList
	AvDisc::Play
	AvDisc::Record
	AvDisc::VariableForward
	AvDisc::VariableReverse
	AvDisc::Stop
	AvDisc::RecPause
	AvDisc::Skip
	AvDisc::InsertMedia
	AvDisc::EjectMedia
	AvDisc::GetState
	AvDisc::GetFormat
	AvDisc::GetPosition
	AvDisc::Erase
	AvDisc::PutItemList
	AvDisc::GetCapability
	AvDisc::GetRejectInfo

	AV Disc Events
	AvDiscItemListChanged
	AvDiscStateChanged

	AV Disc Notification Attributes
	AvDisc::currentState

	Amplifier FCM
	Amplifier Services
	Amplifier Data Structures
	AmplifierCapability
	EqualizerFrequency
	AmplifierPresetMode

	Amplifier API
	Amplifier::SetVolume
	Amplifier::GetVolume
	Amplifier::SetMute
	Amplifier::GetMute
	Amplifier::SetBalance
	Amplifier::GetBalance
	Amplifier::SetLoudness
	Amplifier::GetLoudness
	Amplifier::GetCapability
	Amplifier::SetEqualizer
	Amplifier::GetEqualizer
	Amplifier::GetEqualizerCapability
	Amplifier::SetPresetMode
	Amplifier::GetPresetMode
	Amplifier::GetPresetCapability
	Amplifier::GetAudioLatency

	Amplifier Notification Attributes
	Amplifier::volume
	Amplifier::mute
	Amplifier::balance
	Amplifier::loudness
	Amplifier::equalizer

	Display FCM
	Display Services
	DisplayCapability
	PictureAttribute
	ScreenMode
	WindowMode
	DisplayPresetMode
	Display::SetContrast
	Display::GetContrast
	Display::SetTint
	Display::GetTint
	Display::SetColor
	Display::GetColor
	Display::SetBrightness
	Display::GetBrightness
	Display::SetSharpness
	Display::GetSharpness
	Display::GetCapability
	Display::GetStandardPictureValue
	Display::SetPresetMode
	Display::GetPresetMode
	Display::GetPresetCapability
	Display::SetScreenMode
	Display::GetScreenMode
	Display::SetWindowMode
	Display::GetWindowMode
	Display::SetActiveWindow
	Display::GetActiveWindow
	Display::GetWindowRectangle
	Display::AssignPlugToDisplay
	Display::GetVideoLatency
	Display::contrast
	Display::tint
	Display::color
	Display::brightness
	Display::sharpness
	Display::screenMode
	Display::windowMode
	Display::activeWindow
	Display::presetMode
	Display::windowRectangle

	AV Display FCM
	Modem FCM
	
	Asynchronous Connections
	Isochronous Connections

	Modem Services
	ModemType
	CommunicationSetup
	ModemCapabilities
	ModemDisconnection
	ModemCallAccept
	FileLoc
	Modem::AsyncOpen
	Modem::IsoOpen
	Modem::Send
	<Client>::Receive
	Modem::Close
	Modem::GetCapability
	Modem::SetConfiguration
	Modem::disconnection
	Modem::callAccept

	Web Proxy FCM
	Overview
	The Web Gateway
	The Web Client
	Web Proxy FCM Protocol
	Multiple Web Transactions

	Application Protocols
	Application Protocol Constraints
	HTTP Constraints
	FTP Constraints
	SMTP Constraints
	IMAP Constraints
	POP Constraints
	NNTP Constraints

	Web Proxy Services
	FileLoc
	InternetProtocolType
	WebAddressType
	WebAddressTypeIP
	WebAddressIP
	WebAddressName
	WebAddress
	WebProxyDisconnection

	Web Proxy API
	WebProxy::Open
	WebProxy::Close
	WebProxy::Send
	<Client>::Receive
	WebProxy::GetCapability

	Web Proxy Notification Attributes
	WebProxy::disconnection

	HAVi Java API Description
	Overview
	Profiles
	Java API Referencing Rules
	Profile #1: DCMs and Application Modules
	Profile #2: Havlets

	Mapping HAVi IDL to Java
	Introduction
	const
	Basic Types
	boolean
	char, wchar and octet
	string and wstring
	Integers
	Floating Points

	Constructed Types
	enum
	struct
	union
	sequence
	array
	typedef
	Simple IDL Types
	Complex IDL Types

	Holder Classes
	Exceptions
	Exception Throwing and Handling
	States of Instance and Arguments

	Marshalling and Unmarshalling
	HaviByteArrayInputStream & HaviByteArrayOutputStream

	HaviClient and HaviServerHelper
	Client and Server
	Client Classes
	Server Helper Classes

	Parameter Passing Modes
	Error Codes
	Parameter Checking
	Parameter Checking Before Sending Messages
	Parameter Checking After Receiving Message

	SoftwareElement

	Code Units
	DCM Code Units
	DcmCodeUnit::install
	DcmCodeUnit::uninstall

	Application Module Code Units
	AMCodeUnit::install
	AMCodeUnit::uninstall

	Havlet Code Units
	HavletCodeUnit::install
	HavletCodeUnit::uninstall

	Isochronous Data Processing
	
	Iec61883InputStream
	Iec61883OutputStream

	An Example
	Relationship with the Stream Manager

	Example: A DCM Code Unit and DCM (Informative)
	MyDcm.java
	MyDcmListener.java
	DcmCore.java
	DcmCodeUnit.java

	HAVi Level 2 User Interface
	HAVi User-Interface Design (informative)
	Remote Control
	Television Specific Support

	java.awt Subset
	Required Elements from AWT
	User Input Preference Interfaces

	HAVi Extensions to AWT
	General API Issues
	User Input
	Remote Control Support
	Remote Control Colored Keys
	Remote Control Dedicated Keys

	Keyboard
	Mouse
	User Input Capabilities
	User Input Representation

	Graphics Devices and Configurations
	Background
	The HAVi Screen Reference Model
	The HAVi Screen Device Discovery Classes
	Querying the Configuration of a Display Device
	Compatibility with Existing java.awt Methods

	Detecting Configuration Changes on a Display Device
	Emulated Display Devices
	Mapping from Authoring to Device Coordinates

	Integrating HAVi Video Support into Platforms
	Backgrounds
	Control of Screen Configurations

	Graphics and Video Integration
	Configurations
	Coordinate Spaces
	Transparency between Graphics and Video

	HSceneFactory, HSceneTemplate and HScene
	Requesting an Area On-screen
	HSceneFactory and HSceneTemplate
	HScene

	Modifications to the HScene: Focus and Resize events
	Application “user-interface” Lifecycle

	Effects and Visual Composition using Component Mattes
	Component Mattes
	Component Grouping
	Examples of Mattes and Component Composition
	Effects
	Matte Sizes and Offsets

	HAVi Widget Framework
	HAVi Event Mechanism
	Abstraction of “Feel”
	Framework Class Hierarchy
	HContainer
	HComponent
	HVisible
	HNavigable
	HActionable
	HSwitchable
	HAdjustmentValue, HItemValue, HTextValue

	Separation of “Look”
	Pluggable Looks
	Content Behavior

	HAVi Resident Widgets
	Simple Text/Graphic/Animate Widgets
	Buttons
	Range Widgets
	List Widgets
	Text Entry Widgets

	Profiles
	General Approach to Error Behavior
	Register of Constants

	SDD Data
	References
	Introduction
	Text Encoding Formats
	HAVi Key Values
	Minimum Required Data
	ROM Format
	The GUID and the Bus_Info_Block
	Root Directory
	Vendor_ID [2]
	HAVi_Unit_Directory [1]
	Other IEC_61883_Unit_Directory [1] [4]
	Instance_Directory [2]
	Model_ID [2]

	Instance Directory
	HAVi_Unit_Directory [1][2]

	HAVi Unit Directory
	Specifier_ID [1]
	Version [1]
	HAVi_Message_Version [HAVi]
	HAVi_Device_Profile [HAVi]
	HAVi_Device_Class [Bit0..3]
	HAVi_DCM_Manager [Bit4]
	HAVi_Stream_Manager [Bit5]
	HAVi_Resource_Manager [Bit6]
	HAVi_Display_Capability [Bit7]
	HAVi_Device_Status [Bit8]
	Reserved Bits [Bit9..23]

	HAVi_User_Preferred_Name [2][HAVi]
	HAVi_DCM [HAVi]
	HAVi_DCM_Profile [HAVi]
	HAVi_DCM_Reference [HAVi]
	HAVi_Device_Icon_Bitmap [HAVi]

	Examples (Informative)
	Using Keys in the Range of 3816 to 3F16
	HAVi 1212 ROM Encoding
	Bus_Info_Block and Root Directory
	lnstance_Directory
	HAVi_Unit_Directory
	Other IEC_61883_Unit_Directory
	Modifiable Descriptor Entries for User Preferred Name

	Scenarios
	IAV or FAV Bootstrap
	System Startup & System Ready
	Local Software Elements Register
	Interoperation of the Devices within the Network

	A BAV or LAV is Plugged into the Network
	An FAV or IAV is Plugged into the Network
	A BAV or LAV is Removed from the Network
	An FAV or IAV is Removed from the Network
	An Application Communicates with an FCM
	Initialization
	An IAV Searches for a Device or Functional Component
	An IAV Sends an FCM Command
	An IAV Receives an FCM Command

	Two Applications Communicate with the Same DCM
	A DCM Communicates with its Target

	Annexes
	HAVi Protocol Types
	HAVi Registry Attributes
	HAVi Software Element Types
	HAVi SEIDs
	HAVi API Codes
	HAVi Operation Codes
	HAVi Error Codes
	HAVi FCM Attribute Indicators
	HAVi System Event Types
	HAVi Media Formats
	HAVi Stream Types
	HAVi CABLE Transmission Formats
	HAVi Image Types
	HAVi Transport Types
	HAVi DDI Element Types
	HAVi DDI Optional Attributes
	HAVi Comparison Operators

