
Introduction to GPS, Part 3

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Introduction.. 2
2. Global positioning applications....................................... 6
3. The "Write once, run anywhere" promise 8
4. Java programming environments.................................... 11
5. Sample Application: MIDlet... 15
6. Sample application: Java in the Palm OS.......................... 20
7. Summary .. 26

Introduction to GPS, Part 3 Page 1 of 27

Section 1. Introduction

Should I take this tutorial?

This tutorial is designed for developers and product managers considering the Java
programming language as an option for use in Global Positioning System (GPS)
applications. Developers with an interest in creating Java applications for PDA and
embedded environments learn the challenges of embedded Java development in
resource-limited environments, including available tools and virtual machine options.
The broader topic of small-scale Java capabilities, limitations, and packaging options
offers valuable market perspective for product managers.

This is the third tutorial in a three-part series on developing GPS applications with Java
technology. It's recommended that you read through the first two tutorials, Introduction
to GPS, Part 1 and Introduction to GPS, Part 2, where fundamental GPS principles are
introduced and discussed. The prerequisite tutorials demonstrate basic Java
programming skills necessary for handling GPS data. The sample applications
presented in this tutorial focus on porting these GPS applications to a Java PDA
environment.

What is this tutorial about?

This tutorial examines the options, obstacles, and opportunities associated with
Java-based GPS applications on portable devices such as PDAs and cell phones. This
tutorial explores two basic programming models for portable GPS applications and
examines the tools and environments required to build them. The first variety of
application deviates slightly from the theme of the prior tutorials as it is characterized
by the lack of a local GPS receiver unit. This application variant examines informational
applications, focused on the use of GPS data, rather than the collection of it. The
second variety of application explores the Java programming options available for the
Palm OS-based GPS applications. Consistent with the experiences from the first two
tutorials in this series, communicating with a GPS receiver via the Java programming
language has its challenges. Various development options are examined during the
construction of a Palm OS-based Java application that extracts GPS data directly from
a Garmin unit via a serial connection. The tutorial consists of the following sections:

• Global positioning applications on page 6 : This section discusses two models of
GPS applications including those that make use of GPS data versus those that
collect GPS data.

• The "Write once, run anywhere" promise on page 8 : Java technology has proven
itself in the application server environment and the browser client. This section
explores the question of whether Java technology has lived up to the hype and
promise in the wireless device market.

• Java programming environments on page 11 : This section offers a brief survey of the
development tools and environments available to Java developers. This section also
revisits the I/O requirements of data collection devices and the options available in

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 27 Introduction to GPS, Part 3

http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/9D4833F6EB44F12886256BF7007121A7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/9D4833F6EB44F12886256BF7007121A7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/9D4833F6EB44F12886256BF7007121A7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/9D4833F6EB44F12886256BF7007121A7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/9D4833F6EB44F12886256BF7007121A7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/4CFB8BE97A1D25B186256C0F004CD9AF?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/4CFB8BE97A1D25B186256C0F004CD9AF?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/4CFB8BE97A1D25B186256C0F004CD9AF?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/4CFB8BE97A1D25B186256C0F004CD9AF?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/4CFB8BE97A1D25B186256C0F004CD9AF?OpenDocument

the Java environment.

• Sample Application: MIDlet on page 15 : This section details the creation of a MIDlet
application, suitable for a cell phone or PDA, using the WebSphere Studio Device
Developer environment. It demonstrates an HTTP connection for the purpose of
using GPS data in a wireless application setting. The basis of the application rests
upon a data retrieval model, supported by a remote Web/application server
infrastructure.

• Sample application: Java in the Palm OS on page 20 : This section examines a Java
Palm OS application utilizing the SuperWaba environment. The choice of this
particular environment is due to its ability to "hide" the Palm OS specifics into a
simple-to-follow Java application.

Source code roadmap

This tutorial's sample applications demonstrate a variety of Java- and GPS-related
techniques. Examples of a simplistic MIDlet user interface, HTTP connections, serial
connections, and Java/Palm OS user interface invocations are present. The following
code snippets are found in this tutorial:

• The imports of a MIDlet, including the appropriate packages for network connectivity
required for the sample application's GPS lookup function, are examined.

• User interface elements of the MIDlet are explained.

• The commandAction method, which handles events initiated by the user of the
MIDlet, is presented and explained.

• An HTTP network connection is initiated and processed when the "Go" button is
pressed in the MIDlet.

• The configuration of Mobile Creator is important to the successful building of the
second sample application. A screenshot depicts the settings used to construct the
sample application.

• The Mobile Creator build process is presented, including all of the steps that Mobile
Creator hides from the SuperWaba developer, making the experience of getting
started that much more palatable.

• The user interface elements of the SuperWaba application are presented and
explained.

• The AddString method, which is the primary means of user feedback in the
ibmdwgpspalm application, is examined.

• The onEvent method, which reacts to user input and drives the core functionality of
the application, is presented.

• The ProcessPort method, which handles incoming data from the GPS unit, is
examined.

Some helpful terms

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 3 of 27

• Byte stream: Data sent from one device to another can be characterized as a stream
of individual bytes.

• DataInputStream: An implementation of the DataInput interface and an extension of
the InputStream class. The unique characteristic of the DataInputStream is its ability
to read Java native data types directly from a stream.

• Query: A very generic term used to represent a request or question originating from
a "client" application and responded to or answered by a server or service.

• HTTP: Hypertext Transport Protocol

• eCOS: The embedded Configurable Operating System, an open-source, real-time
operating system managed by RedHat, the distributor of a popular release of Linux.

• Eclipse: A comprehensive, open-source development environment.

• J2ME: Java 2 Micro Edition

Tools

This tutorial introduces a variety of software tools as viable alternatives for embedded
Java development in an effort to effectively paint the landscape of tool offerings.
Although there are many available Java development environments to choose from,
the tools chosen for use in this tutorial are the Websphere Studio Device Developer,
based on the Open Source Eclipse environment, and SuperWaba in conjunction with
Mobile Creator. Eclipse itself encompasses many technologies and is a project unto
itself. For the purposes of this tutorial, it is presented as a useful tool for managing
various build targets -- a unique aspect of wireless cross-platform development. Mobile
Creator and SuperWaba combine to be (arguably) the easiest Java development
environment for the Palm OS.

• Websphere Studio Device Developer: This toolset, downloadable in evaluation form
at http://www.embedded.oti.com/wdd/, is the development environment and toolset
for the first sample application presented in this tutorial.

• SuperWaba: This development environment, toolset, and virtual machine are among
the most popular Palm OS and WinCE Java development resources. SuperWaba is
employed for the second sample application and can be downloaded at
http://www.superwaba.org.

• Mobile Creator: This simple IDE simplifies SuperWaba development for the
intermediate embedded Java developer. With a few entries in the preferences panel,
the developer need not venture into the world of "DOS Prompt" commands and
batch files for compilation. Mobile Creator is employed for the second sample
application and can be downloaded at http://www.tauschke.com/main.htm.

• The Java Development Kit: This tool is the underlying compilation mechanism for the
second sample application and can be downloaded at http://java.sun.com.

• Palm OS Emulator: The tutorial's sample applications are most conveniently tested
on the Palm OS emulator available for download from
http://www.palmos.com/dev/tools/emulator/.

• GPS Unit: The tutorial's second sample application demonstrates communications
with a consumer GPS unit capable of the NMEA data protocol. For more information
on the NMEA protocol, please refer to the Introduction to GPS, Part 1 tutorial here on

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 27 Introduction to GPS, Part 3

http://www.embedded.oti.com/wdd/
http://www.superwaba.org/
http://www.tauschke.com/main.htm
http://java.sun.com/
http://www.palmos.com/dev/tools/emulator/
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/9D4833F6EB44F12886256BF7007121A7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/9D4833F6EB44F12886256BF7007121A7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/9D4833F6EB44F12886256BF7007121A7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/9D4833F6EB44F12886256BF7007121A7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/wireless-onlinecourse-bytitle/9D4833F6EB44F12886256BF7007121A7?OpenDocument

developerWorks.

• Tutorial Sample Code: The complete code to the tutorial's sample applications can
be found at: http://www.palm-communications.com/ibmdw .

About the author

After his college basketball career came to an end without a multiyear contract to play
for the L.A. Lakers, Frank Ableson shifted his focus to computer software design. He
enjoys solving complex problems, particularly in the areas of communications and
hardware interfacing. When not working, he can be found spending time with his wife
Nikki and their children. You can reach Frank at frank@cfgsolutions.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 5 of 27

http://www.palm-communications.com/ibmdw
mailto:frank@cfgsolutions.com

Section 2. Global positioning applications

Global Positioning System: Application opportunities

The previous tutorials in this series on Java and GPS introduced the basics of serial
communication from the Java environment as well as some fundamental GPS
concepts such as waypoints and routes. This tutorial explores the viability of GPS
applications, built in Java language, for PDAs and other "embedded" environments.
GPS offers significant technical information; terms such as location, velocity, and
estimated-time-of-arrival (ETA) to a specific location represent commonly encountered
technical points when discussing GPS. While technology for its own sake can make
headlines and even move major markets for a spell (remember the dot com Nasdaq
bubble?), without marketable products and viable applications, even the best
technologies and "blue-sky" optimism wane before long. The goal of this tutorial is
further education on the tools available for Java/GPS applications, the underlying
technologies that make them work, and the practical compromises that might be
necessary to accomplish the goal of market viability.

The next panel examines the task of using GPS data after the technical task of
retrieving it is complete.

Use the data, or simply collect it?

The previous tutorials focused primarily on the collection and recognition of GPS data
from a local receiver. Collecting the data is, of course, only a portion of the solution.
Proper rendering or transmission of that data is also of significant importance when
building GPS applications. Common uses of GPS data include mapping, locating points
of interest, and navigation. One of the more popular and common applications involves
mapping current location against a full-color display representing local highways.
However, not all devices are equipped to store and display such images. Perhaps
another application model is required, particularly for resource-limited devices such as
PDAs and cell phones.

One viable application model combines the network connection available with modern
cell phones, the rich Java programatic environment available in the phone, and
relevant GPS data from either a built-in GPS receiver or a previously loaded store of
GPS position information. The phone may not have significant storage capabilities
when it comes to maps and images; however, it can certainly store waypoints, which
are no more resource-consuming than a telephone number. The Java environment
also provides network communication capabilities. The phone's ability to "punch-out" to
an Internet host and exchange information via HTTP presents a different, yet viable,
application model.

The next panel introduces the other focus of this tutorial -- PDA and embedded Java
programming tools and techniques for extracting GPS data in the Java environment.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 27 Introduction to GPS, Part 3

Java technology and the PDA platforms

One thing that makes Java development alluring is its cross-platform nature. Unlike
other languages, like C, Java byte codes run on any platform with a valid Java Virtual
Machine (JVM). Unfortunately, this feature's practical benefits fade as the device
becomes smaller and the features require lower-level access to the native platform.
This lower-level access can be characterized by:

• Communications

• Output technologies (video, sound, print)

• Input technologies (keyboard, pen/stylus, voice)

There are a multitude of PDA offerings in the marketplace today. Some have features
that rival low-end laptops, but the majority of PDAs and cell phones are still
resource-limited, and the expectation is that this trend will continue for some time. Until
power consumption and price-point challenges are overcome to allow high-resolution
graphics, memory capacity, and affordability (to name a few features), GPS developers
must hit the market where it currently exists.

The next section explores Java technology and the profiles that define functionality and
conformance levels

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 7 of 27

Section 3. The "Write once, run anywhere" promise

The promise

The promise of Java software development is, in short, "write once, run any (and
every) where." Originally thought to be the dragonslayer of client development woes,
Java technology has proven itself to be the most comfortable and productive on the
"back end," or "server side." For example, in the application server market (think Jboss,
WebLogic, WebSphere, iPlanet, Oracle 9i, SeeBeyond), a servlet or bean can be
developed on one platform, such as Solaris, and confidently deployed to another
platform, such as AIX. This is true because the activities of the server side application
consist of:

• Database interaction

• Fundamental "CompSci" actions such as searching and sorting

• Network communications (HTTP, Sockets, e-mail, FTP, etc.)

• Text generation (HTML, XML)

Notice that these activities essentially need three things to operate:

• CPU cycles

• Memory

• Network stack

These resources do not have the same device-specific limitations and constraints
found in client-side applications discussed in the previous section such as display,
sound, and data input mechanisms. It is precisely these resource challenges and the
quest to categorize what variety of application should be expected to run on a particular
device that lead to the topic of the next panel -- configurations and profiles.

Profile proliferation

JVMs can be found on everything from smart cards and chips up to the largest of
environments, such as the OS/390 from IBM. Can a smart card be expected to drive a
windowed terminal via the Abstract Windowing Toolkit? Of course not, as there is no
windowed terminal to drive. Nor can the JVM on a large supercomputer be outfitted
with the hooks and connectivity required for something such as I2C communication,
found at the board level of embedded designs. Obviously, each of the platforms
encompassed in this diverse spectrum has differing capabilities and priorities. This
diversity in JVM functionality requires a means to manage device design,
programming, and application expectations.

The answer to this challenge is effective communication. In this context, these
expectations are set forth in configurations and profiles. Profiles are established
through the collaboration of various working consortiums, consisting of manufacturers,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 27 Introduction to GPS, Part 3

software vendors, and other parties with a vested interest in the shaping of a given
profile. There are many profiles available in the wireless marketplace including the
IrDA.org's specifications, Bluetooth's application profiles, and of course, the profiles of
primary interest to Java developers: the profiles governing the features and functions of
a particular Java environment.

The next panel introduces the Java 2 Micro Edition (J2ME) configurations and profiles
with relevance to mobile Java development and, as such, of importance to GPS
application development.

MIDP, CDC, CDLC

Sun Microsystems has introduced a specific release and specification of Java
technology addressing the mobile community, namely J2ME. This offering is a
complement to the Java 2 Standard Edition (J2SE) and Java 2 Enterprise Edition
(J2EE) specifications. The J2ME defines base configurations known as:

• Connected Device Configuration (CDC): The CDC is seen as the first step "down"
from the full J2SE specification. It is designed for devices with ample resources such
as memory and processor capabilities. It also defines networking functionality for
conforming devices and applications. This configuration is meant for applications
such as kiosks and similar dedicated-function applications.

• Connected Limited Device Configuration (CDLC). The CLDC is aimed at devices
with significant restrictions on memory, power, and connectivity. CLDC devices
include cell phones, pagers, and low-powered PDAs.

Profiles map to the base configurations.

• The Mobile Information Device Profile (MIDP) presents a customized collection of
Java classes, stream-lined and optimized for CDLC devices such as cell phones.
Core Java packages are present; however, certain classes are omitted or trimmed
for the lean environment. For example, the BufferedInputStream class normally
found in the java.io package is omitted in the MIDP version.

• The Personal Basis Profile (PBP) assumes the presence of a graphical user
interface; however, it does not offer support for the Abstract Windowing Toolkit found
in J2SE.

The next panel examines the bare minimum requirements for Java GPS applications
on a MIDP/CLDC-compliant device as well as a Palm OS device in particular, which
straddles the configurations in terms of capability and available offerings.

Minimum requirements

The minimum requirements for this tutorial's PDA/Gadget GPS applications fall into two
categories:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 9 of 27

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 27 Introduction to GPS, Part 3

Section 4. Java programming environments

Cross-platform strategies

Nearly all embedded Java development occurs in a cross-platform manner, meaning
that the actual compilation and linking phases of the development cycle occur on a host
environment that differs from the target deployment platform. For example, when
developing the code for the sample applications, all development occurs on a Windows
or Linux machine, as opposed to a cell phone or Palm OS device. This strategy of
course is nothing new to developers with experience in the wireless or "handheld"
space; this practice has been the norm for decades now.

However, Java development takes the cross-platform concept to another tangential
level. Not only does the development platform differ from the deployment platform, but
the "finished product" can also vary significantly between various implementations.
Take the Palm OS platform, for example. The native application files for the Palm are
"PRC" files. Java programs compile to "class" files, which in turn require a virtual
machine to interpret them. Some Palm OS/Java environments consist of a "post
process" of converting ordinary Java classes into Palm OS native, executable PRC
files. Other environments package the required Java classes into a Palm OS database
file (PRB) for use by a Palm-resident interpreter, acting the part of the JVM.

The next four panels explore a few of the available Palm/Java development
environments.

Commercial offerings

Despite its large open source following, there are indeed commercial Java products
available from organizations eager to capitalize on the demand for quality,
high-performance software based on Java technologies. With Nokia and other
manufacturers planning to push millions of Java-enabled devices onto the market over
the next few years, Java vendors are vying for pole position. Each offering attempts to
capitalize upon a distinct selling feature that sets their product apart from the
competition. Until hardware capabilities in small spaces make these optimizations
unnecessary, these companies will continue to argue that their brand of bread is sliced
better than the next. Following is a small sampling of the major players, along with their
unique selling propositions:

• The Jbed offering boasts a variety of features including on-device code compiler for
dynamic compilation, native code compilation target, and a Windows-based IDE for
application development. Jbed also makes a real-time version of its environment
available for various platforms. (See Tutorial resources on page 26 for a link.)

• Simplicity for Palm OS Platform from Data Representations (see Tutorial resources
on page 26 for a link) leverages IBM's J9 virtual machine for the underlying, run-time
Java environment. Simplicity is a Rapid Application Design (RAD) tool for Java
technology. The J9 virtual machine is available on numerous platforms and is a key

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 11 of 27

component of the Websphere Studio Device Developer.

• Websphere Device Developer and the Eclipse development environment offer a
comprehensive, if not complex, development environment. Applications are compiled
into an intermediate file format known as JXE. Once compilation is complete, a build
step combines with a desired launch mechanism. In this manner, the same
application can be launched in a variety of settings. For example, a MIDlet can be
launched in a MIDlet simulator, as an application running in the Palm OS Emulator
(POSE), or installed as a PRC onto a physical Palm OS device. The run-time Java
environment employed is the IBM J9 Virtual Machine.

While each of these commercial offerings presents one or more unique selling features,
there are Java development options available at no cost from Sun and other
companies.

J2ME

Sun provides products for both the CDC and the CDLC configurations, including
environments for PDAs such as Palm OS and WinCE. From a GPS perspective, the
MID Profile does not support serial communications but does mandate HTTP
connectivity. As such, the J2ME offering is a viable alternative for the first sample
application, which relies solely on HTTP for retrieving relevant GPS data. John
Muchow's developerWorks tutorial provides an excellent introduction to MIDlets and
the use of the J2ME. See Tutorial resources on page 26 for more information.

The next panel examines a popular open source Java development environment and
toolset known as SuperWaba.

SuperWaba

Perhaps the most popular Java option for PDA platforms is SuperWaba. This toolset
provides a Java development environment that is outside the scope of traditional J2ME
Java classes. SuperWaba provides its own virtual machine and custom class libraries.
The code that is written is Java code; however, the core classes are part of the waba
package instead of the java package. A standard Java compiler is used for
compilation of projects into Java classes and packages. The core packages available
for Waba include:

• waba.fx -- This package provides graphics and drawing classes.

• waba.io -- This package includes input/output classes, including the important
SerialPort class. This is a key ingredient for GPS applications requiring direct access
with a GPS receiver via an RS-232 connection.

• waba.sys -- This package provides access to useful items such as regional settings
and system-level settings.

• waba.ui -- This package contains all of the user interface elements required for
useful applications. These include controls such as buttons, labels, lists, and the like.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 27 Introduction to GPS, Part 3

• waba.util -- This package provides useful data structures along with a Date
object, which is undoubtedly important for virtually any application.

These classes provide all of the user interface and system level functions required for
building useful applications. Additional classes and packages can be added by anyone,
as the code is, in fact, pure Java code, compiled with the J2SE's JDK itself.

For the sake of completeness, the next panel introduces an industry buzzword that
sounds like Java technology but is explicitly not Java technology.

BREW: Where multiple-language development
percolates

Qualcomm's mark on the wireless economy is not soon forgotten. The owner of CDMA
technology's intellectual and patent rights has an offering for the wireless development
space. The initiative is called Binary Runtime Environment for Wireless (BREW).
BREW supports multiple-language development, although Java language is not the
first, native choice; that honor falls to C++. In a nutshell, BREW is a "light-weight fat
client" for wireless devices. Its success is hinged upon the ability to effectively
download entire applications and run them locally on a device without the necessity of
a long-haul network connection.

BREW goes beyond the simple technology of what can be done and where, by
addressing some of the economic aspects to wireless development. One of the largest
impediments to wireless application, network, and device adoption is the lack of
applications. Of course, this is a bit of a chicken-and-the-egg dilemma as it helps
application developers to have a platform before investing in developing new or ported
applications. In any event, BREW aims to assist in this adoption process by making it
easier to achieve financial gain in at least two distinct manners:

1. BREW has taken carefully considered actions to ensure the validity of any
downloaded application. This is achieved through the digital signature of applications
with a trusted certificate from Verisign. Only to the degree that downloadable
applications and content can be trusted, can mobile commerce take hold.

2. BREW reaches beyond technical specifications and delivers to carriers and other
operators the tools necessary for distributing BREW applications via its BREW
distribution system. This package includes download servers, transaction managers,
and hooks for integration with operator billing systems.

The next panel summarizes this brief survey of development environments and
describes the rationale behind the choices made for construction of this tutorial's two
sample applications.

Java programming environment wrapup

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 13 of 27

The above sections just scratch the surface of the available Java development
environments for PDAs and other "micro" environments.

Two distinct tools were chosen for use in developing the two sample applications.
These tools were chosen based on their relevant strengths to accomplish the chosen
task and their broader relevance to the marketplace and Java development community.

The first application, a simple MIDlet demonstrating an HTTP connection to retrieve
arbitrary GPS data from a remote application/Web server, could be constructed with
any number of tools. The WebSphere Studio Device Developer was chosen as it
provides the most comprehensive development environment. It may also be the most
complex toolset available. The same application can be readily targeted to multiple
environments. This flexibility and high degree of control over the build process speak to
the strength of the Eclipse environment.

Unfortunately, the tools used in the sample applications of the earlier tutorials are not
readily available for the Palm OS, as the Abstract Windowing Toolkit and javax.comm
are not part of J2ME. An alternative approach is required. The classes available from
WebSphere Studio Device Developer offer a wrapper class for the entire Palm OS
system. While this "OS" class is very comprehensive and virtually any task required on
the Palm can be achieved through the use of this class, it requires an intimate
knowledge of the underlying Palm OS "C" APIs. The use of such a class flies in the
face of the original goal of this tutorial -- to port the application from the prior tutorials
into a PDA environment with as much ease as possible. Due to the simplistic nature of
the application and the availability of an easy-to-use SerialPort class, the
SuperWaba environment, in conjunction with the Mobile Creator IDE, was selected for
use in the development of the second application.

The next section demonstrates the development of a MIDlet.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 27 Introduction to GPS, Part 3

Section 5. Sample Application: MIDlet

Motivation/purpose of the sample application

This sample application demonstrates the use of the WebSphere Studio Device
Developer environment to create a MIDP-compliant GPS application. The purpose of
the application is to provide current (simulated) GPS information in the form of a query
to a remote application or Web server. The back-end server responds with an XML
message containing the names of sports venues within a 100-mile radius. This
application represents one of a variety of applications for the GPS domain. To get
started, be sure to obtain the WebSphere Studio Device Developer (see Tools on page
4). The next few panels walk through the process and the code snippets needed to
construct this application.

Creating the project

Once the environment has been installed, a new project must be created. There are a
few options available in the presented dialog box. Choose "J2ME for J9" as the type of
project, and the "Create MIDlet Suite" as the specific target choice in the right-hand list
box. Provide a name for the project. This sample application's name is ibmdwmid.
Enter this name into every box except "package". Select Finish. The project's source
and metadata files will now be created. When ready, the project appears in the
tree-view window to the left. Note the Java imports automatically included. Additional
imports are required. They are:

• javax.microedition.io.* -- This package includes important classes including
the Connector class.

• java.io.* -- This package contains the InputStream class useful for reading data
on the HTTP connection.

• javax.microedition.lcdui.Command -- This class includes the required
functionality for presenting buttons for user input.

• javax.microedition.lcdui.CommandListener -- This class includes the
required interface for reacting to user actions.

• Javax.microedition.lcdui.Displayable -- This is required for implementing
the commandAction method of the CommandListener interface.

Note that the Eclipse editor displays the contents of any Java class in an outline/tree
view. The currently selected Java class is shown by default. The next two panels
examine the actual source code of the MIDlet.

User interface

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 15 of 27

The MIDlet contains only two buttons. Remember, a MIDlet is designed to run on an
ultra-limited device, such as a cell phone. Here is the code to create the primary user
interface:

public class ibmdwmid extends MIDlet implements CommandListener
{
private Command goCommand = null;
private Command exitCommand = null;
Form f = null;
HttpConnection url = null;
String targeturl = "http://gps.cfgsolutions.com/places.xml";

/**
* @see MIDlet#startApp()
*/

protected void startApp() throws MIDletStateChangeException
{

Display d = Display.getDisplay(this);
f = new Form("IBM developerWorks");
goCommand = new Command("Go!",Command.SCREEN,1);
exitCommand = new Command("Exit",Command.SCREEN,2);
f.addCommand(goCommand);
f.addCommand(exitCommand);
f.setCommandListener(this);
f.append("Ready.");
d.setCurrent(f);

}
...
}

This code adds two buttons to the form and then sits idly by awaiting user input at one
of the buttons. Button presses are handled by the commandAction method. Note that
the commandAction method satisfies the requirement imposed by the
CommandListener interface.

public void commandAction(Command c,Displayable s)
{

if (c == exitCommand)
{

notifyDestroyed();
}
if (c == goCommand)
{

}
...
}

The next panel discusses the actual HTTP connection and the use of an InputStream
for reading purposes.

URLs and streams

When the "Go!" button is selected, the application begins the actual connection and

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 27 Introduction to GPS, Part 3

query to the remote site. The query is reduced to a simple HTTP GET operation:

f.append("Attempting to retrieve data");
try
{

url = (HttpConnection) Connector.open(targeturl);
InputStream is = url.openInputStream();
while (is.available() > 0)
{

byte [] b = new byte[is.available()];
is.read(b);
f.append(new String (b));

}
url.close();

}
catch (Exception e)
{

e.printStackTrace();
}

Note that the entire interaction with the remote host is accomplished within a try/catch
block. Upon any error, control of the application passes to the simplistic catch block
where it simply displays an error message to the standard error device.

Once the connection is established, an InputStream is constructed to read data from
the remote site. The MIDP classes do not provide for a BufferedInputStream, which is a
desirable mechanism for PC-based Java communications.

The next panel demonstrates building and testing the application.

Building and testing

The Eclipse environment compiles each source file as it is saved. Any compilation
errors show up in the "tasks" list and must be dealt with before the application can be
tested. When compilation is clean, i.e., there are no tasks remaining in the list, it is time
to build the actual application. Select the "Run" menu option and the "MIDlet Suite on
MIDP Emulator" choice. This selection results in a dialog box. Simply select Finish. At
this point, an emulated cell phone should appear with the ibmdwmidp application
running. Here is a sequence of screen shots depicting the application flow:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 17 of 27

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 27 Introduction to GPS, Part 3

Note that the buttons below the display control the action. The Start button is circled in
the first image. This concludes the first sample application. The next section examines
the use of SuperWaba for reading NMEA sentences from a Garmin GPS unit.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 19 of 27

Section 6. Sample application: Java in the Palm OS

Motivation/purpose of sample

The second sample application is a port of an application from the first tutorial and is
named ibmdwgpspalm. This application demonstrates a few basic user interface
elements as well as the ever-important serial communications required for interacting
with a serial GPS device. As mentioned earlier, this application employs the
SuperWaba development toolset along with the Mobile Creator IDE. While the source
code presented here is not a direct port of the earlier code base, the functionality is
very similar. The earlier application utilized the Abstract Windowing Toolkit, a package
that is not readily available for the PDA environment. Basic elements of the waba.ui
package are responsible for the user interface elements of this application. Also, the
lack of a suitable javax.comm implementation for Palm OS leads to the use of the
SerialPort class from the waba.io package.

The next panel walks through the installation of the required toolsets.

Getting started

The three software components required for this application are the Mobile Creator, the
SuperWaba SDK, and the latest JDK from Sun Microsystems. Tools on page 4
contains links for obtaining each of these tools. Once they have been installed, the
Mobile Creator has a simple configuration setting dialog to fill out. This configuration
tells Mobile Creator where to find the SuperWaba installation and the JDK's Java
compiler, javac.exe. Here is a screenshot demonstrating a valid configuration:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 27 Introduction to GPS, Part 3

The next panel details the steps involved in the creation of a Mobile
Creator/SuperWaba application.

Using Mobile Creator

The Mobile Creator hides all of the "moving parts" associated with the SuperWaba
development cycle. In a nutshell, here are the steps involved in the creation of a Mobile
Creator/SuperWaba application:

1. Editing of a textual source file -- in this case ibmdwgpspalm.java. This file
contains valid Java source referencing introduced by the Waba packages earlier (
waba.io, waba.ui, etc.)

2. The F-10 key initiates the build process. The source file is compiled via the JDK's
Java compiler.

3. Assuming no errors were encountered, the Mobile Creator invokes two other tools --
warp and ExeGen. The warp tool packages the resulting Java class(es) into a Palm
database file, ibmdwgpspalm.prb, in this case. ExeGen generates a Palm PRC
file, ibmdwgpspalm.prc, containing the application's CreatorId and icons.

4. Mobile Creator finally initiates a session of the POSE and loads the application,
ready to run and test.

The next panel highlights some of the application's user interface features and

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 21 of 27

structure.

User interface elements, Part 1

A SuperWaba application is an extension of the MainWindow SuperWaba class. The
constructor function ibmdwgpspalm initiates the user interface elements:

public class ibmdwgpspalm extends MainWindow {
Button btnStart = null;
ListBox lb = null;
StringBuffer sb = new StringBuffer();
SerialPort sp = null;
boolean running = false;
boolean eatchecksum = false;
Timer savetimer = null;

public ibmdwgpspalm()
{

setDoubleBuffer(true);
setBorderStyle(TAB_ONLY_BORDER);
setTitle("ibmdwgpspalm");
add(btnStart = new Button("Start Reading Data"),10,20);
add(lb = new ListBox(),LEFT+5,AFTER-10);
lb.setRect(1,40,158,100);
btnStart.setRect(10,20,140,15);
Settings.setPalmOSStyle(true);

}

User interface elements, Part 2

The user interface consists of a single button and listbox. The button controls the
application, telling it to start or stop collecting data from the GPS unit. Valid NMEA
sentences are displayed in the listbox. A help function named AddString places
content into the listbox. This function ensures that the box's length stays manageable:

private void AddString(String s)
{

if (lb.size() < 100)
{

lb.removeAll();
}
lb.add(s);
lb.repaint();

}

Here is a screen shot of the application in action:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 27 Introduction to GPS, Part 3

The next panel examines the onEvent method, reacting to user input.

Handling events

Once the button is tapped, the application moves into a mode for collecting data from
the GPS unit. The following code is responsible for reacting to the button tap and
initiating the communications session with the GPS, along with some other incidental
housekeeping:

public void onEvent(Event event)
{

switch (event.type)
{

case ControlEvent.PRESSED:
if (event.target == btnStart)
{

if (!running)
{

sp = new SerialPort(0,4800);
if (sp != null)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 23 of 27

{
sp.setReadTimeout(100);
sp.setFlowControl(false);
savetimer = addTimer(500);
running = true;
btnStart.setText("Stop Reading Data");
eatchecksum = false;

}
else
{

popupModal(new MessageBox("ibmdwgpspalm","Failed to Start!"));
}

}
else
{

sp.close();
running = false;
btnStart.setText("Start Reading Data");
removeTimer(savetimer);
sb.setLength(0);

}
}

break;
case ControlEvent.TIMER:

ProcessPort();
break;

}
}

Things to note about this code include the manner in which the SerialPort instance, sp,
is created and opened, as well as the addTimer method. addTimer causes the
application to raise an event periodically -- in this case, every 500 milliseconds or one
half second. The ControlEvent.TIMER event initiates the ProcessPort method
responsible for actually interacting with the serial port. The SuperWaba SerialPort is
polled at a frequency set by the parameter passed to addTimer. This functionality
differs from the event-driven model of javax.comm employed in the earlier tutorials.

The next panel examines the ProcessPort method, responsible for retrieving
information from the GPS unit and parsing it into NMEA sentences.

Interacting with the serial port

SuperWaba applications must poll the SerialPort, looking for newly received data. Due
to this polling requirement, the ProcessPort method must continually gather data,
looking for a valid NMEA sentence. A Java StringBuffer collects the incoming data as it
is received. Each incoming character is examined in an effort to parse the data. A $
character marks the beginning of a sentence and a carriage-return, line-feed
combination delimits the end of the sentence. The checksum portion of the sentence is
silently ignored and not displayed. Here is the code to the ProcessPort method:

private void ProcessPort()
{

if (sp == null)
{

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 27 Introduction to GPS, Part 3

AddString("port not open!");
return;

}
int bytes = sp.readCheck();
if (bytes > 0)
{

byte [] b = new byte[bytes];
int bytesread = sp.readBytes(b,0,bytes);
for (int i = 0;i<bytesread;i++)
{
switch (b[i])
{
case '$':

sb.setLength(0);
break;

case '*':
eatchecksum = true;
break;

case 0x0d:
break;

case 0x0a:
eatchecksum = false;
AddString(sb.toString());
sb.setLength(0);
break;

default:
if (!eatchecksum)
{

sb.append((char) b[i]);
}
break;

}
}

}
return;

}

Note the use of the readCheck method. This method indicates the presence of data
available for reading. The data is accumulated into the StringBuffer variable, sb. When
the full sentence is available, the toString() method of the StringBuffer returns a
String representation of the NMEA sentence. This new string is passed to the
AddString method for inclusion in the ListBox user interface element.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 25 of 27

Section 7. Summary

Tutorial summary

This tutorial examined some of the challenges facing embedded and portable Java
developers. The available toolset offerings cover a wide-spectrum of functionalities and
techniques to get the job done; however, it is clear that the embedded Java developer
does not share the same "write once" experience of the server side Java developer.
From a GPS perspective, the basic theme of data collection holds true: The core
requirement is a valid means to share data with a serial-based device. This
requirement is not easily met with the J2ME offering, nor is it met with uniformity.
Fortunately for the GPS enthusiast without a corporate budgetary backing, there is
SuperWaba. This open source environment not only fits the bill, but it does so with
traditional Java programming techniques, keeping things simple. One of the highlights
of the second sample application is the fact that no Palm OS-specific knowledge is
imparted in the code!

This tutorial also presented an alternative to the traditional data collection means of
GPS applications by introducing a network based, MIDP applet using the WebSphere
Studio Device Developer environment. Though simplistic in nature, it is a powerful
design pattern, suitable for numerous applications, GPS and otherwise.

Regardless of the path chosen, Java technology and GPS have tremendous promise,
particularly as GPS capabilities become built-in and more common in consumer
devices and as the Java crowd thins out to expose a consensus on how to interact on
these limited resource devices.

Tutorial resources

• The http://wireless.java.sun.com/ Web site is home to the J2ME release of the Java
language from Sun Microsystems.

• http://java.sun.com/j2me/docs contains the documentation relevant to the breadth of
capable device profiles.

• This site, http://www.palm-communications.com/ibmdw , contains all of the source
code presented in this tutorial.

• John Muchow's tutorial on MIDlets provides a nice introduction to the topic of
MIDP/CLDC and MIDlet development. The tutorial may be found at:
https://www6.software.ibm.com/developerworks/education/wi-midlet/

• The http://www.redhat.com/embedded/technologies/ecos Web site is the primary
source of information pertaining to the embedded configurable operating system
(eCos).

• The http://www.eclipse.org Web site is the home of the Eclipse IDE.

• http://www.oreillynet.com/wireless/ regularly presents wireless development content,
including GPS topics.

• The PalmOS emulator may be found at: http://www.palmos.com/dev/tools/emulator

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 27 Introduction to GPS, Part 3

http://wireless.java.sun.com/
http://java.sun.com/j2me/docs
http://www.palm-communications.com/ibmdw
https://www6.software.ibm.com/developerworks/education/wi-midlet/
http://www.redhat.com/embedded/technologies/ecos
http://www.eclipse.org/
http://www.oreillynet.com/wireless/
http://www.palmos.com/dev/tools/emulator

• The introductory, prerequisite tutorials may be found at Introduction to GPS, part 1
and Introduction to GPS, part2.

• A series of tutorials on Building Palm OS Applications, which discuss using a PDA
for serial communications applications, is available on the developerWorks Wireless
zone at http://www-106.ibm.com/developerworks/wireless/ .

• Elliotte Rusty Harold's book titled Java I/O (O'Reilly and Associates) is a valuable
resource to Java developers needing information and "How-To" knowledge in the
realm of Input and Output streams in Java.

• The http://www.jboss.org Web site boasts the world's most popular open source
application server.

• The Jbed environment may be found at http://www.jbed.com.

• Simplicity, a Rapid Application Development tool for the Palm OS platform using
Java Technology, is available from Data Representations.

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 3 Page 27 of 27

https://www6.software.ibm.com/developerworks/education/wi-gps/index.html
https://www6.software.ibm.com/developerworks/education/wi-gps/index.html
https://www6.software.ibm.com/developerworks/education/wi-gps/index.html
https://www6.software.ibm.com/developerworks/education/wi-gps/index.html
https://www6.software.ibm.com/developerworks/education/wi-gps/index.html
http://www6.software.ibm.com/developerworks/education/wi-gps2/
http://www6.software.ibm.com/developerworks/education/wi-gps2/
http://www6.software.ibm.com/developerworks/education/wi-gps2/
http://www6.software.ibm.com/developerworks/education/wi-gps2/
http://www-106.ibm.com/developerworks/wireless/
http://www.jboss.org/
http://www.jbed.com/
http://datarepresentations.com/products/palm/index.shtml
http://datarepresentations.com/products/palm/index.shtml
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Introduction
	Should I take this tutorial?
	What is this tutorial about?
	Source code roadmap
	Some helpful terms
	Tools
	About the author

	Global positioning applications
	Global Positioning System: Application opportunities
	Use the data, or simply collect it?
	Java technology and the PDA platforms

	The "Write once, run anywhere" promise
	The promise
	Profile proliferation
	MIDP, CDC, CDLC
	Minimum requirements

	Java programming environments
	Cross-platform strategies
	Commercial offerings
	J2ME
	SuperWaba
	BREW: Where multiple-language development percolates
	Java programming environment wrapup

	Sample Application: MIDlet
	Motivation/purpose of the sample application
	Creating the project
	User interface
	URLs and streams
	Building and testing

	Sample application: Java in the Palm OS
	Motivation/purpose of sample
	Getting started
	Using Mobile Creator
	User interface elements, Part 1
	User interface elements, Part 2
	Handling events
	Interacting with the serial port

	Summary
	Tutorial summary
	Tutorial resources
	Feedback

