
Introduction to GPS, Part 1

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Introduction.. 2
2. What is GPS?... 5
3. Why Java for GPS?.. 9
4. Build environment .. 11
5. Sample application... 13
6. User interface and options for the sample application 15
7. Summary .. 23

Introduction to GPS, Part 1 Page 1 of 24

Section 1. Introduction

Should I take this tutorial?
This tutorial, the first in a three-part series, is designed for developers and product managers
who are evaluating the Java programming language as an option for use in Global
Positioning System (GPS) applications. More generally, anyone familiar with serial
communications in another programming language such as C or BASIC, but who is
interested in learning how to achieve serial communications by using the Java programming
language, will find the sample application a useful exercise. Familiarity with the Java
programming language is recommended. Tutorial resources on page 23 contains links to
useful primers on the Java language if you need to brush up your skills.

This tutorial is a prerequisite for subsequent tutorials in this series. Upcoming tutorials
discuss GPS concepts in further depth as well as look at the task of porting the sample Java
application from the desktop to a portable computing environment.

What is this tutorial about?
This tutorial explores GPS and the Java programming language's applicability to GPS
applications. Basic GPS concepts serve as a foundation for the sample application. In
addition to the GPS topics, this tutorial presents a high-level discussion of Java architecture
with respect to the Java Native Interface (JNI) and platform-specific issues related to physical
device communications. The tutorial works with the Java Communications API package for
serial communications with a GPS unit. The sample application is also designed to be
portable; therefore, the application employs the Java Abstract Windowing Toolkit (AWT) for
the user interface.

• What is GPS? on page 5 -- This section discusses the basics of GPS, including information
on the official U.S. government agencies that have authority over the system and common
applications and devices available for GPS. Subsequent panels examine the data
protocols available for GPS (the tutorial's sample application optionally parses out National
Marine Electronics Association, or NMEA, sentences), and the merits of Java for
development of GPS applications. GPS applications are inherently portable and demand a
versatile programming environment such as the Java environment.

• Why Java for GPS? on page 9 -- This section shifts gears and delves into the development
environment of choice, the Java programming language. It explores JNI, which enables the
Java programming language to leverage native resources and talk to a portable GPS unit,
and the javax.comm package, which Sun Microsystems provides as a reference
implementation of a JNI solution to device communications. The sample application
employs this package. This discussion of the package examines the prescribed
communications driver architecture.

• Build environment on page 11 -- This section walks through the acquisition, installation, and
verification of the proper build environment required for the tutorial's sample application.
The Tools on page 4 panel contains links for each of the tools used in the tutorial.

• Sample application on page 13 -- The tutorial's sample application is constructed
step-by-step in the this section.

• User interface and options for the sample application on page 15 -- This section describes
the user interface and the major options available to the user.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 24 Introduction to GPS, Part 1

Source code map
This tutorial's sample application demonstrates serial communications, Java graphical user
interface programming, and GPS NMEA sentence parsing. The full source code is available
for download from Tools on page 4 . Here are the code snippets discussed in this tutorial:

• Verifying the build environment -- The verifybuildenvclass exercises core functionality
of the Java Communications API, verifying the build environment.

• Ibmdwgps.properties -- This property file specifies required runtime parameters.

• Property access -- This code snippet demonstrates loading a properties file into the
System object's properties collection.

• User interface -- This code creates the graphical user interface via the Java
programming language's AWT.

• Action handler -- This routine processes events the user initiates.

• Start option -- The Start routine initiates communications with the serial port resource.

• Port configuration -- Serial ports have a variety of modes and parameters requiring
configuration. This code demonstrates the steps necessary to prepare the port for use.

• Java I/O streams -- Java code "talks" to other systems by using a mechanism known
as streams. This code sets up the streams necessary for interaction with the serial port.

• Serial event -- This routine handles data that arrives at the port's input stream.

• NMEA sentence parsing -- NMEA sentences represent various data from the GPS
unit. This code employs a simple parsing technique to handle the NMEA message.

• Stop option -- The Stop routine closes the communications resources.

• Save option -- The Save routine prompts the user for a filename to save information
into.

Some helpful terms
• GPS -- Global Positioning System, a networked system providing longitude, latitude, and

elevation information to specially designed receivers.

• JDK -- Java Developers Kit, otherwise known as the Java SDK. This is the core Java
toolset available from Sun Microsystems.

• Communications port -- Physical connector and circuitry in a computer used for the
purpose of transferring information to another computer or device. Common examples
include serial and parallel ports on personal computers.

• Portability -- The term given to software characterizing the ease with which you can
convert an application from one platform to another; for example, converting a program
that was written on the Windows platform and enabling it to run on a UNIX platform.

• Cross-platform development -- The practice of employing one operating system and/or
hardware combination to develop applications for another platform. Developing a Palm OS
application on a Linux computer is an example of cross-platform development.

• Data protocol -- The rules computers use when talking to one another. Common examples
are found in Electronic Data Interchange (EDI), Hypertext Transfer Protocol (HTTP), File
Transfer Protocol (FTP), X-Modem, etc.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 3 of 24

Tools
The following resources are required to complete this tutorial:

• Java SDK (JDK) -- The Java SDK is the core Java development platform required for any
Java application. You must install this to build the sample application. You can find the
JDK at http://java.sun.com/j2se.

• Java Communications API -- You can find the Java package, javax.comm, used in the
sample application for communicating with the GPS unit, at
http://java.sun.com/products/javacomm/index.html. Follow the steps outlined below in the
Build environment on page 11 section to ensure proper installation of this package.

• Tutorial sample code -- You can find the complete code to the tutorial's sample application
at http://www.palm-communications.com/ibmdw .

• GPS unit -- The tutorial's sample application demonstrates communications with a
consumer GPS unit available at http://www.garmin.com/mobile/. Any unit capable of
producing NMEA sentences over a serial communications port is sufficient.

About the author
After his college basketball career came to an end without a multiyear contract to play for the
L.A. Lakers, Frank Ableson shifted his focus to computer software design. He enjoys solving
complex problems, particularly in the areas of communications and hardware interfacing.
When not working, he can be found spending time with his wife Nikki and their children. You
can reach Frank at frank@cfgsolutions.com.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 24 Introduction to GPS, Part 1

http://java.sun.com/j2se
http://java.sun.com/products/javacomm/index.html
http://www.palm-communications.com/ibmdw
http://www.garmin.com/mobile/
mailto:frank@cfgsolutions.com

Section 2. What is GPS?

Background on GPS
GPS is a U.S. government-operated network of earth-orbiting satellites (space vehicles) and
ground control stations. This network provides time and position information to receiving
stations and devices around the globe. There are approximately 24 active satellites
participating in this network at any point in time. Each GPS satellite continually transmits
position information via a spread-spectrum signal. To obtain an accurate location and time
calculation, four of these satellites must be in range of the receiver.

There are two varieties of positioning service: Standard and Precise.

• The Standard Positioning Service (SPS) is freely available to the public. The quality of the
positioning and timing information may be degraded without notice for security purposes.
The information is generally suitable for all but the most demanding navigation exercises.

• The Precise Positioning Service (PPS) is available to select organizations by permission
from the U.S. government. The PPS is a highly accurate positioning and timing service
suitable for use in military and other applications where the highest degree of accuracy is
required. The U.S. government protects this valuable positioning information via
cryptography and provides it on an "as-needed" basis.

The Federal Radionavigation Plan (FRP), a product of the U.S. Department of Defense and
the U.S. Department of Transportation, outlines GPS's requirements, features, capabilities,
and restrictions. This plan is the authoritative document regarding GPS. Tutorial resources
on page 23 contains a link to the current plan document and related materials.

Common GPS applications
The most common GPS application category is navigation. You can find GPS receivers in
watercraft, airplanes, and automobiles. Often, these applications combine GPS location
information with a mapping service to provide precise, easy-to-follow navigation guidance.
For example, many rental cars include a navigation system based on GPS. These in-car
navigation systems even offer drivers auditory cues, informing them of upcoming turns, exits,
and intersections.

GPS receivers are well on their way to becoming a popular sportsman staple. In addition to
providing assistance in navigation, GPS units allow a user to mark a specific location,
recording it for later reference. For example, a fisherman can mark the spot where he
"caught the big fish" in the middle of the lake. On a subsequent fishing expedition, the
fisherman can then relocate this recorded "waypoint" in hopes of landing yet another prize
catch.

A hiker can prepare for an upcoming trip by loading a "route" into a personal GPS device,
marking key landmarks of interest. During the course of the hiking expedition, the GPS unit
displays Time of Arrival (TOA) information along with other pertinent positional information
such as bearing and elevation.

Beyond navigation, you can use GPS for precise measurement, such as surveying, or the
measurement of velocity and position of various objects, such as fault lines. GPS technology

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 5 of 24

is ideal for management and tracking of mobile assets, such as vehicles and construction
equipment.

Tutorial resources on page 23 provides links to popular GPS applications and studies.

GPS devices
In only a few years' time, the GPS receiver has gone from a high-end tech gadget to a
moderately priced commodity available in most electronics stores. The devices range from
simple position indicators to full-featured, color navigation assistants, complete with street
maps and PC interfaces. Early generations of GPS/mapping solutions operated only with the
assistance of a personal computer, as the GPS receiver itself had no built-in user interface.

Unlike cell phones and pagers, a GPS receiver cannot operate without a view of the sky, as
the GPS signals do not penetrate the walls and ceilings of homes and office buildings. For
this reason, where you decide to mount a GPS receiver is crucial to its proper operation.

While automotive navigation GPS units can draw power from the car's electrical system,
portable GPS receivers, such as ones a hiker or backpacker uses out on a hike, require the
use of batteries. This requirement is important and you should consider it whenever taking a
trip and relying on the availability of the GPS receiver.

The next panel examines some of the GPS devices available on the market.

Real-world GPS devices
Garmin and Magellan are arguably the most well-known GPS manufacturers. Their product
lines include devices for aviation, automotive, and marine vehicles; handheld units;
telephones; and even OEM offerings. OEM products are suitable for embedding GPS
functionality into a custom design, without all of the molded plastic and software functionality
found in a consumer product. The devices from Garmin, Magellan, and others provide for
basic GPS navigation facilities such as waypoints, routes, tracks, elevation, bearing, speed,
and more.

The Earthmate GPS receiver, available from DeLorme, is geared for in-vehicle navigation.
The Earthmate product is an example of a device offering PC interfacing capabilities. This
model is designed for use with software running on a laptop or Palm OS device.

While the Earthmate offers a proprietary software interface only, many GPS devices support
both a manufacturer custom data protocol and industry-standard protocols. The device used
in the sample application was selected precisely for its communications capabilities. These
capabilities include an easy-to-use serial interface with a DB-9 connector and support for a
variety of data protocols. This "open" design makes the device perfectly suited for portable
applications including laptops, PDAs, and even embedded controllers for custom-purpose
applications.

GPS data protocols

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 24 Introduction to GPS, Part 1

The primary activity of a GPS receiver is the acquisition of positional information from the
GPS network. However, there are additional resources beyond the network of space
satellites available to the GPS receiver. Differential GPS (DGPS) information provides
additional positional information that the receiver uses to gain a more precise location
measurement. Beacons provide receivers with DGPS signals. Maritime applications
commonly deploy these beacons near the coastline and in harbors to promote safe passage
of seagoing vessels. These beacons are essentially high-tech lighthouses.

GPS receivers acquire beacon signals via a protocol known as the Radio Technical
Commission for Maritime Services (RTCM). RTCM is a DGPS standard protocol, used as an
input data source to a GPS receiver. The GPS receiver typically receives this information
from another device, known as a beacon receiver. Another form of differential data designed
to augment the accuracy of a GPS receiver is the Wide Area Augmentation System (WAAS).
WAAS is gaining acceptance in the civil aviation industry.

Once the GPS receiver has processed/processes the data sources, it is often necessary to
disseminate the standard positional information to other applications. Each GPS receiver
vendor may offer a special communication and protocol feature set; however, there is a
common data format -- NMEA.

NMEA sentence format, part 1
The NMEA protocol calls for information to be transmitted in "sentences" at 4800 baud. Here
is an example NMEA sentence:

$GPGLL,4338.581,N,07015.101,W,170110,A*3D

The NMEA sentence is broken into the following format:

"$" marks the beginning of the sentence. The characters GP indicate that the message is
from the GPS unit. In NMEA parlance, these two characters identify the "talker" in the
conversation. The next three letters indicate the type of NMEA sentence. For example, GLL
above refers to geographic position, longitude, and latitude.

This format, $GPXXX, represents the standard prefix to NMEA sentences, but not the only
data format available.

NMEA sentence format, part 2
In addition to standard GPS messages, the NMEA format accommodates the use of
manufacturer-specific messages as well.

A sentence beginning with a P indicates a manufacturer's proprietary message, not part of
the NMEA protocol. The next three letters following the P indicate the manufacturer:

$PGRMZ,4,f,3*1F

This sentence is in proprietary format, from manufacturer Garmin. The Z indicates this
message contains altitude information.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 7 of 24

Comma-separated values follow the sentence type indicator. After the series of data values,
an asterisk (*) represents the end of the sentence, followed by a two-digit hexadecimal
checksum and a carriage return line feed.

The tutorial's sample application optionally parses out NMEA sentences. The next section
moves closer toward the sample application with a discussion of the Java programming
language and its applicability to GPS.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 24 Introduction to GPS, Part 1

Section 3. Why Java for GPS?

A portable language for a portable application
GPS is inherently a portable application, used in a variety of industries and roles. The
diversity of applications communicating with a GPS receiver cannot be confined to a PC or
UNIX workstation. There is a mandate for portable and even embedded environments to
interact with a GPS receiver.

The Java language's earliest claims were "write once, run everywhere." Its ability to run on
multiple platforms with a binary compatibility offers a compelling case for selection when
building GPS receiver applications. Applications written in Java language are compiled into
byte code. The byte codes run in a Java Virtual Machine (JVM) on the target processor. The
JVM interprets each set of byte codes and performs the appropriate action as a native
instruction. Java architecture permits easy substitution of libraries to provide enhanced
functionality as required.

At the lowest levels, Java function calls, known as methods, must interact with the host
operating system to obtain and use operating system resources. For example, when a Java
application opens a TCP socket to communicate with a server application, it must request the
socket from the host operating system's TCP stack. This is accomplished through the use of
native methods. The next panel discusses the role of the JNI and its significance to GPS.

Java Native Interface
Java language excels at core computing activities such as string manipulation, numeric
calculations, sorting, hashing, file handling, network I/O, etc. However, it does not support
native communications port interactions very well. Communicating with a serial or parallel
port on a PC differs from the same activity on a UNIX workstation or a PDA. In fact, the
physical differences can be vast. For example, a PDA does not have a parallel port. These
distinctions present a challenge to the Java "write once, run everywhere" stance. Luckily, the
JNI can resolve these hardware platform-specific issues.

The JNI requires the use of shared libraries. The Java runtime classes load these shared
libraries dynamically via the System.loadLibrary() method. Once the Java runtime
classes have loaded a JNI library, the methods exposed in that library are available to the
Java environment. The Tutorial resources on page 23 section contains a link to an informative
tutorial discussing the JNI.

Serial communications options for the Java programming language are very limited. A few
commercial options are available for communicating with a serial device, and an offering
from Sun Microsystems known as javax.comm. This tutorial demonstrates the
javax.comm package.

The javax.comm package
The Java Communications API, for example, available from Sun Microsystems in the
javax.comm package, is one that permits "platform-independent" access to communications
resources. This package is a reference implementation available for the Solaris and Win32

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 9 of 24

platforms. The package offers support for both serial and parallel ports including support for
typical activities such as configuring, sending, and receiving data. The API is event-driven,
including events pertaining to the ownership of communication ports and other port
conditions. This port-monitoring feature allows an application to wait for a port to become
available for use; the API sends an event to the application, when the port is no longer in use
by another application.

The implementation includes a platform-specific shared library containing the routines
required for the JNI native methods of the package's classes. For example, on the Win32
platform, the reference implementation ships with a file named win32com.dll. Here are a
few of the functions exported from the DLL:

_Java_com_sun_comm_Win32Driver_readRegistrySerial@12
_Java_com_sun_comm_Win32SerialPort_available@8
_Java_com_sun_comm_Win32SerialPort_nativeEnableFraming@12
_Java_com_sun_comm_Win32SerialPort_nativeSetDTR@12
_Java_com_sun_comm_Win32SerialPort_nativeSetFlowcontrolMode@12
_Java_com_sun_comm_Win32SerialPort_nnotifyOnBreakInterrupt@12
_Java_com_sun_comm_Win32SerialPort_nnotifyOnCTS@12
_Java_com_sun_comm_Win32SerialPort_nwrite@20

Javax.comm.properties file
The native shared library is not the only file in the javax.comm solution. The package also
relies on a Java properties file to specify which class contains the actual driver. Once the file
has identified the driver, the appropriate library is loaded, providing the required native
methods for port interactions. Here is the javax.comm.properties file contents:

#
Drivers loaded by the Java Communications API standard extension
at initialization time
#
Format:
Each line must contain ONE driver definition only
Each line must be of the form:
driver=<ClassName>
No spaces or tabs in the line.
ClassName must implement the interface
javax.comm.CommDriver
example: driver=Win32Serial
#
The hash(#) character indicates comment till end of line.
#
Windows Serial Driver
Driver=com.sun.comm.Win32Driver

The com.sun.comm.Win32Driver contains the System.loadLibrary ("win32com") to
link the Java code with the native code.

The next section begins the hands-on portion of the tutorial: establishing the build
environment and constructing the sample GPS application.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 24 Introduction to GPS, Part 1

Section 4. Build environment

Obtaining and installing the Java SDK
Download the latest Java SDK and perform the installation, if a Java development
environment is not already available.

The javax.comm package installation instructions indicate that the package has been tested
with JDK 1.1.6; however, this tutorial utilizes the latest JDK available. See Tools on page 4
for more information on downloading the latest JDK. You cannot build some of the sample
applications shipping with the javax.comm package with Java 2 versions, as those
applications utilize deprecated methods. This is not a concern for this tutorial's sample
application.

Note that the terms Java SDK and JDK are used synonymously.

Installing the javax.comm package
A link for downloading the Java Communications API package is available in Tools on page
4 . The site provides specific download instructions for each supported platform. Regardless
of the platform you choose, here are the important steps in the installation:

1. Copy the platform-specific library (win32com.dll for Win32) to the bin folder of the JDK.
For example, if the Java SDK is located in the C:\jdk2 directory, copy win32com.dll
into C:\jdk2\bin. This ensures that the native methods found in this library are available
at runtime.

2. Copy the file comm.jar into the lib folder of the JDK. Continuing the example above, copy
comm.jar into C:\jdk2\lib. You must include this file in the classpath during both
compilation of the tutorial's application as well as during the runtime execution of the
application.

3. You must also copy the javax.comm.properties file into the lib folder,
C:\jdk2\lib. If the entry in this file is not available to the application, the
communications driver class will fail to load and no device operations, such as
enumerating or opening ports, will succeed.

Verifying the build environment
Now that you've installed the JDK and the Java Communications API, it's time to verify the
installation. The following program exercises the port-enumeration capabilities of the API and
serves to verify that the javax.comm package is properly installed and operational:

import javax.comm.*;
import java.util.Enumeration;
public class verifybuildenv
{
public static void main(String args[])
{
Enumeration ports;
System.out.println("Verifying Build Environment");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 11 of 24

try
{
ports = CommPortIdentifier.getPortIdentifiers();
if (ports == null)
{
System.out.println("No comm ports found!");
return;
}
while (ports.hasMoreElements())
{
System.out.println("Here is a port [" +
((CommPortIdentifier)ports.nextElement
()).getName() + "]");
}

}
catch (Exception e)
{
System.out.println("Failed to enumerate ports
[" + e.getMessage() + "]");
e.printStackTrace();

}
System.out.println("Complete.");

}
}

The next panel demonstrates how to build the verifybuildenv application using the JDK.

Build and run the application from the command line
This panel provides step-by-step instructions for building the first test application to verify the
build environment.

Build this application with the following sequence from the command line:

javac -classpath \jdk2\lib\comm.jar verifybuildenv.java

Run the application with this command:

java -cp .;\jdk2\lib\comm.jar; verifybuildenv

The expected output looks like this:

Verifying Build Environment
Here is a port [COM1]
Here is a port [COM3]
Here is a port [LPT1]
Here is a port [LPT2]
Complete.

If you do not achieve similar results, refer to the detailed instructions in the Readme.html
file found in the javax.comm installation files.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 24 Introduction to GPS, Part 1

Section 5. Sample application

Motivation and purpose of sample
The sample application, ibmdwgps, demonstrates the use of the javax.comm API in
conjunction with a portable GPS unit. The purpose of the application is to create a baseline
Java data collection program, capable of communicating with a GPS unit via serial
communications. Subsequent tutorials expand on GPS-specific features and protocols. Once
complete, the application has the following features:

• Java AWT user interface

• Serial port communications via the Java Communications API

• Java file system I/O including file dialog interfaces for saving traces captured from the GPS
unit

• GPS/NMEA sentence capture

• Java property file use allowing a highly configurable application

Tools on page 4 contains a link to the complete source code for this application.

The sample application was tested against a Garmin eTrex Venture model handheld GPS
unit communicating NMEA sentences at 4800 baud in "demo mode."

Configuration and properties file
A common feature of communications applications is parameterization or configuration to
switch between different ports, speeds, settings, etc. This application utilizes a Java
properties file, ibmdwgps.properties, to provide these values. This file contains the port
number, the baud rate, and a setting indicating whether to expect NMEA sentences.

ibmdwgps.properties
version=Version 1.0\r\n
welcomemessage=Welcome to IBM developerWorks :
Wireless: Introduction to Java and GPS\r\n
commportnumber=COM1
baudrate=4800
protocol=NMEA

In addition to the property file, a Java application can receive properties on the command line
of the form:

java -cp <someclasspath> -Dname=value
-Dname=value <classtorun>

Having multiple means to provide runtime parameters enhances the flexibility and portability
of the Java environment.

Property access
This panel examines the sample application's approach to accessing the properties at

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 13 of 24

runtime, regardless of the manner in which they are provided to the program.

Any properties passed on the command line are accessible from the system object's
properties collection. This application loads the properties found in the
ibmdwgps.properties file into the system object's properties for simplified property
access at any point in the program. This way, there is no guessing as to where you might
find a given property.

// load properties
try
{
config = new Properties(System.getProperties());
config.load(new FileInputStream
("ibmdwgps.properties"));
System.setProperties(config);
}
catch (Exception e)
{
System.err.println("Failed to retrieve
properties [" + e.getMessage() + "]");
e.printStackTrace();
System.exit(1);
}
trace.append(System.getProperty("welcomemessage"));
trace.append(System.getProperty("version"));
commportnumber = System.getProperty("commportnumber");
baudrate = System.getProperty("baudrate");
if (commportnumber == null)
{
trace.append("Failed to load commportnumber
from properties");
enabled = false;
}

The next section describes the user interface and the major options available to the user.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 24 Introduction to GPS, Part 1

Section 6. User interface and options for the sample
application

User interface
The sample application presents a very simple user interface based on the Frame class of
the AWT. The application also implements the ActionListener interface, allowing it to respond
to user actions such as menu selections. For more information on Java user interface
programming, see Tutorial resources on page 23 . Here is the class declaration specifying the
specific class properties:

public class ibmdwgps extends Frame implements
ActionListener,SerialPortEventListener

The client area of the frame contains a scrollable TextArea used for displaying status
information and any data retrieved from the GPS unit. The following code is a representative
subset of the user interface code:

private Panel tracewindow;
private TextArea trace;
final int HEIGHT = 480;
final int WIDTH = 600;
private Panel tracewindow;
private TextArea trace;
private MenuBar barMain;
private Menu mnuMain;
private MenuItem miStart;

super("IBM developerWorks Java/GPS Tutorial");
tracewindow = new Panel();
tracewindow.setLayout(new GridLayout(1, 1));
trace = new TextArea();
trace.setEditable(false);
tracewindow.add(trace);
add(tracewindow, "Center");
barMain = new MenuBar();
mnuMain = new Menu("Options");
miStart= new MenuItem("Start");
miStart.addActionListener(this);
mnuMain.add(miStart);
...
barMain.add(mnuMain);
setMenuBar(barMain);
Dimension screenSize = Toolkit.getDefaultToolkit()
.getScreenSize();
setLocation((screenSize.width - WIDTH)/2,
(screenSize.height - HEIGHT)/2);
setSize(WIDTH, HEIGHT);

All of this declarative Java code results in a graphical user interface, discussed in the next
panel.

Main application window

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 15 of 24

The primary user interface window provides a scrolling view of all data received along with
user-selectable menu choices for controlling the application.

The following menu choices correspond to the available actions the sample takes:

• Start -- This option commences data collection via the serial port.

• Stop -- This option closes the serial port.

• Save -- This option prompts the user for a filename and location to save the contents of the
captured data in the TextArea.

• Clear -- This option clears all text from the TextArea.

• Exit -- This menu terminates the application.

The next few panels drill down into each of these options with sample source code.

Action handler
The ibmdwgps class implements the ActionListener interface, allowing it to respond to user
actions. To implement this interface, a class must provide a method named
actionPerformed(), taking a single Event parameter. Here is the action handler code:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 24 Introduction to GPS, Part 1

public void actionPerformed(ActionEvent e)
{

String cmd = e.getActionCommand();
System.err.println(cmd);
if (cmd.equals("Exit"))
{

shutdown();
}
if (cmd.equals("Start"))
{

startupcomms();
}
if (cmd.equals("Stop"))
{

stopcomms();
}
if (cmd.equals("Save"))
{

savetrace();
}
if (cmd.equals("Clear"))
{

trace.setText("");
}

}

This method essentially acts as a distributor of events. For example, when the method
performs the Start event, it transfers control to the startupcomms() method.

Start option
The startupcomms method performs the majority of interaction with the serial port via the
javax.comm API. The actions this method takes include obtaining a port identifier and
attempting to open the port:

try
{
portId = CommPortIdentifier.getPortIdentifier
(commportnumber);
}
catch (NoSuchPortException e)
{

trace.append("Failed to get port identifier!
[" + e.getMessage() + "]");
e.printStackTrace();
return;

}

try
{

sPort = (SerialPort)portId.open("ibmdwgps", 1000);
}
catch (PortInUseException e)
{
trace.append("Port in use??
[" + e.getMessage() + "]");
e.printStackTrace();
return;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 17 of 24

}

Note the use of the try/catch mechanism. Java code requires that every exception be caught.
In this case, the application is concerned with opening an invalid or busy port.

If there are no errors in opening the port, the application next attempts to prepare the port for
operation by assigning port-specific parameters.

Port configuration
Once the port is open, it must be configured for the specific communications parameters
required to talk to the GPS device:

try
{
trace.append("Setting parameters\r\n");
sPort.setSerialPortParams(4800,SerialPort.DATABITS_8,
SerialPort.STOPBITS_1,SerialPort.PARITY_NONE);
}
catch (UnsupportedCommOperationException e)
{
trace.append("Failed to set port parameters
[" + e.getMessage() + "]");
e.printStackTrace();
sPort.close();
return;
}

// Set flow control.
try
{
sPort.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);
}
catch (UnsupportedCommOperationException e)
{

trace.append("Setting flow control failed
[" + e.getMessage() + "]");
e.printStackTrace();
sPort.close();
return;

}

The port is now open and set up for the required serial data format. The next step is to
prepare the Java-specific I/O mechanisms required for proper data handling.

Java I/O streams
The Java programming language has a remarkably powerful, but often underutilized, I/O
architecture. The SerialPort class provides both an input and an output stream for
application use.

The balance of the startupcomms method pertains to I/O and notification settings of the
port:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 24 Introduction to GPS, Part 1

try
{

os = sPort.getOutputStream();
is = sPort.getInputStream();

}
catch (IOException e)
{

sPort.close();
trace.append("Error opening i/o streams
[" + e.getMessage() + "]");
e.printStackTrace();
return;

}
try
{

sPort.addEventListener(this);
}
catch (TooManyListenersException e)
{

sPort.close();
trace.append("Cannot add this
class as a listener!
[" + e.getMessage() + "]");
e.printStackTrace();
return;

}
try
{

sPort.enableReceiveTimeout(1);
}
catch (Exception e)
{

trace.append("Cannot set enableReceiveTimeout
[" + e.getMessage() + "]\r\n");
e.printStackTrace();

}
// Set notifyOnDataAvailable to true to allow event

driven input.
sPort.notifyOnDataAvailable(true);

The last action the method takes is setting a class-level variable and toggling the menu
options.

portisopen = true;
miStop.setEnabled(portisopen);
miStart.setEnabled(!portisopen);

Serial event
In addition to the ActionListener interface, the ibmdwgps class also implements the
SerialPortEventListener interface by providing the serialEvent() method. This method is
invoked whenever an event on the port occurs. The most common example is the arrival of
data at the port. The first portion of serialEvent simply dumps all received data to the
TextArea.

public void serialEvent(SerialPortEvent e)
{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 19 of 24

//System.err.println("Serial Event
[" + e.getEventType() + "]");

int newData = 0;

switch (e.getEventType())
{

// Read data until -1 is returned.
If \r is received substitute
// \n for correct newline handling.
case SerialPortEvent.DATA_AVAILABLE:

if (!nmea)
{

inputBuffer = new StringBuffer();
while (newData != -1)
{

try
{

newData = is.read();
if (newData == -1)
{

break;
}
inputBuffer.append((char)newData);

}
catch (IOException ex)
{

System.err.println(ex.getMessage());
return;

}
}
// Append received data to messageAreaIn.
trace.append(new String(inputBuffer));

}

This code handles basic data receipt; however, it does not attempt to interpret the data at all.
The next panel examines NMEA sentence parsing.

NMEA sentence parsing
If the NMEA option is selected via the properties file (protocol=NMEA), the data is buffered
and parsed into NMEA sentences as it receives it:

{
// parse NMEA sentence
boolean done = false;
boolean gotsentence = false;
boolean sentenceactive = false;
boolean eatchecksum = false;
while (!done)
{

try
{
newData = is.read();
switch (newData)
{

case -1:
done = true;
break;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 24 Introduction to GPS, Part 1

case '$':
sentenceactive = true;
break;

case '*':
eatchecksum = true;
break;

case 0x0d:
break;

case 0x0a:
sentenceactive = false;
gotsentence = true;
done = true;
break;

default:
if (!eatchecksum)
{

inputBuffer.append((char)newData);
}
break;

}
{ catch (IOException ex)
{

System.err.println(ex.getMessage());
}

}
if (gotsentence)
{

trace.append("NMEA Sentence\t
[" + new String(inputBuffer) + "]\r\n");
inputBuffer = new StringBuffer();

}
}
break;

// If break event append BREAK RECEIVED message.
case SerialPortEvent.BI:

trace.append("\n--- BREAK RECEIVED ---\n");
break;

}
}

Regardless of the option chosen, serialEvent handles the incoming data and properly
displays it to the user.

Stop option
The stopcomms() method closes the communications port and resets the user interface
menu options. It does not remove any captured text from the TextArea. Here is the code:

public void stopcomms()
{

trace.append("attempting to stop communications...");
portisopen = false;
sPort.close();
miStop.setEnabled(portisopen);
miStart.setEnabled(enabled);
trace.append("port closed.\r\n");

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 21 of 24

Save option
This option gives the application the ability to save the collected GPS data. It prompts the
user for a filename and then writes the contents of the TextArea to the selected file.

public void savetrace()
{

Calendar cal;
NumberFormat nf;

nf = NumberFormat.getInstance();
nf.setMinimumIntegerDigits(2);
cal = Calendar.getInstance();
System.err.println("savetrace()");
System.err.println(trace.getText());
FileDialog fd = new FileDialog
(this, "Save Trace",FileDialog.SAVE);
fd.setFile("gpstrace_" + Integer.toString
(cal.get(Calendar.YEAR)) +
nf.format(cal.get(Calendar.MONTH)+1) +
nf.format(cal.get(Calendar.DAY_OF_MONTH)) + ".txt");
fd.setVisible(true);
String fileName = fd.getFile();
String directory = fd.getDirectory();
System.err.println(directory + fileName);
try
{

FileOutputStream fos = new FileOutputStream
(directory + fileName);
fos.write(trace.getText().getBytes());
fos.close();

}
catch (Exception e)
{

System.err.println("failed to save trace
[" + e.getMessage() + "]");
e.printStackTrace();

}
}

This code provides a default filename utilizing the Calendar class. Once the code selects a
filename, the code converts the text found in the TextArea to a byte array and then writes it
to disk.

Note: The action of converting between a Java String and a byte array can lead to
unexpected and undesirable results if the original input data contains nonprintable
characters. These characters may not be available in the current Locale. However, storing
them as a byte array to begin with would be preferable to the chosen approach of a String
and StringBuffer. This application uses text because all of the data in NMEA format is simple
text.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 24 Introduction to GPS, Part 1

Section 7. Summary

Tutorial summary
This tutorial demonstrated the Java Communications API in the context of collecting basic
Global Positioning Data. The JNI, a crucial portion of the Java programming language's
architecture, provides a foundation for all physical device communication. The sample
application demonstrates a reference implementation of a JNI solution in the form of the Java
Communications API, or javax.comm. The sample application uses basic stream-oriented
communications to communicate with a physical device, including the parsing of basic NMEA
sentences. Using this application represents a simple but useful exercise in the examination
of GPS protocols and the Java programming language. It is the starting point for subsequent
functionality and exploration of GPS protocols and Java programming language techniques
in subsequent tutorials. The next tutorial, entitled GPS data concepts, builds upon the
lessons learned in this introductory tutorial by drilling down further into a conversation
between the GPS unit and a sample Java application. A third tutorial examines the task of
porting the enhanced application to a PDA.

Tutorial resources
• The U.S. Coast Guard's Navigation Center at http://www.navcen.uscg.gov/gps/default.htm

is a good starting place for learning more about GPS .

• This research project (http://www.ctre.iastate.edu/mtc/projects/gpsintegration.htm)
discusses the use of GPS for the purpose of tracking mobile assets.

• The FRP is the authoritative document on GPS
(http://www.navcen.uscg.gov/pubs/frp2001).

• OnStar (http://www.onstar.com) is an in-vehicle service delivering a variety of services, all
based on the principle that your vehicle is easily located via GPS technology.

• This tutorial by Scott Stricker discusses the basics of the JNI
(http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/52FFDF7067EAA64986256B87006A5D37?OpenDocument).

• Download the latest Java SDK from http://java.sun.com/j2se.

• Download the javax.comm package from
http://java.sun.com/products/javacomm/index.html. This package is required for this
tutorial's sample application.

• The Palm Web site at http://www.palm-communications.com/ibmdw contains all of the
source code referenced in this tutorial.

• "Java 3D Joyride" at
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/8BFBD0EBD772D2EF86256B11004EDEB9?OpenDocument
discusses Java graphing, an interesting avenue to explore for representing GPS data.

• http://www.delorme.com/earthmate/default.asp -- DeLorme has specially designed its GPS
offering for interfacing with laptop and Palm OS software, providing comprehensive
mapping for in-vehicle navigation.

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to GPS, Part 1 Page 23 of 24

http://www.navcen.uscg.gov/gps/default.htm
http://www.ctre.iastate.edu/mtc/projects/gpsintegration.htm
http://www.navcen.uscg.gov/pubs/frp2001
http://www.onstar.com/
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/52FFDF7067EAA64986256B87006A5D37?OpenDocument
http://java.sun.com/j2se
http://java.sun.com/products/javacomm/index.html
http://www.palm-communications.com/ibmdw
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/8BFBD0EBD772D2EF86256B11004EDEB9?OpenDocument
http://www.delorme.com/earthmate/default.asp

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 24 Introduction to GPS, Part 1

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Introduction
	Should I take this tutorial?
	What is this tutorial about?
	Source code map
	Some helpful terms
	Tools
	About the author

	What is GPS?
	Background on GPS
	Common GPS applications
	GPS devices
	Real-world GPS devices
	GPS data protocols
	NMEA sentence format, part 1
	NMEA sentence format, part 2

	Why Java for GPS?
	A portable language for a portable application
	Java Native Interface
	The javax.comm package
	Javax.comm.properties file

	Build environment
	Obtaining and installing the Java SDK
	Installing the javax.comm package
	Verifying the build environment
	Build and run the application from the command line

	Sample application
	Motivation and purpose of sample
	Configuration and properties file
	Property access

	User interface and options for the sample application
	User interface
	Main application window
	Action handler
	Start option
	Port configuration
	Java I/O streams
	Serial event
	NMEA sentence parsing
	Stop option
	Save option

	Summary
	Tutorial summary
	Tutorial resources
	Feedback

