
Backing up your Linux machines

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial 2

2. Backup basics 3

3. A backup strategy 5

4. Configuring the tools 7

5. Tape drive technology 9

6. mt in action 12

7. The backup script 16

8. Backup...and restore 20

9. Resources and feedback 23

Backing up your Linux machines Page 1

Section 1. About this tutorial

Should I take this tutorial?
This tutorial gives you techniques for covering your back in the worst-case scenario. Even
new, high-quality hard drives will occasionally fail. Regular system backups are essential,
especially for busy developers who make continual improvements to their code. This tutorial
shows you how to protect yourself from losing huge amounts of critical data.

About the author
For technical questions about the content of this tutorial, contact the author, Daniel Robbins,
at drobbins@gentoo.org .

Residing in Albuquerque, New Mexico, Daniel Robbins is the President/CEO of Gentoo
Technologies, Inc. , the creator of Gentoo Linux, an advanced Linux for the PC, and the
Portage system, a next-generation ports system for Linux. He has also served as a
contributing author for the Macmillan books Caldera OpenLinux Unleashed, SuSE Linux
Unleashed, and Samba Unleashed. Daniel has been involved with computers in some
fashion since the second grade, when he was first exposed to the Logo programming
language as well as a potentially dangerous dose of Pac Man. This probably explains why he
has since served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis.
Daniel enjoys spending time with his wife, Mary, and his new baby daughter, Hadassah.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 2

mailto:drobbins@gentoo.org
http://www.gentoo.org
http://www.gentoo.org
http://www.gentoo.org

Section 2. Backup basics

Do I really need to back up?
I'm sure some of you are wondering whether you actually need to perform system backups.
After all, Linux is a fairly reliable operating system, and maybe you haven't lost any data ever
before. You may think that if you're careful, you'll never lose any data and you'll be fine. I beg
to differ :)

While I was in the process of writing this tutorial, my development server's hard drive died.
When I got cvs.gentoo.org back up, I sent my developers the e-mail on the next panel...

The hard drive failure
To: gentoo-dev
Date: Sun, 22 July 2001 11:58:34 -0700
From: drobbins
Subject: cvs.gentoo.org hard drive failure

Important information:
======================

At about 10:00 AM this morning, I walked into my home office and noticed that
cvs.gentoo.org's hard drive light was stuck on. Turning on the monitor, I
found a number of IDE drive error kernel messages on the screen. I quickly
rebooted the server, and found that the hard drive (a quite new IBM 45Gb
Ultra/100 drive) was making a weird chirping sound and was unable to spin up...
the system wouldn't recognize the drive; it was dead.

So, it's 11:51 AM now, and the system has been restored onto another IBM 30Gb
Ultra/100 drive. *Fortunately for everyone*, I performed a full system backup
to tape about a day ago. Ironically, I'm in the process of writing a backup
tutorial for IBM developerWorks.

No one is immune
No one is immune to component failures, and they often occur when you least expect them.
Thankfully, only a very small amount of data was lost, and the restoration went quickly.
However, if I had not performed a recent backup, we would have lost a tremendous amount
of critical data, and the Gentoo Linux project would have been in serious trouble. I hope this
illustrates how important regular system backups can be, especially for busy developers who
make continual improvements to their code.

No one is immune, part 2
No matter how careful you are, some things are out of your control. A failed hard drive or a
large power surge can easily destroy data. Sure, you may have a nice UPS (uninterruptible
power supply) and high-quality hard drives in your system, and that's great. These reduce
the probability of data loss but do not eliminate it; even new, high-quality hard drives will

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 3

occasionally fail, which is exactly what happened to me.

No one is immune, part 3
Maybe you're using a RAID array (a redundant array of inexpensive disks) -- also wonderful!
RAID is an excellent technology for increasing your system's availability. However, RAID
volumes only protect you against a spontaneous complete drive failure; if your filesystem
becomes corrupt or someone accidentally deletes some files, RAID won't help you get your
data back. So don't turn to RAID as a "way out" of performing a system backup, because it
will only protect you against a specific kind of failure, whereas a good tape backup will
prepare you for anything.

Some questions
Here are some good questions to ask yourself: If your computer exploded today, how would
you cope? How much time would it take to recreate the data you lost? And how great an
impact would this have on you personally (if you're considering your personal Linux box) or
your employer? If you had to attach a dollar amount to the data you could lose, what would it
be? Having answered this question, are you willing to accept that loss? If not, then you have
a backup crisis that needs to be addressed immediately.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 4

Section 3. A backup strategy

What files should I back up?
The first obvious approach is to back up all files that are important to you. One easy way to
do this is to back up the contents of your /home tree; then, you can make sure that all your
important files reside there, and they'll automatically get backed up.

A full backup
Here's another approach that you could seriously consider. If unnecessary downtime is a
concern for you, then consider how much time it would take to reconfigure your operating
system from scratch. Remember, restoring your Linux box may not only consist of popping in
your favorite distribution CD, but could also include compiling special versions of several
applications, tweaking important configuration files, and more.

Prepare for a "bare metal" restore
If you really don't want to have to do these things again, I recommend that you perform a full
system backup. Then, you can perform a "bare metal" restore -- in a matter of hours,
everything will be exactly as it was before. For servers, this is generally the approach you
want to use so that the servers can be restored and running as soon as possible.

What media/drive should I use?
So, what kind of media should you use for your backups?

In general, a modern tape drive will offer the best value, performance, capacity, and bang for
the buck. If you need to purchase a tape drive, first figure out a ballpark maximum amount
that you're willing to spend on your tape hardware, based on your finances and the value of
your data. Then, start shopping around for a Linux-compatible drive. The best way to start is
to head over http://www.linuxtapecert.org and take a look at their Linux tape drive
compatibility matrix. Pick out a drive that's reliable and has enough capacity for future
growth.

No tape drive?
If you can't afford to purchase a tape drive, don't despair. Tape drives are generally the most
convenient-to-use type of backup hardware, but any type of backup is better than no
backup at all. You can backup onto CD-R, a removable hard drive, an Iomega Zip drive, or
even a 3.5" disk if you're desperate. Generally, if you're using non-tape hardware, you'll want
to create an on-disk archive (such as a .tar.gz file) containing your data. Then, you should
copy this tarball over to your media and store it in a safe place.

With tape, things are a little more convenient since the data can be streamed to the tape

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 5

http://www.linuxtapecert.org

directly, so there's no need for an intermediate on-disk archive.

What backup program should I use?
There are a lot of choices when it comes to free backup software. However, two notable
ones stand out: tar and dump. There are differences between these two programs, namely,
tar is filesystem independent, while dump is filesystem specific. Because dump works at a
lower level than tar (backing up filesystem inodes directly), you'll need to use a version of
dump specifically written for your particular filesystem, such as ext2.

The advantages of...tar?
While dump generally offers some performance advantages and is often the preferred
backup method on other UNIX systems, I can't recommend it for a Linux system. Why? On
other UNIX systems, there's generally only one "official" hard drive filesystem format, which
makes dump's filesystem dependence less of an issue. However, Linux now has a bunch of
new journalling filesystems, and dump isn't supported on at least one of them, ReiserFS. Due
to the wide selection of filesystems in the Linux world, it's best to ensure that your backups
are filesystem independent, meaning that dump is out of the picture.

star to the rescue
OK, so we've eliminated dump. For this tutorial, I'm going to be using a program called star.
star is a tar-compatible program with a reputation for being the world's fastest tar
implementation. It is also very well written and has a number of enhancements to overcome
limitations found in other tar programs such as GNU tar; these limitations have led many
people to prefer dump. While GNU tar can be used to perform tape backups, star is simply
more refined, faster, easier to use, and more feature rich. And it's free, which is a good thing
:) While star is a tar implementation, it shares many of the strengths of a dump
implementation: speed, ease of use, and robustness. And because it's filesystem and
platform independent, you'll have an easy time restoring to other filesystems (and even other
UNIX systems, such as AIX or Solaris) if necessary.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 6

Section 4. Configuring the tools

Downloading star sources
Regardless of your backup media type (tape or otherwise), you'll need the star program. You
can grab the latest star sources from ftp://ftp.fokus.gmd.de/pub/unix/star/alpha/ (currently
star-1.3a8.tar.gz is the latest). Once you have the sources, follow these steps to get star
installed...

star compilation...
tar xzvf star-1.3a8.tar.gz
cd star-1.3
make

Now that everything's compiled, we'll need to install star. Don't run "make install"; this will
install a couple of additional things that we don't want installed. Instead, do the following on
the next panel.

...and installation
install -m0755 star/OBJ/*/star /usr/bin
cd ../..

You should now be in the "star" source directory. Now, for the man page -- if your system is
FHS 2.1 compliant and stores man pages in /usr/share/man, modify the last line
appropriately:

gzip -9 star.1
install -m0644 star.1.gz /usr/man/man1

mt
Now, it's time for the mt command. mt is used to perform all sorts of tape functions, such as
rewinding, ejecting, advancing to the next filemark, etc. Because it's tape specific, you'll need
it only if you're backing up directly to tape. You may have a version of mt already installed;
make sure that it supports the "setblk" command (type "man mt" to find out). If it doesn't, or
you'd just like to make sure you're running the latest and greatest version of mt available, you
can follow these instructions to install mt-st-0.6 from sources.

Downloading mt
First, download the mt-st sources from http://www.ibiblio.org/pub/linux/system/backup/ (the
latest version is mt-st-0.6.tar.gz). Then, follow the steps on the next panel to unpack,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 7

ftp://ftp.fokus.gmd.de/pub/unix/star/alpha/
http://www.ibiblio.org/pub/linux/system/backup/

compile, and install...

mt compilation and installation
tar xzvf mt-st-0.6
cd mt-st-0.6
make
install -m0755 mt /usr/sbin
install -m0755 stinit /usr/sbin
gzip -9 mt.1 stinit.8
install -m0644 mt.1.gz /usr/man/man1
install -m0644 stinit.8.gz /usr/man/man8

Now, mt (and stinit) will be installed. I recommend that you look in /usr/bin, /bin, and /sbin for
any old copies of mt, and if you find any, be sure to rename them to mt.old. Now that our
tools are installed, it's time to put together our backup tools.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 8

Section 5. Tape drive technology

Block size
Before we start hacking away at our backup script, it's important to understand the format of
data on tape. Linux writes data to tape in the form of equal-sized blocks (also called
records). Between each record, a special marker called an inter-record gap is written to
tape. So, when 300Mb of backup data is written to tape, this data is converted into a bunch
of equal-sized records, and each pair of records is separated by an inter-record gap.

Linux block size
On Linux, the default record/block size is 1kb. Modern drives and tapes are capable of
streaming several megabytes of data per second, and a 1kb block size isn't exactly optimal,
for a couple of reasons. First, each inter-record gap takes up space on the tape, so the
smaller the block size, the lower the "real" tape capacity. Also, most modern tape drives are
optimized for larger block sizes.

Block size optimizations
For example, my Ecrix VXA-1 tape drive is optimized for a block size of 64kb, and using this
block size makes my backups about 50% faster than the default (1kb). The best way to figure
out the optimal block size for your tape drive is to visit http://www.linuxtapecert.org . If you
can't find the information there, you may want to check with your manufacturer -- or you can
simply do a little experimentation with different tape block sizes. I'll show you how to set the
block size in just a bit.

filemarks
So far we've taken a look at how a single glob of data is written to tape -- it's broken up into
many small blocks, separated by tiny inter-record gaps. But how do you go about writing
several globs of data to tape, if, for example, if you wanted to write two archives to your tape
drive, one after the other? The process is actually quite easy, and relies on a special tape
marker called a filemark.

A tale of two devices
To understand filemarks, it's important to grasp the differences between the two different
types of tape devices, the rewind and no-rewind devices. In these examples, we'll be using a
SCSI tape, so the rewind and no-rewind devices are /dev/st0 and /dev/nst0, respectively.

The rewind device
Here's how the rewind device (/dev/st0) works. Let's say you have a rewound tape in the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 9

http://www.ecrix.com
http://www.ecrix.com
http://www.linuxtapecert.org

drive, and you perform a full system backup, as follows:

cd /
star -cv -f /dev/st0 .

A bunch of records and inter-record gaps will be written out to tape. After the backup is
complete, a filemark will be written to tape, and the tape will be rewound.

The norewind device
But, if we use /dev/nst0 instead, the tape won't be rewound -- instead, the tape will remain
positioned immediately after the filemark, meaning that we can put multiple archives on one
tape. Assume that we have a rewound tape in the drive and execute these commands:

cd /
star -cv -V pat=home/* -V pat=tmp/* -V pat=proc/* -f /dev/nst0 .
cd /home
star -cv -f /dev/nst0 .

The first star command will dump a backup to tape, consisting of all files except those found
in /home, /tmp, and /proc. After this backup is complete, a filemark will be written to tape.
Then, a second backup will begin that contains all the contents of the /home tree. Again, a
filemark will be written after the backup is complete.

Rewinding
At this point, you can rewind the tape by typing:

mt -f /dev/nst0 rewind

...or, you can rewind and eject it by typing:

mt -f /dev/nst0 offline

Multi-archive advantages
So, are there any advantages to a two-archive backup approach as in the previous
example? Definitely. Our first archive contained everything except the contents of /tmp, /proc,
and /home, which means it contains all the files you need to get your system up and running
again. This means that if your hard drive fails, you can restore the first archive to a new hard
drive. Then, you can reboot under your restored OS, and restore the user data from the
second archive. And, if you simply need to restore a single file that a user deleted by
accident, you can extract it from the second archive, and tar won't have to wade through all
the system files.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 10

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 11

Section 6. mt in action

Accessing archives on tape
As you can see, it's easy to store two archives on a single tape. However, how do you go
about accessing them? Fortunately, the "mt" command comes to the rescue. To print the
contents of the second archive on tape, you can type:

mt -f /dev/nst0 asf 1
star -tv -f /dev/nst0

The "mt asf" command works by rewinding the tape, and then advancing the number of
filemarks that you specify. As you can see, the two archives have no associated filename as
they would on a disk filesystem -- instead, mt refers to them by number, starting with zero.

mt fsf
You could do the same thing with two mt commands, as follows:

mt -f /dev/nst0 rewind
mt -f /dev/nst0 fsf 1
star -tv -f /dev/nst0

This time, we use the "fsf" command to advance just beyond the first filemark found relative
to the tape's current position.

Moving around
If you wanted to list the contents of the first archive, followed by the contents of the second
archive, you could type:

mt -f /dev/nst0 rewind
star -tv -f /dev/nst0
star -tv -f /dev/nst0

In this example, the first star command prints the contents of archive zero, and then
advances just beyond the first filemark, right at the beginning of the next archive. Then, the
second star command is ready to begin reading the contents of the second archive.

Moving around, continued
Here's another, less efficient method (since it performs an additional rewind and seek) to
perform the same thing:

mt -f /dev/nst0 asf 0

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 12

star -tv -f /dev/nst0
mt -f /dev/nst0 asf 1
star -tv -f /dev/nst0

You should now have a good grasp of how filemarks work. Next, I'll show you how to set the
tape block size, and then we'll be ready to start working on a tape backup script.

Setting block sizes
Now, it's time to learn all about how to set and detect tape block sizes. As I mentioned
earlier, Linux has a default tape block size of 1kb. And, mt has a special "setblk" command
that's used to set the default block size. So, you might imagine that you use setblk to set the
block size that you'd like to use, and then you're ready to go. However, in reality, things are a
bit more convoluted.

Variable block size
If you want to use a different block size, the best way to go about it is to set your drive into
"variable" block size mode. You can do this by using the setblk command and specifying a
block size of zero:

mt -f /dev/nst0 setblk 0

Specifying block size with star
With the block size in variable mode, you can now control the blocksize using the star
program itself. So, before you'd type:

star -cv -f /dev/nst0 .

...but now, you specify the block size as follows:

star -cv bs=64k -f /dev/nst0 .

...and your records will now be 64k in length, which is the optimal size for my particular tape
drive.

Block size quirks
Here are some interesting quirks that you need to know about tape block size. First, when
reading from a tape, you must specify the proper block size. The backup program can't
determine the block size automatically. So, if you wanted to list the contents of an archive
that had a blocksize of 64k, you'd need to make sure the tape drive is in variable block size

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 13

mode and then specify it on the star command line:

star -tv bs=64k -f /dev/nst0

Another quirk
Here's another quirk. Let's say you try to read the tape, but you use the wrong block size. If
the read block size is smaller than the write block size, you'll get an IO error. However, if the
read block size is an exact multiple of the write block size, all will be well. But, if the read
block size is larger than the write block size, but isn't a multiple, then you'll also get an IO
error. This all happens because the tape driver can read one or more whole blocks at once,
but gets confused when it reads a partial block. For this reason, it's a very good idea to write
the block size you use on the tape label for future reference.

I forgot the block size
Just for kicks, let's say you forgot the block size you used, or you're trying to restore data
from an old tape and you don't know what block size the data is formatted in. Is there any
way to determine the tape block size? Fortunately, there is. First, insert the tape in the drive
and type the following command:

dd if=/dev/nst0 of=/tmp/testblock bs=128k count=1

Now, type "ls -l /tmp/testblock" and take a look at the size of the file -- it'll be equal to the
tape block size.

How it works
Here's how the trick works. Since dd knows all about block sizes and inter-record gaps,
when we specify "bs=128k count=1", it knows that we want to read a single block of data. dd
will attempt to read up to 128k, but if it encounters an inter-record gap before the 128k mark,
it knows that the block has terminated and it stops reading. Nifty, eh?

"Ripping" data from tapes
While we're talking about dd, I want to quickly show you how to "rip" a file from the tape. Let's
say you have a tape that holds two star archives (each terminated with a filemark), and that
you used a block size of 64k. Here's how to copy the data from the first file on tape and dump
it into a file called filezero.tar:

mt -f /dev/nst0 rewind
dd if=/dev/nst0 of=/tmp/filezero.tar bs=64k

In the absence of a "count=" option, dd will read until the end of a file (or in the case of a

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 14

tape, until it encounters a filemark).

The other many uses of dd
dd is a great tape tool, and can also be used to write archives to tape, as well as copy an
archive directly from one tape to another. One caveat -- make sure that any archives you
copy to tape are not compressed using gzip or bzip2; they should be simple ".tar" files.
Otherwise, a single tape read error could prevent you from recovering any data from tape.
Rely on your tape drive's hardware compression (normally enabled by default) instead.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 15

Section 7. The backup script

The backup philosophy
Since your data is important, it's critical that your backup procedure is simple, consistent, and
easy to execute. The best way to ensure a simple, reliable backup procedure is to create a
special backup script. Instead of typing in a series of complicated commands every time you
need to back up, you simply run the script. Because everything is automated and consistent,
using a backup script will help to ensure a perfect backup.

backup-tools.sh
To make things even more flexible, I've broken this example script into two separate files.
The first file is called backup-tools.sh (click the link to view it) and contains various generic
backup utility functions to make your life easier. To use it, we'll create a bash script called
"backup" that sources backup-tools.sh and performs the backup.

The backup script
Here's a basic "backup" script that creates two archives on tape. The first contains the
contents of everything but /home (and /tmp and /proc, which you don't need to back up), and
the second contains everything in /home. We'll step through this script line by line:

The backup script: listing
#!/bin/bash
TAPEDEV=/dev/nst0
BLOCKSIZE=64k

source backup-tools.sh

bt_backup() {
#we need a "try" specially for star since it returns non-zero sometimes
echo ">>> full system backup of" `hostname`"..."

gt;&2
try mt -f ${TAPEDEV} rewind
echo " >>> rewinding tape" >&2
#root filesystem first, to ease restore
try cd /
echo " >>> backing up root filesystem" >&2
#can't use absolute pathnames with the cd; . approach
star -cv bs=${BLOCKSIZE} fs=16m -V pat=home/* -V pat=tmp/* -V pat=proc/* -f ${TAPEDEV} .
echo " >>> backing up /home tree" >&2
try cd /home
star -cv bs=${BLOCKSIZE} fs=16m -f ${TAPEDEV} .
echo ">>> done." >&2
echo >&2

}

bt_backup > backup.log

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 16

backup-tools.sh

bt_eject

The explanation
In our backup script, we first define two self-documenting environment variables, TAPEDEV
and BLOCKSIZE. Then, we source backup-tools.sh, which defines "try" and "bt_eject"
functions, sets the tape drive into variable block size mode, and uses the special bash "trap"
command to allow you to immediately abort the entire script by pressing ^C (without it, only
the currently-executing command would abort). backup-tools.sh requires that the TAPEDEV
and BLOCKSIZE variables are already defined.

The explanation, part 2
After backup-tools.sh is sourced, we define a bash function, bt_backup(). This function isn't
immediately executed (we call it later), but it contains all the commands required to back up
our files, detect possible errors, and keep informed of what's going on.

The explanation, part 3
If you take a quick look at the function, you'll notice that we're redirecting a lot of output to
stderr ("&>&2"). We do this to separate these informational messages (to stderr) from the
verbose backup log that the star commands spit out (to stdout). If you look at the
second-to-last line in the script, you'll see that when we call bt_backup, we redirect stdout
(the star output) to a backup log. But the informational messages (including any possible star
error messages and summary reports) end up on the console. This way, we're able to create
a backup log while at the same time getting informational output on the console.

bt_backup() internals
Now, let's look at the function internals. You'll notice that we call "mt" in an interesting way:

try mt -f ${TAPEDEV} rewind

You've seen the "mt" part before, but what's with the "try" prefix? try is actually a bash
function that's defined in backup-tools.sh, and you can think of it as an automatic
error-detection function. Here's how it works: try will execute its first argument ("mt") and
pass its remaining arguments to mt. When "mt" returns, "try" looks at its error return code. If
mt returns zero, all is well and try will return successfully. However, if mt returns a non-zero
error code, then try will abort the script immediately.

bt_backup() internals, continued
We use "try" to abort execution of the script when a critical operation fails, Here's an

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 17

example. As I mentioned earlier, when we source backup-tools.sh, the tape drive gets set to
variable block size automatically. However, it's only possible to set a drive into variable block
mode when there's a tape in the drive; if there isn't, the attempt will be unsuccessful.
Thankfully, backup-tools.sh uses "try" to gracefully exit when the "mt -f ${TAPEDEV} setblk
0" command fails:

./backup
IBM developerWorks Backup Tools 1.0
Distributed under the GPL

>>> setting variable tape block size
/dev/nst0: Input/output error

!!! ERROR: the mt command did not complete successfully.
!!! ("mt -f /dev/nst0 setblk 0")
!!! Since this is a critical task, I'm stopping.

Why try?
Without "try", we'd experience a lot of messy failing star commands. Checking error codes
adds an additional level of consistency to our backup, which is a good idea since a system
backup is such a critical operation. You'll also notice that we don't use "try" with star. This is
because star will exit with an error even if it was unable to back up just a single file out of
thousands (possibly due to a permission problem, filesystem corruption, or a change in file
size). Since this does not necessarily indicate an error (and star is able to complete the
backup anyway), it doesn't make sense to automatically abort the backup script when star
returns an error code.

Star control
Fortunately, in such situations, star will print an informational message to stderr. Here's an
example of a situation where star can't stat a particular file: if you're running the backup script
as root (as you should), then this is a sign of filesystem corruption:

./backup
IBM developerWorks Backup Tools 1.0
Distributed under the GPL

>>> setting variable tape block size
>>> star will use a block size of 64k
>>> full system backup of cvs.gentoo.org...
>>> rewinding tape
>>> backing up root filesystem
star: No such file or directory. Cannot stat 'home/cvsroot/gentoo-x86/kde-i18n/kde-i18n-ta'.

The rest of bt_backup()
You should be familiar with the rest of the bt_backup() function (we've covered it earlier). The

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 18

only thing that's probably new to you is the "fs=16m" option; this sets the fifo size used by
star to 16Mb and is strictly a performance-tuning parameter. After the bt_backup() function is
defined, we execute bt_backup() (redirecting stdout to our backup log) and then eject the
tape by calling bt_eject().

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 19

Section 8. Backup...and restore

Running it
Once you've used my example "backup" script to create a backup script of your own, move it
to a safe location (I recommend creating a /root/backup directory and storing both your
"backup" script and backup-tools.sh in there.) Then, insert a tape, run the script, and verify
that the backup is working. Check the backup log and make sure that it backed up everything
it should have. As you're fixing your "backup" script to get it "just so", it's a good idea to verify
that the data was actually stored on tape correctly. You can display the contents as shown
on the next panel.

A simple verify
mt -f /dev/nst0 setblk 0
mt -f /dev/nst0 asf 0
star -tv -f bs=[blocksize] /dev/nst0

This will check the first archive on tape. Substitute "asf 0" with "asf 1" to read the second
archive, etc. Once your backup script is working perfectly, consider adding it to a cron job to
automate your backup process. The script's output will be sent to you as an e-mail, so that
you can quickly scan it for any possible problems.

Congratulations, your backup is working perfectly! Now, for something just as important, the
restore!

The...restore!
Backing up is only half of the equation, the second half being the restore, which is just as
(maybe more) important. Please do yourself a favor and read this entire section carefully,
even if you consider yourself a tar "pro". Refamiliarize yourself with the often-forgotten "-p"
option. Without it, your full filesystem restore will have the wrong directory permissions. But
first, let's cover the easier stuff.

Single file restores
Restoring single files is easy. First, set variable block mode and advance to the file you want
to restore from:

mt -f /dev/nst0 setblk 0
mt -f /dev/nst0 asf 0

We're now ready to restore a file from the first archive. To restore the file /bin/bash, type:

star -xv bs=[blocksize] -f /dev/nst0 bin/bash

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 20

Single notes
A couple of things to note: first, notice that we used a relative path (no leading slash) when
we specified the path to /bin/bash -- this is because we used a relative path (".") to tell star
what files should be included in the archive. I recommend that you use relative paths when
you create all your archives (consistency is a good thing). Just remember to always do a "cd
/foo; star -cf ." rather than a "star -cf /foo", and you'll be OK.

Single notes, continued
Here's another thing: when bash is extracted, it will be placed in bin/bash (relative to the
current directory). So, if you ran star in /tmp, your extracted file will be found at /tmp/bin/bash.

Another important point: due to the design of the tar archive format, when you restore a
single file from tape, star will scan the entire archive, even if your specified file is found right
at the beginning of the tarball. To speed things up, it's safe to abort star with a ^C after it lets
you know that your file has been extracted successfully.

Perfect full restores
When you need to restore the contents of an entire archive to a filesystem, there's one
extremely important thing you need to remember: the "-p" option. If you're like me, you
extract the contents of source tarballs using tar on a daily basis, and to do this it's perfectly
fine to type "tar xzvf foo.tar.gz". However, while "tar xvf" and "star -xv -f" are fine for
extracting a bunch of files into your home directory, if you extract the contents of a filesystem
using only these options, then your directory permissions will be messed up. Here's how to
do a perfect filesystem restore. First, the basics on the next panel.

Perfect full restores
mt -f /dev/nst0 setblk 0
mt -f /dev/nst0 asf 0
cd /mnt/newroot

In this example, we want to extract the contents of the first tape archive to /mnt/newroot
(presumably a new mounted filesystem). Then:

star -xvp bs=[blocksize] -f /dev/nst0

The "-p" option instructs star (and tar) to ignore the umask for setting directory permissions
and simply set the perms as recorded in the archive. Don't forget "-p" or you'll be sorry!

The bare metal recovery

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 21

A "bare metal recovery" is what you need to do when you lose everything, due to a hard drive
crash or massive system failure. If you're ready for a massive system failure, then you're
ready for almost anything. The key to the bare metal recovery is having a good, tested Linux
rescue disk or CD handy. What you'll need on it is shown on the following panel.

The rescue disk/CD checklist
These things should be on your rescue disk/CD:

* An up-to-date kernel
* Kernel support for your tape device and controller
* Kernel support for your filesystems and disk controllers
* Up-to-date versions of the star and mt commands (important!)
* Tools to create filesystems -- mkfs.ext2, mkreiserfs, etc.
* If you use LVM or software RAID -- kernel support and userspace tools
* fdisk, cfdisk, gnuparted, etc.
* lilo/GRUB -- to reinstall your boot loader

Putting together the perfect rescue disk can be a time-consuming process, but the results
are well worth it. A good rescue disk will allow you to begin the restore within minutes of
replacing a dead hard drive. Without a good rescue disk, you could spend hours trying to get
your system to recognize your tape drive...not a good thing. With one, you can calmly get the
job done, and you'll be ready for (almost) anything!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 22

Section 9. Resources and feedback

Resources
* Check out the very good "Unix Backup and Recovery", published by O'Reilly. There's

lots of good info in the book describing how to perform database backups.
* http://www.linuxtapecert.org is an excellent resource for Linux tape drive-related

information.
* Here's a tarball of the backup scripts used in this tutorial. Enjoy!

Your feedback
We look forward to getting your feedback on this tutorial. Additionally, you are welcome to
contact the author, Daniel Robbins, at drobbins@gentoo.org .

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Backing up your Linux machines Page 23

http://www.linuxtapecert.org
backup-tools-1.0.tar.gz
backup-tools-1.0.tar.gz
backup-tools-1.0.tar.gz
backup-tools-1.0.tar.gz
backup-tools-1.0.tar.gz
backup-tools-1.0.tar.gz
mailto:drobbins@gentoo.org

