USENIX Association

Proceedings of the
5" Annual Linux
Showcase & Conference

Oakland, California, USA
November 5-10, 2001

THE ADVANCED COMI

PUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

PMQS : Scalable Linux Scheduling for High End Servers

Hubertus Franke’, Shailabh Nagarf, Mike Kravetzt, Rajan Ravindran'

YIBM Thomas J. Watson Research Center
YIBM Linuz Technology Center

{frankeh,nagar,mkravetz,rajancr } Qus.ibm.com

http://lse.sourceforge.net /scheduling

Abstract

The Linux kernel scheduler for large SMP
and NUMA systems needs to address conflict-
ing requirements of system througput and ap-
plication response times. This paper presents
a pooled multiqueue scheduler (PMQS) de-
signed for such high-end SMP and NUMA
systems. PMQS is based on MQS, a mul-
tiqueue scheduler that has previously been
shown to significantly improve upon the scal-
ability of the current Linux 2.4 scheduler.
Load imbalances introduced by the pooling
approach are reduced by a load balancing
module. The paper presents different kinds
of load balancers and compares their efficacy.
The performance evaluation of PMQS and
the load balancer is carried out using appli-
cation and microbenchmarks with mixed re-
sults. Pooling is shown to have potential for
further improving MQS’ performance though
more work needs to be done on the load bal-
ancers.

1 Introduction

Linux is becoming increasingly popular
as a server operating system. It has al-
ready proven itself as a cost-effective solution
for Web, file and print serving which typi-
cally run on systems with 1-4 CPUs. More
demanding enterprise applications, such as
database, e-business or departmental servers,
tend to be deployed on larger symmetric
multiprocessor (SMP) systems. To support

such applications, Linux has to scale well as
more CPUs are added to an SMP. Very large
SMPs are increasingly built upon smaller
SMP building blocks interconnected by a
cache coherent interconnect. As this leads to
non-uniform memory accesses, these systems
are referred to as NUMA systems. Linux sys-
tems need to incorporate NUMA awareness
into the base kernel.

With the increasing CPU count and appli-
cation load, Linux SMP scalability has be-
come one of the focal points for kernel devel-
opment. Within that context, we have been
looking at the scalability of the Linux ker-
nel scheduler. The current Linux scheduler
(2.4.x kernel) has two defining characteristics.
First, there is a single unordered runqueue for
all runnable tasks in the system, protected by
a single spinlock. Second, during scheduling,
every task on the runqueue is examined while
the runqueue lock is held. These have a two-
fold effect on scalability. As the number of
CPUs increases, there is more potential for
lock contention. As the number of runnable
tasks increases, lock hold time increases due
to the linear examination of the runqueue. In-
dependent of the number of CPUs, increased
lock hold time can also cause increased lock
contention, depending on the frequency of
scheduling decisions. For spinlocks, increased
lock hold time and lock contention result in
a direct increase in lock wait time which is
a waste of CPU cycles. These observations
are reinforced by recent studies. Measure-
ments using Java benchmarks [2] show that
the scheduler can consume up to 25% of the
total system time for workloads with a large
number of tasks. Another study [3] has ob-

served run queue lock contention to be as high
as 75% on a 32-way SMP.

To address these deficiencies, our previ-
ous work in [5] proposes and implements two
kinds of kernel schedulers called Multi Queue
Scheduler (MQS) and Priority Level Sched-
uler (PLS). PLS organizes the global run-
queue using multiple priority levels resulting
in fewer tasks examinations during schedul-
ing. MQS is designed to address the issues of
lock contention and lock hold time simultane-
ously. It does this by splitting up the global
runqueue and its associated lock into per-
CPU equivalents. The two schedulers have
been evaluated on an 8-way SMP using a va-
riety of relevant workloads. Our results show
that lock contention is the greater of the two
problems and that MQS outperforms both
the default SMP scheduler (DSS) and PLS
in most cases. Both PLS and MQS attempt
to be functionally equivalent to DSS. As a
result, MQS ends up doing an O(N,pys) scan
looking for the globally best candidate. While
this has minimal impact on lock contention, it
does leave MQS open to scalability concerns.
A side-effect of making a global decision is an
expected increase in the number of task mi-
grations across CPUs leading to an increase
in cache misses, and on NUMA systems, in-
creased accesses to remote memory.

In this paper, we make an initial attempt
to address these problems by using processor
pooling. Processor pooling is implemented
by an extension of MQS, called Pooled Multi
Queue Scheduler (PMQS), which partitions
the CPUs of an SMP into subsets for making
scheduling decisions. This places an upper
bound on the scope of the search for candi-
date CPUs and tasks and is expected to im-
prove scheduler performance. It is also ex-
pected to improve system throughput by de-
creasing the probability of cache misses and
remote memory accesses. However, proces-
sor pooling can create load imbalance prob-
lems due to runqueue partitioning. We look
at two ways of balancing CPU loads. The ini-
tial placement (IP) scheme places newly cre-
ated tasks on the least loaded CPU and does
not interfere with the functioning of PMQS
thereafter. The other way of load balancing
is more aggressive. It runs periodically and
explicitly balances CPU runqueues by mov-

ing runnable tasks between them.

Processor pooling is not a new idea. [7]
has done a simulation-based study of proces-
sor pooling for parallel systems. Their results
indicate that such pooling reduces the aver-
age job response time. The importance of
cache-affinity in making scheduling decisions
has been shown in [8, 9] using simulations and
analytical models. The effect of initial place-
ment as a load balancing mechanism has been
simulated in [4]. In this paper, we take an
implementation based approach to processor
pooling in the context of Linux.

We examine the performance of proces-
sor pooling using two representative bench-
marks, Mkbench and Chat, on a 16-way
NUMA system and on an 8way SMP. For
Mkbench, on the NUMA system we find that
PMQS shows substantial benefits over DSS
and MQS. These benefits are even higher
when no load balancing is done. However,
for Chat, while PMQS does outperform DSS,
it does substantially worse than MQS. Even
though we feel that Mkbench is more repre-
sentative of server workloads, the mixed per-
formance makes it difficult to generalize the
results of this paper and draw strong con-
clusions about the efficacy of pooling under
Linux. These are only preliminary imple-
mentations and results of the pooling con-
cept. Much work remains to be done to make
stronger pronouncements.

The rest of the paper is organized as fol-
lows. In Sections 2 and 3 we describe the
default SMP scheduler (DSS) and the Multi
Queue Scheduler (MQS) respectively. The
Pooled Multi Queue Scheduler (PMQS) is
presented in Section 4. The load balancing is
described in Section 6. Section 7 contains the
performance results and Section 8 concludes
with directions for future work.

2 Default SMP Scheduler (DSS)

The default SMP scheduler (DSS) in Linux
2.4.x treats processes and threads the same
way, referring to them as tasks. Each task has
a corresponding data structure which main-

tains state related to address space, memory
management, signal management, open files
and privileges. Traditional threading mod-
els and light-weight processes are supported
through the clone system call.

For the purpose of scheduling, time is mea-
sured in architecture-dependent units called
ticks. On x86 systems, timer ticks are gener-
ated at a 10ms resolution. Each task main-
tains a counter (tsk->counter) which ex-
presses the time quantum for which it can
execute before it can be preempted. By decre-
menting this counter on timer tick interrupts,
DSS implements a priority-decay mechanism
for non-realtime tasks. The priority of a task
is determined by a goodness () value that de-
pends on its remaining time quantum, nice
value and the affinity towards the last CPU
on which it ran. DSS supports preemption
of tasks only when they run in user mode.
Priority preemption can occur any time the
scheduler runs.

The kernel scheduler consists of two pri-
mary functions :

1. schedule(void) : This function is
called synchronously by a processor to
select the next task to run e.g. at
the end of sleep(), wait_for_I0() or
schedule_timeout (). It is also called
preemptively on the return path from an
interrupt e.g. a reschedule-IPI (interpro-
cessor interrupt) from another processor,
I/0O completion or system call.

2. reschedule_idle(task_struct

*tsk) This function is called in
wake up_process() to find a suitable
processor on which the parameter task
can be dispatched. wake_ up_process()
is called when a task is first created
or when it has to be re-entered into
the runqueue after an I/O or sleep
operation. reschedule_idle() tries
to find either an idle processor or one
which is running a task with a lower
goodness value. If successful, it sends
an IPI to the target CPU, forcing it
to invoke schedule() and preempt its
currently running task.

Internally, the scheduler maintains a single

runqueue protected by a spinlock. The queue
is unordered, which allows tasks to be in-
serted and deleted efficiently. However, in or-
der to select a new task to run, the scheduler
has to lock and traverse the entire runqueue,
comparing the goodness value of each schedu-
lable task. A task is considered schedulable
if it is not already running and it is enabled
for dispatch on the target CPU. The good-
ness value, determined by the goodness()
function, distinguishes between three types of
tasks : realtime tasks (values 1000+), regular
tasks (values between 0 and 1000) and tasks
which have yielded the processor (value -1).
For regular tasks, the goodness value consists
of a static or non-affinity part and a dynamic
or affinity part. The non-affinity goodness
depends on the task’s counter and nice val-
ues. The affinity part accounts for the antici-
pated overheads of cache misses and page ta-
ble switches incurred as a result of migrating
tasks across CPUs. If the invoking CPU is the
same as the one the task last ran on, the good-
ness value is boosted by an architecture de-
pendent value called PROC_CHANGE PENALTY.
If the memory management object (tsk->mm)
is the same, goodness values are boosted by
1. The counter values of all tasks are recalcu-
lated when all schedulable tasks on the run-
queue have expired their time quanta. Due
to space limitations, we refer the reader to
detailed descriptions of DSS in [6, 1].

The implications of the scheduling algo-
rithm for large SMP and NUMA machines
is discussed in Section 4.

3 Multi
(MQS)

Queue Scheduler

The Multi Queue Scheduler (MQS) is de-
signed to address scalability by reducing lock
contention and lock hold times while main-
taining functional equivalence with DSS. It
breaks up the global run-queue and global
run-queue lock into corresponding per-CPU
structures. Lock hold times are reduced by
limiting the examination of tasks to those
on the runqueue of the invoking CPU along
with an intelligent examination of data corre-
sponding to the non-local runqueues. More-

over, the absence of a global lock allows mul-
tiple instances of the scheduler to be run in
parallel, reducing lock wait time related to
lock contention. Together these reduce the
scheduler related lock contention seen by the
system.

MQS defines per-CPU runqueues which are
similar to the global runqueue of the DSS
scheduler. Related information such as the
number of runnable tasks on this runqueue is
maintained and protected by a per-CPU run-
queue lock.

The schedule () routine of MQS operates
in two distinct phases. In the first phase, it
examines the local runqueue of the invoking
CPU and finds the best local task to run. In
the second phase, it compares this local can-
didate with top candidates from remote run-
queues and chooses the global best.

In more detail, the schedule() routine of
MQS acquires the runqueue lock of the in-
voking CPU’s runqueue and scans the lat-
ter looking for the schedulable task with the
highest goodness value. To facilitate the
global decision in the second phase, it also
records the second highest non-affinity good-
ness value in the max na _goodness field of
the local runqueue. The non-affinity good-
ness (henceforth called na_goodness) is the
goodness value of a task without any con-
sideration for CPU or memory map affinity.
The local candidate’s goodness value (which
includes appropriate affinity boosts) is com-
pared with the max na_goodness of all other
runqueues to determine the best global can-
didate. If the global candidate is on a re-
mote runqueue, schedule() tries to acquire
the corresponding lock and move that candi-
date task over to its local runqueue. If it fails
to acquire the lock or the remote task is no
longer a candidate (its na_goodness value has
changed), schedule() skips the correspond-
ing runqueue and tries again with the next
best global candidate. In these situations,
MQS’s decisions deviate slightly from those
made by DSS e.g. the third best task of the
skipped runqueue could also have been a can-
didate but is not considered as one by MQS.

The reschedule_idle() function at-
tempts to find a CPU for a task which

becomes runnable. It creates a list of can-
didate CPUs and the na_goodness values
of tasks currently running on those CPUs.
It chooses a target CPU in much the same
way as the schedule() routine, trying to
acquire a runqueue lock and verifying that
the na_goodness value is still valid. Once
a target CPU is determined, it moves the
task denoted by its argument onto the
target CPU’s runqueue and sends an IPI
to the target CPU to force a schedule().
reschedule idle() maintains functional
equivalence with DSS in other ways too. If a
tasks’ previous CPU is idle, it is chosen as
the target. Amongst other idle CPUs, the
one which has been idle the longest is chosen
first.

MQS’s treatment of realtime tasks takes
into account the conflicting requirements of
efficient dispatch and the need to support
Round Robin and FIFO scheduling policies.
Like DSS, it keeps runnable realtime tasks
on a separate global runqueue and processes
them the same way.

The implementation of MQS avoids unnec-
essary cache misses and false sharing. Run-
queue data is allocated in per-CPU cache-
aligned data structures. Implications of MQS
for large SMP and NUMA systems is dis-
cussed in Section 4

4 Pooled Multi Queue Sched-
uler (PMQS)

Before describing the design of the pooled
multiqueue scheduler, it is instructive to ex-
amine the implications of the scheduling al-
gorithm followed by DSS and MQS. During
schedule (), DSS selects the next best task to
run, as determined by the goodness() func-
tion. MQ attempts to do the same though its
examination of non-local tasks (tasks not on
the runqueue of the invoking cpu) is not done
under a lock. During reschedule_idle(),
DSS tries to find the best CPU on which
the newly woken/created task can be run.
MQS does the same without holding a lock on
the remote runqueues. Overall, whether it is
choosing a task or a CPU, DSS looks at all vi-

able candidates and choose the globally best
one while MQ tries to achieve the same goal
by an intelligent examination of fewer can-
didates. This has two implications for large
SMP and NUMA machines :

1. Scalability : The schedule() function
in DSS is O(Niasks) whereas on MQ it is
O(Rtasks N_.0) (on an average, the lo-

cpus
cal runqueue in MQ has — of the to-
P

tal tasks in the system). Even if Nyqqp5 is
a small, constant multiple of N.p,s, both
schedulers approach O(N¢pys) and are
susceptible to scalability problems. Sim-
ilar conclusions can be drawn from their
reschedule_idle() functions, which are
both O(Nepus), albeit with different lock-
ing strategies. Compared to DSS, MQS
does increase scalability considerably by
removal of a global lock. But it does not
eliminate the potential scalability bottle-
neck.

2. Locality : When a runnable thread mi-
grates from one CPU to another (either
directly as a result of preemption or after
a sleep/wakeup cycle), it runs the risk of
losing the cache context accumalated on
the previous CPU. For any SMP system,
the probability of being able to take ad-
vantage of a previous run on the same
CPU, is proportional to the number of
alternate CPUs to which it could be mi-
grated. For a NUMA system, migration
could have even a greater penalty if a
task runs on a node different from the
one on which most of its memory is al-
located. The effect of increased proba-
bility of cache misses and remote mem-
ory accesses is also highly dependent on
the workload e.g. an application whose
working set causes its cache context to
get replaced periodically is not as af-
fected by the cache miss effect and ap-
plications with high cache hit rates will
not be severely affected by remote mem-
ory accesses.

To address these two problems, we propose
a pooled multiqueue scheduler (PMQS) based
on MQS. The central idea in PMQS is to par-
tition the CPUs of an SMP /NUMA into pools
and to limit the search for candidate CPUs

and/or tasks to these pools. The size of the
pools is a configurable parameter that can be
dynamically changed to meet different crite-
ria, of performance, fairness etc. Restricting
the scope of scheduling decisions to fixed-size
pools improves the scalability of the scheduler
by making it independent of NCPUS. It also
increases the localilty of tasks with respect to
the CPUs on which they run.

For simplicity, the implementation of
PMQS is based on minor modifications to
MQS. In general, DSS code which looks at
all CPUs using

for (i = 0; i <= smp_num cpus; i++)
is replaced by
for (i = first; i <= last; i++)

where first and last denote the corre-
sponding limits of the invoking CPU’s pool.
The first phase of the schedule() routine
of MQS is unchanged in PMQS and is used
to find the best local candidate task. In
the second phase of the routine, the only
remote runqueues examined are those of
CPUs within the same pool as the invoking
CPU. The examination of remote runqueues
continues to be done without holding a lock.
In the reschedule idle() function, only
those CPUs are treated as candidates which
lie within the same pool as the task’s previ-
ous CPU. The only exception to this rule is
when there are idle CPUs outside the pool.
Leaving a CPU idle when other CPUs have
runnable tasks leads to a complete waste of
CPU cycles and is particularly undesirable
in a server environment. Therefore, PMQS
looks for idle CPUs systemwide without
regard to pool boundaries. The hunt for
idle CPUs uses a simple mechanism. A
global bitmap, called node_idle_bits, records
the currently idle CPUs in the system.
The bitmap is maintained by the scheduler
when it switches tasks on any CPU. During
schedule(), node_idle_bits is first masked with
a local pool mask to identify idle CPUs
within the local pool. If none is found, it is
masked with a remote pool mask to identify
idle CPUs in remote pools. Consistent with
the pooling philosophy, idle CPUs within
a pool are preferentially chosen over those

outside the pool. If an idle CPU is found
at any stage, it is selected as the target
CPU. Contrary to the behaviour of DSS and
MQS, PMQS makes no attempt to select the
longest idle CPU as the target. If no idle
CPU is found, reschedule_idle() proceeds
as normal, examining maz_na_goodness
values of CPUs within the pool.

5 Benchmarks

Before we proceed with the description of
the different load balancers, we describe the
two benchmarks (Mkbench and Chat) that are
used in this study. These two benchmarks
will be referenced in the load balancing sec-
tion.

Mkbench consists of the multiple paral-
lel compilation of the Linux kernel. This has
traditionally been a popular benchmark in
the Linux community, as it is often seen in
development, environments. It offers a good
mix of I/O and CPU-bound phases especially
when a parallel build is used. Parallel builds
are issued by using the -j option of the make
command. Our measurements of runqueue
lengths during such compiles show that the
number of runnable threads in the system
roughly corresponds to the job size specified
by the -j option.

The Chat benchmark, which can be found
at http://lbs.sourceforge.net/, simu-
lates chatrooms with multiple users exchang-
ing messages using TCP sockets. The bench-
mark is based on the Volano Java bench-
mark, which was used in some of the first
reports of scalability limitations with the de-
fault SMP scheduler (DSS) of Linux [2].
Each chatroom consists of 20 users with each
user broadcasting a variable number of 100
byte messages to every other user in the
room. A user is represented by two pairs
of threads (one each for send and receive)
on the client and server side, resulting in 4
threads per user and 80 threads per room.
Each message is sent from the client_send to
its server_receive which then broadcasts it to
all other client_receive threads in the room.
100 messages sent by each user translate to

20*100*19=38,000 messages being sent and
received per room. Each receive is a blocking
read and the interleaving of numerous reads
and writes causes the scheduler code to be in-
voked frequently. The characteristic parame-
ters of the Chat benchmark are the number of
rooms and the number of messages per user.
From a scheduler perspective, the former con-
trols the number of threads created and the
latter controls the number of times threads
sleep and awaken via blocking reads. At the
end of a benchmark run, the client side re-
ports the throughput in number of messages
per second. A higher throughput indicates a
more efficient kernel scheduler.

6 Load Balancing

Dividing the CPUs of an SMP into pools
for scheduling decisions, has the welcome
effect of improving the scalability of the
scheduling algorithms. However, this kind of
limiting introduces the problem of load im-
balance between the CPUs in different pools.
We focus on two kinds of imbalances depend-
ing on what is defined as the load :

e Runqueue length imbalance : The
number of tasks on the CPU runqueues
varies with application being run by each
of those tasks. Runqueues with more
I/O bound tasks are likely to have fewer
runnable tasks on an average. The sum
of runqueue lengths for the CPUs in a
pool could differ significantly from the
sum for another pool leading to a run-
queue length imbalance. The perfor-
mance impact of such an imbalance is
felt in two ways. First, there is an in-
creased probability of CPUs being idle in
one pool while another pool has runnable
tasks. This has been taken care off in the
schedule() functions through the global
idle_mask. Second, the tasks in each pool
have a longer average waiting time in the
runqueue before they get to run.

e Priority inversion : The priority of the
tasks running on CPUs of a pool is de-
termined by the distribution of priority
values amongst the pools. For strictly

pooled schedulers, a task gets to run on
a CPU based on it relative priority to
currently running tasks in the same pool.
Hence it is possible that a runnable high
priority task waits for a CPU in one pool
while a lower priority task is running on
a CPU in a different pool. This kind of
priority inversion stems directly from the
conflict between a global priority value
and a local (limited to a pool) search for
candidate tasks/CPUs. Priority inver-
sion is primarily a fairness issue though it
could also have performance implications
for multithreaded or interdependent pro-
cesses.

The load imbalances mentioned here only
pertain to non-real time (SCHED_OTHER)
tasks as MQS and PMQS maintain real time
tasks on a separate global runqueue.

The existence of load imbalances does not
necessarily call for corrective measures. For
high end systems where system throughput is
generally more important than job response
times, isolating CPU pools from each other
might be desirable. In such cases, priority
inversion is not an issue and it is sufficient to
ensure that all CPUs have enough tasks and
that the initial placement of tasks (amongst
pools) is balanced.

In this paper we examine various load bal-
ancing mechanisms under PMQS and com-
pare their efficacy and their overall perfor-
mance impact on various workloads as com-
pared to DSS and MQS. These mechanisms
are LBOFF, IP, LBC and LBP and are de-
scribed below. To establish their efficacy we
use the two distinct workloads, namely Mk-
bench and Chat, to monitor runqueue length
per CPU for a 4-way SMP system. PMQS is
configured with a poolsize of 1. We show for
these benchmarks and configurations the de-
viation from the mean runqueue length at one
second intervals. Mkbench was run with 2 si-
multaneous kernel builds with “-j 16” yielding
an average load of 32 or 8 per CPU. Chat was
run with 10 rooms and 900 messages, which
yielded an average of 207 runnable tasks or
52 per run queue.

mkbench-PMQS(4)
10 T T T

Deviation from Mean Runqueue Length

.10
80 85 90 95 100 105 110 115 120
Time

Chat-PMQS(4)

20

Deviation from Mean Runqueue Length
o

2 4 6 8 10 12 14 16 8 20
Time

Figure 1: Deviation from mean of runqueue
lengths for a 4-way SMP executing PMQS(4)

Figure 1 shows the load imbalances that are
achieved under Mkbench and Chat when run-
ning PMQS with poolsize=4, which is basi-
cally equivalent to MQS. For Mkbench the in-
dividual runqueue length of the various CPUs
falls into a narrow range of £2.

LBOFF simply utilizes CPU pooling with-
out any attempt to balance load among the
pools or CPUs. With poolsize=1, the run-
queues are isolated from each other. The only
means for a process to migrate from one CPU
to another is during reschedule_idle() invoca-
tions when there exist idle processors on re-
mote pools. Figure 2 shows the load imbal-
ances that are achieved under Mkbench and
Chat. For both, the per-CPU load can de-
viate quite substantially. We use this graph
as a reference point for evaluating the load
balancers below.

In initial placement (IP), a task is moved
to the least loaded CPU as defined by the
CPU’s runqueue length, when a new program
is launched, i.e. at sys_execv() time. Figure 3

mkbench-LBOFF
10

=
iS)
[
-
(]
3
g
5
x
=
£
2
=
S
B
®
a
80 85 90 95 100 105 110 115 120
Time
Chat-LBOFF
=
iS)
[
-
(]
3
g
5
x
=
£
2
=
S
B
®
a

Figure 2: Deviation from mean of runqueue
lengths for a 4-way SMP executing LBOFF

shows that IP is very effective in equalizing
the runqueue lengths in an environment of
short lived processes. On the other hand, in
environments with long lived processes IP is
ineffective.

We compare this static approach to the
problem of load imbalance with a flexible and
dynamic load balancing mechanism. This
flexible mechanism allows a system adminis-
trator to choose between the extremes of iso-
lating CPUs (LBOFF) and treating them as
one entity for scheduling (as is done by MQS).
To do this, we provide an external load bal-
ancer module (LB) which balances the run-
queues of CPUs belonging to different pools
based on user-specified parameters and and
a load function determining the CPU-load
weight of each runqueue towards the overall
load. So far we have considered two load func-
tions. The runqueue_length load function is
simply the length of the CPU runqueue and
the runqueue na _goodness load function is
computed by summing the non-affinity good-
ness values of each task on a runqueue. The
results presented in this paper are based on

mkbench-IP

10

Deviation from Mean Runqueue Length

80 85 90 95 100 105 110 115 120
Time

Chat-IP

2 W

Deviation from Mean Runqueue Length

Time

Figure 3: Deviation from mean of runqueue
lengths for a 4-way SMP executing IP

the runqueue length function.

The LB module is invoked periodically
through a timer function. The frequency
of invocation is controlled through a user-
specified parameter which can be dynami-
cally altered through a /proc interface. Un-
less otherwise noted, the LB is invoked ev-
ery 600 milliseconds. On each invocation, LB
first records the load on each CPU runqueue.
Once individual runqueue loads have been
determined, LB computes the average load
across the system. Runqueues are marked as
having a “surplus” or “deficit” load.

From here we have experimented with two
different version of load balancers, called LBC
and LBP. LBC (Load Balancing across all
Cpus), tries to equalize all runqueues within
the system tightly. For that LBC first per-
forms intra-pool balancing by transferring
tasks from surplus to deficit runqueues within
each pool until runqueue loads are equal
the average. In the second stage, tasks are
transferred between the remaining surplus to
deficit runqueues system wide, reflecting an

mkbench-LBC

10

Deviation from Mean Runqueue Length

80 85 90 95 100 105 110 115 120
Time

Chat-LBC

Deviation from Mean Runqueue Length

-30 ¢ RQ4
tasks moved —=—

2 4 6 8 10 12 14 16 18 20
Time

Figure 4: Deviation from mean of runqueue
lengths for a 4-way SMP executing LBC

inter-pool balancing. In the following figures
we also plot the total number of tasks moved
during the LB phase to indicate the correc-
tive actions taken by the LB after the ob-
served state. Figure 4 shows that for Mk-
bench, LBC controls the runqueue length
very tightly and needs to typically move only
one or two tasks. For Chat, however, Fig-
ure 4 shows that LBC’s tight balancing act
leads to over correction as is clearly seen in
states t=>5,13,14. The statistics are summa-
rized in Table 1. For LBC an average of 11.5%
of tasks are moved every LB invocation with
a maximum of 23.1%.

We, therefore, developed LBP (Load
Balancing across all Pools), which dif-
fers from LBC in two aspects. First, it

does not perform any intra-pool balancing
on the assumption that schedule() and
reschedule_idle() do a good enough job
of load balancing within a pool as shown in
Figure 1. Second, it defines a user-specified
error tolerance factor to avoid over aggres-
sive corrections leading to the oscillation seen
in Figure 4. A runqueue is considered bal-

mkbench-LBP-10

10

Deviation from Mean Runqueue Length

80 85 90 95 100 105 110 115 120
Time

Chat-LBP-10

=20 +

Deviation from Mean Runqueue Length

\ Y RQ:2 -
L RQ:3 - x-
-30 | L RQ:4 o

S N tesks moved —»—
2 4 6 8 10 12 14 16 18 20

Time

Figure 5: Deviation from mean of runqueue
lengths for a 4-way SMP executing LBP-10

anced, if its load is within the error tolerance
of the system average load. Tasks from sur-
plus queues are transferred to deficit queues
only if they are in distinct pools. The error
tolerance factor is dynamically configurable
through the /proc interface. Since poolsize=1
was selected for this evaluation, the following
figures simply demonstrate the effects of the
error tolerance.

Figure 5 shows the profile for LBP-10, i.e.
LBP with a error tolerance of 10%. Com-
bined with the statistics in Table 1, we ob-
serve that average number of tasks moved has
been reduced to 5.6%. The combined aver-
age runqueue length is 179, which amounts to
45 per CPU. Only if the individual runqueue
length differs more than 5 from the mean does
LBP-10 try to balance that queue. The oscil-
lations observed under LBC are significantly
reduced.

Figure 6 shows the profile for LBP-45, i.e.
LBP with a error tolerance of 45%. Com-
bined with the statistics in Table 1, we ob-
serve that average number of tasks moved has

LBC LBP-10 LBP-45
¥ Runqueue Lengths: mean (max) 150 (244) 179 (308) | 178 (347)
Moved Tasks: mean (max) 17 (34) 10 (31) 2 (15)
% Moved Tasks: mean (max) || 11.5% (23.1%) | 5.6% (24.4%) | 0.9% (5.5%)

Table 1: ¥ Runqueue Lengths and Tasks Moved Statistics for a 4-way SMP.

mkbench-LBP-45
10

RQ:4 =
| tasksmoved —=—

80 85 90 95 100 105 110 115 120

Deviation from Mean Runqueue Length
o

Time
Chat-LBP-45
40
£
> X
§ 30F f - A
- [
Q
3
=]
o
=4
S
o
= 10 v TR,) Ay S
E - N ‘ o K \
i Yt 8 RQL —----
5 0 RQ:2 -
B % RQ:3 -x-
3 30 RQ:4 o
o 2 tasks moved —=—

Figure 6: Deviation from mean of runqueue
lengths for a 4-way SMP executing LBP-45

been reduced to 0.9%. The combined aver-
age runqueue length is 178, which amounts to
45 per CPU. Only if the individual runqueue
length differs more than 20 from the mean
does LBP-45 try to balance that queue. The
oscillations observed under LBC and LBP-10
are virtually eliminated.

For Mkbench, Figure 5 actually shows
worse oscillating behavior for LBP-10 as com-
pared to LBC, requiring more aggressive task
movements. In contrast, LBP-45 initiates a
significantly smaller number of task moves,
resulting in a smoother profile. However nei-
ther LBP is capable too obtain the close bal-
anced achieved in IP and LBC.

To summarize, in this section we intro-
duced various load balancing mechanisms.
We observed that these mechanisms in gen-
eral are effective in balancing the lengths of
the individual runqueues. However, we also
observed that the runqueue length are sensi-
tive to the nature of the workload and that
tight load balancing methods can have ad-
verse effects. In the next section, we will eval-
uate the overall performance effects of load
balancing techniques.

7 Performance Evaluation

To evaluate the efficacy of PMQS and the
various load balancing techniques we ran Mk-
bench and Chat on two different systems,
(a) a 16-way NUMA system and (b) an 8-
way SMP system. The 16-way NUMA sys-
tem consists 4 quad building blocks. Each
quad consisted of 4x450 MHz PIII processors
with 512 KB caches and 1GB main mem-
ory. We utilized the NUMA patch of Mar-
tin Bligh (IBM LTC) for the Linux 2.4.5 ker-
nel to ensure proper interrupt and I/0 rout-
ing between quads. This particular NUMA
patch does not provide NUMA memory ab-
straction and treats the memory of all nodes
as a flat physical memory space. As such all
kernel data structures will be located on the
first node.The 8-way SMP system is an IBM
Netfinity 8500R with 700MHZ PIII proces-
sors, 2MB caches and 2.5GB of main mem-
ory. The kernel version used on this machine
was 2.4.7.

We study the effect of load, poolsize, and
workload nature on the overall performance
for the five different load balancing meth-
ods LBOFF, IP, LBC, LBP-10 and LBP-45.
Since, as seen in section 6 the workload na-
ture is one of the overriding differentiators, we
show results for each type of workload sepa-
rately.

7.1 Mkbench Evaluation

To compare the performance and scalabil-
ity of DSS, MQS and PMQS, we ran a series
of kernel builds with varying job sizes on the
16-way NUMA machine. The load on the sys-
tem is determined by the number of simulta-
neous kernel builds and the job size of each
build.

For a 4x4 NUMA system, a poolsize of 4 is
a natural selection for PMQS, as it assigns a
single pool to each node. This limits schedul-
ing and data lookup within local nodes and
only migrates processes across nodes during
the LB phases.

Scheduler || B=2 | B=4 | B=8

(32) (64) | (128)
DSS -3.93 | -3.25 | -3.47
LBOFF 5.27 | 16.30 | 23.28
1P 5.05 | 12.90 | 21.29

LBP-45 2.01| 419| 3.91
LBP-10 2.09 | 355 | 222
LBC 589 | 8.03 | 7.44

Table 2: PMQS (poolsize=4) as compared to
MQS,DSS for Mkbench configurations with
varying number (B) of kernel builds on a 4x4-
way NUMA system.

Table 2 shows the results for poolsize=4,
the job size of 16 and LB invocation fre-
quency of 600 milliseconds for 2, 4 and 8 par-
allel kernel builds (B=2,4,8). In this setup,
B responds to the per CPU load and to
an average system wide load of 32, 64 and
128 runnable tasks respectively. First, Ta-
ble 2 shows that the DSS scheduler under
performs the MQS scheduler consistently be-
tween 3.25% and 3.93% for B=24,8. This
corresponds to the results published earlier
in [5]. Overall PMQS consistently outper-
forms MQS across all considered loads and
configurations.

In general, LBOFF performs best. The
reason for this is that parallel kernel builds
are throughput oriented parallel applications.
Kernel compiles create a dependency graph,
and upon finishing the compilation of an indi-
vidual file, the next one is started. Hence, the
rate of progress for individual compiles does

not hinder overall completion time. MQS and
DSS both are schedulers that take global pri-
orities into account and hence tend to mi-
grate tasks to ensure the best global schedul-
ing decisions. On NUMA machines cross-
ing node boundaries increases the negative
cache effects. Among the dynamic load bal-
ancers, LBC, the most aggressive load bal-
ancer, performs better than the LBP-45 and
LBP-10. This seems somewhat surprising, as
one might expect that tighter load balanc-
ing of a parallel, mostly independent through-
put oriented application creates unnecessary
overhead. We believe that this can be at-
tributed to the fact that LBC creates less
overhead than LBP for poolsize=1.

To study the effect of overhead associated
with load balancing we varied the invocation
frequency for LBC from 200 milliseconds to
2 seconds for poolsize=4 and 4 kernel builds.
The results, shown in Table 3, show the gen-
eral trend that less frequent LB invocation,
thus lowering the overhead associated with
LB, in general increases performance.

Overall, PMQS had a maximum perfor-
mance advantage of 23.28% for high load
(B=8) and LBOFF and a minimum perfor-
mance increase by 2.01% for low load (B=2)
and LBP-45 when compared to MQS.

Analyzing the impact of increased load
(B=2,4,8), it is shown that for non-periodic
load balancers (LBOFF and IP), the %-
improvement over MQS increases with the
load. This is again explained by the fact that
MQS tends to make global decisions, thus
forcing more task migration and hence loss
of cache state. Periodic load balancers do
not show such dramatic %-improvements over
MQS and actually peak at medium load.

We also studied the effect of changing pool-
sizes. Table 4 shows the results presented
in Table 2 for poolsize=8. The trend for
poolsize=8 are very similar to those for pool-
size=4. However, the performance improve-
ments are not as significant. The reason for
is that during scheduling intra-pool balanc-
ing as performed by the basic PMQS sched-
uler results in more task migrations. For LBC
we also measured the performance for pool-
size=16 and we actually see relative perfor-

| [200 | 400 [600 | 800 [1000 | 1200 | 1400 | 1600 | 1800 | 2000 | LBOFF |

poolsize=4 | 7.45 | 8.00 | 803 | 7.67 | 893 | 886 | 835 | 851 | 9.35| 9.64 16.30
poolsize=8 | 2.55 | 2.52 | 2.56 | 3.01 | 2.69 | 3.72 | 3.26 | 3.99 | 3.79 | 4.67 6.02

Table 3: Impact of LB invocation frequency (in msecs) for LBC as compared to MQS for

poolsizes 4 and 8 and Mkbench(B=4).

Scheduler || B=2 | B=4 | B=8

(32) (64) | (128)
DSS -3.93 | -3.25 | -3.47
LBOFF 3.02 6.02 | 16.85
1P 2.09 | 13.02 | 14.26
LBP-45 0.57 1.62 1.19
LBP-10 -0.13 | 0.62 | -0.13
LBC 1.98 2.56 2.18

Table 4: PMQS (poolsize=8) as compared to
MQS,DSS for Mkbench configurations with
varying number (B) of kernel builds on a 4x4-
way NUMA system.

mance degrations as compared to MQS of
2.27%, 1.31% and 1.01% for B=2,4,8 respec-
tively.

Having evaluated the efficacy of PMQS for
NUMA based systems for kernel compiles,
and having estabilished that a poolsize equal
the number of cpus per node provides the
greatest benefit, we now turn our attention
to whether providing smaller poolsize bears
any effect. For that we executed the parallel
kernel builds (B=1,2,4,8) on an 8-way Netfin-
ity SMP system. The “-j” factor was chosen
as 8 to again provide the same load per CPU
as in the NUMA system. We varied the pool-
size from 1 to 8. The results are presented
in Table 5 and are relative to MQS perfor-
mance. First we observe that the DSS and
MQS have only marginal differences in their
performances across all loads B.

LBOFF and IP are extremely sensitive to
low load situations (B=1,2) and small pool-
sizes and substantially underperform MQS.
Both show good improvements only for B=4
and poolsize=2,4. In general, LBP-45, LBP-
10 and LBC demonstrate small overall per-
formance improvements throughout the con-
figuration space of poolsizes and buildfac-
tors considered. Furthermore, for high loads
(B=8) no meaningful difference with respect

to MQS can be established independent from
the poolsize. Though no definite selection can
be made, in general LBs outperform LBOFF
and IP. In particular LBP-45 seem to show
the best overall performance while running
Mkbench. We note that LBOFF with pool-
size=8 is effectively an MQS scheduler with
the changes made to idle process identifica-
tion.

Overall for NUMA system we have shown
that PMQS provides increasingly better per-
formance as compared to MQS when the load
increases and when the poolsize is equal the
number of cpus in the system. LBOFF and
IP provided by far the largest benefits. In
contrast, we have shown for a single SMP,
that LBOFF and IP have the opposite effect
when the poolsize is decreased.

This evaluation suggest that Mkbench on
a NUMA system might benefit from a mixed
load balancing approach wherein intra node
balancing is performed based on LBs and in-
ternode balancing is performed using no load-
balancing or IP.

7.2 Chat Evaluation

The Chat benchmark was run for three dif-
ferent configurations ranging from 10 rooms,
100 messages per user to 30 rooms, 300 mes-
sages. For brevity, these configurations are la-
belled (10,100), (20,200) and (30,300) where
the first number refers to the number of
rooms and the second one refers to the num-
ber of messages.

The results for the 4x4-way NUMA sys-
tem with poolsize 4, 8 and 16 are shown in
Table 6. MQS improves over DSS between
277% and 482% for this scheduler intensive
benchmark. For PMQS, in general we observe
the almost inverse behavior when comparing

| PoolSize | B=1] B=2| B=4 | B=8 | Scheduler || (10,100) | (20,200) | (30,300)
DSS DSS -63.92 -74.95 -79.26
N/A] 048] 095 -0.42]-1.37 Poolsize=/

LBOFF LBOFF -27.59 -50.29 -53.70
1]-3410 -955] 3.18[0.25 P -39.05 -53.62 -59.29
2 || -17.57 | -3.96 | 10.88 | 3.12 LBP-45 0.65 -15.26 -25.34
4 | -12.72 4.05 | 13.59 | -0.21 LBP-10 -13.92 -18.38 -19.25
8 220 | 337 | 311 047 LBC -1.14 -9.54 -4.41

IP Poolsize=8
1] -19.71 | -10.51 | -0.43 | -1.02 LBOFF -7.55 -40.64 -51.32
2] -9.00 | -6.60 | 15.02 | -0.83 P -27.38 -40.98 | -47.15
411 -10.88 | -2.80 | 12.98 | -8.35 LBP-45 -16.32 -30.18 -25.74
8 || -7.58 | -10.91 | -11.99 | -1.09 LBP-10 2.76 -14.85 -14.27

LBP-}5 LBC -3.27 -0.66 -0.23
1 282 361 2.75 1 0.30 Poolsize=16
2 228 | -403| 5.70 | 4.26 LBC [-142] 244 -4.62
4 0.16 1.07 8.34 | 0.52
3 569 368 319 | 0.23 Table 6: PMQS as compared to MQS,DSS for

T.BP-10 Chat on a 4x4-way NUMA system.

1 5.47 4.37 3.07 | 0.39

2 -l77| 253 | 473 | 0.62 of LBC at very high load, PMQS substan-

4 3.30 4.07 4.33 | -0.25 tially underperforms MQS. PMQS still out-

8 411 | 3.09] 3.01| 0.24 performs DSS. Two general trends can be ob-
LBC served within each category. Performance in-

1 2.22 | -2.49 2.98 | -0.18 creases for any given load and LB algorithm

2 0.23 3.58 3.23 | 0.39 with increasing the poolsize and performance

4 4.49 0.53 3.32 | -0.06 increases with load.

8 0.91 2.37 2.20 | -0.13

Table 5: PMQS as compared to MQS,DSS for
Mkbench configurations with varying number
(B) of kernel builds on an 8-way SMP system.

Chat and Mkbench. Here, all PMQS ver-
sions either substantially underperform MQS
or break even. The higher the load, the worse
the performance degradation. Increasing the
poolsize also increases the performance for all
PMQS but LBP-45. The reason for this is
that Chat has, due to the send/recv interac-
tions between threads, rapidly changing run-
queue lengths, which then trigger load bal-
ancing as observed in Figures 4-6. It is likely
that the frequent load balancing leads to con-
tinuously moving tasks, often before they get
a chance to run. Investigating this aspect is
part of our future work.

We now turn our attention to the SMP
case to answer the question whether pooling
within an SMP provides benefits. The results
are shown in Table 7. With the exception

8 Conclusions and Future work

In our previous work, we addressed the
scalability limitations of the default Linux
scheduler (DSS). We proposed a Multi Queue
Scheduler (MQS) which used per-CPU run-
queues instead of a single global runqueue.
However, to maintain strict functional equiv-
alence with DSS, MQS continued to exam-
ine all runqueues, albeit intelligently, to make
global scheduling decisions. In this paper, we
take the work one step further and present
a Pooled Multi Queue Scheduler (PMQS)
based on MQS. The processors of an SMP are
divided into pools for the purpose of schedul-
ing decisions, reducing the number of remote
CPU runqueues that need to be examined.
As this can lead to load imbalances, we have
complemented PMQS with a number of load
balancers.

We evaluated the performance of PMQS

[PoolSize [| (10,100) | (20,200) | (30,300) |

DSS
N/A] -44.03] -7390] -81.97 |
LBOFF
1] 5054 -49.98 | -47.17
2 || 3443 4267 | -44.68
4] 2498 -1063| -11.50
8| -1617] 565| -6.90
P
1] 4919 -53.84 | -4843
2| 3459 | -41.88| 4334
4] 1790 -15.09 | -1091
8| -1680 | -9.01| 822
LBP-{5
1] -3951] -25.90] -13.98
2 || 2831 -14.98| 2.8
4] 1238 366 -2.53
8| 1479 620 598
LBP-10
1 3517 -11.18] -14.73
2| 3070 | 864 | -1.29
4] 2034 583 -1.09
8| 1285 5.09| 175
LBC
1] -31.08] -1390] -0.52
2| 2906 | -7.06 3.36
4] 1995 445 2.83
8| -16.00 122 8.31

Table 7: PMQS as compared to MQS,DSS for
Chat on an 8way SMP system.

and the different load balancers against MQS
and DSS on a 4x4-way NUMA system and
on an 8way SMP using two benchmarks.
The Mkbench benchmark, which is through-
put oriented, benefitted overall from PMQS
while the Chat benchmark did not. We be-
lieve that Mkbench is more representative of
server workloads as it consists of largely un-
related tasks running for short time periods.
Chat is more of a microbenchmark with very
strong interactions between a large number of
tasks leading to a very high rate of schedul-
ing decisions. Different conclusions were also
drawn about the relative performance of the
load balancers.

The pooling scheduler and load balancers
chosen for study are preliminary implemen-
tations of the general concept of subdivid-
ing processors into pools and regulating load

across them. The choice of these implementa-
tions was dictated by simplicity and a desire
to make incremental changes to MQS.

The performance evaluation has some
lessons for future work. First, pooling does
show benefits over and above those seen by
multi queue schedulers alone. Aggressive load
balancing is generally a bad idea as it tends
to overcorrect for load imbalances and leads
to excessive task migrations.

As part of our future work, we will look at
load balancing algorithms which try to bal-
ance loads asymptotically. We will also take
a fresh look at the approach of running a load
balancing module periodically. It might be
better to integrate load balancing functional-
ity into the scheduler code.

Overall we believe that PMQS is a very
flexible extension to MQS and both have
shown small to significant performance im-
provements over DSS. The pooling approach
has shown promise and merits further inves-
tigation.

9 Acknowledgments

We would like to thank the many people
on the lse-tech@lists.sourceforge.net
mailing list who provided us with valuable
comments and suggestions during the devel-
opment of these alternative scheduler imple-
mentations. Christine Moore of the Open
Source Development Lab has been been very
helpful in providing access to 16-way NUMA
systems. This work was developed as part of
the Linux Scalability Effort on SourceForge
(1se.sourceforge.net). Here you can find
more detailed descriptions of our scheduler
implementations as well as the latest source
code.

References

[1] Daniel P. Bovet and Marco Cesati. Under-
standing the Linux Kernel. OReilly Asso-
ciates.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

R. Bryant and B. Hartner. Java Technol-
ogy, Threads, and Scheduling in Linux.
Java Technology Update, 4(1), Jan 2000.

R. Bryant and J. Hawkes. Lockme-
ter: Highly-Informative Instrumentation
for Spin Locks in the Linux Kernel. In
Proc. Fourth Annual Linux Showcase and
Conference, Atlanta, Oct 2000.

S. Curran and M. Stumm. A Comparison
of basic CPU Scheduling Algorithms for
Multiprocessor Unix. Computer Systems,
3(4):551-579, October 1990.

M. Kravetz, H. Franke, S. Nagar, and
R. Ravindran. Enhancing Linux Sched-
uler Scalability. In Proceedings of the
Ottawa Linuz Symposium, Ottawa, CA,
July 2001.

S. Molloy and P. Honeyman. Scalable
Linux Scheduling. In Usenizx Annual
Technical Conference (Freeniz Track),
June 2001. To appear.

M. S. Squillante and Edward A. La-
zowska. Using Processor-Cache Affinity
Information in Shared-Memory Multipro-
cessor Scheduling . Transactions on Par-
allel and Distributed Systems, 4(2):131-
143, February 1993.

M. S. Squillante and Edward A. La-
zowska. Using Processor-Cache Affinity
Information in Shared-Memory Multipro-
cessor Scheduling . Transactions on Par-
allel and Distributed Systems, 4(2):131-
143, February 1993.

J. Torellas, A. Tucker, and A. Gupta.
Evaluating the Performance of Cache-
Affinity Scheduling in Shared-Memory
Multiprocessors. Journal of Parallel
and Distributed Computing, 24(2):139-
151, February 1995.

