Tcl/Tk quick start

Presented by developerWorks, your source for great tutorials

I bm com devel oper Wr ks

Table of Contents

If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About thistutorial..........ccoooi i 2
2. TCl/TK DASICS ..o 3
3. The Tcllanguage........coooiiiiiii e, 4
4. TK COMMANAS......coiiiii e e 17
5. Getting to KNOW EXPECt......cooviiiiiiiiiiiiii e 22
6. TCH/TK @XtENSIONS. ...ttt e e, 26
7. Resources and feedback ... 29

Tcl/Tk quick start Page 1 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 1. About this tutorial

Who should take this tutorial?

This tutorial is designed for those with experience
in one or more programming or scripting
languages. While Tcl/Tk is available on several
platforms, including Win32 and MacOS as well as
several of the *NIX environments, this tutorial is
written in the context of running on a GNU/Linux
installation.

Starting out, I'll introduce Tcl/Tk and summarize a
small part of the language's history. Then, I'll
review key features of the Tcl/Tk scripting
language and interpreter, discuss some of the
extensions to the language, and examine several
examples of Tcl/Tk in action. The text is
accompanied by code fragments and occasionally
an image of the resulting output (since Tk is a GUI
toolkit, after all).

Finally, I'll wrap up with a presentation of some
external resources, both Web and print, to help you
deeper into the Tcl/Tk environment.

Tcl/Tk quick start

About the author

Brian Bilbrey is a system administrator, product
engineer, webmaster, and author. Linux is a tool in
his daily work as well as his avocation, much to the
chagrin of his long-suffering spouse, Marcia.

He welcomes your feedback on this tutorial or
other related Linux topics at
bilborey@orbdesigns.com. His daily journal on life
with Linux and other adventures can be found at
OrbDesigns.com.

Page 2 of 30

mailto:bilbrey@orbdesigns.com
http://www.orbdesigns.com/bpages/current.html

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 2. Tcl/Tk basics

Origins of Tcl/Tk

Tcl stands for Tool Control Language. Tk is the
Graphical Toolkit extension of Tcl, providing a
variety of standard GUI interface items to facilitate
rapid, high-level application development.

Development on Tcl/Tk, pronounced "tickle
tee-kay", began in 1988 by John K. Ousterhout
(shown in the image), then a Professor at U.C.
Berkeley (UCB). Tcl was designed with the specific
goals of extensibility, a shallow learning curve, and
ease of embedding. Tk development began in
1989, and the first version was available in 1991.
Dr. Ousterhout continued development of Tcl/Tk
after he left UCB, then going to work for Sun
Microsystems for a stint. Now at Scriptics (which
begat Ajuba Solutions, which was purchased by
Interwoven), he keeps on improving the language,
currently in version 8.3.2 stable and 8.4
development, as of this writing.

See the "History of Tcl" page for more details.

Tools and files

There are two main programs that you need on your Linux system to explore Tcl/Tk. These
are tclsh and wish. As you might discern from its name, the former is a Tcl shell, most
frequently used to provide execution context for a shell script. Wish is the equivalent, for a
windowed GUI environment.

Check for the presence of these files by typing the following:

~/tcltk$ which tclsh
/fusr/bin/tclsh
~/tcltk$ which wi sh
/usr/ bin/w sh

The which command returns the path to the specified executable. If you don't see results
similar to these, then you'll want to head over to the Scriptics Tcl/Tk page to download and
build your own copy. Of course, the absence of these programs on your system is not
indicative of any problem. Unlike Perl, Tcl/Tk is generally not regarded as essential to the
operation of Linux. Every distribution I'm aware of ships with a version of Tcl/Tk and the most
popular extensions as a part of the CDROM or online repository collection. From these
sources, the tools are generally fairly easy to install. If you have difficulty, contact the
publisher of your GNU/Linux software.

Tcl/Tk quick start Page 3 of 30

http://www.scriptics.com/
http://www.scriptics.com/advocacy/tclHistory.html
http://www.scriptics.com/advocacy/tclHistory.html
http://www.scriptics.com/advocacy/tclHistory.html
http://www.scriptics.com/advocacy/tclHistory.html
http://www.scriptics.com/software/tcltk/
http://www.scriptics.com/software/tcltk/
http://www.scriptics.com/software/tcltk/

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 3. The Tcl language

Tcl/Tk quick start

What makes Tcl tick?

In the following listing, you'll find a common first
example program, as implemented in Tcl. This is a
complete script: the first line invokes the tclsh
environment, and the second does the actual work.
Create the script with a text editor of your
choosing, make it executable by typing chnod +x
hel | 0. t cl , then execute it to test your
handiwork.

~/tcltk$ cat hello.tcl
#!/usr/bin/tclsh

puts stdout {Hello, Wrld!}
~/tcltk$./hello.tcl

Hel | o, Worl d!

Tcl and Tk are interpreted, extensible scripting
languages. The license, which is very similar to the
BSD license, permits free use under any
circumstances, as long as the copyright is retained
in all copies and notices pass verbatim in any
distribution. The license terms make Tcl/Tk free
software.

Tcl/Tk is an interpreted environment. The Tcl
interpreter can be extended by adding
pre-compiled C functions, which can be called from
within the Tcl environment. These extensions can
be custom for a specific purpose, or generic and
widely useful. We'll look at a number of extensions
later in the tutorial, with special attention given to
the first extension, the very popular Expect.

In next few panels, we'll review the major features
of the Tcl language, from metacharacters and
global variables, to operators, mathematical
functions, and core commands. After all, the

Page 4 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

commands make Tcl/Tk the distinctive evolving
language it is. Bear in mind that we do not have
the space in this tutorial to cover every command.
The highlights are here, the depths are yours to
explore at a later date.

#!/usr/bin/tcl sh

filenane hello2.tcl TCl metaCharaCterS

This program code shows

met acharacter usage Metacharacters are those characters or character

puts stdout "Hello, Wrld! \g@airs that have special meaning in the context of
puts stdout {Hello, World! \#&e Tcl/Tk environment, including grouping
22: &3;576 statements, encapsulating strings, terminating
puts stdout "The answer to t glatements and more, as delineated in the

uni verse is [eval $Pints * $uigwing iable. Many of these are demonstrated in

il the code listing to the left. One special feature to

~/tcltk$. /hello2. tcl notice is the difference in output when curly braces
Hello, Veérld! (which prevent substitution and expansion) are
Hello, Wrld! \a

The answer to everything i s 48€dinplace of double quotes.

Character(s) Used as

Comment

; or newline Statement separators

Nane A variable (case sensitive)

Nane(i dx) Array Variable

Name(j,k,1...) Multidimensional Array

"string" Quoting with substitution

{string} Quoting without substitution

[string] Command substitution

\ char Backslash substitution

\ Line continuation (at end of line)
Atiuse/bin/telsh Tcl global variables and

Demonstrate global variabl ygckslash substitutions

and backsl ash substitution

B {gg[gﬁl ;: A Several global variables exist (and are pre-defined,

foreach Arg $argv { if not null in the current context) when a Tcl/Tk
puts stdout "$N $Ar gcript begins running. These variables permit
set N [expr $N + 1] access to the operating environment as follows:
T {$Arg == "ring"} fHracis the count of arguments to the script, not
puts stdout "\a . - . .
} counting the name as invoked. argv is a list (not an
array) of arguments. argvO0 is the invoked filename
} else { (which may be a symlink). env is an array that is
puts stdout "$argv0 on \indexed by the names of the current shell's
} X Display $env(Dl SPLARIYdnment variables. errorCode stores
*kx information about the most recent Tcl error, while
~/tcltk$./hello3.tcl errorinfo contains a stack trace from the same

Tcl/Tk quick start Page 5 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

./hello3.tcl on X Display :@vent. The list goes on with another dozen tcl_xxx

I/tf: tng$ -I'hello3.tel ring yariables fromtcl _i nteractive to
' tcl _version. A good summary is found in Tcl/Tk
in a Nutshell (see the Resources at the end of this
tutorial for more information).
Several of these variables are used in the sample
code at left, along with (once again) some
backslash-quoted characters, \n and \a. \ char
allows substitution of non-printing ASCI|I
characters. This is common to many scripting and
shell environments under UNIX. As noted in the
table, a backslash-quoted character that has no
defined substitution is simply echoed to output.
\character Substitution

\a Bell
\b Backspace
\f Formfeed
\n or \newline Newline
\r Carriage return
\t Horizontal tab
\v Vertical Tab
\space ("\") Space
\ddd Octal value
\xddd... Hexadecimal value
\C Echo 'c’
\\ Backslash

AjkibeNerm= e Tcl operators and

mathematical functions

Denonstrate operators and
math functions

Tcl supports a standard array of operators and
mathematical functions. The operators include

arithmetic, bitwise, and logical operators, which are
set Y [lindex $argv 1] evaluated via the expr command using common
22: gfagt ['['eggfxsif‘[?‘(’$§(1$ opﬁ@g%ﬁrg edence rules. Also, considering Tcl's
set Cir [expr 2*$Pl*$Rad] undamental roots as a string-oriented scripting

set Area [expr $PI*$Rad* $REQuUage, there's a reasonable complement of

puts stdout "Distance = $Dnsathematical functions as follows:

puts stdout "Circunference = $CGr"

puts stdout "Area = $Area"
} else {

puts stdout

puts stdout

set Pl [expr 2 * asin(1l.0)]
if {$argc == 3} {
set X [lindex $argv 0]

* Trigonometric functions include cos(x),

"Wong argunent co@as(x), cosh(x), sin(x), asin(x), sinh(x),

"Needs X, Y, and Rddn(9), atan(x), atan2(y, x), tanh(x), and
hypot(x, y). The pertinent unit for these
functions is radians.

* The Log functions are exp(x), log(x), and
log10(Xx).

*kkkkk kK

~/tcltk$./maths.tcl
D stance = 5.0
Circunference = 31.4159265359

345

Tcl/Tk quick start Page 6 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Area = 78.5398163397 * The Arithmetic functions are ceil(x), floor(x),
fmod(x, y), pow(X, y), abs(x), int(x), double(x),
and round(x).

* Random numbers are handled by rand() and
srand(x).

The example at left makes use of just a few of
these operators and functions to calculate the
distance between a specified point and the origin,
and to return the circumference and area of a circle
of the specified radius. Additionally, in this example
we use the list index (lindex) command to access
individual elements of $argv.

Y Looping and branching in Tcl
parse command |ine swtches . . .

set Optimize 0 The looping commands in Tcl are while, for, and
set Verbose 0 foreach. The conditional (branching) commands
foreach Arg $argv { are if/then/else/elsif and switch. Modifiers for the

switch -glob -- SAr g.p{*ecedi commands are break, continue, return,
-0* {set Optimze Finallv. th h di ided
_v* {set Ver erpr. Fina y, the catch command is provide
default { for error handling.

error "Unknown $Arg"

) } if/then/else/elsif was demonstrated in previous
panels. While then is a part of the formal syntax, it
set Li neCount O IS most often observed in absentia.

while {[gets stdin Line] >= 0} {

to confuse Vanna W ige example at the left, a switch command is fed
Renove_ Vowel s $Li ne

$Opt | i ze $Vll?%8ggnmand line arguments by the foreach
i ncr Li neCount

}

return Li neCount

Tcl/Tk quick start Page 7 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

construct. As the arguments are processed (Note:
improper input terminates the script, since we
haven't implemented an error catch), the while loop
processes input by calling a procedure for each
line, and incrementing a line counter. The code
fragment ends by returning the count of lines
processed.

~/tcltk$ tclsh

% set Phrase "hello, world!"
hel | o, worl d!

% string toupper $Phrase
HELLO, WORLD!

%string totitle $Phrase

Hel l o, worl d!

% string match ell o $Phrase
0

% string match *el | o*

Tcl strings and pattern
matching

Strings are the fundamental data type in Tcl. The
string command is really a variety of commands,
gathered under one umbrella. In use, string reads
much like the application of specific object

7 $POT ashethods from OOP programming, as you can see

% string | ength $Phrase
14

in the example on the left.

% append Phrase "Nice day, elThe informational string commands are length and

hel | o, worl d!

Ni ce day, eh?

% string toupper $Phrase
HELLO, WORLD!

NI CE DAY, EH?

% string wordend $Phrase 7
12

Tcl/Tk quick start

bytelength (which can differ, depending on
character set). Comparisons that return boolean
values (1 or 0) are compare, equal, and match.
Pattern matching here is accomplished by
"globbing", the simple type of matching commonly
associated with shell operations. Advanced
Regular Expressions are also available via the
distinct regex and regsub commands.

Indexing functions in Tcl are performed with the

index, last, first, wordend, and wordstart
commands. String modification is handled by

Page 8 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

tolower, toupper, totitle, trim, trimleft, trimright,
replace, and map. The latter requires a character
mapping table to be pre-defined. Substrings are
extracted with range, and strings are output
multiple times with repeat.

Text can be added to an existing variable using the
append command. The format command can be
used to generate output strings using the same
styles and conventions as the C language's printf
command. scan parses a string and assigns values
to variables. Finally, starting with Tcl 8.0,
functionality for handling binary data as strings
(thus able to process the null character without
failure) was added, with the binary format and
binary scan commands.

~/tcltk$ tclsh

% set cl {Bob Carol}

Bob Car ol

% set c2 [list Ted Alice]
Ted Alice

% set Partyl [list $cl $c2]
{Bob Carol} {Ted Alice}

% set Party2 [concat $cl $c2

Bob Carol Ted Alice

Tcl lists

Lists have two major uses in Tcl. The first we've
already seen demonstrated in the context of
processing command line arguments via the
oreach command (found on Looping and
ranching in Tcl on page 7). The second use is to

% linsert $Partyl 1 Richard build up elements of a Tcl command dynamically,
{Bob Carol} Richard {Ted Ali ed}ich can be later executed by using the eval

%

Tcl/Tk quick start

command, as we see later in this tutorial.

The list command takes all of its arguments and
returns them in a list context. Arguments may be
values or variables. From the example at left, lists
can be created manually, or using list, which can
take other lists as arguments (thus saving the two
couples orientation of our first "Party").
Alternatively, the concat command is used to
merge two or more lists into a single entity of
top-level items, returning the second, more
interesting "Party".

Page 9 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Some other useful list commands and their syntax
are:
* llength $List - returns count of toplevel items.
* lindex $List n - returns indexed item, counts
from zero.
* Irange $List i j - returns range of list
elements.
* lappend $List item... - append items to list.
* linsert $List n item... - inserts item(s) at the
specified position in the list, moving other
items down the list.

The balance of list commands include Ireplace,
Isearch, and Isort. The split command takes a
string as input and generates a properly parsed
list, breaking the string at the specified character.
join performs the complementary operation, taking
list elements and stringing them together,
separated by a joinstring.

~/tcltk$ tclsh

% set People(friend) Tom TCl arrayS

Tom

% set Peopl e(spouse) MarciaThe shortcut to understanding Tcl arrays is to

Marci a regard them in the same light as you would a Perl

3/0 Sﬁt Peopl e(boss) Jack hash. The array is not a numerically indexed linear
ac

% arrav names Peopl e data structure, unless you choose to impose that
fri endyboss spousg interpretation upon your data. T_he ind_ex (or key)
% set Person $Peopl e(fri end) may be any string, although strings with spaces

Tom need either to be quoted, or a variable reference.
% array get People

friend Tom boss Jack spouse reia. . . T
% set Peopl e(friend) \ NBSEL2 with normal variables, arrays are initialized

[concat $Peop| e(f ri end) BBB] the set Command, as shown at left. The index

Tom Bob

% set Person $Peopl e(friend)
Tom Bob

%

Tcl/Tk quick start Page 10 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

is given inside parentheses. Please note that the
parentheses do not provide grouping like curly
brackets or double quotes. Once initialized as an
array, a variable may not be accessed as a
singular variable. As shown at the bottom of the
listing to the left, array elements may also be lists.

More Tcl arrays

The array command is a multi-purpose tool, much like string. The commands are array exists
to test a variable for existence as an array, array get to convert to list format, array set to
convert from list to array, array names to return a list of indices, and array size to return the
count of indices. Searching through an array has its own set of four commands: array
startseach, array anymore, array nextelement, and array donesearch.

Although Tcl arrays are one-dimensional by design, there is an elegant way to simulate
multi-dimensional constructs. Since indices are arbitrary strings, a 2D array might be
declared as follows:

set i 1 ; set j 10

set array($i,$j) 3.14159
incr $j

set array($i,$) 2.71828

These array keys are really just the strings "1,10" and "1,11" respectively, but for the
purposes of accessing the data, who's to know the difference?

| .
z. [fusr/bin/tclsh Tcl procedures
Denonstrate procedures and i
gl obal scoping briefly The proc command defines a Tcl procedure. Once

set Pl [expr 2 * asin(1.0)]
proc circum{rad} {
gl obal PI
return [expr 2.0 * $rad * $PI]

}
proc c_area {rad} {
gl obal PI
return [expr $rad * $rad * $PI]
}
set rad 3

puts stdout "Area of circle of\

radius $rad is [c_area $rad],\n\

the circunference is\

[circum $rad].\n"

kkkkkkkk

~/tcltk$./protest.tcl

Area of circle of radius 3 is 28.2743338823,
the circunference is 18.8495559215.

Tcl/Tk quick start Page 11 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

defined, a procedure can be called or used just as
a built-in Tcl command would be. Additionally,
parameters can be defined with default values; for
example, changing the definition at the left to read
proc c_area { {rad 1} } would enable the
c_area procedure to be called without parameters,
returning the area of the unit circle.

The rename command is used just as it sounds, to
give a new name to an existing command or
procedure. There are two distinct reasons for using
rename. The first is to add functionality to an
existing command by renaming the original, then
replacing it with a procedure of the same name.
The procedure can call the original, and add
whatever bells and whistles are necessary. The
second reason for rename is to map a command
out of existence, like r enane exec {};, for
example, to prevent users from executing external
commands.

Variable scoping rules

Rules of scope describe the visibility of procedure and variable names and values at different
levels of the program. For instance, variables defined at the outermost level of a script are
global variables. By default, these are not visible, nor are their values available from within
procedures. This permits procedure writers to freely define variable names and assign values
without fear of overwriting important variables that are unknown at the local scope. To make
a global variable visible inside a procedure, it must be declared as such within the procedure,
as | did for PI (in the example on the previous panel) using the global command.

The upvar command provides a facility for associating a local-level variable with the value of
a variable from another scope. This permits calling by name into procedures, which is handy
when the procedure needs to be able to modify the value at another scope, rather than just
using it. The command syntax is upvar level $VarName LocalVar, where level is the
number of steps up out of the current scope. "#0" is the representation of the global scope
level.

#/usr/bin/telsh Data structures in Tcl

Denonstrate Data Structures . - . o
using procedural w appers Beyond simple multi-dimensional arrays, it is

proc User Add { Acct rNane eMgenepalbyee¢omended that Tcl data structures be
gl obal uData implemented as arrays that have dedicated
it {[info exists ubata(SACHotda(Rlidterfaces. This design hides specific
return 1 : . .
implementation details from the user of the

se‘iL uDat a($Acct, rnane) $r NgHeictures, while providing the ability to perform
set uDat a($Acct, enmi |) $eMsidnificant error checking capabilities.
set uDat a($Acct, phone) $phone

} return 0 In the example at left, after declaring uData as a

Tcl/Tk quick start Page 12 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

puts stdout [UserAdd bpb\ global variable, the code executes a check to see
Brian bilbrey@ unk.com 555tdgd@le account doesn't already exist. If it does,
pUtTng: g% uﬁfsggﬁdgsg?ﬂlz] then the procedure returns with a (non-zero) error
puts stdout [User Add bpb\ message. The return can be used in a switch to
Bri an bil brey@ unk. com 555g&RnE2hte error text output. For the example, we
e simply feed it three sequential inputs, including one

6/ tcltk$./datas.tcl repeat. This yields the output shown at the bottom,

0 with the '1" indicating a purposeful error return due

1 to a repeating account name.
Other possibilities for data structures include lists
of arrays, linked or doubly-linked arrays, or various
permutations thereof. The lists of arrays construct
are considerably more efficient with the list
reimplementation that accompanied Tcl 8.0,
providing constant access times.

~/tcltk$ tclsh i

%file exists hello3.tcl PathS and flleS

1

%file executabl e testit File and path operations are a challenging problem

0 in a cross-platform environment. Tcl uses UNIX

%file pathtype ./hello3.tcl pathnames (separated using the /' character by
rel ative default), as well as the native pathname

%set dirl h :

h‘;ﬁg 'r nome construction for the host OS. Even when

% set dir2 brian in-program data is constructed properly, it can be
brian difficult to ensure that user input matches the

% Ise|t< dir3 tcltk system requirements. The file join command is

E,/ocf itl e join /$dirl dir2 di r3used to convert UNIX formats to native pathnames.
/home/ dir2/dir3 cher path string co_mmand_s include file split,
%file delete testit-~ dirname, file extension, nativename, pathtype, and
% tail.

In its role as a "Tool Control Language", Tcl has a
wide variety of internal file test and operation
features. Each command leads off with file, as in

Tcl/Tk quick start Page 13 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

file exists name. Other test commands (which all
return boolean values) include executable,
isdirectory, isfile, owned, readable, and writable.

File information and operations are accomplished
(again, all with the leading file) atime, attributes,
copy, delete, Istat, mkdir, mtime, readlink, rename,
rootname, size, stat, and type. Note that a number
of the file information commands may return
undefined data when running in the Windows or
Mac environments, since, for example, inode and
symbolic (and hard) link data isn't represented in
those file systems.

The advantage of using file ... commands rather
than using native commands via exec is that the
former presents a portable interface.

This whole document could easily be devoted to
just this one section of the Tcl language. However,
content yourself with the tclsh examples to the left,
which reveal the flavor of these commands, and
then follow up with readings from the Resources
listed at the end of the tutorial.

~/tcltk$ tclsh

% nsl ookup orbdesi gns. com
192.168.1.3 . .
192. 168. 1. 3#3Hhe exec command is used to explicitly execute
Nane: or bdesi gns. com

Address: 64.81.69. 163

% set d [date]

Sun Mar 25 13:51:59 PST 2001

% puts stdout $d

% set d [exec date]

Sun Mar 25 13:52:19 PST 2001

% puts stdout $d

Sun Mar 25 13:52:19 PST 2001

Server:
Addr ess:

*kkk k%

Processes and file I/O with Tcl

%if [catch {open foo r} Chan] {

puts stdout

}
% gets $Chan

One

% gets $Chan

Two
% eof $Chan
0

% cl ose $Chan

%

Tcl/Tk quick start

Dave...\n"

Page 14 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

external commands. Under Linux, most external
commands can be run directly when Tcl is in
interactive mode, as shown in the example at the
left. Running with exec returns the stdout output of
a program not to the screen, but to Tcl, which
allows the data to be assigned to a variable. When
a program is started in the background, the
immediate return value is the PID for the program.
exec'd programs can take full advantage of I/O
redirection and pipelines in the UNIX environment.

Other process commands are exit, which
terminates a running Tcl script, and pid, which
returns the PID of current (or specified) process,
handy for a variety of purposes. Tcl does not
incorporate any native process control commands,
but you can use the exec command in concert with
PID data to accomplish many tasks.

File manipulation uses the following commands:
open, close, gets, puts, read, tell, seek, eof, and
flush. As demonstrated at left, the catch command
is useful in error checking during file opening
commands. When the program output needs to be
printed before a newline character is encountered,
as in a user data prompt, use flush to write the
output buffer.

An additional feature (in supported environments)
is the ability to open pipelines in the same manner
that you might a file. For instance, after opening a
pipeline channel with set Channel [open "|sort
foobar" r], the output of the first gets is going to be
"Eight" (alphabetically, out of file data "One"
through "Ten", on 10 separate lines).

Tcl/Tk quick start

Page 15 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

1/ ErC|2t k$ cat inputOl.txt USing eval for dynamiC
4 5 inti

4+5 scripting

~/tcltk$ tclsh

% set InFile [open inputOl. £ 47 ttgiF example, you can sense the power of the

files eval command. Under normal circumstances, the
%while {[gets $InFile Op] Tclinterpreter operates in a one-pass mode: It first
>= 0} { . parses the input command line (possibly stretched

set Operation "expr $
set Result [eval $Operat|

egseveral physical lines), performing any
puts stdout "$Op = $Resu

titutions. Then execution takes place, unless a

} bad or malformed command is found. eval permits

1+2=3 a second pass (or perhaps more correctly, a

4+5=9 pre-pass). Thus a Tcl command can be first

07/0 - 9=-2 dynamically constructed, then parsed and
executed.

In the listing at the left, the input file consists of
three lines, each with one arithmetic operation
shown per line. After invoking tclsh, the file is
opened read only, and associated with the

$I nFi | e variable. The whi | e loop reads in one
line at a time, to $Op. Then a complete Tcl
command is constructed by pre-pending expr to
the $Op variable. This is then expanded,
evaluated, and the result assigned accordingly.
Finally, each operation and result is displayed on
st dout .

While this sample demonstrates a relatively trivial
application of eval, conceptually it can be easily
extended to dynamic file and/or directory
processing based on the input of an input file of
known syntax or to base operations on file type,
permissions, access time or any variety of testable
elements.

Tcl/Tk quick start Page 16 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 4. Tk commands

What's a widget, anyway?

Tk is the graphical Toolkit extension for Tcl. Tk
release versions are coordinated with those of Tcl.

HE"U In the panels that follow, we'll review the Tk widget
= set, examine some of the configuration options,
and set up some examples to demonstrate the
useful nature of Tk.

Bye!
— It's difficult to convince any PHB (Pointy Haired
Boss) that this section of the tutorial is work
related. After all, it is about widgets, and
conceptually widgets are closely related to
play...but this is work, so let's dig into it. First,
here's the code for a Tk enhanced "Hello, World!"

#1/usr/ bin/w sh

#

Hello World, Tk-style

button .hello -text Hello \
-command {puts stdout \
"Hell o, World!"}

button .goodbye -text Bye! \
-comuand {exit}

pack .hello -padx 60 -pady 5

pack .goodbye -padx 60 -pady 5

Invoking wish (the Tk shell) in the first line brings
up a Window widget of default size. Then | defined
two button widgets, .hello and .goodbye -- these
are packed into the window, and the window
shrinks to the size defined by the specified button
spacing. When the script is executed, you get the
dialog shown at the left. Click on the button to get
"Hello, World!" output in the parent terminal
window, Click on to terminate the script.

Tk widgets

There are remarkably few commands used in the creation of Tk widgets. Better than half are
variants of button or text widgets, as you can see in the following list. Several of these items
are demonstrated in the next panel.

* putton - a simple widget with over twenty configuration options from anchor and font to
padx and relief.

* canvas - canvas is a widget that can contain not only other widgets, but an assortment
of structured graphics, including circles, lines, and polygons.

* checkbutton - creates a checkbox-style button widget, which is linked to a variable.

* entry - builds a one-line text entry box.

Tcl/Tk quick start Page 17 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

frame - frame is a widget used primarily as either a container or spacer.
label - creates a label object.

* listbox - creates a text string list box. Items are added after widget definition.
* menu - a single multi-faceted widget that can contain a variety of items in assorted

menu styles.

* menubutton - provides a clickable toplevel interface for dropdown menu

implementations.

* message - creates a text display window widget with features including justification and

word wrap.

* radiobutton - creates a radio button that can be one of a set associated with a

specified variable.

* scale - creates a slider for selecting values within a specified range and resolution.

* scrollbar - generates a widget (slider) for changing the portion of material (usually text
or a drawing) in an associated widget.

* text - creates a widget that displays one or more lines of text and allows that text to be

edited.

* toplevel - creates a new toplevel (on the X desktop) window.

Tk Tutorial Example
a8

I 1 [es
- Don’t Worry
% Be Happy

proc process_doto %
{Slidval} {

puts stdout "$s5lidval®

percent Hoppy"

1

ook

% 88 percent Hoppy
|

[] B
Tcl/Tk quick start

A Tk demonstration

As an example of some simple Tk code, the listing
below generates the image at left. The code for the
procedure invoked by the OK button and sample
output is shown in the text window of the image.

~/tcltk$ wish

% . configure -wi dth 200 -hei ght 400

% | abel .header -text "Tk Tutorial Exanple"

. header

% pl ace . header -x 5 -y 2

% scale .slider -from1l -to 100 -orient horiz

.slider

% .slider configure -variable Slidval

% place .slider -x 5 -y 20

%entry .slidbox -width 5 -textvariable SlidVal

. slidbox

% pl ace .slidbox -x 120 -y 38

% radi obutton .one -text "Don't Wirry" -variable Mod -va
. one

% radi obutton .two -text "Be Happy" -variable Mod -val ue
.two

Page 18 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

% place .one -x 5 -y 70

% place .two -x 5 -y 90

% text .twindow -width 22 -height 14 -font {clean -14}

. twi ndow

% place .twindow -x 5 -y 120

% button .ok -conmmand {process_data $Slidval} -text "K"
. ok

% button .cancel -command {exit} -text "Cancel" -backgrou
. cancel

% pl ace .ok -x 15 -y 350

% pl ace .cancel -x 120 -y 350

Tk commands, Part 1

There are over 20 Tk commands, that act on, enhance, or complement the Tk widget set.
These include bell, which rings the bell, depending on the configuration of the X Window
system that's running. bind creates an association between a Tcl script and X events; for
example, a specific key-mouse combination action. clipboard is another of the multi-function
Tk commands -- it contains all the code for clearing, loading, and pasting contents to and
from the Tk clipboard (which is distinct from any clipboard features native to either X or the
window manager you're using).

destroy is used to delete a window and all of its children. Used on the "." (root) window, it
deletes the entire application. event is a powerful tool for generating virtual window events
and inserting them into the processing queue, as though the actual event (a mouse click on a
button, for example) had happened for real. The font command is used to create specified
instances of system fonts. It permits local (to the script) naming of system fonts, attribute
modification of named fonts, and "deletion” of fonts. Type font families at a wish prompt for
a listing of available fonts for use.

Focus is an important concept in the window management arena -- in any given display, only
one window at a time may have the "attention" of the keyboard and mouse. The Tk focus
command is used to give the script control over the display focus, sending it to specified
windows. A complementary function, grab, allows Tk to monopolize the display focus to the
point where events outside the window are reported within the window's environment. This is
useful when you want to force completion of an option prior to any other system activity
taking place.

Tk commands, Part 2

Continuing with our overview of Tk commands, next up is grid, an interface to the Tk window
geometry master. It is used to order widgets in a window in a rows and columns format.
lower (and the complementary command raise) mediate sub-window visibility. A lowered
window obscures none of its overlapping sibling windows; a raised window is brought to the
top. This is used frequently in multi-document display situations. Many of the Tk widgets and
commands work from a common set of standard options. These may be viewed or added to
by the option command.

For putting widgets and sub-windows inside a window, there are two commands, both of

which have already been demonstrated: pack and place. In its simplest use, pack adds one
or more widgets to a window, and unless otherwise instructed, shrinks the window around

Tcl/Tk quick start Page 19 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

those objects as we saw in the Tk Hello example at the beginning of this section. place sets
and displays objects in a parent window, using either relative or absolute measures, for
example, 5 pixels from the left side or halfway (0.5) down the window.

Other commands include selection, an interface to the X object selection toolset; tk, which
provides access to selected parts of the Tk interpreter's internal state; the winfo command for
retrieving data about Tk-managed windows; and wm, an interface to the running window
manager, for setting a multitude of features from the title bar text to all sorts of geometry
specifications and constraints.

A real (small) Tk application

I want an interface to the LAN changeover scripts that | run daily. So let's use Tcl/Tk to build
a small tool for ease of use. | want it to offer selections based upon an ASCII configuration
file that lives in my home directory. That file contains the data shown in the listing that
follows:

~/.netsetrc

03.26. 2001 bil brey

space between nane and conmand
Honme /usr/ 1 ocal / bi n/ net honme

O fice /usr/local/bin/netoffice
Admin /usr/ |l ocal/bin/ netadnin

The application (a full listing and image is shown on the next panel) reads the configuration
file and parses each non-blank, non-comment line for a button name and its associated
action. While the script would be easier to write by defining three buttons to run explicit
programs, this more general solution allows me to add just about any feature | want by only
adding a single lineto ~/ . net set rc.

A drawback of the code is that it isn't tolerant of a badly formatted config file. It expects a
one-word button name followed by a single space followed by the command (with arguments,
if necessary) to be executed on the button press. But then, a configuration file is theoretically
easier to keep in line than unstructured user input.

A sample Tk app

#!'/ usr/ bi n/w sh

Tcl/Tk quick start Page 20 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

#
netset.tcl
03.26.2001 bilbrey
set ConFile "~/.netsetrc"
if [catch {open $ConFile r} Conf] {
puts stderr "Open $ConFile failed"
return 1
}
parse config, define buttons
set Bcount O
while {[gets $Conf dine] >= 0} {
if {1 == [string match #* $Cine]} continue
if {[string length $Cine] < 4} continue
set Nend [string wordend $Cline 0]
incr Nend -1
set Bnanme [string range $Cine 0 $Nend]
set Cbheg [expr $Nend + 2]
set Bcond "exec "
append Bcond [string range $d ine $Cbeg end]
i ncr Bcount
set Next But "button$Bcount"
button . $NextBut -text $Bname -command $Bcond

}

if {$Bcount == 1} {
puts stderr "No buttons defined"
return 2

}
di splay buttons
whil e {$Bcount >= 1} {
set NextBut "button$Bcount"
pack . $NextBut -padx 10 -pady 10
incr Bcount -1
}
button .exit -text Exit -comuand {exit}
pack .exit -padx 10 -pady 10

Tcl/Tk quick start Page 21 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 5. Getting to know Expect

What is Expect?

Expect is an extension of the Tcl and Tk
languages. Expect provides a simple, yet powerful
interface for automating the scripting of interactive
programs. Additionally, Expect makes it easy to
embed interactive applications in a GUI. Expect's
development is coincident with the emergence of
Tcl/Tk, and depends on both in its current version,
5.32.

The author of Expect is Don Libes, who works at
the US National Institute of Standards and
Technology (NIST). The home page for Expect is
hosted on NIST servers. (However, Expect and
any related commercial or non-commercial
products are explicitly not endorsed by NIST.) In
the panels that follow, we'll look at a few examples
of Expect scripts culled from the source code
example directory, along with a brief overview of its
command syntax.

Why learn something about Expect? To quote from
Don's paper, "Using expect to Automate System
Administration Tasks" (USENIX LISA Conference,
Oct. 1990) "...the result is that the UNIX system
administrator's toolbox is filled with representatives
of some of the worst user interfaces ever seen.
While only a complete redesign will help all of
these problems, expect can be used to address a
great many of them."

#! /usr/ 1 ocal / bi n/ expect -- RFC retrieval Wlth EXpeCt

ftp-rfc <rfc-nunber>

ftp-rfc -index . i i

retrieves an rfc (or the i Al ingbGtiaR{0 Expect, examine the example
exp_version -exit 5.0 on the left. It is only slightly modified from the

if {$argc! =1} { version found in the example directory from a

send_user "usage: ftp-rfc Wilyaly EQHE¥ $8urce distribution, as are all of

exit the examples in this section. Let's walk through the
set file "rfc$argv. Z" code...
set tineout 60
spawn ftp ftp.uu. net This program automates FTP retrieval of IETF

expect " Name*:"

send "anonymous\ r " RFC (Requt_est For Cgmment) docume_nts_ from the
expect "Password:" UUNet archive. The first line of the script invokes
send "bi | brey@r bdesi gns. coman'Expect shell. Note that I've given the full
expect "ftp>" pathname to the executable. That's safest, since

send "binary\r"

expect "ftp>" it's hard to know the path environment of any given

Tcl/Tk quick start Page 22 of 30

http://expect.nist.gov
http://expect.nist.gov
http://expect.nist.gov
http://expect.nist.gov

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

send "cd inet/rfc\r"

expect "550*ftp>" exit
"250*f t p>"

send "get $file\r"”

expect "550*ftp>" exit
"200*226*f t p>"

cl ose

wai t

send_user "\ nunconpressing f
exec unconpress $file

user. The script first checks for the Expect version,
then prints a usage message unless the correct
number of arguments is given.

Next, a timeout value is set to prevent the Expect
script from locking up system resources if the FTP
segsion spawned on the following line fails to _
connect properly. Most of the balance of the script
are sets of expect / send command pairs. Each
expect command waits for the specified output
from the spawned program (ftp, in this case), and
then sends the correct response. Note that there
are two traps for ftp error codes following the cd
and get instructions. In each case, the error code
550 is matched against first, and if true, then the
script exits. Otherwise, following a 250 code
(indicating success), expect drops through into the
next command.

After the document is received, the script issues a
close command to the ftp session. The wait
command holds up script processing until ftp is
terminated. Finally the script sends a message to
the user, decompresses the downloaded RFC (or
rfc-index), then exits by default, not explicitly.

#!../expect -f
wrapper to nake passwd(1)
usernane is passed as 1st

ENE.ke¥s.10 Expect, Part 1

arg, passwd as 2nd

set password [lindex $argv 1]Thereare four key commands in Expect (the
spawn passwd [|index $argv OJanguage, with an uppercase 'E’). First is expect

expect "password:"
send "$password\r"”
expect "password:"
send "$password\r”
expect eof

Tcl/Tk quick start

(the command, little 'e"), which searches for
patterns and executes commands if a match is
made. For each expect command, there can be
several groups, each composed of option flags, a
pattern to match against, and a command or body
of commands to execute. expect "listens" to
SDTOUT and STDERR by default, until a match is
made or the timeout expires.

Patterns are matched by default using Tcl's string

Page 23 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

match facility, which implements globbing, similar
to C-shell pattern matching. A - r e flag invokes
regexp matching, and - ex indicates that the match
should be exact, with no wildcard or variable
expansion. Other optional flags for expect include
- i toindicate which spawned process to monitor
and - nocase, which forces process output to
lowercase prior to matching. For complete
specifications, type man expect at a command
prompt to view the system manual page
documentation for Expect.

The second important command is send, which is
used to generate input for the process being
monitored by the Expect script. send incorporates
options for sending to a specified spawned process
(-i), sending slowly (- s, so as not to overrun a
buffer, in serial communications for instance) and
several others.

#! [/ usr/ 1 ocal / bi n/ expect

Script to enforce a 10 mi nth@rAngS tO EXpeCt! Part 2

every half hour fromtyping -

Wi t%len for sonmeone (U\>//\g H%Prll thedefhjs a script called car pal , yet another
with Carpal Tunnel Syndromexample from the source Expect distribution.
#If you type for nor e than 20 minutes

% after Jovery character unt: PPadyT Eudhe Expect command that's used to

a 10 minute break. crgate a new process. It's appeared in every

Author: Don Libes, N ST

Date: Feb 26, '95

spawn $env(SHELL)
set start and stop tines
set start [clock seconds]
set stop [clock seconds]
typing and break, in seconds
set typing 1200
set notyping 600
interact -nobuffer -re . {
set now [cl ock seconds]
if {$now $stop > $notypi ng} {
set start [clock seconds]
} elseif {$now $start > $typing} {
send_user "\ 007"

set stop [clock seconds]

Tcl/Tk quick start Page 24 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

example we've used. At left, it pulls the path to the
default shell executable, and spawns a new
instance. In doing so, spawn returns a process ID,
set in the variable spawn_i d. This can be saved
and set in the script, giving expect process control
capabilities.

interact is the command that Expect uses to open
communications between a user and a spawned
process. The - nobuf f er flag sends characters
that match the pattern directly to the user. - r e tells
interact to use the following pattern as a standard
regular expression, and the '." is the pattern,
matching each character as it comes in. While in
interactive mode, Expect's redirection of the
STDOUT and STDERR streams is also given back
to the user by default.

What you can do with Expect

When your script invokes an interactive program, by default Expect intercepts all input and
output (STDIN, STDOUT, and STDERR). This allows Expect to search for patterns that
match the output of the program, and send input to the spawned process to simulate user
interaction. Additionally, Expect can pass control of a process to a user if so instructed, or
take control back upon request.

Not only do these traits make Expect remarkably useful for common administrative tasks, but
it turns out that Expect is quite good for building test scripts to perform I/O validation during
program development.

Finally, there's the stunningly useful program, aut oexpect . Itself an Expect script,

aut oexpect monitors a command line interactive program, generating an Expect script that
replicates that interaction exactly. Now, while that usually isn't just what's needed, it is easy
to take the results of several autoexpect sessions, generalize the expect patterns, then cut
and paste them into the desired configuration. It's been written in more than one place that
the best learning tool for Expect is to run autoexpect and play with the results.

Tcl/Tk quick start Page 25 of 30

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 6. Tcl/Tk extensions

Tcl/Tk extensions intro

Expect was merely the first arrival in a flood of
Tcl/Tk extensions. Several are of general utility,
many more are either software or application
specific. As Scriptics remains the central repository
for all things Tcl/Tk, the Extensions Page on that
site is a valuable resource for further exploration.

In the panels that follow, we'll take a brief glance at
several of the major extensions, touching on their
salient features and attractions.

[incr Tcl], [incr TK], and more...

Introduced in 1993, (pronounced inker tickle)
provides object oriented functionality to Tcl/Tk.
[incr Tcl] provides object, class, and namespace
features. These features make it easier to build
large projects with Tcl with data encapsulation,

« composition, and inheritance. This is done with the
bl following: classname, objname, and delete are

[s oy T el and. 2] |) . . .
object commands. Class creation and editing is
8 o e done with the body, class, and configbody

commands. Other miscellaneous commands are
code, ensemble, find, local, and scope.

Its graphical counterpart is . This tool extends to
the GUI the same OO functionality that's needed to
provide ease of scalability and data hiding that
makes large programming jobs much easier to
partition. [incr Tk] provides new base classes:
itk::Archetype, itk::Widget, and itk::Toplevel. These
classes are complemented with a complete set of
methods.

Tcl/Tk quick start Page 26 of 30

http://dev.scriptics.com/resource/software/extensions/
http://dev.scriptics.com/resource/software/extensions/

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Built on the [incr Tk] foundation, now there's , a
so-called Mega-Widget set. This tool permits
complex objects, such as a file selection box, to be
defined and displayed with great ease. Borrowed
from the [incr Widgets] Web pages, the image on
the left is created using just the following
commands commands: fi | esel ecti ondi al og
.fsd ; .fsd activate.

TIX

Tix, which stands for Tk Interface eXtension, is an extraordinary GUI and graphics Tcl/Tk
extension. Tix is currently at version 4.0, and provides a set of 43 commands, most of which
are either Mega-widgets or components for building Mega-widgets, along with a few utilities.
Tix's Web site, at http://tix.mne.com/, claims "With Tix, you can forget about the frivolous
details of the TK widgets and concentrate on solving your problems at hand.” It's easy to see

the basis of this claim, when you can quickly create useful interfaces with commands like
tixDirList, tixFileSelectDialog, tixPopupMenu, tixScrolledWindow, and many more.

TclX

Extended Tcl, TclX, is really more than just another "extension". In the words of the authors,
"Extended Tcl is oriented towards systems programming tasks and large application
development. TcIX provides additional interfaces to the native operating system, as well as
many new programming constructs, text manipulation tools, and debugging capabilities." The
online home of TcIX is found at http://www.neosoft.com/TclX/.

Many of TcIX's original features have made it into the core Tcl distribution over the last few
years. However, the TclX team has stayed on the ball, adding such features as dynamically
loading libraries and packages, network programming support, procedures that provide
command access to the math functions normally called by expr, and much more.

TclX is included as a package that can be optionally installed with most standard Linux
distributions. Alternatively, it can be compiled from source, in conjunction with Tcl and Tk.
One very nice feature of recent TclX versions is a program called t ¢l hel p, which is a Tcl
and Tk help browser that is very handy to have around for reference. Highly recommended.

Visit the extensions emporium

Not unexpectedly for such a popular programming environment, there are many more
extensions than I've space to discuss exhaustively in this tutorial. Point your browser to the
Extensions page at Scriptics, and learn more about the following capabilities that Tcl and Tk
extensions bring to the table:

* Database extensions permit access to everything from dBase files to connection and
guery toolkits. Many other database-related tools and utilities are also available.

* Networking extensions add functionality for email, FTP, network monitoring, distributed
processing, Palm connectivity utilities, etc.

* Object Systems extensions include [incr Tcl], and several other OO Tcl

Tcl/Tk quick start Page 27 of 30

http://tix.mne.com/
http://www.neosoft.com/TclX/
http://dev.scriptics.com/resource/software/extensions/
http://dev.scriptics.com/resource/software/extensions/
http://dev.scriptics.com/resource/software/extensions/database/
http://dev.scriptics.com/resource/software/extensions/database/
http://dev.scriptics.com/resource/software/extensions/network/
http://dev.scriptics.com/resource/software/extensions/network/
http://dev.scriptics.com/resource/software/extensions/objects/
http://dev.scriptics.com/resource/software/extensions/objects/
http://dev.scriptics.com/resource/software/extensions/objects/

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

implementations. These include OTcl (the MIT Object Tcl), XOTcl, TOS, Tea (a
Java-styled Tcl OO), stooop (Simple Tcl-Only Object Oriented Programming), and
more.

*Along with [incr Widgets] and the other Mega-widget libraries we've already seen, the
Tk Widgets extensions provide a vast array of added GUI functionality, from image and
video handling widgets to notebook and document interface extensions. This is
definitely one of the places to check before you design something for yourself.

* The Miscellaneous extensions category is a complete grab-bag, with a little something
for everyone. From an alpha toolkit for implementing neural networks (LANE), to data
conversion, message digest and crypto packages (Trf and TrfCrypto), to audio play and
record capabilities (Snack).

* Additionally, there are Tcl/Tk extensions explicitly for both the Mac and Windows
implementations. If you work in either of these environments, you owe yourself a visit.

Tcl/Tk quick start Page 28 of 30

http://dev.scriptics.com/resource/software/extensions/tk/
http://dev.scriptics.com/resource/software/extensions/tk/
http://dev.scriptics.com/resource/software/extensions/tk/
 http://tcl.activestate.com:8002/resource/software/extensions/misc/
 http://tcl.activestate.com:8002/resource/software/extensions/misc/
http://dev.scriptics.com/resource/software/extensions/macintosh/
http://dev.scriptics.com/resource/software/extensions/windows/

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 7. Resources and feedback

Tcl/Tk quick start

Collected resources

Here is the concentrated list of Tcl/Tk resources for
easy reference. First, most of the Web links found
in this tutorial are at (or only a hop or two away
from): http://dev.scriptics.com/, the home of Tcl/Tk
development.

To complement those dynamic sources, there are
a number of excellent books on Tcl/Tk and the
extensions thereto. | can only recommend what
I've read and used; you can browse at your favorite
brick and mortar or online bookseller for any of the
more than 20 titles.

* Tcl and the Tk Toolkit, by John K. Qusterhout
(Addison Wesley: 1994, ISBN 020163337X).
Although it's a bit long in the tooth, this book
remains an excellent introduction to the style
and practice of Tcl/Tk programming.

* Practical Programming in Tcl and Tk, Third
Edition, by Brent B. Welch (Prentice Hall:
1994, ISBN 0130220280). Large,
comprehensive, and full of clearly explained
examples, | find this book constantly useful.

* TCL/Tk Tools, by Mark Harrison, et al.
(O'Reilly and Associates: 1997, ISBN
1565922182). A great complement to the first
two book listed, Tools is a multi-author effort
that effectively covers many of the most
popular Tcl/Tk extensions in enough detail to
provide a clear benefit over the Web and
manpage resources for some of these
packages.

* Finally, there's Tcl/Tk in a Nutshell, by Paul
Raines and Jeff Tranter (O'Reilly and
Associates: 1999, ISBN 1565924339). All the
commands are there, with flags, options, and

Page 29 of 30

http://dev.scriptics.com/

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

more for the Tcl and Tk core commands, the
Tcl/Tk C interface, Expect, and several other
major extensions. When there's a deadline
looming, this is one handy book to have
around.

Your feedback

We look forward to getting your feedback on this tutorial and for future directions in providing
up-to-the-minute information about the always-evolving Linux scripting languages. Also, you
are welcome to contact the author directly at bilbrey@orbdesigns.com.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Tcl/Tk quick start Page 30 of 30

mailto:bilbrey@orbdesigns.com
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Who should take this tutorial?
	About the author

	Tcl/Tk basics
	Origins of Tcl/Tk
	Tools and files

	The Tcl language
	What makes Tcl tick?
	Tcl metacharacters
	Tcl global variables and backslash substitutions
	Tcl operators and mathematical functions
	Looping and branching in Tcl
	Tcl strings and pattern matching
	Tcl lists
	Tcl arrays
	More Tcl arrays
	Tcl procedures
	Variable scoping rules
	Data structures in Tcl
	Paths and files
	Processes and file I/O with Tcl
	Using eval for dynamic scripting

	Tk commands
	What's a widget, anyway?
	Tk widgets
	A Tk demonstration
	Tk commands, Part 1
	Tk commands, Part 2
	A real (small) Tk application
	A sample Tk app

	Getting to know Expect
	What is Expect?
	RFC retrieval with Expect
	The keys to Expect, Part 1
	The keys to Expect, Part 2
	What you can do with Expect

	Tcl/Tk extensions
	Tcl/Tk extensions intro
	[incr Tcl], [incr Tk], and more...
	Tix
	TclX
	Visit the extensions emporium

	Resources and feedback
	Collected resources
	Your feedback

