
The Design
of the

OpenGL Graphics Interface

Mark Segal
Kurt Akeley

Silicon Graphics Computer Systems
2011 N. Shoreline Blvd., Mountain View, CA 94039

Abstract

OpenGL is an emerging graphics standard that provides advanced
rendering features while maintaining a simple programming model.
Because OpenGL is rendering-only, it can be incorporated into any
window system (and has been, into the X Window System and a
soon-to-be-released version of Windows) or can be used without a
window system. An OpenGL implementation can efficiently ac-
commodate almost any level of graphics hardware, from a basic
framebuffer to the most sophisticated graphics subsystems. It is
therefore a good choice for use in interactive 3D and 2D graphics
applications.

We describe how these and other considerations have governed
the selection and presentation of graphical operators in OpenGL.
Complex operations have been eschewed in favor of simple, di-
rect control over the fundamental operations of 3D and 2D graph-
ics. Higher-level graphical functions may, however, be built from
OpenGL’s low-level operators, as the operators have been designed
with such layering in mind.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism

1 Introduction

Computer graphics (especially 3D graphics, and interactive 3D
graphics in particular) is finding its way into an increasing number of
applications, from simple graphing programs for personal comput-
ers to sophisticated modeling and visualization software on work-
stations and supercomputers. As the interest in computer graphics
has grown, so has the desire to be able to write applications that run
on a variety of platforms with a range of graphical capabilites. A
graphics standard eases this task by eliminating the need to write a
distinct graphics driver for each platform on which the application
is to run.

To be viable, a graphics standard intended for interactive 3D ap-
plications must satisfy several criteria. It must be implementable on
platforms with varying graphics capabilities without compromising
the graphics performance of the underlying hardware and without
sacrificing control over the hardware’s operation. It must provide
a natural interface that allows a programmer to describe rendering
operations tersely. Finally, the interface must be flexible enough to

Copyright c
�

1994 Silicon Graphics, Inc. All Rights reserved.

accommodate extensions so that as new graphics operations become
significant or available in new graphics subsystems, these operations
can be provided without disrupting the original interface.

OpenGL meets these criteria by providing a simple, direct in-
terface to the fundamental operations of 3D graphics rendering. It
supports basic graphics primitives such as points, line segments,
polygons, and images, as well as basic rendering operations such as
affine and projective transformations and lighting calculations. It
also supports advanced rendering features such as texture mapping
and antialiasing.

There are several other systems that provide an API (Application
Programmer’s Interface) for effecting graphical rendering. In the
case of 2D graphics, the PostScript page description language[5] has
become widely accepted, making it relatively easy to electronically
exchange, and, to a limited degree, manipulate static documents
containing both text and 2D graphics. Besides providing graphical
rendering operators, PostScript is also a stack-based programming
language.

The X window system[9] has become standard for UNIX work-
stations. A programmer uses X to obtain a window on a graphics
display into which either text or 2D graphics may be drawn; X
also provides a means for obtaining user input from such devices as
keyboards and mice. The adoption of X by most workstation man-
ufacturers means that a single program can produce 2D graphics or
obtain user input on a variety of workstations by simply recompil-
ing the program. This integration even works across a network: the
program may run on one workstation but display on and obtain user
input from another, even if the workstations on either end of the
network are made by different companies.

For 3D graphics, several systems are in use. One relatively well-
known system is PHIGS (Programmer’s Hierarchical Interactive
Graphics System). Based on GKS[6] (Graphics Kernel System),
PHIGS is an ANSI (American National Standards Institute) stan-
dard. PHIGS (and its descendant, PHIGS+[11]) provides a means
to manipulate and draw 3D objects by encapsulating object descrip-
tions and attributes into a display list that is then referenced when
the object is displayed or manipulated. One advantage of the display
list is that a complex object need be described only once even if it
is to be displayed many times. This is especially important if the
object to be displayed must be transmitted across a low-bandwidth
channel (such as a network). One disadvantage of a display list is
that it can require considerable effort to re-specify the object if it
is being continually modified as a result of user interaction. An-
other difficulty with PHIGS and PHIGS+ (and with GKS) is lack of
support for advanced rendering features such as texture mapping.

PEX[10] extends X to include the ability to manipulate and draw

1

3D objects. (PEXlib[7] is an API employing the PEX protocol.)
Originally� based on PHIGS, PEX allows immediate mode rendering,
meaning that objects can be displayed as they are described rather
than having to first complete a display list. PEX currently lacks
advanced rendering features (although a compatible version that
provides such features is under design), and is available only to users
of X. Broadly speaking, however, the methods by which graphical
objects are described for rendering using PEX (or rather, PEXlib)
are similar to those provided by OpenGL.

Like both OpenGL and PEXlib, Renderman[16] is an API that
provides a means to render goemetric objects. Unlike these in-
terfaces, however, Renderman provides a programming language
(called a shading language) for describing how these objects are to
appear when drawn. This programmability allows for generating
very realistic-looking images, but it is impractical to implement on
most graphics accelerators, making Renderman a poor choice for
interactive 3D graphics.

Finally, there are APIs that provide access to 3D rendering as
a result of methods for describing higher-level graphical objects.
Chief among these are HOOPS[17] and IRIS Inventor[15]. The ob-
jects provided by these interfaces are typically more complex than
the simple geometry describable with APIs like PEXlib or OpenGL;
they may comprise not only geometry but also information about
how they are drawn and how they react to user input. HOOPS
and Inventor free the programmer from tedious descriptions of in-
dividual drawing operations, but simple access to complex objects
generally means losing fine control over rendering (or at least mak-
ing such control difficult). In any case, OpenGL can provide a good
base on which to build such higher-level APIs.

2 OpenGL

In this section we present a brief overview of OpenGL. For a more
comprehensive description, the reader is referred to [8] or [13].

OpenGL draws primitives into a framebuffer subject to a num-
ber of selectable modes. Each primitive is a point, line segment,
polygon, pixel rectangle, or bitmap. Each mode may be changed in-
dependently; the setting of one does not affect the settings of others
(although many modes may interact to determine what eventually
ends up in the framebuffer). Modes are set, primitives specified,
and other OpenGL operations described by issuing commands in
the form of function or procedure calls.

Figure 1 shows a schematic diagram of OpenGL. Commands
enter OpenGL on the left. Most commands may be accumulated in
a display list for processing at a later time. Otherwise, commands
are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating
curve and surface geometry by evaluating polynomial functions
of input values. The next stage operates on geometric primitives
described by vertices: points, line segments, and polygons. In this
stage vertices are transformed and lit, and primitives are clipped to
a viewing volume in preparation for the next stage, rasterization.
The rasterizer produces a series of framebuffer addresses and values
using a two-dimensional description of a point, line segment, or
polygon. Each fragment so produced is fed to the next stage that
performs operations on individual fragments before they finally alter
the framebuffer. These operations include conditional updates into
the framebuffer based on incoming and previously stored depth
values (to effect depth buffering), blending of incoming fragment
colors with stored colors, as well as masking and other logical
operations on fragment values.

Finally, pixel rectangles and bitmaps bypass the vertex processing
portion of the pipeline to send a block of fragments directly through
rasterization to the individual fragment operations, eventually caus-
ing a block of pixels to be written to the framebuffer. Values may
also be read back from the framebuffer or copied from one portion
of the framebuffer to another. These transfers may include some
type of decoding or encoding.

3 Design Considerations

Designing any API requires tradeoffs between a number of general
factors like simplicity in accomplishing common operations vs. gen-
erality, or many commands with few arguments vs. few commands
with many arguments. In this section we describe considerations
peculiar to 3D API design that have influenced the development of
OpenGL.

3.1 Performance

A fundamental consideration in interactive 3D graphics is perfor-
mance. Numerous calculations are required to render a 3D scene of
even modest complexity, and in an interactive application, a scene
must generally be redrawn several times per second. An API for use
in interactive 3D applications must therefore provide efficient access
to the capabilities of the graphics hardware of which it makes use.
But different graphics subsystems provide different capabilities, so
a common interface must be found.

The interface must also provide a means to switch on and off vari-
ous rendering features. This is required both because some hardware
may not provide support for some features and so cannot provide
those features with acceptable performance, and also because even
with hardware support, enabling certain features or combinations of
features may decrease performance significantly. Slow rendering
may be acceptable, for instance, when producing a final image of
a scene, but interactive rates are normally required when manipu-
lating objects within the scene or adjusting the viewpoint. In such
cases the performance-degrading features may be desirable for the
final image, but undesirable during scene manipulation.

3.2 Orthogonality

Since it is desirable to be able to turn features on and off, it should
be the case that doing so has few or no side effects on other features.
If, for instance, it is desired that each polygon be drawn with a single
color rather than interpolating colors across its face, doing so should
not affect how lighting or texturing is applied. Similarly, enabling
or disabling any single feature should not engender an inconsistent
state in which rendering results would be undefined. These kinds of
feature independence are necessary to allow a programmer to easily
manipulate features without having to generate tests for particular il-
legal or undesirable feature combinations that may require changing
the state of apparently unrelated features. Another benefit of feature
independence is that features may be combined in useful ways that
may have been unforseen when the interface was designed.

3.3 Completeness

A 3D graphics API running on a system with a graphics subsystem
should provide some means to access all the significant functionality
of the subsystem. If some functionality is available but not provided,
then the programmer is forced to use a different API to get at the

2

Per−Vertex
Operations

Primitive
Assembly

Rasteriz−
ation

Per−
Fragment
Operations

Pixel
Operations

Display
List

Evaluator
Vertex
Data

Pixel
Data Texture

Memory

Framebuffer

Figure 1. Block diagram of OpenGL.

missing features. This may complicate the application because of
interaction between the two APIs.

On the other hand, if an implementation of the API provides cer-
tain features on one hardware platform, then, generally speaking,
those features should be present on any platform on which the API
is provided. If this rule is broken, it is difficult to use the API in a
program that is certain to run on diverse hardware platforms without
remembering exactly which features are supported on which ma-
chines. In platforms without appropriate acceleration, some features
may be poor performers (because they may have to be implemented
in software), but at least the intended image will eventually appear.

3.4 Interoperability

Many computing environments consist of a number of computers
(often made by different companies) connected together by a net-
work. In such an environment it is useful to be able to issue graphics
commands on one machine and have them execute on another (this
ability is one of the factors responsible for the success of X). Such
an ability (called interoperability) requires that the model of execu-
tion of API commands be client-server: the client issues commands,
and the server executes them. (Interoperability also requires that the
client and the server share the same notion of how API commands
are encoded for transmission across the network; the client-server
model is just a prerequisite.) Of course the client and the server
may be the same machine.

Since API commands may be issued across a network, it is im-
practical to require a tight coupling between client and server. A
client may have to wait for some time for an answer to a request
presented to the server (a roundtrip) because of network delays,
whereas simple server requests not requiring acknowledgement can
be buffered up into a large group for efficient transmission to and
execution by the server.

3.5 Extensibility

As was discussed in the introduction, a 3D graphics API should,
at least in principle, be extendable to incorporate new graphics
hardware features or algorithms that may become popular in the
future. Although attainment of this goal may be difficult to gauge
until long after the API is first in use, steps can be taken to help
to achieve it. Orthogonality of the API is one element that helps
achieve this goal. Another is to consider how the API would have
been affected if features that were consciously omitted were added
to the API.

3.6 Acceptance

It might seem that design of a clean, consistent 3D graphics API
would be a suficient goal in itself. But unless programmers decide
to use the API in a variety of applications, designing the API will
have served no purpose. It is therefore worthwhile to consider the
effect of design decisions on programmer acceptance of the API.

4 Design Features

In this section we highlight the general features of OpenGL’s design
and provide illustratations and justifications of each using specific
examples.

4.1 Based on IRIS GL

OpenGL is based on Silicon Graphics’ IRIS GL. While it would
have been possible to have designed a completely new API, expe-
rience with IRIS GL provided insight into what programmers want
and don’t want in a 3D graphics API. Further, making OpenGL sim-
ilar to IRIS GL where possible makes OpenGL much more likely
to be accepted; there are many successful IRIS GL applications,
and programmers of IRIS GL will have an easy time switching to
OpenGL.

4.2 Low-Level

An essential goal of OpenGL is to provide device independence
while still allowing complete access to hardware functionality. The
API therefore provides access to graphics operations at the lowest
possible level that still provides device independence. As a result,
OpenGL does not provide a means for describing or modeling com-
plex geometric objects. Another way to describe this situation is
to say that OpenGL provides mechanisms to describe how com-
plex geometric objects are to be rendered rather than mechanisms
to describe the complex object themselves.

The OpenGL Utility Library

One benefit of a low-level API is that there are no requirements on
how an application must represent or describe higher-level objects
(since there is no notion of such objects in the API). Adherence to
this principle means that the basic OpenGL API does not support
some geometric objects that are traditionally associated with graph-
ics APIs. For instance, an OpenGL implementation need not render
concave polygons. One reason for this omission is that concave

3

polygon rendering algorithms are of necessity more complex than
those� for rendering convex polygons, and different concave polygon
algorithms may be appropriate in different domains. In particular, if
a concave polygon is to be drawn more than once, it is more efficient
to first decompose it into convex polygons (or triangles) once and
then draw the convex polygons. Another reason for the omission
is that to render a general concave polygon, all of its vertices must
first be known. Graphics subsystems do not generally provide the
storage necessary for a concave polygon with a (nearly) arbitrary
number of vertices. Convex polygons, on the other hand, can be
reduced to triangles as they are specified, so no more than three
vertices need be stored.

Another example of the distinction between low-level and high-
level in OpenGL is the difference between OpenGL evaluators and
NURBS. The evaluator interface provides a basis for building a
general polynomial curve and surface package on top of OpenGL.
One advantage of providing the evaluators in OpenGL instead of a
more complex NURBS interface is that applications that represent
curves and surfaces as other than NURBS or that make use of special
surface properties still have access to efficient polynomial evaluators
(that may be implemented in graphics hardware) without incurring
the costs of converting to a NURBS representation.

Concave polygons and NURBS are, however, common and useful
operators, and they were familiar (at least in some form) to users of
IRIS GL. Therefore, a general concave polygon decomposer is pro-
vided as part of the OpenGL Utility Library, which is provided with
every OpenGL implementation. The UtilityLibrary also provides an
interface, built on OpenGL’s polynomial evaluators, to describe and
display NURBS curves and surfaces (with domain space trimming),
as well as a means of rendering spheres, cones, and cylinders. The
Utility Library serves both as a means to render useful geometric
objects and as a model for building other libraries that use OpenGL
for rendering.

In the client-server environment, a utility library raises an issue:
utility library commands are converted into OpenGL commands on
the client; if the server computer is more powerful than the client,
the client-side conversion might have been more effectively carried
out on the server. This dilemma arises not just with OpenGL but
with any library in which the client and server may be distinct
computers. In OpenGL, the base functionality reflects the functions
efficiently performed by advanced graphics subsystems, because no
matter what the power of the server computer relative to the client,
the server’s graphics subsystem is assumed to efficiently perform
the functions it provides. If in the future, for instance, graphics
subsystems commonly provide full trimmed NURBS support, then
such functionality should likely migrate from the Utility Library to
OpenGL itself. Such a change would not cause any disruption to
the rest of the OpenGL API; another block would simply be added
to the left side in Figure 1.

4.3 Fine-Grained Control

In order to minimize the requirements on how an application using
the API must store and present its data, the API must provide a
means to specify individual components of geometric objects and
operations on them. This fine-grained control is required so that
these components and operations may be specified in any order
and so that control of rendering operations is flexible enough to
accommodate the requirements of diverse applications.

Vertices and Associated Data

In OpenGL, most geometric objects are drawn by enclosing a se-
ries of coordinate sets that specify vertices and optionally normals,
texture coordinates, and colors between glBegin/glEnd command
pairs. For example, to specify a triangle with vertices at �����������
	 ,
�����������	 , and �����������	 , one could write:

glBegin(GL_POLYGON);
glVertex3i(0,0,0);
glVertex3i(0,1,0);
glVertex3i(1,0,1);

glEnd();

Each vertex may be specified with two, three, or four coordinates
(four coordinates indicate a homogeneous three-dimensional loca-
tion). In addition, a current normal, current texture coordinates,
and current color may be used in processing each vertex. OpenGL
uses normals in lighting calculations; the current normal is a three-
dimensional vector that may be set by sending three coordinates that
specify it. Color may consist of either red, green, blue, and alpha
values (when OpenGL has been initialized to RGBA mode) or a
single color index value (when initialization specified color index
mode). One, two, three, or four texture coordinates determine how
a texture image maps onto a primitive.

Each of the commands that specify vertex coordinates, normals,
colors, or texture coordinates comes in several flavors to accomodate
differing application’s data formats and numbers of coordinates.
Data may also be passed to these commands either as an argument
list or as a pointer to a block of storage containing the data. The
variants are distinguished by mnemonic suffixes.

Using a procedure call to specify each individual group of data
that together define a primitive means that an application may store
data in any format and order that it chooses; data need not be stored
in a form convenient for presentation to the graphics API because
OpenGL accomodates almost any data type and format using the
appropriate combination of data specification procedures. Another
advantage of this scheme is that by simply combining calls in the
appropriate order, different effects may be achieved. Figure 2 shows
an example of a uniformly colored triangle obtained by specifying a
single color that is inherited by all vertices of the triangle; a smooth
shaded triangle is obtained by respecifying a color before each
vertex. Not every possible data format is supported (byte values
may not be given for vertex coordinates, for instance) only because
it was found from experience with IRIS GL that not all formats are
used. Adding the missing formats in the future, however, would be
a trivial undertaking.

One disadvantage of using procedure calls on such a fine grain
is that it may result in poor performance if procedure calls are
costly. In such a situation an interface that specifies a format for
a block of data that is sent all at once may have a performance
advantage. The difficulty with specifying a block of data, however,
is that it either constrains the application to store its data in one
of the supported formats, or it requires the application to copy
its data into a block structured in one of those formats, resulting
in inefficiency. (Allowing any format arising from an arbitrary
combination of individual data types is impractical because there
are so many combinations.)

In OpenGL, the maximum flexibility provided by individual pro-
cedure calls was deemed more important than any inefficiency in-
duced by using those calls. This decision is partly driven by the
consideration that modern compilers and computer hardware have
improved to the point where procedure calls are usually relatively

4

Figure 2. (a) A uniformly colored triangle. (b) A Gouraud shaded
triangle. (c) A scene consisting of many lit, shaded polygons.

inexpensive, especially when compared with the work necessary to
process the geometric data contained in the call. This is one area in
which OpenGL differs significantly from PEX; with PEX, a prim-
itive’s vertices (and associated data) are generally presented all at
once in a single array. If it turns out that fine-grained procedure calls
are too expensive, then it may be necessary to add a few popular
block formats to the OpenGL API or to provide a mechanism for
defining such formats.

4.4 Modal

As a consequence of fine-grained control, OpenGL maintains con-
siderable state, or modes, that determines how primitives are ren-
dered. This state is present in lieu of having to present a large amount
of information with each primitive that would describe the settings
for all the operations to which the primitive would be subjected.
Presenting so much information with each primitive is tedious and
would result in excessive data being transmitted from client to server.
Therefore, essentially no information is presented with a primitive
except what is required to define it. Instead, a considerable propor-
tion of OpenGL commands are devoted to controlling the settings
of rendering operations.

One difficulty with a modal API arises in implementations in
which separate processors (or processes) operate in parallel on dis-
tinct primitives. In such cases, a mode change must be broadcast to
all processors so that each receives the new parameters before it pro-
cesses its next primitive. A mode change is thus processed serially,
halting primitive processing until all processors have received the
change, and reducing performance accordingly. One way to lessen
the impact of mode changes in such a system is to insert a processor
that distributes work among the parallel processors. This processor
can buffer up a string of mode changes, transmitting the changes all
at once only when another primitive finally arrives[1].

Another way to handle state changes relies on defining groups
of named state settings which can then be invoked simply by pro-
viding the appropriate name (this is the approach taken by X and
PEX). With this approach, a single command naming the state set-
ting changes the server’s settings. This approach was rejected for
OpenGL for several reasons. Keeping track of a number of state vec-
tors (each of which may contain considerable information) may be
impractical on a graphics subsystem with limited memory. Named
state settings also conflict with the emphasis on fine-grained con-
trol; there are cases, as when changing the state of a single mode,
when transmitting the change directly is more convenient and effi-
cient than first setting up and then naming the desired state vector.
Finally, the named state setting approach may still be used with

OpenGL by encapsulating state changing commands in display lists
(see below).

The Matrix Stack

Three kinds of transformation matrices are used in OpenGL: the
model-view matrix, which is applied to vertex coordinates; the tex-
ture matrix, which is applied to texture coordinates; and the pro-
jection matrix, which describes the viewing frustum and is applied
to vertex coordinates after they are transformed by the model-view
matrix. Each of these matrices is ����� .

Any of one these matrices may be loaded with or multiplied by
a general transformation; commands are provided to specify the
special cases of rotation, translation and scaling (since these cases
take only a few parameters to specify rather than the 16 required for
a general transformation). A separate command controls a mode
indicating which matrix is currently affected by any of these manip-
ulations. In addition, each matrix type actually consists of a stack
of matrices that can be pushed or popped. The matrix on the top of
the stack is the one that is applied to coordinates and that is affected
by matrix manipulation commands.

The retained state represented by these three matrix stacks simpli-
fies specifying the transformations found in hierarchical graphical
data structures. Other graphics APIs also employ matrix stacks,
but often only as a part of more general attribute structures. But
OpenGL is unique in providing three kinds of matrices which can
be manipulated with the same commands. The texture matrix, for
instance, can be used to effectively rotate or scale a texture image
applied to primitive, and when combined with perspective viewing
transformations, can even be used to obtain projective texturing ef-
fects such as spotlight simulation and shadow effects using shadow
maps[14].

State Queries and Attribute Stacks

The value of nearly any OpenGL parameter may be obtained by an
appropriate get command. There is also a stack of parameter values
that may be pushed and popped. For stacking purposes, all parame-
ters are divided into 21 functional groups; any combination of these
groups may be pushed onto the attribute stack in one operation (a
pop operation automatically restores only those values that were last
pushed). The get commands and parameter stacks are required so
that various libraries may make use of OpenGL efficiently without
interfering with one another.

4.5 Framebuffer

Most of OpenGL requires that the graphics hardware contain a
framebuffer. This is a reasonable requirement since nearly all inter-
active graphics applications (as well as many non-interactive ones)
run on systems with framebuffers. Some operations in OpenGL
are achieved only through exposing their implementation using a
framebuffer (transparency using alpha blending and hidden sur-
face removal using depth buffering are two examples). Although
OpenGL may be used to provide information for driving such de-
vices as pen-plotters and vector displays, such use is secondary.

Multipass Algorithms

One useful effect of making the framebuffer explicit is that it en-
ables the use of multipass algorithms, in which the same primitives
are rendered several times. One example of a multipass algorithm

5

employs an accumulation buffer[3]: a scene is rendered several
times,� each time with a slightly different view, and the results av-
eraged in the framebuffer. Depending on how the view is altered
on each pass, this algorithm can be used to achieve full-window
anti-aliasing, depth-of-field effects, motion blur, or combinations of
these. Multipass algorithms are simple to implement in OpenGL,
because only a small number of parameters must be manipulated
between passes, and changing the values of these parameters is
both efficient and without side effects on other parameters that must
remain constant.

Invariance

Consideration of multipass algorithms brings up the issue of how
what is drawn in the framebuffer is or is not affected by changing pa-
rameter values. If, for instance, changing the viewpoint affected the
way in which colors were assigned to primitives, the accumulation
buffer algorithm would not work. For a more plausible example, if
some OpenGL feature is not available in hardware, then an OpenGL
implementation must switch from hardware to software when that
feature is switched on. Such a switch may significantly affect what
eventually reaches the framebuffer because of slight differences in
the hardware and software implementations.

The OpenGL specification is not pixel exact; it does not indi-
cate the exact values to which certain pixels must be set given a
certain input. The reason is that such specification, besides being
difficult, would be too restrictive. Different implementations of
OpenGL run on different hardware with different floating-point for-
mats, rasterization algorithms, and framebuffer configurations. It
should be possible, nonetheless, to implement a variety of multipass
algorithms and expect to get reasonable results.

For this reason, the OpenGL specification gives certain invariance
rules that dictate under what circumstances one may expect identi-
cal results from one particular implementation given certain inputs
(implementations on different systems are never required to pro-
duce identical results given identical inputs). These rules typically
indicate that changing parameters that control an operation cannot
affect the results due to any other operation, but that such invariance
is not required when an operation is turned on or off. This makes it
possible for an implementation to switch from hardware to software
when a mode is invoked without breaking invariance. On the other
hand, a programmer may still want invariance even when toggling
some mode. To accommodate this case, any operation covered by
the invariance rules admits a setting of its controlling parameters
that cause the operation to act as if it were turned off even when it is
on. A comparison, for instance, may be turned on or off, but when
on, the comparison that is performed can be set to always (or never)
pass.

4.6 Not Programmable

OpenGL does not provide a programming language. Its function
may be controlled by turning operations on or off or specifying pa-
rameters to operations, but the rendering algorithms are essentially
fixed. One reason for this decision is that, for performance reasons,
graphics hardware is usually designed to apply certain operations in
a specific order; replacing these operations with arbitrary algorithms
is usually infeasible. Programmability would conflict with keeping
the API close to the hardware and thus with the goal of maximum
performance.

The Graphics Pipeline and Per-Fragment Operations

The model of command execution in OpenGL is that of a pipeline
with a fixed topology (although stages may be switched in or out).
The pipeline is meant to mimic the organization of graphics sub-
systems. The final stages of the pipeline, for example, consist of
a series of tests on and modifications to fragments before they are
eventually placed in the framebuffer. To draw a complex scene in a
short amount of time, many fragments must pass through these final
stages on their way to the framebuffer, leaving little time to process
each fragment. Such high fill rates demand special purpose hard-
ware that can only perform fixed operations with minimum access
to external data.

Even though fragment operations are limited, many interesting
and useful effects may be obtained by combining the operations ap-
propriately. Per-fragment operations provided by OpenGL include

� alpha blending: blend a fragment’s color with that of the cor-
responding pixel in the framebuffer based on an alpha value;

� depth test: compare a depth value associated with a fragment
with the corresponding value already present in the framebuffer
and discard or keep the fragment based on the outcome of the
comparison;

� stencil test: compare a reference value with a corresponding
value stored in the framebuffer and update the value or discard
the fragment based on the outcome of the comparison.

Alpha blending is useful to achieve transparency or to blend a frag-
ment’s color with that of the background when antialiasing; the
depth test can effect depth-buffering (and thus hidden surface re-
moval); the stencil test can be used for a number of effects[12],
including highlighting interference regions and simple CSG (Con-
structive Solid Geometry) operations. These (and other) operations
may be combined to achieve, for instance, transparent interference
regions with hidden surfaces removed, or any number of other ef-
fects.

The OpenGL graphics pipeline also induces a kind of orthogonal-
ity among primitives. Each vertex, whether it belongs to a point, line
segment, or polygon primitive, is treated in the same way: its coor-
dinates are transformed and lighting (if enabled) assigns it a color.
The primitive defined by these vertices is then rasterized and con-
verted to fragments, as is a bitmap or image rectangle primitive. All
fragments, no matter what their origin, are treated identically. This
homogeneity among operations removes unneeded special cases
(for each primitive type) from the pipeline. It also makes natural the
combination of diverse primitives in the same scene without having
to set special modes for each primitive type.

4.7 Geometry and Images

OpenGL provides support for handling both 3D (and 2D) geometry
and 2D images. An API for use with geometry should also provide
support for writing, reading, and copying images, because geometry
and images are often combined, as when a 3D scene is laid over a
background image. Many of the per-fragment operations that are
applied to fragments arising from geometric primitives apply equally
well to fragments corresponding to pixels in an image, making it
easy to mix images with geometry. For example, a triangle may
be blended with an image using alpha blending. OpenGL supports
a number of image formats and operations on image components
(such as lookup tables) to provide flexibility in image handling.

6

Texture Mapping

Texture mapping provides an important link between geometry and
images by effectively applying an image to geometry. OpenGL
makes this coupling explicit by providing the same formats for
specifying texture images as for images destined for the framebuffer.

Besides being useful for adding realism to a scene (Figure 3a),
texture mapping can be used to achieve a number of other useful
effects[4]. Figures 3b and 3c show two examples in which the tex-
ture coordinates that index a texture image are generated from vertex
coordinates. OpenGL’s orthogonality makes achieving such effects
with texture mapping simply a matter of enabling the appropriate
modes and loading the appropriate texture image, without affecting
the underlying specification of the scene.

4.8 Immediate Mode and Display Lists

The basic model for OpenGL command interpretation is immediate
mode, in which a command is executed as soon as the server receives
it; vertex processing, for example, may begin even before specifi-
cation of the primitive of which it is a part has been completed.
Immediate mode execution is well-suited to interactive applications
in which primitives and modes are constantly altered. In OpenGL,
the fine-grained control provided by immediate mode is taken as
far as possible: even individual lighting parameters (the diffuse re-
flectance color of a material, for instance) and texture images are
set with individual commands that have immediate effect.

While immediate mode provides flexibility, its use can be ineffi-
cient if unchanging parameters or objects must be respecified. To
accommodate such situations, OpenGL provides display lists. A
display list encapsulates a sequence of OpenGL commands (all but
a handful of OpenGL commands may be placed in a display list),
and is stored on the server. The display list is given a numeric name
by the application when it is specified; the application need only
name the display list to cause the server to effectively execute all
the commands contained within the list. This mechanism provides
a straightforward, effective means for an application to transmit a
group of commands to the server just once even when those same
commands must be executed many times.

Display List Optimization

Accumulating commands into a group for repeated execution
presents possibilities for optimization. Consider, for example, spec-
ifying a texture image. Texture images are often large, requiring
a large, and therefore possibly slow, data transfer from client to
server (or from the server to its graphics subsystem) whenever the
image is respecified. For this reason, some graphics subsystems
are equipped with sufficient storage to hold several texture images
simultaneously. If the texture image definition is placed in a display
list, then the server may be able to load that image just once when
it is specified. When the display list is invoked (or re-invoked), the
server simply indicates to the graphics subsystem that it should use
the texture image already present in its memory, thus avoiding the
overhead of respecifying the entire image.

Examples like this one indicate that display list optimization is
required to achieve the best performance. In the case of texture
image loading, the server is expected to recognize that a display
list contains texture image information and to use that information
appropriately. This expectation places a burden on the OpenGL
implementor to make sure that special display list cases are treated
as efficiently as possible. It also places a burden on the application

writer to know to use display lists in cases where doing so could
improve performance. Another possibility would have been to in-
troduce special commands for functions that can be poor performers
in immediate mode. But such specialization would clutter the API
and blur the clear distinction between immediate mode and display
lists.

Display List Hierarchies

Display lists may be redefined in OpenGL, but not edited. The
lack of editing simplifies display list memory management on the
server, eliminating the penalty that such management would incur.
One display list may, however, invoke others. An effect similar to
display list editing may thus be obtained by: (1) building a list that
invokes a number of subordinate lists; (2) redefining the subordinate
lists. This redefinition is possible on a fine grain: a subordinate
display list may contain anything (even nothing), including just a
single vertex or color command.

There is no automatic saving or restoring of modes associated with
display list execution. (If desired, such saving and restoring may be
performed explicitly by encapsulating the appropriate commands in
the display list.) This allows the highest possible performance in
executing a display list, since there is almost no overhead associated
with its execution. It also simplifies controlling the modal behavior
of display list hierarchies: only modes explicitly set are affected.

Lack of automatic modal behavior in display lists also has a
disadvantage: it is difficult to execute display lists in parallel, since
the modes set in one display list must be in effect before a following
display list is executed. In OpenGL, display lists are generally not
used for defining whole scenes or complex portions of scenes but
rather for encapsulating groups of frequently repeated mode setting
commands (describing a texture image, for instance) or commands
describing simple geometry (the polygons approximating a torus,
for instance).

4.9 Depth buffer

The only hidden surface removal method directly provided by
OpenGL is the depth (or �) buffer. This assumption is in line
with that of the graphics hardware containing a framebuffer. Other
hidden surface removal methods may be used with OpenGL (a BSP
tree[2] coupled with the painter’s algorithm, for instance), but it is
assumed that such methods are never supported in hardware and
thus need not be supported explicitly by OpenGL.

4.10 Local Shading

The only shading methods provided by OpenGL are local. That is,
methods for determining surface color such as ray-tracing or radios-
ity that require obtaining information from other parts of the scene
are not directly supported. The reason is that such methods re-
quire knowledge of the global scene database, but so far specialized
graphics hardware is structured as a pipeline of localized operations
and does not provide facilities to store and traverse the large amount
of data necessary to represent a complex scene. Global shading
methods may be used with OpenGL only if the shading can be pre-
computed and the results associated with graphical objects before
they are transmitted to OpenGL.

7

Figure 3. (a) A scene with a number of textures mapped onto primitives. (b) Contouring achieved with
texture mapping and a texture coordinate generation function. (c) Reflectance mapping with a texture coordinate
generation function.

4.11 Rendering Only

OpenGL provides access to rendering operations only. There are no
facilities for obtaining user input from such devices as keyboards
and mice, since it is expected that any system (in particular, a
window system) under which OpenGL runs must already provide
such facilities. Further, the effects of OpenGL commands on the
framebuffer are ultimately controlled by the window system (if there
is one) that allocates framebuffer resources. The window system
determines which portions of the framebuffer OpenGL may access
and communicates to OpenGL how those portions are structured.
These considerations make OpenGL window system independent.

Integration in X

X provides both a procedural interface and a network protocol for
creating and manipulating framebuffer windows and drawing certain
2D objects into those windows. OpenGL is integrated into X by
making it a formal X extension called GLX. GLX consists of about
a dozen calls (with corresponding network encodings) that provide
a compact, general embedding of OpenGL in X. As with other X
extensions (two examples are Display PostScript and PEX), there
is a specific network protocol for OpenGL rendering commands
encapsulated in the X byte stream.

OpenGL requires a region of a framebuffer into which primitives
may be rendered. In X, such a region is called a drawable. A
window, one type of drawable, has associated with it a visual that
describes the window’s framebuffer configuration. In GLX, the
visual is extended to include information about OpenGL buffers
that are not present in unadorned X (depth, stencil, accumulation,
front, back, etc.).

X also provides a second type of drawable, the pixmap, which
is an off-screen framebuffer. GLX provides a GLX pixmap that
corresponds to an X pixmap, but with additional buffers as indicated
by some visual. The GLX pixmap provides a means for OpenGL
applications to render off-screen into a software buffer.

To make use of an OpenGL-capable drawable, the programmer
creates an OpenGL context targeted to that drawable. When the
context is created, a copy of an OpenGL renderer is initialized with
the visual information about the drawable. This OpenGL renderer
is conceptually (if not actually) part of the X server, so that, once
created, an X client may connect to the OpenGL context and issue
OpenGL commands (Figure 4). Multiple OpenGL contexts may

Application
and Toolkit

GLX
GLX Client

X Server

Xlib Direct
OpenGL
Renderer

Dispatch

X Renderer

OpenGL
Renderer

Other Renderers

Framebuffer

Figure 4. GLX client, X server, and OpenGL renderers.

be created that are targeted to distinct or shared drawables. Any
OpenGL-capable drawable may also be used for standard X drawing
(those buffers of the drawable that are unused by X are ignored by
X).

A GLX client that is running on a computer of which the graph-
ics subsystem is a part may avoid passing OpenGL tokens through
the X server. Such direct rendering may result in increased graph-
ics performance since the overhead of token encoding, decoding,
and dispatching is eliminated. Direct rendering is supported but
not required by GLX. Direct rendering is feasible because sequen-
tiality need not be maintained between X commands and OpenGL
commands except where commands are explicitly synchronized.

Because OpenGL comprises rendering operations only, it fits well
into already existing window systems (integration into Windows
is similar to that described for X) without duplicating operations
already present in the window system (like window control or mouse
event generation). It can also make use of window system features
such as off-screen rendering, which, among other uses, can send the
results of OpenGL commands to a printer. Rendering operations
provided by the window system may even be interspersed with those
of OpenGL.

4.12 API not Protocol

PEX is primarily specified as a network protocol; PEXlib is a pre-
sentation of that protocol through an API. OpenGL, on the other

8

hand, is primarily specified as an API; the API is encoded in a
specified� network protocol when OpenGL is embedded in a system
(like X) that requires a protocol. One reason for this preference is
that an applications programmer works with the API and not with
a protocol. Another is that different platforms may admit different
protocols (X places certain constraints on the protocol employed by
an X extension, while other window systems may impose different
constraints). This means that the API is constant across platforms
even when the protocol cannot be, thereby making it possible to use
the same source code (at least for the OpenGL portion) without re-
gard for any particular protocol. Further, when the client and server
are the same computer, OpenGL commands may be transmitted
directly to a graphics subsystem without conversion to a common
encoding.

Interoperability between diverse systems is not compromised by
preferring an API specification over one for a protocol. Tests in
which an OpenGL client running under one manufacturer’s imple-
mentation was connected to another manufacturer’s OpenGL server
have provided excellent results.

5 Example: Three Kinds of Text

To illustrate the flexibility of OpenGL in performing different types
of rendering tasks, we outline three methods for the particular task
of displaying text. The three methods are: using bitmaps, using line
segments to generate outlined text, and using a texture to generate
antialiased text.

The first method defines a font as a series of display lists, each of
which contains a single bitmap:

for i = start + ’a’ to start + ’z’ {
glBeginList(i);
glBitmap(...);

glEndList();
}

glBitmap specifies both a pointer to an encoding of the bitmap
and offsets that indicate how the bitmap is positioned relative to
previous and subsequent bitmaps. In GLX, the effect of defining a
number of display lists in this way may also be achieved by calling
glXUseXFont. glXUseXFont generates a number of display
lists, each of which contains the bitmap (and associated offsets) of a
single character from the specified X font. In either case, the string
“Bitmapped Text” whose origin is the projection of a location in 3D
is produced by

glRasterPos3i(x, y, z);
glListBase(start);
glCallLists("Bitmapped Text",14,GL_BYTE);

See Figure 5a. glListBase sets the display list base so that the
subsequent glCallLists references the characters just defined.
glCallLists invokes a series of display lists specified in an
array; each value in the array is added to the display list base to
obtain the number of the display list to use. In this case the array
is an array of bytes representing a string. The second argument to
glCallLists indicates the length of the string; the third argument
indicates that the string is an array of 8-bit bytes (16- and 32-bit
integers may be used to access fonts with more than 256 characters).

The second method is similar to the first, but uses line segments
to outline each character. Each display list contains a series of line
segments:

(a) (b) (c)

Figure 5. (a) Bitmap example. (b) Stroke font example. (c) Texture
mapped font example.

glTranslate(ox, oy, 0);
glBegin(GL_LINES);

glVertex(...);
...

glEnd();
glTranslate(dx-ox, dy-oy, 0);

The initial glTranslate updates the transformation matrix to
position the character with respect to a character origin. The final
glTranslate updates that character origin in preparation for the
following character. A string is displayed with this method just as
in the previous example, but since line segments have 3D position,
the text may be oriented as well as positioned in 3D (Figure 5b).
More generally, the display lists could contain both polygons and
line segments, and these could be antialiased.

Finally, a different approach may be taken by creating a texture
image containing an array of characters. A certain range of texture
coordinates thus corresponds to each character in the texture image.
Each character may be drawn in any size and in any 3D orientation
by drawing a rectangle with the appropriate texture coordinates at
its vertices:

glTranslate(ox, oy, 0);
glBegin(GL_QUADS)

glTexCoord(...);
glVertex(...);

...
glEnd();
glTranslate(dx-ox, dy-oy, 0);

If each group of commands for each character is enclosed in a
display list, and the commands for describing the texture image
itself (along with the setting of the list base) are enclosed in another
display list called TEX, then the string “Texture mapped text!!” may
be displayed by:

glCallList(TEX);
glCallLists("Texture mapped text!!",21,

GL_BYTE);

One advantage of this method is that, by simply using appropriate
texture filtering, the resulting characters are antialiased (Figure 5c).

6 Conclusion

OpenGL is a 3D graphics API intended for use in interactive applica-
tions. It has been designed to provide maximum access to hardware
graphics capabilities, no matter at what level such capabilities are

9

available. This efficiency stems from a flexible interface that pro-
vides� direct control over fundamental operations. OpenGL does
not enforce a particular method of describing 3D objects and how
they should appear, but instead provides the basic means by which
those objects, no matter how described, may be rendered. Because
OpenGL imposes minimum structure on 3D rendering, it provides
an excellent base on which to build libraries for handling structured
geometric objects, no matter what the particular structures may be.

The goals of high performance, feature orthogonality, interoper-
ability, implementability on a variety of systems, and extensibility
have driven the design of OpenGL’s API. We have shown the effects
of these and other considerations on the presentation of rendering
operations in OpenGL. The result has been a straightforward API
with few special cases that should be easy to use in a variety of
applications.

Future work on OpenGL is likely to center on improving im-
plementations through optimization, and extending the API to han-
dle new techniques and capabilities provided by graphics hardware.
Likely candidates for inclusion are image processing operators, new
texture mapping capabilities, and other basic geometric primitives
such as spheres and cylinders. We believe that the care taken in
the design of the OpenGL API will make these as well as other
extensions simple, and will result in OpenGL’s remaining a useful
3D graphics API for many years to come.

References

[1] Kurt Akeley. RealityEngine graphics. In SIGGRAPH 93 Con-
ference Proceedings, pages 109–116, August 1993.

[2] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface
generation by a priori tree structures. Computer Graphics
(SIGGRAPH ’80 Proceedings), 14(3):124–133, July 1980.

[3] Paul Haeberli and Kurt Akeley. The accumulation buffer:
Hardware support for high-quality rendering. Computer
Graphics (SIGGRAPH ’90 Proceedings), 24(2):309–318, July
1990.

[4] Paul Haeberli and Mark Segal. Texture mapping as a fun-
damental drawing primitive. In Proceedings of the Fourth
Eurographics Workshop on Rendering, pages 259–266, June
1993.

[5] Adobe Systems Incorporated. PostScript Language Reference
Manual. Addison-Wesley, Reading, Mass., 1986.

[6] International Standards Organization. International standard
information processing systems — computer graphics —
graphical kernel system for three dimensions (GKS-3D) func-
tional description. Technical Report ISO Document Number
9905:1988(E), American National Standards Institute, New
York, 1988.

[7] Jeff Stevenson. PEXlib specification and C language binding,
version 5.1P. The X Resource, Special Issue B, September
1992.

[8] Jackie Neider, Mason Woo, and Tom Davis. OpenGL Pro-
gramming Guide. Addison-Wesley, Reading, Ma., 1993.

[9] Adrian Nye. X Window System User’s Guide, volume 3 of
The Definitive Guides to the X Window System. O’Reilly and
Associates, Sebastapol, Ca., 1987.

[10] Paula Womack, ed. PEX protocol specification and encoding,
version 5.1P. The X Resource, Special Issue A, May 1992.

[11] PHIGS+ Committee, Andries van Dam, chair. PHIGS+
functional description, revision 3.0. Computer Graphics,
22(3):125–218, July 1988.

[12] Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider.
Interactive inspection of solids: Cross-sections and interfer-
ences. Computer Graphics (SIGGRAPH ’92 Proceedings),
26(2):353–360, July 1992.

[13] Mark Segal and Kurt Akeley. The OpenGL graphics system:
A specification. Technical report, Silicon Graphics Computer
Systems, Mountain View, Ca., 1992.

[14] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran,
and Paul Haeberli. Fast shadows and lighting effects using
texture mapping. Computer Graphics (SIGGRAPH ’92 Pro-
ceedings), 26(2):249–252, July 1992.

[15] Paul S. Strauss and Rikk Carey. An object-oriented 3D graph-
ics toolkit. Computer Graphics (SIGGRAPH ’92 Proceed-
ings), 26(2):341–349, July 1992.

[16] Steve Upstill. The RenderMan Companion. Addison-Wesley,
Reading, Mass., 1990.

[17] Garry Wiegand and Bob Covey. HOOPS Reference Manual,
Version 3.0. Ithaca Software, 1991.

10

