
UNIX Systems Programming II

Short Course Notes

Alan Dix © 1996

http://www.hcibook.com/alan/

UNIXSystems
ProgrammingII
UNIXSystems
ProgrammingII

UNIXSystems
ProgrammingII

UNIXSystems
Programming II

UNIXSystems
ProgrammingII

http://www.hcibook.com/alan/

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/i

UNIXSystems
ProgrammingII

Course
Outline

Alan Dix

http://www.hcibook.com/alan/

Session 1 files and devices inodes, stat, /dev files, ioctl,
reading directories,
file descriptor sharing and dup2,
locking and network caching

Session 2 process handling UNIX processes, fork, exec,
process death: SIGCHLD and wait,
kill and I/O issues for fork

Session 3 inter-process
communication

pipes: at the shell , in C code and
use with exec, pseudo-terminals,
sockets and deadlock avoidance

Session 4 non-blocking I/O and
select

UNIX events: signals, times and
I/O; setting timers, polling, select,
interaction with signals and an
example Internet server

http://www.hcibook.com/alan/

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/ii

UNIXSystems
ProgrammingII Reading

¥ The Unix V Environment,
Stephen R. Bourne,
Wiley, 1987, ISBN 0 201 18484 2
The author of the Borne Shell! A 'classic' which deals with system
calls, the shell and other aspects of UNIX.

¥ Unix For Programmers and Users,
Graham Glass,
Prentice-Hall, 1993, ISBN 0 13 061771 7
Slightly more recent book also covering shell and C programming.

Ì BEWARE Ð UNIX systems differ in details,
check on-line documentation

¥ UNIX manual pages:
man creat etc.

Most of the system calls and functions are in section 2 and 3 of the
manual. The pages are useful once you get used to reading them!

¥ The include files themselves
/usr/include/time.h etc.

Takes even more getting used to, but the ultimate reference to
structures and definitions on your system.

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/1

UNIXSystems
ProgrammingII Session 1

files and devices

¥ inodes

¥ stat

¥ /dev

¥ special devices

¥ ioctl, fnctl

¥ directories

¥ file descriptors and dup2

¥ locking and network problems

☞ a simple ls

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/2

UNIX filesystem

UNIX filesystem:
❍ disk (partition) Ð inode table (file contents)
❍ directories Ð maps names to files
❍ mount points Ð links between disks
❍ special files Ð e.g. /dev, /n

0
1
2

579
580
581
582

... ...
tom

fred

..

.

2

580
0

582

directory

hd2

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/3

inodes

¥ each disk has an inode table

❍ one inode for each file on the disk

¥ inode contains

❍ permissions: read/write/execute
❍ other flags: directory, symbolic link, setuid
❍ times: creation, modification, access
❍ pointers to disk blocks containing file

¥ directories

❍ of the form:
filename → inode number

❍ no other information Ð all in the inode

¥ hard link:

❍ two names → same inode number
❍ when safe to delete?

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/4

inode reference counts

¥ inode has count of number of links

¥ unlink system call does two things:

① remove directory entry
② subtract 1 from link count

¥ when count is zero safe to delete file
. . . or is it?

✘ what about open files?
❍ file disappears
❍ program does read/write
❍ disaster

✓ UNIX also keeps in-memory reference count
❍ only deleted when both are zero

❍ last close to the file → file finally disappears

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/5

stat system call

#include <sys/types.h>
#include <sys/stat.h>
struct stat buf

int res = stat(filename,&buf);

¥ gets information for the file pointed to by filename

¥ all the inode information

¥ in addition device information
❍ device number (which disk)
❍ inode number

¥ inode information includes:
❍ mode Ð buf.st_mode
❍ size Ð buf.st_size
❍ owner Ð buf.st_uid
❍ block size Ð buf.st_blksize
❍ number of links Ð buf.st_nlink
❍ update time Ð buf.st_mtime

¥ can also get/set mode using chmod

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/6

stat – 2

¥ variants of stat :
lstat(filename,&buf)

❍ same except for symbolic links
❍ gives info for link rather than target

fstat(fd,&buf)
❍ gives info for open file descriptor
❍ useful for standard input/output

¥ mode flags Ð buf.st_mode
❍ permissions
❍ file type

¥ can test mode flags using bit operations
if (buf.st_mode & S_IWUSR) . . .

Ð user has write permission?

¥ also macros for file types, including:
S_ISDIR(buf.st_mode) Ð directory
S_ISREG(buf.st_mode) Ð regular file
S_ISLNK(buf.st_mode) Ð symbolic link

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/7

/dev

¥ UNIX makes everything look like a file!

¥ many physical devices appear in /dev

❍ /dev/hd?? Ð hard disk
❍ /dev/fd?? Ð floppy disk
❍ /dev/s?? Ð serial port

¥ in addition, many logical devices

❍ /dev/tty Ð the terminal for this
process

❍ /dev/win?? Ð windows
❍ /dev/pty??

/dev/tty?? Ð pseudo-terminals
❍ /dev/kmem Ð kernel memory
❍ /dev/null Ð empty source, infinite sink

¥ logical devices may be system wide
e.g. pseudo-terminals

¥ or different for each process
e.g. /dev/tty

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/8

special files/devices

¥ logical and physical devices of two kinds:

❍ character special
❍ block special

¥ character special files

❍ when it is reasonable to think of the device
as a sequence of bytes

e.g. serial port

¥ block special files

❍ when it is reasonable to think of the device
as a sequence of blocks of bytes

e.g. formatted disk
❍ get the block size right!

¥ some physical devices have both

❍ hard disk
high level Ð block special
low level Ð character special

❍ different semantics

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/9

ioctl system call

¥ all devices appear as files . . .
. . . equal but different !

¥ ioctl system call allows device specific control

int res = ioctl(fd, cmd, arg);

int fd Ð file descriptor to control
int cmd Ð command/request to perform
caddr_t arg; Ð data structure to use/fill

¥ nature of requests depend on device
❍ see section 4 of manual for device specific requests

filio Ð general ÔfileÕ requests
termio - terminal requests
sockio - socket requests (e.g. TCP/IP)

¥ type of argument depends on request
❍ read description of request in manual page

¥ argument may supply data and/or be used for result

¥ some device specific wrapper functions:
stty /gtty Ð terminal drivers
fcntl Ð ÔfilesÕ (not just disk)

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/10

ioctl – examples

¥ close on exec

#include <sys/filio.h>
ioctl(fd,FIOCLEX,NULL);

¥ donÕt block on read /write

#include <sys/filio.h>
int flag = 1;
ioctl(fd,FIONBIO,&flag);

¥ get terminal window size
e.g. under X when windows may resize

#include <sys/termios.h>
struct winsize wsz;
ioctl(fd,TIOCGWINSZ,&wsz);

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/11

fcntl system call

#include <sys/filio.h>

#include <unistd.h>

#include <fcntl.h>

int res = fcntl(fd, cmd, arg);

int fd Ð file descriptor to control
int cmd Ð command/request to perform
int arg; Ð argument

purports to be an int
but is often a pointer!

¥ performs operations on open file descriptors

¥ similar to ioctl , with some overlap

¥ some requests cause ioctl to be called

¥ others cannot be performed with ioctl (e.g. locks)

¥ N.B. argument purports to be an int . . .
. . . but is often a pointer!

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/12

directories

¥ stored as ordinary file
❍ sequence of bytes

¥ inode entry says it is a directory

¥ can be accessed using ordinary read

✘ only if you know the format!!

⇒ special library functions
❍ read the directory
❍ put it in a data structure

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/13

reading directories

#include <dirent.h>
opendir, readdir, closdir,
seekdir, telldir, rewinddir

¥ the directory functions in man(3)
❍ like a stdio for directories
❍ functions to open, read, and close
❍ but not write - that is creat !
❍ also ÔseekÕ and ÔtellÕ style functions

¥ data structures
❍ DIR structure takes the place of FILE*
❍ read returns a pointer to a struct dirent
❍ only important field is d_name Ð the file name

#include <dirent.h>
struct dirent *dp;
DIR *dirp = opendir("testdir");
dp = readdir(dirp);
while (dp != NULL) {
 printf("%s\n",dp->d_name);
 dp = readdir(dirp);
 }
closedir(dirp);

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/14

shared file descriptors

¥ file descriptors
❍ point to shared structures

¥ shared:
① within a process
② between processes

¥ arises from:
① dup2/dup2 system calls
② fork system call

¥ shared means
❍ same file pointer

writes Ð sequenced
reads Ð first come / first served

❍ last close matters
files Ð may be deleted
network Ð connection broken

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/15

dup2 system call

int res = dup2(old_fd, new_fd);

¥ makes new_fd point to same file/stream as old_fd

¥ new_fd is closed if already open

¥ most often used with standard I/O descriptors:
dup2(fd,0);

Ð standard input reads from fd

¥ can close the old descriptor
. . . but new descriptor still works

dup2(fd,0);
close(fd):
n = read(0,buff,buff_len);

¥ negative return on failure

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/16

locks

¥ lots of processes accessing the same file
⇒ trouble!

¥ locks prevent multiple access
❍ atomic Ð cannot have half a lock
❍ mutual exclusion

Ð at most one process has the lock

¥ traditional UNIX lock file:

❍ use creat to make an unreadable file
creat("lockfile",0);

❍ subsequent calls to creat will fail
(because creat on an existing file acts as an open)

❍ when done use creat to delete lock file

✓ uses ordinary UNIX file handling
Ð no special locking mechanism needed

✘ fails with network file systems

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/17

network files – NFS

¥ files stored on one or more servers

¥ remote files accessed by sending network messages

¥ simply sendUNIX open/read /write requests?
✘ too much network traffic
✘ too much server state

¥ NFS:
✔ client workstations cache files
✔ server is stateless (⇒ no open)

¥ some files donÕt last long
⇒ donÕt tell server about every creat /write

periodic synchronisation

¥ some files donÕt last long
⇒ donÕt tell server about every creat /write

periodic synchronisation

✘ creat only mutually exclusive on each machine

✘ odd anomalies with read /write

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/18

flock and the lock daemon

#include <sys/file.h>

int res = flock(fd,op);

int fd Ð an open file descriptor
int op Ð a locking operation

¥ locking operation one of:
LOCK_SH Ð shared lock (mainly for read)
LOCK_EX Ð exclusive lock (mainly for write)
LOCK_UN Ð release lock (unlock)

¥ if file is already locked
❍ normally flock blocks until it is free
❍ can or operation with LOCK_NB

⇒ never blocks Ð error return instead

¥ how does it work
❍ background process lockd on each machine
❍ they handle the shared state

✔ only have shared state when necessary

✘ still insecure Ð locks are advisory
❍ process can ignore it and open a locked file

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/19

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ copy the code fragment on the directory slide
to write a Ômini-ls Õ program

☞ it should list the file pointed to by its program first
argument (argv[1])

☞ compile and run it

☞ now modify it to use stat on each file

☞ get it to add a slash Õ/ Õ to the end of directories

☞ use your imagination to add other status info!

☞ compile and run again

☞ if you have time, try adding a Ô-L Õ option
when the Ô-L Õ option is given, your program
should give the details of symbolic links themselves
as the Ô-L Õ option does for the real ls

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/20

UNIXSystems
ProgrammingII Session 2

process handling

¥ UNIX processes and forking

¥ fork system call

¥ exec system call

¥ death of process

¥ kill

¥ fork and I/O

☞ using it

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/21

A UNIX process

UNIX process:

¥ identified by process id (pid)
¥ process includes:

❍ program code
❍ application data
❍ system data

❋ including file descriptors

code

data

system data
e.g. file descriptors

pid = 597

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/22

Forking

UNIX 'fork' duplicates process:

¥ copies complete process state:
❍ program data + system data
❍ including file descriptors

¥ code immutable Ð shared

$ echo $$
597
$ (echo $$)
632
$

code

data

system data

597

code

data

system data

632

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/23

Forking – 2

¥ old process called the parent

¥ new process called the child

¥ process ids
❍ allocated sequentially
❍ so effectively unique

(but do wrap after a very long time)

¥ finding process ids
❍ at the shell prompt:

use 'ps '
❍ in a C program:

use 'int p = getpid(); '
❍ in a shell script:

use '$$ '
N.B. useful for naming temporary files:

tmpfile = "/tmp/myfile$$"

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/24

Fork system call

pid_t p = fork();

(pid_t ≈ int)

¥ if successful
❍ process
❍ successful fork returns:

0 Ð to child process
child pid Ð to parent process

⇒ parent and child are different!

¥ negative result on failure

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/25

Execution – 1

¥ parent forks

597

➡
int i = 3, c_pid = -1;
c_pid = fork();
if (c_pid == 0)
 printf("child\n");
else if (c_pid > 0)
 printf("parent\n");
else
 printf("failed\n");

DATA i = 3

c_pid = -1

¥ after fork parent and child identical

597 632

➡

int i = 3, c_pid = -1;
c_pid = fork();
if (c_pid == 0)
 printf("child\n");
else if (c_pid > 0)
 printf("parent\n");
else
 printf("failed\n");

➡

int i = 3, c_pid = -1;
c_pid = fork();
if (c_pid == 0)
 printf("child\n");
else if (c_pid > 0)
 printf("parent\n");
else
 printf("failed\n");

DATA i = 3 DATA i = 3

c_pid = 632 c_pid = 0

¥ except for the return value of fork

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/26

Execution – 2

¥ because data are different

597 632

➡

int i = 3, c_pid = -1;
c_pid = fork();
if (c_pid == 0)
 printf("child\n");
else if (c_pid > 0)
 printf("parent\n");
else
 printf("failed\n");

➡

int i = 3, c_pid = -1;
c_pid = fork();
if (c_pid == 0)
 printf("child\n");
else if (c_pid > 0)
 printf("parent\n");
else
 printf("failed\n");

DATA i = 3 DATA i = 3

c_pid = 632 c_pid = 0

¥ program execution differs

597 632

➡

int i = 3, c_pid = -1;
c_pid = fork();
if (c_pid == 0)
 printf("child\n");
else if (c_pid > 0)
 printf("parent\n");
else
 printf("failed\n");

➡

int i = 3, c_pid = -1;
c_pid = fork();
if (c_pid == 0)
 printf("child\n");
else if (c_pid > 0)
 printf("parent\n");
else
 printf("failed\n");

DATA i = 3 DATA i = 3

c_pid = 632 c_pid = 0

¥ so parent and child behaviour diverge

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/27

exec system call

execv(char *prog, char **argv);

¥ replaces the current process with prog

¥ never returns except on failure

¥ argv is passed to the 'main ' of prog

N.B. needs at least argv[0] set to program name

¥ new process:
❍ code Ð replaced by prog
❍ data Ð reinitialised
❍ system data Ð partly retained

❇ file descriptors still open

¥ several variants (execl , execvp , . . .)

¥ often used after fork to spawn a fresh program

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/28

exec vs. fork

¥ fork duplicates process

¥ exec replaces process

code

data

system

597

code

data

system

632

code

data

system

597

code

data

system

493

code

data

system

493

fork exec

¥ fork child shares open file descriptors

¥ exec-ed process retains open fds

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/29

death of a forked process

¥ when parent dies
❍ children become orphans !
❍ system init process 'adopts' them

¥ when child dies
❍ parent (or init) informed by signal

(SIGCHLD)

❍ child process partly destroyed
❍ rump retained until parent 'reaps'

Ð using wait or wait3 system call

❍ until then child is 'zombie'
Ð ps says <exiting> or <defunct>

N.B. zombie state necessary so parent
can discover which child died

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/30

wait

¥ if parent does not reap children
. . . they stay zombies forever
. . . system resources may run out

¥ reap using variants of wait
union wait status;
int pid = wait(status);

❍ block until a child has died
return pid of deceased child

int sysv(char *prog,char **argv)
{

union wait status;
int pid = fork();
if (pid < 0) return -1;
if (pid == 0) execvp(prog,argv);
if (wait(&status) != pid) return -1;
return 0;

}

¥ wait3 similar, but with more options

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/31

SIGCHLD & wait3

¥ wait blocks
✘ no good for concurrent execution
✔ SIGCHILD says when child has died

① first catch your signal
signal(SIGCHLD,my_reaper);

¥ function 'my_reaper ' called when signal arrives

② then reap a child
int my_reaper()
{

union wait status;
while(wait3(&status,WNOHANG,NULL) >= 0);

}

¥ use WNOHANG so that wait3 doesn't block
¥ loop to reap multiple children

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/32

kill system call

int kill(int pid, int sig);

¥ sends the signal sig to process pid

¥ target process Ð pid
❍ must have same effective user id

(usually launched by same user)
❍ super user programs can kill anyone!
❍ special case: pid == -1

⇒ broadcast (kill nearly everyone)
donÕt worry Ð super user only

¥ kill?
❍ only kills the process if it is not caught

(using signal system call)
❍ but some signals can never be caught

¥ self-destruct
❍ a process can send signals to itself!

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/33

fork and I/O

low-level I/O

¥ open file descriptors shared so:
❍ output is merged
❍ input goes to first read

Ð accept similar
❍ close down may be delayed

until all processes close fd
⇒ close all unwanted fds

or use ioctl to set close-on-exec

high-level I/O

¥ C stdio is buffered:
❍ duplicated at fork
❍ may get flushed after fork

⇒ duplicate writes
✓ stderr OK Ð unbuffered
⇒ careful with stdio

use stderr or setbuff(fd,NULL)

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/34

☞ ☞ ☞ ³³³³ Hands on ³³³³ ✍ ✍ ✍

☞ look at the program fork-test.c in prog2
check you understand how it works

☞ copy it into your directory and compile and run it

☞ write a test program for the sysv function on the
wait slide

☞ get it to run /bin/cat on a test file
the argv structure you pass to sysv will look
something like this:

static char *ex_argv[3] = {
 "cat",
 "tom",
 NULL };

☞ try redirecting the output by opening a file and then
using dup2 :

int fd = open("dick", O_WRONLY | O_CREAT);
dup2(fd,1);

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/35

UNIXSystems
ProgrammingII Session 3

inter-process
communication

¥ shell pipes

¥ building pipes

¥ psuedo-terminals

¥ sockets

¥ socket I/O and deadlock

☞ using it

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/36

IPC

¥ processes may need to communicate
Ð inter-process communication (IPC)

¥ different circumstances:
❍ local machine or over network?
❍ forked from single process?
❍ terminal handling required?

¥ different mechanisms:
❍ pipes

Ð local, forked
no terminal handler

❍ pseudo-terminals
Ð local, not necessarily forked

terminal handler
❍ sockets

Ð remote (e.g. TCP/IP)
no terminal handler

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/37

shell pipes

¥ UNIX shell pipes join
the standard output of one command
to the standard input of another

$ head -5 fred | cut -c1-10

¥ commands run at the same time
¥ standard error from both are mixed together (!)

errors

'fred ' output
head -5 col -c1-10

¥ shell pipes are a special case of a general mechanism

¥ DOS has pipes too . . .
. . . but just a shorthand for hidden temporary files!

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/38

pipe system call

int p[2];
int res = pipe(p);

¥ returns a pair of file descriptors

¥ connected: p[1] → p[0]

Ð any data written to p[1] . . .
. . . appears as input to p[0]

¥ buffered within operating system

¥ initially connects process to itself

int p[2], res, n;
char buff[100]

res = pipe(p);
write(p[1],"hello world",11);
n = read(p[0],buff,100);
write(1,buff,n);

¥ not particularly useful!

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/39

linking processes with pipes

¥ pipe cannot be used to link existing processes

¥ but can link process as they fork

¥ uses the fact that forked file descriptors are shared

① use pipe system call to link process to itself

process
p[1] p[0]

OS buffer

② use fork Ð file descriptors shared
⇒ both parent and child can:

read from p[0] and write to p[1]

process
p[1] p[0]

OS buffer

child
p[1] p[0]

fork

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/40

linking with pipes – 2

③ one side closes p[0] and the other closes p[1]

process
p[1] p[0]

OS buffer

child
p[1] p[0]

④ now the two processes can communicate

process
p[1]

OS buffer

child
p[0]

Note:
¥ buffer full

⇒ write(p[1] ...) will block
¥ buffer empty

⇒ read(p[0] ...) will block
¥ p[1] closed and buffer empty

⇒ read(p[0] ...) returns 0
(end of file)

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/41

piping to and from programs

¥ typical use of pipe:
❍ pipe created between parent and child

(stages ① to ④)

❍ child uses dup2 to connect p[0] to stdin

❍ child exec s another program ÒXÓ

❍ output of parent (through p[1])
→ standard input of X

¥ child code:
close(p[1]); /* output side */
dup2(p[0],0);
close(p[0]); /* still open as 0 */

exec("X");

¥ alternatively:
❍ parent retains input side of pipe p[0]

child connects output side to standard output
⇒ parent captures program output

❍ open two pipes for both

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/42

pseudo-terminals

¥ some programs need a terminal
e.g. screen editors

or behave differently with pipes
e.g. ls on Berkeley based UNIX

¥ pseudo-terminals:
❍ have terminal driver between end-points
❍ allow remote processes to connect

¥ uses:
❍ window managers
❍ remote logins over network

/dev

client server

shell

network

pseudo-terminal remote terminal

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/43

pseudo-terminals – 2

¥ special ÔvirtualÕ devices in /dev

¥ in pairs
❍ /dev/ttyp[a-z][0-9] Ð slave end
❍ /dev/ptyp[a-z][0-9] Ð controller end

¥ connection
❍ output to /dev/ttyp??

→ input of corresponding /dev/ptyp??

❍ output to /dev/ptyp??

→ input of corresponding /dev/ttyp??

❍ both liable to transformation by tty driver

¥ asymmetry
❍ /dev/ttyp??

Ð behaves like the computer end of a tty
including stty options

❍ /dev/ptyp??
Ð behaves like the user end of a tty

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/44

opening pseudo-terminals

¥ use normal open system call
❍ control end program

int fd = open("/dev/ptypb7",2);

❍ slave end program

int tty_fd = open("/dev/ttypb7",2);

¥ full-duplex connection
Ð can read or write to either end

¥ finding a pseudo-terminal
❍ control end often ÔfishesÕ

Ð tries to open each pty in turn
❍ how does the other process know which tty ?

Ð often forked after fishing (just like pipes!)
Ð other form of IPC

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/45

sockets

¥ generic connection mechanism
❍ networks: e.g. Internet (TCP/IP)

❍ local: e.g. UNIX domain Ôsocketpair Õ

¥ roots
❍ original Berkeley TCP/IP implementation

¥ features
❍ central abstraction - the socket - an end-point

like an electrical connector
❍ uses normal read/write system calls
❍ sockets associated with UNIX file descriptors

but some not for normal I/O
❍ some extra system calls

especially fot TCP/IP

¥ normally bi-directional
❍ read and write to same file descriptor
? close one direction
✔ special socket call shutdown(sock,dir)

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/46

socketpair system call

¥ the simplest sockets have no network connection

int s[2];

int res = socketpair(s,AF_UNIX,SOCK_STREAM);

¥ returns a pair of sockets (file descriptors)

¥ like pipes, but both bidirectional: s[1] ↔ s[0]

int s[2], res, n;
char buff[100]

res = socketpair(s,AF_UNIX,SOCK_STREAM);
write(s[1],"one way",7);
n = read(s[0],buff,100);
write(1,buff,n);
write(s[0],"and back again",14);
n = read(s[1],buff,100);
write(1,buff,n);

¥ again use fork to establish connected processes

¥ in fact pipe now implemented using socketpair

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/47

read & write with sockets

¥ pipes and pseudo-terminals similar

¥ reading may block
❍ reading from a file either:

(i) succeeds
(ii) gets end of file (ret = 0)

❍ reading from a socket waits until
(i) (network) data received (ret > 0)
(ii) connection closed (ret = 0)
(iii) network error (ret < 0)

¥ writing may block
❍ writing to a socket may

(i) send to the network (ret > 0)
(ii) find connection is closed (ret = 0)
(iii) network error (ret < 0)

❍ it may return instantly
❍ but may block if buffers are full

✘ BEWARE Ð may work during testing
(sufficient buffer space)

then fail in use
(block and deadlock when buffers full)

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/48

deadlock

¥ cycles of pipes/sockets can deadlock

process 1
buffer

process 2

buffer

process 3

buffer

¥ OK so long as buffers donÕt fill up

¥ if everyone writes faster then they read
everyone waits for everyone else!

¥ duplex channels similar
⇒ donÕt use blocking I/O

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/49

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ write a test program that Ôtalks to itselfÕ using a
pipe, as in the example code on the pipe system call
slide

☞ do a similar a test with a socket pair

☞ you are all logged on to the same machine, so
should be able to communicate using pseudo-
terminals

☞ try it from the shell; one of you types:
cat >/dev/ttyp n (for some suitably chosen n!)

and the other types:
cat </dev/ptyp n

have a nice chat!:

☞ what happens if you try doing the cat s in the
opposite order?

☞ if there is time, try using fork , exec and pipe to
perform the equivalent of the shell command:

ls /dev | head -30

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/50

UNIXSystems
ProgrammingII Session 4

non-blocking I/O
and select

¥ UNIX events

¥ setting timers

¥ polling

¥ select system call

¥ signals and select

☞ proxy server

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/51

UNIX Events

Computational programs:
¥ busy most of the time
¥ read/write when they are ready

Interactive programs:
¥ servers & clients
¥ idle most of the time
¥ respond to events

UNIX processes Ð 4 types of event
① signal (interrupt)
② time (alarm)
③ input ready

read will not block

④ output can accept (more) data
write will not block

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/52

Responding to events

Events:
① signal (interrupt)
② time (alarm)
③ input (read) ready
④ output (write) ready

Responding
¥ interrupt handler Ð ①&②

use signal system call
use setitimer to send SIGALRM

¥ turntaking Ð ②,③&④
call read /write when ready
use sleep for delays

¥ polling Ð ②,③&④
use non-blocking read /write
use time to do things at specific times

¥ wait for several events
use select system call
timeout or SIGALRM

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/53

setting timers

¥ processes in UNIX have ÔtimersÕ
❍ exactly 3 of them (why 3?!)
❍ like private alarm clocks
❍ precision of milliseconds . . .

. . . but not accuracy!

¥ two datatypes
struct timeval { Ð single time

long tv_sec; Ð in seconds
long tv_usec; Ð and milliseconds
}

struct itimerval {
struct timeval it_interval; Ð period of timer
struct timeval it_value; Ð next alarm
}

N.B. it_interval == 0 ⇒ only one alarm

¥ setting a timer
struct itimerval value, oldvalue;
int which;
int res = setitimer(which, &value, &oldvalue);

¥ which says which timer to use (an int)

¥ when timer expires, process sent SIGALRM

¥ read a timer with getitimer(which, &value);

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/54

polling in UNIX

#include <sys/filio.h>

int flag = 1;

ioctl(fd,FIONBIO,&flag);

¥ call to ioctl tells system:
donÕt block on read /write

¥ polling therefore possible

¥ structure of polling telnet-like client:

int flag = 1;
ioctl(tty_fd,FIONBIO,&flag);
ioctl(net_fd,FIONBIO,&flag);

for(;;) {
/* any terminal input? */

n = read(tty_fd,buff,buff_len);
if (n > 0) { /* yes! do something */ }

/* any network input? */
n = read(net_fd,buff,buff_len);
if (n > 0) { /* yes! do something */ }

}

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/55

polling pros and cons

✔ program is Ôin controlÕ

✔ similar to normal programs
(i.e. non-interactive programs)

✘ busy polling consumes CPU time

✔ put a sleep in the loop

int flag = 1;
ioctl(tty_fd,FIONBIO,&flag);
ioctl(net_fd,FIONBIO,&flag);

for(;;) {
n = read(tty_fd,buff,buff_len);
if (n > 0) { /* do something */ }
n = read(net_fd,buff,buff_len);
if (n > 0) { /* do something */ }
sleep(5);

}

✘ kills interactive performance

✔ OK if fast response not critical
(e.g. no user interaction)

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/56

read & write

read :
¥ waits on one file descriptor
¥ returns when input data is ready
¥ and reads the data into a buffer

read(0,buff,len)

write :
¥ waits on one file descriptor
¥ returns when output is possible
¥ and writes the data from the buffer

write(1,buff,len)

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/57

select

select :
¥ waits on many file descriptor
¥ returns when input or output ready
¥ but does no actual I/O
+ also allows timeout

select(width,&in_fds,&out_fds,&err_fds,&timeout)

ì

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/58

select system call – 2

int ret =
select(size,&in_fds,&out_fds,&err_fds,&timeout);

¥ in_fds, out_fds :
Ð bitmaps of file descriptors

❍ in_fds Ð wait for input
i.e. read will not block

❍ out_fds Ð wait for output
i.e. write will not block

¥ size : Ð size of in_fds, out_fds, err_fds

¥ timeout : Ð when to timeout
in seconds and milliseconds

Returns when:
¥ input ready on one of in_fds (ret > 0)
¥ output ready on one of out_fds (ret > 0)
¥ error occurs on one of err_fds (ret > 0)
¥ timeout expires (ret == 0)
¥ signal has been caught (ret < 0)
¥ some other error occurs (ret < 0)

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/59

select and I/O

#include <sys/types.h>

fd_set in_fds, out_fds, err_fds

¥ modified by call:
call Ð bit set = wait for file desc
return Ð bit set = file desc ready

return value from select
= number ready

¥ long integer in early UNIX systems

in_fds = in_fds || (1<<fd);

⇒ limit of 32 file descriptors
. . . but some systems allow more

¥ now a special fd_set structure
actually an array of integers!

❍ setting:

FD_ZERO(&in_fds);
FD_SET(fd, &in_fds);
FD_CLR(fd, &in_fds);

❍ testing:

if (FD_ISSET(fd,&in_fds)) ...

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/60

select and I/O – 2

¥ input
❍ terminal/socket

Ð read will not block
❍ passive socket

Ð accept will not block

¥ output
❍ terminal/socket

Ð write ÔreadyÕ
❍ write relies on system resources
❍ change between select and write ?

⇒ write may block

❄ use non-blocking write

¥ can Ôget awayÕ without select on write
. . . but dangerous!

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/61

select and timeouts

#include <sys/time.h>

struct timeval timeout;

¥ timeout.tv_secs
timeout.tv_ms

Ð maximum time to wait in seconds and ms

¥ if no I/O ready and no signals in time limit

then select returns with zero result
N.B. in_fds, out_fds, err_fds all zero also

¥ modified by call?
❍ ideally should return time remaining
❍ doesnÕt now . . .

. . . but may do one day

⇒ donÕt rely on timeout not being changed
reset for each call to select

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/62

select and signals

¥ signal occurs during system call:
read , write , or select

¥ signal not caught . . .
. . . process aborts!

¥ signal caught . . .
① relevant handler called
② systems call returns with ÔerrorÕ

¥ how do you know?
❍ negative return value
❍ errno set to EINTR

¥ negative return & errno ≠ EINTR

⇒ really an error!

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/63

example – proxy server

¥ proxy server
❍ monitors Internet traffic to and from server

client
proxy

network

server

¥ structure of code
① wait for client connection
② connect to remote Internet server
③ loop forever

waiting for client or server input:
❍ when client data ready

read it
send to server
echo it to terminal

❍ when server data ready
read it
send to client
echo it to terminal

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/64

proxy code – 1

➀ Main loop

main(...) {
/* establish port */

port_sk = tcp_passive_open(port);
/* wait for client to connect */

client_sk = tcp_accept(port_sk);

/* only want one client, */
/* so close port_sk */

close(port_sk);

/* now connect to remote server */
serv_sk = tcp_active_open(rem_host,rem_port);

ret = do_proxy(client_sk, serv_sk);

exit(0);
}

¥ basically sets up network connections
and then calls do_proxy

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/65

proxy code – 2

② perform proxy loop

int do_proxy(int client_sk, int serv_sk)
{

¥ first declare and initialise fd bitmaps

fd_set read_fds, write_fds, ex_fds;
FD_ZERO(&read_fds); FD_ZERO(&write_fds);
FD_ZERO(&ex_fds);
FD_SET(client_sk,&read_fds);
FD_SET(serv_sk ,&read_fds);

¥ then loop forever

for(;;) {
int num, len;

¥ copy bitmaps because select modifies them

fd_set read_copy = read_fds;
fd_set write_copy = write_fds;
fd_set ex_copy = ex_fds;
static struct timeval timeout = {0,0};

¥ then call select

num = select(MAX_FD, &read_copy, &write_copy,
 &ex_copy, &timeout);

➥ check return Ð ③, ④ & ⑤ at this point

}
return 0;

}

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/66

proxy code – 3

③ check for signals, errors and timeout

¥ first check for signals:
in this case, we are not expecting any so return
in general, we may need to do some processing
following the interrupt
it is usually better for the interrupt to set some
flag and let the main loop do most of the work
this reduces the risk of stacked interrupts and
mistakes in concurrent access to data structures

if (num < 0 && errno == EINTR) {
/* stopped by signal */

perror("EINTR"); return 1;
}

¥ if there has been no signal num < 0 is an error

if (num < 0) { /* not stopped by signal */
perror("select"); return 1;
}

¥ if num is zero then a timeout has occurred
again, in this case no processing
but in general this is the opportunity for animation
or other periodic activity

if (num == 0) continue; /* timeout */

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/67

proxy code – 4

④ check for client input
client ready if bit is set in read_copy

if (FD_ISSET(client_sk,&read_copy)) {
int len = read(client_sk, buff, buf_len);

¥ on end of file or error exit the loop

if (len <= 0) { /* error or close */
close(serv_sk); return len;
}

¥ if there is some input data, write it to the server and log it

else {
write(serv_sk,buff,len);
log_from_client(buff, len);
}

}

⑤ server input similar

if (FD_ISSET(serv_sk ,&read_copy)) {
int len = read(serv_sk , buff, buf_len);
if (len <= 0) { /* error or close */

close(client_sk);
return len;
}

else {
write(client_sk,buff,len);
log_from_server(buff, len);
}

}

UNIXSystems
ProgrammingII Short Course Notes Alan Dix © 1996 II/68

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

❉ the proxy server is a bit similar to a telnet client
both open a connection to a remote server
both echo from the user to the server . . .

. . . and from the server to the user
the major difference is that the proxy server
operates on the Ôother endÕ of a network connection

☞ you are going make a simple telnet-like client

☞ copy proxy.c and makefile from prog
copy proxy.c and call it raw-client.c

❉ proxy.c reads and writes the client socket
you want to read from standard input (0)
and write to standard output (1)

☞ proceed as follows:
① remove the code to open the client connection

(passive open and accept)
② remove the parameter to do_proxy which

corresponds to the client socket
③ modify the FD_SET calls so that select waits

for standard input (0) rather than the client
④ change all read calls from the client so that

they read from standard input (0)
⑤ change all write calls to the client so that

they write to standard output (1)

☞ now compile and run your raw client, e.g.:
raw-client biggles 7

(biggles is another UNIX box, 7 is the TCP/IP echo server)

	UNIX Systems Programming II
	course outline
	session 1 - files and devices
	session 2 - process handling
	session 3 - inter-process communication
	session 4 - non-blocking I/O and select

