
Use XDoclet to generate Web service
support files

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Simple template to introduce XDoclet 5
3. First template: XDoclet architecture................................. 7
4. Case study: Create Web Service Deployment Descriptor 1st
try ..

13

5. Case study: Create Web Service Deployment Descriptor 2nd
try ..

24

6. Summary and resources .. 38

Use XDoclet to generate Web service support files Page 1 of 39

Section 1. About this tutorial

What is XDoclet?

You can skip this page if you already use XDoclet or already read the first XDoclet
tutorial.

XDoclet facilitates automated deployment descriptor generation. XDoclet, a code
generation utility, allows you to tack on metadata to language features like classes,
methods, and fields using what looks like JavaDoc tags. Then it uses that extra
metadata to generate related files like deployment descriptor and source code. This
concept has been coined attribute-oriented programming (not to be confused with
aspect-oriented programming, the other AOP).

XDoclet generates these related files by parsing your source files similar to the way the
JavaDoc engine parses your source to create JavaDoc documentation. In fact, earlier
versions of XDoclet relied on JavaDoc. XDoclet, like JavaDoc, not only has access to
these extra metadata that you tacked on in the form of JavaDoc tags to your code, but
also access to the structure of your source, that is, packages, classes, methods, and
fields. It then applies this hierarchy tree of data to templates. It uses all of this and
templates that you can define to generate what would otherwise be monotonous
support files. Unlike the last tutorial on XDoclet, this tutorial does not focus on using
existing templates that ship with XDoclet. Instead, in this tutorial you will create your
own custom templates and XDoclet subtasks.

XDoclet ships an Ant task that enables you to create web.xml files, ejb-jar.xml files, and
much more. In this tutorial, you will use XDoclet to generate a Web application
deployment descriptor with the webdoclet Ant task. In addition you will generate EJB
support files. Note that XDoclet Ant tasks do not ship with the standard distribution of
Ant. You will need to download the XDoclet Ant tasks from
http://xdoclet.sourceforge.net.

So you may wonder: "Why should I care? I am an excellent Java/J2EE Web developer
and I have never needed XDoclet". Or you may say: "I already use XDoclet, why do I
need to write my own templates?" As I stated before, you don't know what you are
missing. Once you start use XDoclet, you will not stop. Once you start writing your own
templates you will never repeat yourself again. If you are writing dry, mundane code,
then you could probably use XDoclet instead. Allow XDoclet to generate the
monotonous stuff, and stick to writing the good stuff. Computers were invented to do
monotonous stuff to free humans to do creative things. XDoclet frees developers from
monotonous code. XDoclet is the missing piece in your J2EE and Web service
development process. It will speed your development. You must master how to use
XDoclet templates.

What do I need to know for this tutorial?

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 39 Use XDoclet to generate Web service support files

This tutorial assumes you have a working knowledge of Java programming language,
and XML. Knowledge of Web services, J2EE and Ant are helpful but not required to
understand the key concepts. Ant is used to build, and deploy the example
applications. Reference to introductory material on Web services, Ant, Java
technology, J2EE, XML and Enterprise JavaBean (EJB) components are provided in
the references section at the end of this tutorial. If you are not familiar with XDoclet,
you should read the first XDoclet tutorial that I wrote for developerWorks which
explains how to use XDoclet (see Resources on page 38).

Eclipse was used to create the examples. The examples are easiest to run by
downloading Eclipse 2.1 or higher and a J2EE application server plug-in for Eclipse.
Eclipse has excellent support for Ant, which facilitates running the Ant XDoclet tasks
right from the IDE environment.

If you are new to Ant, please read this sample chapter from Mastering Tomcat on
Developing Web Components with Ant. Just read the sections on Ant development for
now. Also if you are new to XDoclet please read the first tutorial in this series (see
Resources on page 38). And lastly if you want more background on Axis EJB
technology, please see the Axis EJB technology tutorial listed in the Resources on
page 38 section.

About the author

Rick Hightower is a developer who enjoys working with Java technology, Ant and
XDoclet. Rick is currently the CTO of Trivera Technologies, a global training, mentoring
and consulting company focusing on enterprise development. Rick along with a
worldwide group of Java ninjas, just updated a "Mastering Struts" course, which covers
everything from how to write your own custom tags to mastering tiles and the validator
framework. Rick is writing three chapters on Tiles, Validator Framework and Built in
Action in the 2nd edition of James Goodwill's Mastering Struts book, to be published by
John Wiley.

If you like this tutorial, you might like Rick's book Java Tools for Extreme Programming,
which was the best-selling software development book on Amazon for three months in
2002. Rick will be working on the next edition in July 2003.

Rick also contributed two chapters to the book Mastering Tomcat on the subjects Struts
Tutorial, and Tomcat development with Ant and XDoclet as well as many other
publications.

Rick just spoke at JavaOne (2003) on EJB CMP/CMR and XDoclet. Rick will also be
speaking at TheServerSide.com Software Symposium on J2EE development with
XDoclet. Rick has spoken at JDJEdge, WebServicesEdge and the Complete
Programmer Network software symposiums.

Tools you will need for this tutorial

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 3 of 39

http://www.rickhightower.com
http://www.rickhightower.com
http://www.triveratech.com
http://www.triveratech.com
http://www.rickhightower.com/JavaXPToolkit
http://www.rickhightower.com/JavaXPToolkit
http://www.rickhightower.com/JavaXPToolkit
http://www.rickhightower.com/JavaXPToolkit
http://www.rickhightower.com/JavaXPToolkit

You will need a current version of the Java Development Kit (JDK). All the examples in
this tutorial use Java 2 Platform, Standard Edition (J2SE SDK) 1.4.x

All of the examples use Ant build scripts to build and deploy the Web applications that
contain the examples. This should be no surprise since XDoclet relies on Ant, and the
only interface to XDoclet is through Ant. Ant can be found at the Ant home page. The
examples use Ant 1.5.3.

Of course you will need XDoclet. XDoclet can be found at the XDoclet site . XDoclet,
like Ant, is open source. The examples in this tutorial use version XDoclet 1.2 beta 2.
Not only is it likely that XDoclet will be out of beta by the time you read this, but XDoclet
has been recently accepted to be an Apache Jakarta project so if you do not find it at
the above link, look for it at the Apache Jakarta site.

It is recommended that you use an Interactive Development Environment (IDE) like
Eclipse since there are quite a few jar files to manage. All the examples ship with the
projects supplied in the freely available Eclipse IDE and are compatible with Eclipse
and WebSphere Studio Application Developer (Application Developer). As long as you
configure you environment as suggested you can use the Eclipse project files with little
additional work. Eclipse or WebSphere Studio Application Developer (Application
Developer) are not required, but can be found at Eclipse Web Site and Application
Developer trial respectively. There is no requirement to use Eclipse, but the Eclipse
project files are provided as a convenience to Eclipse and Application Developer users.
Application Developer builds on top of Eclipse. Eclipse was used to build the sample
applications.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 39 Use XDoclet to generate Web service support files

http://java.sun.com/j2se/1.4/
http://java.sun.com/j2se/1.4/
http://java.sun.com/j2se/1.4/
http://java.sun.com/j2se/1.4/
http://java.sun.com/j2se/1.4/
http://java.sun.com/j2se/1.4/
http://java.sun.com/j2se/1.4/
http://java.sun.com/j2se/1.4/
http://jakarta.apache.org/ant/index.html
http://jakarta.apache.org/ant/index.html
http://jakarta.apache.org/ant/index.html
http://xdoclet.sourceforge.net/
http://xdoclet.sourceforge.net/
http://jakarta.apache.org/ant/index.html
http://jakarta.apache.org/ant/index.html
http://jakarta.apache.org/ant/index.html
http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=landings/studiosplashv5
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=landings/studiosplashv5
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=landings/studiosplashv5

Section 2. Simple template to introduce XDoclet

Simple XDoclet template example

To get this tutorial started, let's kick it off with a simple template. Remember that
XDoclet extends the idea of the JavaDoc engine to allow the generation of code and
other files based on custom JavaDoc tags. Of course XDoclet also has access to the
complete parse tree. Thus it has access to the class, its package structure, its
methods, etc.

XDoclet provides its own template engine. The templating engine is similar in concept
to JavaServer Pages (JSP) technology. Essentially it has two types of tags: block tags
and content tags. Block tags control flow like if, and for statements in Java
programming language. Content tags print out pieces of the current parse tree context,
fpor example, class names, method names, parameters, etc.

I could talk about XDoclet all day, but if you are like me then you want me to "show the
code." Without further ado, here is a simple template that looks for all EntityBeans and
prints out their class name and the names of all of their cmp fields:

<XDtClass:forAllClasses type="javax.ejb.EntityBean">

Classname=<XDtClass:className/>

<XDtProperty:forAllPropertiesWithTag tagName="ejb.persistence">

CMP Field = <XDtMethod:propertyName/>

</XDtProperty:forAllPropertiesWithTag>

</XDtClass:forAllClasses>

This simple template demonstrates both block tags and content tags. The
forAllClasses is an example of a block tag, it iterates over all of the classes that
are passed to the template engine via a fileset in the ant build file that invokes
XDoclet. The forAllClasses filters out the classes that are not of type
javax.ejb.EntityBean using the type attribute (type="javax.ejb.EntityBean").

The className is an example of a content tag, prints out the name of the current
class.

The forAllProperitesWithTag is another example of a block tag. It iterates over
all of the properties in the implementation class that have the XDoclet tag
@ejb.persistence (these properties would relate to the cmp fields of this bean).
Lastly, the propertyName is another example of a content tag as it displays the
current property name in the iteration.

All of the other examples builds on these simple concepts, so let's break this down.
The following figure shows the block tags in bold-black font and the contents tags in
bold-red font. The blocks also have rounded rectangles to demonstrate their scope.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 5 of 39

The output of this code template for this project is as follows:

Classname=EmployeeBean

CMP Field = id

CMP Field = firstName

CMP Field = lastName

CMP Field = phone

Classname=DeptBean

CMP Field = id

CMP Field = name

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 39 Use XDoclet to generate Web service support files

Section 3. First template: XDoclet architecture

Running Simple XDoclet template example

To run the template you would need the following code in your ant build file:

<target name="templatedoclet" >

<taskdef

name="templatedoclet"

classname="xdoclet.DocletTask"

classpathref="xdocpath"

/>

<templatedoclet destdir="test">

<fileset dir="${src}">

<include name="**/*Bean.java"/>

</fileset>

<template

templateFile="template/template.xdt"

destinationfile="test.txt"/>

</templatedoclet>

</target>

The templatedoclet task is used to execute a template. The fileset sub element
is used to specify that you only want files in the src directory that end in "Bean.java".
The template sub task is used to specify the template file being used and the
destination file. The above example executes the template I defined earlier
(template/template.xdt) and outputs the results to text.txt. See the following figure for
more details.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 7 of 39

To really understand how to develop custom XDoclet templates effectively, you should
have an understanding of the XDoclet architecture -- so allow me to talk about it a bit
before we delve further.

XDoclet architecture

XDoclet consists of three main components:

1. XJavaDoc Engine

2. XDoclet Engine

3. Modules

Modules consist of several pieces:

1. Tasks

2. Subtasks

3. Tag Handlers

4. Templates

XJavaDoc Engine -- An earlier version of XDoclet relied on the JavaDoc engine from
Sun Microsystems. The XJavaDoc replaces the need for Sun's JavaDoc engine. The

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 39 Use XDoclet to generate Web service support files

XJavaDoc engine is five times faster than the JavaDoc engine and has extensions for
decorating the parse tree with additional metadata using a simple API.

Like JavaDoc the XJavaDoc parses Java source files and builds a tree of information
about the classes and language features (packages, methods, fields), and metadata.
The XJavaDoc engine provides access through an easy to use API. The API provides
the same information about a class as the JavaDoc API with some additional features
associated with storing and reading metadata and other structures. XJavaDoc adds the
ability to modify the JavaDoc tags at runtime. Thus, metadata can be inferred and
defaulted to some reasonable value.

XDoclet Engine -- The XJavaDoc engine reads the tags, which makes up the
metadata and the structure of the classes. The XDoclet engine consumes the
information from the XJavaDoc engine to generate support files (source code, and
deployment descriptors). The XDoclet provides a great templating engine that
transforms a template to one or more support files. XDoclet has a module loader that
dynamically loads XDoclet modules which are specified with the xdoclet.xml file
contained in the module's jar file.

You do not need to create a module to create templates. Every top-level XDoclet Ant
task has the ability to execute an arbitrary template in place of the template that ships
with the module.

Modules Engine -- Modules consist of tasks, subtasks, tag handlers, and templates.

Subtasks -- A subtask specifies the default templates to invoke and allows you to pass
configuration parameters to the template. You will write a subtask after you write a few
templates. An example of a subtask is as follows:

<ejbdoclet ...>

<localinterface/>

</ejbdoclet>

The localinterface above is a subtask under ejbdoclet. I will describe how to write
another subtask under ejbdoclet to deal with exposing an EJB component as a Web
service. You will learn how to implement subtasks and specify their structure and how
to specify their relationship to their parents when I cover subtasks.

Templates -- The reason why XDoclet will not go away even after the metadata
features of JDK 1.5 are released and in vogue, is its ability to use the metadata and do
something useful with it, that is, its templating mechanism. Thus, future versions of
XDoclet will be able to read both the JavaDoc-based metadata and the new metadata.
Metadata is key to Web services because it can bridge the impedance mismatch
between technologies like XML Schema and JavaBean components.

XDoclet templates generate both deployment descriptors and source code files. In fact
the XDoclet templates can generate any type of file. It is this ability that really aids
developing components with their myriads of configuration files and deployment
descriptors. In fact, you may even write your own component frameworks and use
XDoclet to generate additional deployment-type files.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 9 of 39

Tag Handlers -- Tag Handlers are to XDoclet tags what Custom Tag handlers are to
JSP Custom Tags. The XDoclet engine maps the tags to its corresponding taghandler
by its name. Tag handler classes must subclass xdoclet.TagHandler . XDoclet uses
reflection to invoke a method on the tag handler based on the name of the tag.
Therefore, XDtProperty:forAllPropertiesWithTag is going to look for a method
forAllPropertiesWithTag in the Property tag handler.

The template engine knows which tag handler to use by looking up the tag handler in
the xdoclet.xml file that ships with the tags. Here is a snippet from the core xdoclet.xml
file for the Property tag handler entry:

<taghandler

<taghandler namespace="Property"

class="xdoclet.tagshandler.PropertyTagsHandler"/>

...

/>

When the XDoclet encounters a XDtProperty:forAllPropertiesWithTag tag its going look
for the method forAllPropertiesWithTag in the
xdoclet.tagshandler.PropertyTagsHandler class. It does this by first stripping
the XDt prefix off of XDtProperty and then looks up the mapping defined in the
xdoclet.xml file.

Here is a partial listing of the Property tag handler:

public class PropertyTagsHandler extends AbstractProgramElementTagsHandler
{
...

public void forAllPropertiesWithTag(String template, Properties attributes)
throws XDocletException

{
...
String requiredTag = attributes.getProperty("tagName");

if (requiredTag == null) {

throw new XDocletException(

"missing required tag parameter in forAllPropertiesHavingTag");
}

XClass oldClass = getCurrentClass();

XClass superclass = null;

Collection already = new ArrayList();

// loop over superclasses

do {

XMethod oldCurrentMethod = getCurrentMethod();

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 39 Use XDoclet to generate Web service support files

Collection methods = getCurrentClass().getMethods();

for (Iterator j = methods.iterator(); j.hasNext();) {

XMethod currentMethod = (XMethod) j.next();

log.debug("looking at method " + currentMethod.getName());

if (currentMethod.getDoc().hasTag(requiredTag)) {

setCurrentMethod(currentMethod);

String propertyName = currentMethod.getPropertyName();

log.debug("property identified " + propertyName);

if (!already.contains(propertyName)) {

generate(template);

already.add(propertyName);

}

}

setCurrentMethod(oldCurrentMethod);

}

// Add super class info

superclass = getCurrentClass().getSuperclass();

if (superclass != null) {

pushCurrentClass(superclass);

}

} while (superclass != null);

setCurrentClass(oldClass);

}

...

I won't go over the detail of creating your own custom tags in this tutorial. I will cover
how to create your own subtasks and templates and leave the creation of your own
XDoclet tag handlers to a future tutorial.

Now that you have a taste of the XDoclet architecture, I'll show you how to use your
knowledge to develop your own custom tags that will generate an Axis Web services
deployment descriptor.

Finding template block and content tags

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 11 of 39

So far I have covered a simple template, and then covered the XDoclet architecture.
Now let me explain how you can develop your own custom templates. In order to
develop your own custom templates you need to know which XDoclet block and
content tags to use.

The best way to develop your own custom templates is to look at similar templates that
XDoclet provides in its modules. You can do this by unjarring the modules and looking
for files that end in xdt or downloading the XDoclet source and looking for the
templates. In addition there is a way to look up all of the available template tags that
ship with XDoclet via a documentation that resembles JavaDoc.

Luckily, XDoclet provides a reference to the entire template language. You can find this
reference at [XDoclet Install Dir]\docs\templates\index.html. This is your guide to
developing your very own custom templates.

If you are familiar with JavaDoc, using the template language reference is very easy.
The XDoclet tag handlers correspond to the namespace of the tags and they show up
in the top left panel. The actual tag for a particular handler shows up in the bottom left,
and the documentation for the tag shows up in the right panel. If you want to look up a
tag (for example, XDtClass:forAllClasses), strip off the Xdt (for example, XdtClass
becomes class) from the namespace, and then look up the tag (for example,
forAllClasses). See the above figure to see how to look up XDtClass:forAllClasses.

Now that you have the basics of XDoclet down, it's time to put it to use by creating an
Axis EJB component Web Services Deployment Descriptor (deploy.wsdd).

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 39 Use XDoclet to generate Web service support files

Section 4. Case study: Create Web Service Deployment
Descriptor 1st try

Create Web Service Deployment Descriptor for EJB
component

This section will cover the details of the type of information you need to capture, and
the next session will cover the tags that capture that information. Then I will cover the
template that generates the support file based on the tags that you defined.

Axis provides a way to expose your EJB components as a Web service. Apache Axis
does this with a Web Service Deployment Descriptor (WSDD). The WSDD states the
following facts about your EJB comhponent: What kind of service?, Where to look for
the service?, What is the structure of your EJB component?

Thus it expects the following information for an EJB component:

1) What kind of service?

• This service is EJB-based

2) Where to look for the service?

• The JNDI Context factory class for your EJB application server

• The JNDI URL of your EJB application server

• The home JNDI name of your EJB component

3) What is the structure of your EJB component?

• The remote interface of the EJB component

• The home interface of the EJB component

An example Web service deployment descriptor may look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<service name="RemoteHelloService" provider="java:EJB">

<parameter name="beanJndiName" value="Hello"/>

<parameter name="homeInterfaceName"

value="rickhightower.axis.ejb.tutorial.HelloHome"/>

<parameter name="remoteInterfaceName"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 13 of 39

value="rickhightower.axis.ejb.tutorial.Hello"/>

<parameter name="allowedMethods" value="getGreetings"/>

<parameter name="jndiURL"

value="http://localhost:8080/AxisEJB/hessian"/>

<parameter name="jndiContextClass"

value="com.caucho.hessian.HessianContextFactory"/>

</service>

</deployment>

The file can be broken down as follows:

1) What kind of service?

• This service is EJB-based

...

<service name="RemoteHelloService" provider="java:EJB">

...

Notice that the provider type of the service is java:EJB, that is,
provider="java:EJB".

The provider type of java:EJB specifies that this is an EJB-based Web service. A
provider is a Handler responsible for implementing the logic of the service.

In this case, you are specifying that you are using a provider that will delegate the
actual logic development to an EJB component.

The EJB provider is part of the standard Axis distribution. The EJB provider extends
the RPC provider.

If you have worked with Axis before you likely worked with the java:RPC
(org.apache.axis.providers.java.RPCProvider).

The RPC provider implements message processing by walking over RPCElements of
the SOAP envelope body, and invoking the appropriate methods on a plain old Java
Object (POJO).

The EJB provider (java:EJB, org.apache.axis.providers.java.EJBProvider) extends the
RPC provider by looking up the EJB component with JNDI, getting its home method,
and invoking the no argument create method on its home interface, it then takes the
object returned from the home and treats it like java:RPC treats the POJO.

2) Where to look for the service?

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 39 Use XDoclet to generate Web service support files

• The JNDI Context factory class for your EJB application server

...

<service ...>

...

<parameter name="jndiContextClass"

value="com.caucho.hessian.HessianContextFactory"/>

...

</service>

...

The jndiContextClass parameter specifies the JNDI Context factory class for your
EJB server. The example uses the one for Resin EE.

Note that this will vary from EJB application server to EJB application server. For
example, JBoss jndiContextClass would be
org.jnp.interfaces.NamingContextFactory.

2) Where to look for the service?

• The JNDI URL of your EJB application server

...

<service ...>

...

<parameter name="jndiURL"

value="http://localhost:8080/AxisEJB/hessian"/>

...

</service>

...

The jndiURL parameter specifies the JNDI URL for your EJB server. The example
uses the JNDI URL for Resin EE on my computer, which I have configured to port
8080.

Note this will vary from EJB application server to EJB application server and depends
on how you have the application server configured.

For example for JBoss jndiURL could be jnp://localhost:1099.

You need to find this value for your application server and configuration.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 15 of 39

2) Where to look for the service?

• The home JNDI name of your EJB component

...

<service ...>

<parameter name="beanJndiName" value="Hello"/>

</service>

...

The beanJndiName parameter specifies where you have the EJB component bound
into the application servers JNDI tree.

In this example, you have the EJB component bound to Hello in the JNDI tree. How to
configure where the EJB component is bound in JNDI is specific to your EJB server. It
usually involves an application server specific deployment descriptor.

3) What is the structure of your EJB component?

• The remote interface of the EJB component

...

<service name="RemoteHelloService" provider="java:EJB">

...

<parameter name="remoteInterfaceName"

value="rickhightower.axis.ejb.tutorial.Hello"/>
...

</service>

...

The remoteInterfaceName parameter specifies the remote interface class.

3) What is the structure of your EJB component?

• The home interface of the EJB component

...

<service name="RemoteHelloService" provider="java:EJB">

...

<parameter name="homeInterfaceName"

value="rickhightower.axis.ejb.tutorial.HelloHome"/>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 39 Use XDoclet to generate Web service support files

...

</service>

...

The homeInterfaceName specifies the home interface class.

The Axis EJB provider also works with local EJB components as well as remote EJB
components.

In order for the local EJB version to work, the EJB components have to be co-located
with the Web application that sports the Axis servlet.

It is actually easier to work with Local EJB components since there are less parameters
in the Axis Web services deployment descriptor.

Here is an example Axis Web services deployment descriptor that works with a local
EJB version of your EJB component:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<service name="HelloService" provider="java:EJB">

<parameter name="beanJndiName" value="java:comp/env/ejb/Hello"/>

<parameter name="homeInterfaceName"

value="rickhightower.axis.ejb.tutorial.HelloLocalHome"/>

<parameter name="remoteInterfaceName"

value="rickhightower.axis.ejb.tutorial.HelloLocal"/>

<parameter name="allowedMethods" value="getGreetings"/>

</service>

</deployment>

Notice that you do not have to specify the JNDI entries for the JNDI context factory, or
the JNDI URL. Your template should take this into account.

You just have to specify where the local EJB component is mapped into the
environment naming context (ENC) of the Web application.

The Axis EJB provider will look up the local EJB component in the ENC, call the create
method on the home, and invoke methods on the EJB component just like the RPC
provider does with a POJO.

All of the above code is taken from the hello example that has both a local and remote
version of the EJB Hello Web Service. You can find this full example in the Axis EJB
tutorial (see Resources on page 38 section for more details).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 17 of 39

Defining your own tags

In order to add the extra tags needed to capture the data in the Axis deployment
descriptor, you will need to define your own JavaDoc tags. Notice the following
JavaDoc section above the HRSystem bean class:

/**

* Provides a session facade that works with cmp/cmr from EJB 2.0

* based entity beans.

*

* @ejb.bean name="HRSystem" type="Stateless"

* local-jndi-name="java:comp/env/ejb/HRSystem"

* jndi-name="HRSystem"

*

* @ejb.ejb-ref ejb-name="DeptBean" view-type="local"

* @ejb.ejb-ref ejb-name="EmployeeBean" view-type="local"

*

* @ejb.home generate="local" local-class="ejb.HRSystemLocalHome"

* @ejb.interface generate="local" local-class="ejb.HRSystemLocal"

*

* @ejb.home generate="remote" remote-class="ejb.HRSystemHome"

* @ejb.interface generate="remote" remote-class="ejb.HRSystem"

*

*

* @axis.ejb jndiURL="http://localhost:8080/hrsys/hessian"

* @axis.ejb jndiContextClass="com.caucho.hessian.HessianContextFactory"

* @axis.ejb allowedMethods="getDepartments"

* @axis.ejb view-type="local"

*

*/

public class HRSystemBean implements SessionBean {

...

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 39 Use XDoclet to generate Web service support files

HRSystemBean class is a Stateless Session bean. (The HRSystem bean class was
covered in both the Axis EJB tutorial and the Speed J2EE development with XDoclet
tutorial. Both tutorials are listed in the Resources on page 38 section.) Most of the tags
above are ejb.xxx tags (ejb.home, ejb.interface, etc.). You also added new tags just to
capture the data that you need for the Axis deployment descriptor. The tags that
correspond to the tags for the Axis deployment descriptor are all named axis.ejb.

* @axis.ejb jndiURL="http://localhost:8080/hrsys/hessian"

* @axis.ejb jndiContextClass="com.caucho.hessian.HessianContextFactory"

* @axis.ejb allowedMethods="getDepartments"

* @axis.ejb view-type="local"

You can see that you use this tag several times, and each time you specify a new
attribute. The jndiURL specifies the location of the JNDI server. The jndiContextClass
specifies the name of the JNDI context factory, and lastly the allowedMethods attribute
specifies the list of allowed methods. (I will show you how to refactor this later to work a
little nicer).

Template that generates Axis deployment descriptor
(1st try)

What you want to do is iterate through all of the classes that are passed to the template
and if the current class is SessionBean and if the SessionBean is Stateless, then you
want to process the axis.ejb JavaDoc tags to pull out the metadata to insert into the
Axis deployment descriptor.

This template file will consist of static strings that represent the structure of the
deployment descriptor, and then you will use block tags to see if certain tags and
conditions are valid. If those tags and conditions are valid then you will output data
from the tags in the source file to the new Axis deployment descriptor.

Let's first see the code to iterate over the current classes and see if they are Stateless
Session beans as follows:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 19 of 39

Notice the mixing of static text and block tags. The next thing you need to do is process
local and remote SessionBeans differently, and output values of the JavaDoc tags.
This magic is done with the block tag ifClassTagValuesEquals and the content
tag classTagValue. The following figure demonstrates this concept.

Notice how the tag XDtClass:ifClassTagValueEquals checks to see if the
axis.ejb JavaDoc tags view-type parameter is set to remote. These techniques are

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 39 Use XDoclet to generate Web service support files

used throughout the template to output different values in the template.

Template listing that generates Axis deployment
descriptor (1st try)

For completeness here is the entire template. Notice the combination of static and
dynamic data from content tags:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<XDtClass:forAllClasses type="javax.ejb.SessionBean">

<XDtClass:ifClassTagValueEquals tagName="ejb.bean"

paramName="type" value="Stateless">

<XDtClass:ifClassTagValueEquals tagName="axis.ejb"

paramName="view-type"

value="remote">

<service name="<XDtClass:classTagValue

tagName="ejb.bean"

paramName="name"/>" provider="java:EJB">

<parameter name="beanJndiName"

value="<XDtClass:classTagValue

tagName="ejb.bean"

paramName="jndi-name"/>"/>

<XDtClass:forAllClassTags tagName="ejb.home" >

<XDtClass:ifClassTagValueEquals tagName="ejb.home"

paramName="generate"

value="remote">

<parameter name="homeInterfaceName"

value="<XDtClass:classTagValue

tagName="ejb.home"

paramName="remote-class"/>"/>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 21 of 39

</XDtClass:ifClassTagValueEquals>

</XDtClass:forAllClassTags>

<XDtClass:forAllClassTags tagName="ejb.interface" >

<XDtClass:ifClassTagValueEquals tagName="ejb.interface"

paramName="generate"

value="remote">

<parameter name="remoteInterfaceName"

value="<XDtClass:classTagValue

tagName="ejb.interface"

paramName="remote-class"/>"/>

</XDtClass:ifClassTagValueEquals>

</XDtClass:forAllClassTags>

</XDtClass:ifClassTagValueEquals>

<XDtClass:ifClassTagValueEquals tagName="axis.ejb"

paramName="view-type" value="local">

<service name="<XDtClass:classTagValue

tagName="ejb.bean"

paramName="name"/>Local" provider="java:EJB">

<parameter name="beanJndiName"

value="<XDtClass:classTagValue

tagName="ejb.bean"

paramName="local-jndi-name"/>"/>

<XDtClass:forAllClassTags tagName="ejb.home" >

<XDtClass:ifClassTagValueEquals tagName="ejb.home"

paramName="generate"

value="local">

<parameter name="homeInterfaceName"

value="<XDtClass:classTagValue

tagName="ejb.home"

paramName="local-class"/>"/>

</XDtClass:ifClassTagValueEquals>

</XDtClass:forAllClassTags>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 39 Use XDoclet to generate Web service support files

<XDtClass:forAllClassTags tagName="ejb.interface" >

<XDtClass:ifClassTagValueEquals tagName="ejb.interface"

paramName="generate"

value="local">

<parameter name="remoteInterfaceName"

value="<XDtClass:classTagValue

tagName="ejb.interface"

paramName="local-class"/>"/>

</XDtClass:ifClassTagValueEquals>

</XDtClass:forAllClassTags>

</XDtClass:ifClassTagValueEquals>

<XDtClass:ifClassTagValueEquals tagName="axis.ejb"

paramName="view-type" value="remote">

<parameter name="jndiURL"

value="<XDtClass:classTagValue

tagName="axis.ejb"

paramName="jndiURL"/>"/>

<parameter name="jndiContextClass"

value="<XDtClass:classTagValue

tagName="axis.ejb"

paramName="jndiContextClass"/>"/>

</XDtClass:ifClassTagValueEquals>

<parameter name="allowedMethods"

value="<XDtClass:classTagValue

tagName="axis.ejb"

paramName="allowedMethods"/>"/>

</service>

</XDtClass:ifClassTagValueEquals>

</XDtClass:forAllClasses>

</deployment>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 23 of 39

Section 5. Case study: Create Web Service Deployment
Descriptor 2nd try

Create Web Service Deployment Descriptor for EJB
component

You can run the last template just like you ran the first template because it only relies
on core XDoclet tags handlers. But, there are several things wrong with the last
approach. Please do not misunderstand though; the last template is very useful and,
more importantly, works. However all of the SessionBeans would be included in the
same deployment descriptor. What if, during development you only want to redeploy
one of the services, that is, the one you were working on?

The second problem with what I did above is that I only relied on the core tag handlers.
I did not use the EJB specific tag handlers which make working with EJB technology
easier. In order to use EJB specific tag handlers you would need to run your next
template as a subtask of the EJB task.

The third issue is that I specified vendor specific configuration data in the deployment
descriptor (jndiURL and jndiContextClass). I don't like having vendor specific
configuration data in my classes, and neither should you. There are two ways around
this. One is to use an ant property for the value as follows:

...

* @axis.ejb jndiURL="${axis.jndiURL}"

* @axis.ejb jndiContextClass="${axis.jndiContext}"

*/

public class HRSystemBean implements SessionBean {

...

This is great, now I can specify the two above ant properties in my ant properties file
and the value of jnidURL and jndiContextClass will use these values. But, I don't like
this approach because I will need to add these same two lines of JavaDoc code in
every one of my SessionBeans that I want to expose as a Web service in the entire
project. This breaks the rule: "Don't repeat yourself." Instead of this let's pass in
configuration parameters into your very own custom subtask as follows:

<ejbdoclet

ejbspec="2.0"

mergeDir="${src}"

destDir="${gen.src}"

>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 39 Use XDoclet to generate Web service support files

<fileset dir="${src}">

<include name="ejb/*Bean.java" />

</fileset>

<localinterface/>

<localhomeinterface />

<remoteinterface/>

<homeinterface />

<entitypk/>

<apacheaxis destDir="./test"

jndiURL="http://localhost:8080/hrsys/hessian"

jndiContextClass="com.caucho.hessian.HessianContextFactory"

validateXML="true"/>

<deploymentdescriptor destdir="META-INF"

destinationFile="ejb-jar.xml"

validatexml="true" />
...

</ejbdoclet>

</target>

From the above, notice the new custom subtask that you are going to write as follows:

...

<apacheaxis destDir="./test"

jndiURL="http://localhost:8080/hrsys/hessian"

jndiContextClass="com.caucho.hessian.HessianContextFactory"

validateXML="true"/>

...

In the next section I will cover the steps needed to create your very own custom
subtask that you can run like the above.

Steps to creating your own XDoclet SubTask

In order to create a custom subtask you will need to do the following:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 25 of 39

1. Subclass xdoclet.XmlSubTask

2. Create getter and setter methods for configuration settings to pass to the template
(jndiURL and jndiContextClass)

3. Validate the configuration parameters by overriding the validateOptions method

4. Use the inherited and new configuration parameters in the new template and the
parent tag handlers (EJB tag handlers)

5. Create a module.xml file and state that this new module depends on the EJB module

6. Run the xdoclet-xml.xdt template against your new SubTask to generate the
SubTask deployment descriptor

7. Compile and Jar your new subtask with its module.xml file and its xdoclet.xml file

Subclass xdoclet.XmlSubTask

Since you are going to be generating XML output you want to subclass the
XmlSubTask.

The class hierarchy for the XDocletSubTask is as follows:

+--xdoclet.DocletSupport
|
+--xdoclet.SubTask

|
+--xdoclet.TemplateSubTask

|
+--xdoclet.XmlSubTask

Ant uses all setter methods to automatically set config parameters, expressed in XML
as attributes to the SubTask. Let's go over the configuration parameters (expressed in
JavaBean properties in the subtasks).

If you were developing a subtask that developed Java source code instead of XML, you
would use TemplateSubTask. The XmlSubTask provides support for validating the
output XML file. It has getter and setter methods for specifying the DTD, Public ID,
Schema, System ID, XML Encoding for a particular XML file. The getter and setter
methods allow configuration of these parameters in the template. See the javadocs for
XmlSubTask for more detail ([xdoclet-install-dir]/docs/api/index.html).

The TemplateSubTask has getter and setter methods for specifying a template
generation parameters as follows: destination file, type of class to generate from, the
template file, the URL of the template, package substitution, and more. The
TemplateSubTask operates per class mode or single output mode. The XmlSubTask
subclasses the TemplateSubTask; thus inherits all of its attributes (properties). See the
javadocs for TempalteSubTask for more detail ([xdoclet-install-dir]/docs/api/index.html).

TemplateSubTask subclasses the SubTask class, which is the abstract base class for
all XDoclet subtasks. The SubTask specifies parameters like the merge directory, the
destination directory and more. See the javadocs for SubTask for more detail
([xdoclet-install-dir]/docs/api/index.html).

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 39 Use XDoclet to generate Web service support files

The SubTask class subclasses the DocletSupport class. The DocletSupport class has
methods that get called by the XDoclet framework to pass information about the parse
tree. It sets the current package, the current class, the current tag, the current methods
that are currently being processed. The XJavaDoc API is similar to the JavaDocs API
(or even the Java reflection API) as it has objects that refer to classes, methods,
packages, etc. In addition, the XJavaDoc API has classes that represent tags and
attributes.

Here are some of the method signatures from the DocletSupport class that set the
current object that can be worked on:

void setCurrentClass(xjavadoc.XClass clazz)

void setCurrentConstructor(xjavadoc.XConstructor constructor)

void setCurrentField(xjavadoc.XField field)

void setCurrentMethod(xjavadoc.XMethod method)

void setCurrentPackage(xjavadoc.XPackage pakkage)

All of the above setter methods have corresponding getter methods that can be used
by the subclasses of DocletSupport. See the javadocs for DocletSupport for more detail
([xdoclet-install-dir]/docs/api/index.html).

With that, let's complete the first step by subclassing XmlSubTask as follows:

public class AxisSoapSubTask extends XmlSubTask {

private final static String SOAP_SCHEMA =

" http://xml.apache.org/axis/wsdd/";

private static String DEFAULT_TEMPLATE_FILE =

"resources/apache-axis-ejb-soap.xdt";

private static String GENERATED_FILE_NAME = "axis-dds-{0}.xml";

protected String ejbProvider = "java:EJB";

protected Path providerClasspath;

protected String jndiURL = null;

protected String jndiContextClass = null;

private static final String REMOTE = "remote";

private static final String LOCAL = "local";

...

By subclassing XmlSubTask, AxisSoapSubTask inherits all of the configuration
attributes of XmlSubTask, SubTask, and TemplateSubTask. The constructor of
AxisSoapSubTask, your new subtask that generates Axis deployment descriptors, calls
its super class configuration properties as follows:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 27 of 39

public class AxisSoapSubTask extends XmlSubTask {

...

public AxisSoapSubTask() {

super.setTemplateURL(getClass().getResource(DEFAULT_TEMPLATE_FILE));

super.setDestinationFile(GENERATED_FILE_NAME);

super.setSchema(SOAP_SCHEMA);

super.setHavingClassTag("axis.soap-service");

super.setValidateXML(false);
}

Thus you set the default template file, the default destination file name, and the default
schema for the XML document you are generating. Notice that you also specify that
you only want to process files that have the axis.soap-server tag, and you do not want
the XML file you generate to be validated.

Notice that the generated file name is set to axis-dds-{0}.xml. The {0} will be
replaced with the name of the current class. Therefore you are going to use a new
template that just outputs one class at a time.

Create getter and setter methods for configuration
settings

In addition to inheriting configuration settings from its super classes, the
AxisSoapSubTask must create getter and setter methods for configuration settings that
it would like to pass to the template (example: jndiURL and jndiContextClass).

Here are the configuration setting JavaBean properties of the AxisSoapSubTask:

public class AxisSoapSubTask extends XmlSubTask {

...

/**

* Gets the ejbProvider attribute of the AxisSoapSubTask object

*

* @return The EjbProvider value

*/

public String getEjbProvider() {

return ejbProvider;
}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 39 Use XDoclet to generate Web service support files

/**

* Gets the ProviderClasspath attribute of

* the AxisSoapSubTask object

*

* @return The ProviderClasspath value

*/

public Path getProviderClasspath() {

return providerClasspath;
}

/**

* Gets the JNDI URL attribute of the

* AxisSoapSubTask object

*

* @return The JNDI URL value

*/

public String getJndiUrl() {

return jndiURL;
}

/**

* Gets the JNDI Context Factory class attribute of the

* AxisSoapSubTask object

*

* @return JNDI Context Factory class

*/

public String getJndiContextClass() {

return jndiContextClass;
}

/**

* Sets the ejbProvider attribute of the

* AxisSoapSubTask object

*

* @param ejbProvider The new EjbProvider value

*/

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 29 of 39

public void setEjbProvider(String ejbProvider) {

this.ejbProvider = ejbProvider;
}

/**

* Sets the JNDI URL attribute of the

* AxisSoapSubTask object. The JNDI URL is the URL

* associated with the JNDI context provider used

* when looking up an EJB's home interface.

*

* @param url The new ContextProviderUrl value

*/

public void setJndiUrl(String url) {

this.jndiURL = url;
}

/**

* Sets the JNDI Context Factory class attribute

* of the AxisSoapSubTask object.

* The JNDI Context Factory class is the name of the

* JNDI context factory used when looking up an EJB's

* home interface.

*

* @param contextFactoryName The new JNDI Context

* Factory class value

*/

public void setJndiContextClass(String contextFactoryName) {

this.jndiContextClass = contextFactoryName;
}

...

Be sure to read the comments of the above configuration settings, JavaBean
properties.

Validate the configuration parameters

Typically subtasks validate the configuration parameters by overriding the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 39 Use XDoclet to generate Web service support files

validateOptions method and checking to see if the required parameters are not
null or just set to white space. For example, you might implement something that looks
like this:

public void validateOptions() throws XDocletException {

checkParam("jndiURL", this.getJndiUrl());

checkParam("jnidContextClass", this.getJndiContextClass());

super.validateOptions();
}

private void checkParam (String name, String value)

throws XDocletException{

if (value == null) {

throw new XDocletException(

Translator.getString(

XDocletTemplateMessages.class,

XDocletTemplateMessages.TEMPLATE_PARAMETER_MISSING,

new String[]{name}));
}
}

The above code checks to see if the jndiURL and the jndiContextClass are setup. The
problem with this is that the jndiURL and the jndiContextClass configuration
parameters are only needed if you are generating remote EJB components, that is,
they are not needed for local EJB components that are collocated with the AxisEJB. In
order to handle these on a per class level, you will need to override the engineStarted
method as follows:

protected void engineStarted() throws XDocletException {

XClass xclass = getCurrentClass();

XDoc doc = xclass.getDoc();

XTag tag = doc.getTag("axis.soap-service");

String viewType = tag.getAttributeValue("view-type");

boolean remote = REMOTE.equals(viewType);

if (remote){

checkParam("jndiURL", this.getJndiUrl());

checkParam("jnidContextClass", this.getJndiContextClass());
}

...

Notice that you traverse the current class hierarchy to get a tag that specifies its view

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 31 of 39

type (which can be set to remote or local). This way you are only checking the jnidURL
and jndiContextClass if its view type is set to remote as these are only needed for
remote EJB components. The engineStarted method gets called each time a template
is processed. Since you have set the generated file name to axis-dds-{0}.xml with
the {0}, the template will be used against each class and the class name will replace
the {0}.

Use configuration parameters in template and EJB
module tags

Since your subtask inherits the configuration parameters from its superclasses, and
defined new configuration parameters you can use them in the template. For example
the template uses the XML encoding parameter from the XmlSubTask as follows
(formatted to fit on page):

<?xml version="1.0" encoding=

"<XDtConfig:configParameterValue paramName='Xmlencoding'/>"?>

The template also uses the XML schema configuration parameters as well:

<deployment xmlns="<XDtXml:schema/>" ...

In addition to the above, you can use the configuration parameters that you setup in
your subtask as follows:

...

provider="<XDtConfig:configParameterValue

paramName='ejbProvider'/>">
...

<parameter name="jndiURL"

value="<XDtConfig:configParameterValue

paramName='jndiURL'/>"/>

<parameter name="jndiContextClass"

value="<XDtConfig:configParameterValue

paramName='jndiContextClass'/>"/>

Notice the use of XDtConfig:configParameterValue to pull the configuration settings out
of your subtask.

Since the module subtask is a subtask of the EJB module, it can use all of its XDoclet
tag handlers demonstrated as follows:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 39 Use XDoclet to generate Web service support files

<!--

<XDtType:ifIsOfType type="javax.ejb.SessionBean">

Session Bean

<XDtEjbSession:ifStatelessSession>

Stateless

EJB Provider = <XDtConfig:configParameterValue paramName='ejbProvider'/>

EJB Home = <XDtEjbHome:homeInterface type='remote'/>

</XDtEjbSession:ifStatelessSession>

<XDtEjb:ifRemoteEjb>

Remote JNDI = <XDtEjbHome:jndiName type='remote'/>

JNDI URL = <XDtConfig:configParameterValue

paramName='jndiURL'/>

JNDI Context Factory = <XDtConfig:configParameterValue

paramName='jndiContextClass'/>

</XDtEjb:ifRemoteEjb>

<XDtEjb:ifLocalEjb>

Local JNDI <XDtEjbHome:jndiName type='local'/>

</XDtEjb:ifLocalEjb>

</XDtType:ifIsOfType>

-->

If you compare the original template with the new template, you will notice it is terser
because it uses the EJB module tags in the template.

Another improvement you make to the template is the ability to mark methods as
methods that will be exposed in the Axis deployment descriptor. Thus in the Java
source file for the HRService you specify the following method level tag:

/**...

* @axis.soap-service view-type="remote"

*/

public class AxisSoapSubTask extends XmlSubTask {

...

/**

* Get a list of all the depts.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 33 of 39

*

* @return All the dept value objects.

* ...

* @axis.soap-method

*/

public DeptValue[] getDepartments() {

ArrayList deptList = new ArrayList(50);

Collection collection = LocalFinderUtils.findAll("DeptBean");

return collectionToDeptValueArray(collection);
}

Notice the getDepartments is marked with @axis.soap-method. The template
uses this to generate a list of methods that are going to be exposed with the following
template code (modified to fit).

<parameter name="allowedMethods"

value="

<XDtMethod:forAllMethods>

<XDtMethod:ifHasMethodTag

tagName='axis.soap-method'>

<XDtMethod:methodName/>

</XDtMethod:ifHasMethodTag>

</XDtMethod:forAllMethods>"/>

Now your templates only need to specify two tags: one class tag
(@axis.soap-service) and one method tag (@axis.soap-method).

Create XDoclet deployment, module files, and
package the module

You need to do the following things to configure the subtask as an XDoclet module:

• Create a module.xml file and state that this new module depends on the EJB module

• Run the xdoclet-xml.xdt template against your new SubTask to generate the
SubTask deployment descriptor

• Package the module with the above deployment descriptors

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 39 Use XDoclet to generate Web service support files

The module.xml file has to specify that this module depends on the EJB module as
follows:

<?xml version="1.0"?>

<!DOCTYPE module

PUBLIC "-//XDoclet Team//DTD XDoclet Module 1.0//EN"
"http://xdoclet.sourceforge.net/dtds/xdoclet-module_1_0.dtd">

<module>

<module-dependency module-name="ejb"/>

</module>

The generated xdoclet.xml file looks as follows (modified to fit):

<?xml version="1.0" encoding="UTF-8"?>

<!--

<!DOCTYPE xdoclet-module PUBLIC "-//XDoclet Team//DTD XDoclet Module 1.0//EN"
"http://xdoclet.sourceforge.net/dtd/xdoclet-module_1_0.dtd">

-->

<xdoclet-module>

<subtask

name="apacheaxis"

implementation-class="xdoclet.<...>.AxisSoapSubTask"

parent-task-class="xdoclet.modules.ejb.EjbDocletTask"

/>

</xdoclet-module>

Notice that the xdoclet.xml file specifies that your subtask is a subtask of the parent
task EjdDoclet.

Now in order to build, package, and deploy you use ant as follows:

<target name="xdocletgen">

<echo>

- This is used to generate XDoclet.xml file

-

-

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 35 of 39

</echo>

<taskdef name="xdoclet" classname="xdoclet.DocletTask"

classpathref="xdocpath" />

<xdoclet destdir="xdoc.META" verbose="true">

<fileset dir="xdoclet.src"/>

<template

templateFile="${xdoclet.src.home}/modules/xdoclet-xml.xdt"

destinationFile="xdoclet.xml" />

</xdoclet>

<mkdir dir="modules.dest" />

<javac destdir="modules.dest" srcdir="xdoclet.src"

classpathref="xdocpath" debug="true"/>

<mkdir dir="modules.dest/META-INF" />

<copy todir="modules.dest/META-INF" >

<fileset dir="xdoc.META" >

<include name="xdoclet.xml"/>

<include name="module.xml"/>

</fileset>

</copy>

<copy todir="modules.dest" >

<fileset dir="xdoc.META/resources" >

<include name="**/*.properties"/>

</fileset>

</copy>

<copy todir="modules.dest/xdoclet/modules/apache/axis/soap/ejb">

<fileset dir="xdoclet.src">

<include name="**/*.xdt"/>

</fileset>

</copy>

<jar jarfile="c:\xdoclet\lib\xdoclet-axis-ejb-module.jar">

<fileset dir="modules.dest" />

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 39 Use XDoclet to generate Web service support files

<metainf dir="xdoc.META">

<include name="xdoclet.xml"/>

<include name="module.xml"/>

</metainf>

</jar>

</target>

Go ahead and download the code for the new template and subtask and review it.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 37 of 39

Section 6. Summary and resources

Summary

This tutorial showed J2EE developers how to use XDoclet to write their own custom
templates and subtask.

XDoclet enables simplified continuous integration and refactoring with
component-oriented development using attribute-oriented programming. XDoclet
allows you to radically reduce development time, by generating deployment descriptors
and support code, allowing you to focus on application logic code. Not only can you
use the plethora of templates that ship with XDoclet, but you can create your own. In
addition you can create a subtask to pass in custom configuration parameters that you
do not want to show up in the source files.

Resources

Download all the source code in the source code zipfile.

If you are new to EJB technology:

• Check out Brett McLaughlin's EJB best practices column on developerWorks Java
technology zone.

• Take the first tutorial in a series of five on Introduction to container-managed
persistence and relationships (example code uses XDoclet) by Rick Hightower
(developerWorks, March 2002)

• The Developer's Guide to Understanding EJB 2.0 (gain deeper understanding of the
specification)

If you are new to Custom Tags:

• JSP taglibs: Better usability by design, by Noel J. Bergman (developerWorks,
December 2001)

• J2EE Tutorial: Custom Tag tutorial

If you want more detail about Ant:

• Ant Primer

• Book: Java Tools for Extreme Programming covers Ant

If you want to learn how to work with Struts and XDoclet:

• Mastering Struts (Struts tutorial that uses XDoclet)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 39 Use XDoclet to generate Web service support files

xdoccode.zip
xdoccode.zip
xdoccode.zip
http://www-106.ibm.com/developerworks/java/library/j-ejbcol.html
http://www-106.ibm.com/developerworks/java/library/j-ejbcol.html
http://www-106.ibm.com/developerworks/java/library/j-ejbcol.html
http://www-106.ibm.com/developerworks/java/library/j-ejbcol.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPTags.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPTags.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPTags.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPTags.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPTags.html
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm

If you want a more complex EJB example (for example, many to many relationship,
and primary key classes) ported to JBoss, Resin and others EJB servers get the
source code for the 5 part series on using EJB technology with CMP/CMR 2.0:

• More XDoclet examples

Previous tutorials on developerworks:

• Enhance J2EE Component Reuse with XDoclets (developerWorks, May 2003)

• Service-enable EJB SessionBeans with the IBM Emerging Technologies Toolkit
(ETTK) (developerWorks, May 2003)

Feedback

Please let us know whether this tutorial was helpful to you and how we could make it
better. We'd also like to hear about other tutorial topics you'd like to see covered.

For questions about the content of this tutorial, contact the author, Rick Hightower, at
Rick_M_Hightower@hotmail.com.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Use XDoclet to generate Web service support files Page 39 of 39

http://www.rickhightower.com/ejbcmpcmrtut.html
http://www.rickhightower.com/ejbcmpcmrtut.html
http://www.rickhightower.com/ejbcmpcmrtut.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-j2x-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-j2x-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-j2x-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-j2x-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-j2x-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-j2x-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-axisejb-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-axisejb-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-axisejb-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-axisejb-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-axisejb-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-axisejb-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-axisejb-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-axisejb-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-axisejb-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-axisejb-i.html
maito:Rick_M_Hightower@hotmail.com
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What is XDoclet?
	What do I need to know for this tutorial?
	About the author
	Tools you will need for this tutorial

	Simple template to introduce XDoclet
	Simple XDoclet template example

	First template: XDoclet architecture
	Running Simple XDoclet template
example
	XDoclet architecture
	Finding template block and content tags

	Case study: Create Web Service Deployment Descriptor 1st try
	Create Web Service Deployment Descriptor for EJB component
	Defining your own tags
	Template that generates Axis deployment descriptor (1st try)
	Template listing that generates Axis deployment descriptor (1st try)

	Case study: Create Web Service Deployment Descriptor 2nd try
	Create Web Service Deployment Descriptor for EJB component
	Steps to creating your own XDoclet SubTask
	Subclass xdoclet.XmlSubTask
	Create getter and setter methods for configuration settings
	Validate the configuration parameters
	Use configuration parameters in template and EJB module tags
	Create XDoclet deployment, module files, and package the module

	Summary and resources
	Summary
	Resources
	Feedback

