
Enhance J2EE component reuse with
XDoclets

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Step-by-step Servlet example.. 5
3. Step-by-step Custom Tag example (TagLib) 20
4. Step-by-step EJB technology example 24
5. xPetstore... 42
6. Summary .. 44

Enhance J2EE component reuse with XDoclets Page 1 of 45

Section 1. About this tutorial

Purpose of this tutorial

This tutorial shows J2EE developers how to use XDoclet to speed development.
XDoclet simplifies continuous integration between components using attribute-oriented
programming. It allows you to radically reduce development time by generating
deployment descriptors and support code, allowing you to focus on application logic
code.

If you are a J2EE development veteran, then you realize keeping code in sync with
deployment descriptors can be a drag. Often you may need to reuse components with
other applications or in other environments like other application servers or with other
database systems. You need to keep separate deployment descriptor for each
application/environment combination, even if only one or two lines of the large
deployment descriptor changes, you need to have a deployment descriptor for every
possible configuration. This can really slow down development. At times you may feel
you spend more time syncing deployment descriptors than writing code.

XDoclet facilitates automated deployment descriptor generation. As a code generation
utility, it allows you to tack on metadata to language features like classes, method, and
fields using what looks like JavaDoc tags. Then it uses that extra metadata to generate
related files like deployment descriptor and source code. This concept has been coined
attribute-oriented programming (not to be confused with aspect-oriented programming,
the other "AOP").

XDoclet generates these related files by parsing your source files similar to the way the
JavaDoc engine parses your source to create JavaDoc documentation. In fact earlier
versions of XDoclet relied on JavaDoc. XDoclet, like JavaDoc, not only has access to
these extra metadata that you tacked on in the form of JavaDoc tags to your code, but
also access to the structure of your source, that is, packages, classes, methods, and
fields. It then applies this hierarchy tree of data to templates. It uses all of this and
templates that you can define to generate what would otherwise be monotonous
manual creation of support files. This tutorial focuses on using existing templates that
ship with XDoclet.

XDoclet ships an Ant task that enables you to create web.xml files, ejb-jar.xml files,
and much more. In this tutorial, you will use XDoclet to generate a Web application
deployment descriptor with the webdoclet Ant task. In addition you will generate
Enterprise JavaBeans (EJB) support files. Note that XDoclet Ant tasks do not ship with
the standard distribution of Ant. You will need to download the XDoclet Ant tasks from
XDoclet site on Sourceforge.net.

This tutorial is a hands-on approach to learning how to use XDoclet to do J2EE
component development. By the end of this tutorial, you will build several J2EE
components using XDoclet. You will build a Servlet, a Custom Tag (taglib) and develop
3 EJB components.

You may be wondering: "Why should I care? I am an excellent Java/J2EE Web
developer and I have never needed XDoclet." Simply put, you don't know what you are

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 45 Enhance J2EE component reuse with XDoclets

http://xdoclet.sourceforge.net
http://xdoclet.sourceforge.net
http://xdoclet.sourceforge.net
http://xdoclet.sourceforge.net

missing. Once you start using XDoclet, you will not stop. XDoclet is the missing piece
in you J2EE development process. It will speed development. Once you have mastered
the basics, you can go on to generate your code based on your own custom XDoclet
templates.

What do I need to know for this tutorial?

This tutorial assumes you have a working knowledge of Java technology and XML.
Knowledge of J2EE technology and Ant are helpful but not required to understand the
key concepts. Ant is used to build, and deploy the example applications. Links to
introductory material on Ant, Java technology, J2EE , XML, and EJB technology are
provided in the references section at the end of this tutorial.

The source code in the tutorial has been tested with Tomcat, and Resin EE. The
applications should be easy to port to other J2EE-compliant application servers like
IBM WebSphere Application Server.

I used the Eclipse Framework to create the examples. The examples are easiest to run
by downloading Eclipse 2.1 or higher and a J2EE application server plug-in for Eclipse.
Eclipse has excellent support for Ant, which facilitates running the Ant XDoclet tasks
right from the IDE environment.

If you are new to Ant, please read this sample chapter from Mastering Tomcat on
Developing Web Components with Ant (written by yours truly)
"http://www.rickhightower.com/AntPrimer.pdf". Just read the sections on Ant
development for now.

What this tutorial covers

This tutorial covers getting started with XDoclet to speed J2EE development. The
tutorial has three step-by-step examples applying XDoclet development to Servlets,
Custom Tags, and EJB. All examples, ships with a set of Ant build scripts so you can
easily create your own custom solutions by reusing the sample build files.

About the author

Rick Hightower is a developer who enjoys working with Java programming language,
Ant and XDoclet. Rick is currently the CTO of Trivera Technologies, a global training,
mentoring and consulting company focusing on enterprise development.

If you like this tutorial, you might like Rick's book Java Tools for Extreme Programming,
which was the best selling software development book on Amazon for three months in

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 3 of 45

http://jakarta.apache.org
http://www.caucho.com
http://www.caucho.com
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv
http://www.rickhightower.com
http://www.rickhightower.com
http://www.triveratech.com
http://www.triveratech.com
http://www.rickhightower.com/JavaXPToolkit
http://www.rickhightower.com/JavaXPToolkit
http://www.rickhightower.com/JavaXPToolkit
http://www.rickhightower.com/JavaXPToolkit
http://www.rickhightower.com/JavaXPToolkit

2002.

Rick also contributed two chapters to the book Mastering Tomcat on the subjects Struts
Tutorial, and Tomcat development with Ant and XDoclet as well as many other
publications.

Rick is also speaking this year (2003) at JavaOne on EJB CMP/CMR and XDoclet and
at TheServerSide.com Software Symposium on J2EE development with XDoclet. Rick
has spoken at JDJEdge, WebServicesEdge and the Complete Programmer Network
software symposiums.

Tools you will need for this tutorial

You will need a current version of the JDK. All the examples in this tutorial use J2SE
SDK 1.4.1.

All of the examples use Ant build scripts to build and deploy the Web applications that
contain the examples. This should be no surprise since XDoclet relies on Ant, and the
only interface to XDoclet is through Ant. Ant can be found at the Ant home page. The
examples use Ant 1.5.3.

You will, of course, need XDoclet itself which can be found at the XDoclet site . XDoclet
like Ant is open source. The examples in this tutorial use version XDoclet 1.2 beta 2.
Not only is it likely that XDoclet will be out of beta by the time you read this, but XDoclet
has been recently accepted to be a Apache Jakarta project so if you do not find it at the
above link look for it at the Apache Jakarta site.

I recommend that you use an Interactive development environment (IDE) such as
available from the Eclipse project, since there are quite a few jar files to manage. All
the examples ship with the projects done in the freely available Eclipse IDE and are
compatible with Eclipse and WebSphere Studio Application Developer (WebSphere
Studio). As long as you configure you environment as suggested you can use the
Eclipse project files with little additional work. Eclipse or WebSphere Studio Application
Developer (WebSphere Studio) is not required, but can be found at the Eclipse Web
Site and at WebSphere Studio trial download respectively. There is no requirement to
use Eclipse, but the Eclipse project files are provided as a convenience to Eclipse and
WebSphere Studio users. WebSphere Studio builds on top of Eclipse. Eclipse was
used to build the sample applications.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 45 Enhance J2EE component reuse with XDoclets

http://jakarta.apache.org/ant/index.html
http://jakarta.apache.org/ant/index.html
http://jakarta.apache.org/ant/index.html
http://xdoclet.sourceforge.net/
http://xdoclet.sourceforge.net/
http://jakarta.apache.org/ant/index.html
http://jakarta.apache.org/ant/index.html
http://jakarta.apache.org/ant/index.html
http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=landings/studiosplashv5
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=landings/studiosplashv5
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=landings/studiosplashv5
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=landings/studiosplashv5

Section 2. Step-by-step Servlet example

Servlet XDoclet example

To get this tutorial started, let's kick it off with a simple Servlet and XDoclet
combination. Remember that XDoclet extends the idea of the JavaDoc engine to allow
the generation of code and other files based on custom JavaDoc tags. XDoclet ships
with an Ant task that enables you to create web.xml files, ejb-jar.xml files, and much
more. In this section, you will use XDoclet to generate a Web application deployment
descriptor with the webdoclet Ant task. This will be the simplest endeavor in this
tutorial. Note that XDoclet Ant tasks do not ship with the standard distribution of Ant.

If you have worked with J2EE technology before, you know what the web.xml file is
used to configure Web applications. The web.xml file is the deployment descriptor for
the Web application. XDoclet allows you to generate the web.xml deployment
descriptor using JavaDoc like tags within Servlet's source code.

The following Servlet specifies XDoclet tags that will be used to generate a web.xml
file. Let's do a quick preview and then I will break down how these tags map to
elements that are generated in the Web application deployment descriptor (web.xml).

/*
* BasicServlet.java
*
*/

package rickhightower.servlet;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.sql.*;
import java.sql.*;
import javax.naming.*;

/**
*
* @author Rick Hightower
*
* @version 1.0
* @web.servlet name="BasicServlet"

display-name="Basic Servlet"
load-on-startup="1"

* @web.servlet-init-param name="hi" value="Ant is cool!"
* @web.servlet-init-param name="bye" value="XDoc Rocks!"
* @web.resource-ref description="JDBC resource"
* name="jdbc/mydb"
* type="javax.sql.DataSource"
* auth="Container"
* @web.servlet-mapping url-pattern="/Basic/*"
* @web.servlet-mapping url-pattern="*.Basic"
* @web.servlet-mapping url-pattern="/BasicServlet"
*/
public class BasicServlet extends HttpServlet {

/** Initializes the servlet.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 5 of 45

*/
public void init(ServletConfig config) throws ServletException {

super.init(config);

}

/** Destroys the servlet.
*/
public void destroy() {

}

/** Processes requests for both HTTP GET and POST methods.
* @param request servlet request
* @param response servlet response
*/
protected void processRequest(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, java.io.IOException {

ServletConfig config = this.getServletConfig();
String hi = config.getInitParameter("hi");
String bye = config.getInitParameter("bye");

try{
response.setContentType("text/html");

java.io.PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head>");
out.println("<title>Basic Servlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1> bye:" + bye + "</h1>");
out.println("<h1> hi:" + hi + "</h1>");
getJdbcPool(out);
out.println("</body>");
out.println("</html>");
out.close();

}catch(Exception e){
throw new ServletException(e);

}
}

/** Handles the HTTP GET method.
* @param request servlet request
* @param response servlet response
*/
protected void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, java.io.IOException {

processRequest(request, response);
}

/** Handles the HTTP POST method.
* @param request servlet request
* @param response servlet response
*/
protected void doPost(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, java.io.IOException {

processRequest(request, response);
}

/** Returns a short description of the servlet.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 45 Enhance J2EE component reuse with XDoclets

*/
public String getServletInfo() {

return "XDoc Rules";
}

private void getJdbcPool(java.io.PrintWriter out)throws Exception{
out.println("</ br>");

Object obj = new InitialContext().
lookup("java:comp/env/jdbc/mydb");

DataSource pool = (DataSource)obj;
if (pool == null) return;
Connection connection = pool.getConnection();

out.println("<table>");
try{

ResultSet rs =
connection.getMetaData().
getTables(null,null,null,null);

while(rs.next()){
out.println("<table-row><table-cell>");
out.println(rs.getString("TABLE_NAME"));

}
}finally{

connection.close();
}
out.println("</table>");

out.println("</ br>");
}

}

When you apply the XDoclet Ant task, webdoclet, to the above source file you will get
the following deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

...

<servlet>
<servlet-name>BasicServlet</servlet-name>
<display-name>Basic Servlet</display-name>
<servlet-class>rickhightower.servlet.BasicServlet</servlet-class>

<init-param>
<param-name>hi</param-name>
<param-value>Ant is cool!</param-value>

</init-param>
<init-param>

<param-name>bye</param-name>
<param-value>XDoc Rocks!</param-value>

</init-param>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 7 of 45

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>BasicServlet</servlet-name>
<url-pattern>/Basic/*</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>BasicServlet</servlet-name>
<url-pattern>*.Basic</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>BasicServlet</servlet-name>
<url-pattern>/BasicServlet</url-pattern>

</servlet-mapping>

...

<resource-ref>
<description>JDBC resource</description>
<res-ref-name>jdbc/mydb</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

...

</web-app>

The next few pages will explain step-by-step what tags correspond to which parts of
the Web application deployment descriptor.

Step one: define Servlet element

XDoclet may seem intimidating, but the mappings are quite natural. The first step in
using webdoclet is defining the servlet element as XDoclet JavaDoc tags at the class
level in your class as follows:

...
* @web.servlet name="BasicServlet"

display-name="Basic Servlet"
load-on-startup="1"

...

*/

public class BasicServlet extends HttpServlet {

This code generates the following servlet element and subelements in the web.xml file:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 45 Enhance J2EE component reuse with XDoclets

<servlet>
<servlet-name>BasicServlet</servlet-name>
<display-name>Basic Servlet</display-name>
<servlet-class>rickhightower.servlet.BasicServlet</servlet-class>

...

<load-on-startup>1</load-on-startup>

</servlet>

You may wonder how the servlet-class was determined. Since the XDoclet task
works like the JavaDoc API, it can get the full classname of the servlet just like the
JavaDoc API get the full classname for the JavaDocs. Not only does this save typing, it
mitigates the likelihood of making mistakes. And then later when you are refactoring
and decide to change the class name or package structure, you don't have to manually
change all of the deployment descriptors. Whew!

Step two: define init parameters for Servlet

After the servlet is defined using the Servlet element, then you can define mappings
and initial parameters. servlet-init-params are defined in JavaDocs comments
like this:

...
* @web.servlet-init-param name="hi" value="Ant is cool!"
* @web.servlet-init-param name="bye" value="XDoc Rocks!"
...
*/
public class BasicServlet extends HttpServlet {

These parameters will generate the following >init-param>s in the deployment
descriptor:

<servlet>

<servlet-name>BasicServlet</servlet-name>
...

<init-param>
<param-name>hi</param-name>
<param-value>Ant is cool!</param-value>

</init-param>
<init-param>

<param-name>bye</param-name>
<param-value>XDoc Rocks!</param-value>

</init-param>
...

</servlet>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 9 of 45

Hopefully you are looking at this example and screaming WAIT! Why Wait? I just hard
code init parameters into the source code. Does this give you shivers? No? It should
make you wonder. I was giving a talk at a conference about XDoclet and someone
stopped me at this point and read me the riot act about how the <init-param>s were
now hard coded. Not so fast ... Read on.

Step three: combine Ant and XDoclet to configure
components

Hard coding initialization parameters into source code is something that you typically
do not want to do. The whole idea around having <init-param>s is so the Web
component can be customized by the application assembler into a J2EE application.

A better way is to set the init parameters to point to a token as in @bye@ and @hi@,
and then later use the Ant copying with filtering enabled to pass the right token value
for the right application. This assumes you are using Ant to build your project.

You can use Ant filtering to replace tokens in a configuration file with their proper
values for the deployment environment. Filters are another way to support configuring
J2EE components for more than one application. Here is an example Ant script: that
configures the web.xml based on a condition:

<project name="filtering" default="run">

<target name="spanishSetup" if="spanish">
<filter token="bye" value="adios"/>
<filter token="hi" value="hola"/>

</target>

<target name="englishSetup" unless="spanish">
<filter token="bye" value="goodbye"/>
<filter token="hi" value="hello"/>

</target>

<target name="setup" depends="spanishSetup,englishSetup"/>

<target name="run" depends="setup">
<copy todir="${workspace}/WEB-INF" filtering="true">

<fileset dir="./WEB-INF"/>
</copy>

</target>
</project>

In above Ant example, the filter in the englishSetup target sets the bye token to
goodbye, while the filter in the spanishSetup target sets the bye token to adios.

Later, when the script uses a copy task with filtering on, it applies the filter to all files in
the file set specified by the copy. The copy task with filtering on replaces all
occurrences of the string @bye@ with adios if the spanish property is set but to later if
the spanish property is not set.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 45 Enhance J2EE component reuse with XDoclets

Even Easier way...

While this is one way to solve this problem, there is an easier way. Every attribute
value in XDoclet can be set with an Ant Property. Since you generate the related files
with XDoclet Ant tasks, XDoclet has access to all of the ant properties. Thus, you could
set the values as follows:

...
* @web.servlet-init-param name="hi"
* value="${basic.servlet.hi}"
*
* @web.servlet-init-param name="bye"
* value="${basic.servlet.bye}"
...
*/
public class BasicServlet extends HttpServlet {

Then when you generate the web.xml file the hi and bye initialization parameters
would be set to whatever the current value of the basic.servlet.hi and
basic.servlet.bye properties are set to in the Ant build script. XDoclet and Ant
work well together to configure J2EE components into applications. The key take away
is that the components can be configured on a per application basis. Imagine a master
build file per application that calls build files per component passing the build files the
info it needs to configure the component for that particular application.

Step four: define Servlet mappings

The servlet mappings can also be defined with the XDoclet JavaDoc tags as follows:

* @web.servlet-mapping url-pattern="/Basic/*"
* @web.servlet-mapping url-pattern="*.Basic"
* @web.servlet-mapping url-pattern="/BasicServlet"
...
*/
public class BasicServlet extends HttpServlet {

These would generate the following entries in the web.xml file:

<servlet-mapping>
<servlet-name>BasicServlet</servlet-name>

<url-pattern>/Basic/*</url-pattern>
</servlet-mapping>
<servlet-mapping>

<servlet-name>BasicServlet</servlet-name>
<url-pattern>*.Basic</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>BasicServlet</servlet-name>
<url-pattern>/BasicServlet</url-pattern>

</servlet-mapping>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 11 of 45

Three short lines of code versus 12 lines of XML elements and subelements. Are you
starting to feel the power (and joy) of XDoclet? XML was meant to be parsed by
computers and readable by humans, but not written by humans necessarily.

Step five: define J2EE resources

In addition to the above you can define resources reference in the web.xml for
resources like the JDBC data sources or even ejb references. The Java file includes
these XDoclet JavaDoc style tags at the class level as follows:

/** ...
* @web.resource-ref description="JDBC resource"
* name="jdbc/mydb"
* type="javax.sql.DataSource"
* auth="Container"
...
*/
public class BasicServlet extends HttpServlet {

The above generate the following elements in the web.xml file:

...

<resource-ref>
<description>JDBC resource</description>
<res-ref-name>jdbc/mydb</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Using the webdoclet task to generate Web
application deployment descriptors

This is all fine and dandy, but how do you take the Java source files with the fancy
JavaDoc like tags and generate the web.xml file? For this, you need to write an Ant
build file that uses the webdoclet task from XDoclet.

The webdoclet task is an Ant task for generating all manner of support files. For this
example you will use the deploymentdescriptor subtask. But before you do this you
have to setup XDoclet to be accessible from your Ant scripts. While you are setting up
XDoclet, you might as well setup your environment.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 45 Enhance J2EE component reuse with XDoclets

Before you can run the webdoclet task you need to setup your environment with
XDoclet and Ant. This will require installing and configuring XDoclet. And, then letting
your Ant build file know about your application server configuration.

To do all of this you will need to:

1. Install XDoclet

2. Download and install the example

3. Configure the example to find your XDoclet install

4. Configure the example to find your application server's live deploy directory

5. Configure the example to find your application server's lib directory

Installing XDoclet

Download XDoclet 1.2 or higher. Go to the files section of the XDoclet project on
sourceforge. Look for the file that looks like xdoclet-bin-1.2xxx.zip . Click on it.

Unzip the zip file in to a subdirectory called xdoclet off of your root directory. You can
unzip in another place if you like.

I've included an example build.xml file that imports a properties file. The properties file
sets all of the properties for you with few external references. If you did not install
XDoclet in the root, which is very likely if you are using Unix, you will need to set the
xdocletlib property in the build.properties file (More on this in the next slide).

Install and configure the example

You can download the example as a zip file. Unzip this file in your root directory. It will
create a folder called tutorials.

If you are using the example, and you installed XDoclet in another location then all you
have to do is modify the xdocletlib variable in the build.properties file
(tutorials\J2EEXdoclet\webdoclet\build.properites).

Here is the listing of the build.properties file:

################ Change These for your environment ###################

This is where you installed xdoclet
xdocletlib=/xdoclet/lib

Change these for your app servers.
This is the deployment directory.

webapps=/tomcat4/webapps
This lib is where the ant script expects to find the j2ee jar files.

lib=/tomcat4/common/lib

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 13 of 45

http://sourceforge.net/project/showfiles.php?group_id=31602
http://sourceforge.net/project/showfiles.php?group_id=31602
http://sourceforge.net/project/showfiles.php?group_id=31602
http://sourceforge.net/project/showfiles.php?group_id=31602
http://sourceforge.net/project/showfiles.php?group_id=31602
http://sourceforge.net/project/showfiles.php?group_id=31602
http://sourceforge.net/project/showfiles.php?group_id=31602
http://sourceforge.net/project/showfiles.php?group_id=31602
http://sourceforge.net/project/showfiles.php?group_id=31602
http://sourceforge.net/project/showfiles.php?group_id=31602
http://sourceforge.net/project/showfiles.php?group_id=31602
ws-j2xcode.zip
ws-j2xcode.zip
ws-j2xcode.zip
ws-j2xcode.zip
ws-j2xcode.zip

You should not have to change these
src=./src
WEBINF=./web/WEB-INF
dest=${WEBINF}/classes

docroot=./web
output=./tmp

appname=webdoclet

You may change these at will. These get used by the Servlet example.
basic.servlet.bye=dude
basic.servlet.hi=mom

The instructions in the build.properties file should be enough for the veteran Ant/J2EE
developer to continue. For those who are Ant neophytes or are otherwise confused,
read the next page carefully.

Details about Configuring build.properites for your
environment

You need to change three setting in the build.properties file
(tutorials\J2EEXdoclet\webdoclet\build.properites) as follows:

1. Set the location of the XDoclet install.

2. Set the hot deploy directory of your J2EE application server

3. Set the lib directory of your J2EE application server

Set the XDoclet lib

The default setting of xdocletlib is /xdoclet/lib. If you have installed XDoclet in
another location, please adjust this setting accordingly.

Set the deploy directory

You need to adjust the webapps property of the build.properties file to match your
J2EE application server's hot deploy directory.

For example on my box: webapps=/resin/webapps would deploy to Resin while
webapps=/tomcat4/webapps would deploy to Tomcat 4. The Ant build file will copy
a war to whatever location you specify with the webapps property when you run the
deploy target. Set the J2EE lib directory

The next thing you need to do is specify the lib directory where the Ant build file will find
the J2EE jar files. You can do this by modifying the lib property of the build.properties
file.

For example on my box: lib=/resin/lib would use Resin EE lib directory,
lib=/tomcat4/common/lib would use the Tomcat lib directory and

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 45 Enhance J2EE component reuse with XDoclets

lib=/j2sdkee1.3.1/lib would use Sun's reference implementation directory. The
Ant build file uses this property to set the J2EE library jar files on the classpath for
compilation.

If all of this talk about Ant is just not making sense, that is, you are an Ant neophyte,
then I have the perfect thing for you. Please read this sample chapter from Mastering
Tomcat on Developing Web Components with Ant (by yours truly) at the following link:
"http://www.rickhightower.com/AntPrimer.pdf". It is an excellent primer on using Ant.

Defining the webdoclet task

In order to run the webdoclet task, you must define the XDoclet webdoclet task with
as taskdef in your ant build file as follows:

<taskdef name="webdoclet"
classname="xdoclet.modules.web.WebDocletTask"
classpathref="xdocpath"

/>

You have to do this because XDoclet is not a built-in Ant task. Notice the class name of
the Ant task handler is xdoclet.modules.web.WebDocletTask. Also notice that
you reference a predefined classpath called xdocpath. The xdocpath was defined
earlier and it uses the xdocletlib property that was setup earlier as follows:

<path id="cpath">
<fileset dir="${lib}"/>

</path>

<path id="xdocpath">
<path refid="cpath"/>
<fileset dir="${xdocletlib}">

<include name="*.jar"/>
</fileset>

</path>

The taskdef must have the XDoclet jar files in its classpath as well as the J2EE lib
directories. Once you have defined the webdoclet taskdef, you can use the webdoclet
task.

You can find these tasks and tags in the ant build file called build.xml.

Using the webdoclet task

To generate the web.xml file from the Java source, you need to use XDoclet's
webdoclet task, as shown:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 15 of 45

<webdoclet destdir="${dest}">

<fileset dir="${src}">
<include name="**/*Servlet.java" />

</fileset>

<deploymentdescriptor servletspec="2.3"
destdir="${WEBINF}" />

</webdoclet>

The webdoclet task is used in a Ant target called generateDD. The output directory
of is specified with the webdoclet task's destdir attribute webdoclet
destdir="${dest}". The dest property is set in the build.properties file
(/tutorials/J2EEXdoclet/webdoclet/web/WEB-INF).

The input files for the webdoclet task are specified with a fileset: fileset
dir="${src}" . The src property is set in the build.properties file
(/tutorials/webdoclet/src). The fileset uses a filter so that only the classes ending in
Servlet will be selected as in BasicServlet: <include
name="**/*Servlet.java"/>. This is to avoid processing all of the source code
instead of just the source code that uses XDoclet tags.

The deploymentdescriptor subtask specifies the location for the generated
deployment descriptor using the destdir attribute: deploymentdescriptor ...
destdir="${WEBINF}" . The deploymentdescriptor is the subtask that actually
generates the web.xml file.

Running Ant

To run the sample Ant build file, go to the directory that contains the project files. To
run Ant, navigate to the /tutorials/J2EEXdoclet/webdoclet directory and type: ant
deploy

As I stated earlier, Ant will locate build.xml, the default name for the build file. (You may
have to adjust your build.properties files.) For this example, here is the command-line
output you should expect:

C:\tutorials\J2EEXdoclet\webdoclet>ant deploy
Buildfile: build.xml

init:
[mkdir] Created dir: C:\tutorials\J2EEXdoclet\webdoclet\tmp\war

compile:
[javac] Compiling 2 source files to
C:\tutorials\J2EEXdoclet\webdoclet\web\WEB-INF\classes

generateDD:
[webdoclet] Running <deploymentdescriptor/>
[webdoclet] Generating web.xml.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 45 Enhance J2EE component reuse with XDoclets

package:
[war] Building war: C:\tutorials\J2EEXdoclet\webdoclet\tmp\war\webdoclet.war

deploy:
[copy] Copying 1 file to C:\tomcat4\webapps

BUILD SUCCESSFUL
Total time: 13 seconds

Now that you have deployed it let's test it. Go to
http://localhost:8080/webdoclet/BasicServlet. You may have to adjust the port number
and/or context depending on your app server.

You should get a browser that looks like this:

Now open up the build.properties file and change the following properties like so:

basic.servlet.hi=I love XDoclet
basic.servlet.bye=Feel the power of XDoclet

Next, if you have an IDE like Eclipse that supports refactoring, change the package
name of the Servlet to com.foobar.ibm. Now rerun the ant build file as before (run the
clean target first then the deploy), and rerun the application. You see: The web.xml file
is in sync with the new changes. See the power. You are free to change the name or
package of the class as needed. XDoclet will keep the web.xml file in sync. Feel the
power of XDoclet!

Running Ant with Eclipse

If you are using Eclipse, you never have to leave the IDE to run Ant and your
application server (there are many plug-ins for many application servers).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 17 of 45

 http://localhost:8080/webdoclet/BasicServlet

If you don't run the Ant build file inside of Eclipse when you are working with EJB
technology you have to sync up Eclipse by running refresh and the rebuilding the
project; however, if you run the Ant build file inside of Eclipse it automatically refreshes.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 45 Enhance J2EE component reuse with XDoclets

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 19 of 45

Section 3. Step-by-step Custom Tag example (TagLib)

Using the XDoclet?s webdoclet task to create
Custom Tag TLDsClass level JavaDoc tags for
Custom Tags

Just like before, the mappings are quite natural. The first step is to define the jsp tag
using the jsp.tag and passing the name of the custom tag as follows:

* @jsp.tag name="BasicTag"

This code generates the following in the TLD file:

<tag>
<name>BasicTag</name>
<tag-class>tomcatbook.customtag.BasicTag</tag-class>

...
</tag>

Remember that XDoclet uses the JavaDoc API to get the full class name of the custom
tag handler. Next, you define any variables that you want available to the JSP pages
that use your custom tag. For this example, you defined three variables. One of the
variables can be used after the begin tag, one after the end tag only, and one only
inside the body, as shown here:

* @jsp.variable name-given="currentIter"
* class="java.lang.Integer" scope="NESTED"
* @jsp.variable name-given="atBegin"
* class="java.lang.Integer" scope="AT_BEGIN"
* @jsp.variable name-given="atEnd"
* class="java.lang.Integer" scope="AT_END"

A side benefit of XDoclet it that it keeps everything that makes of this Custom tag
together in one file. In addition, it is great for documenting what makes up this Custom
tag. Imagine not using XDoclet, you would have to go spelunking through a long TLD
file looking for the right entries (the struts-html.tld file is 3000 lines long!) to see what
variables this tag defined.

This code generates the following in the TLD file within the basic tag definition:

</p><p>
<variable>

<name-given>currentIter</name-given>
<variable-class>java.lang.Integer</variable-class>
<scope>NESTED</scope>

</variable>
<variable>

<name-given>atBegin</name-given>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 45 Enhance J2EE component reuse with XDoclets

<variable-class>java.lang.Integer</variable-class>
<scope>AT_BEGIN</scope>

</variable>
<variable>

<name-given>atEnd</name-given>
<variable-class>java.lang.Integer</variable-class>
<scope>AT_END</scope>

</variable>

Method level JavaDoc tags for Custom Tags

Now here is a little something different. In the servlet example, all of the special
JavaDoc tags were at the class level. The custom tag example uses JavaDoc tags at
the method level to define custom tag attributes for the three attributes in this
example--includeBody, includePage, and iterate:

/** Getter for property includePage.
* @return Value of property includePage.
* @jsp.attribute required="true"
* rtexprvalue="true"
* description="The includePage attribute"
*/
public boolean isIncludePage() {

return this.includePage;
}

...

/** Getter for property includeBody.
* @return Value of property includeBody.
* @jsp:attribute required="true"
* rtexprvalue="true"
* description="The includeBody attribute"
*/
public boolean isIncludeBody() {

return this.includeBody;
}

...
/** Getter for property iterate.
* @return Value of property iterate.
* @jsp:attribute required="true"
* rtexprvalue="true"
* description="The iterate attribute"
*/
public int getIterate() {

return this.iterate;
}

Note that the JavaDoc tag jsp.attribute is used to define the property as an
attribute. This code generates the following in the TLD file within the definition:

Custom tags, with all of their variables and attributes, can be hard to manage and keep
in sync. As you can see from the example, XDoclet can make short order of what

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 21 of 45

would otherwise be chaos, and it allows you to define all of this needed metadata in
one file instead of two. This makes doing custom tags a lot easier--maybe easy enough
for you to start fitting Custom Tags into your project.

Imagine refactoring and changing the name of a getter and setter method
corresponding to an attribute. Without XDoclet you would have to spelunk through the
TLD file. What a pain!

This is all well and good, but how do you take the Java source files and generate the
TLD file?

Adding TagLib generation to XDoclet

You need to write an Ant script that uses the webdoclet task from XDoclet. The listing
below modifies the code from the earlier webdoclet listing to add support for custom
tags under the target generateDD. Just as before, the input files for the webdoclet
task are specified with a nested fileset, except, this time you added a new include
directive to include your tag handler (that is, <include name="**/*Tag.java"
/>). The jsptaglib subtask generates the TLD file as follows:

<webdoclet destdir="${dest}">

<fileset dir="${src}">
<include name="**/*Servlet.java" />
<include name="**/*Tag.java" />

</fileset>

<deploymentdescriptor servletspec="2.3"
destdir="${WEBINF}" >

<taglib uri="mytaglib"
location="WEB-INF/tlds/mytaglib.tld"

/>

</deploymentdescriptor>

<jsptaglib
jspversion="1.2"
destdir="${WEBINF}/tlds"
shortname="basic"
filename="mytaglib.tld"/>

</webdoclet>

Notice that you added the subtask jsptaglib to create a TLD file called mytaglib under
the WEB-INF directory of your Web application as follows:

<jsptaglib jspversion="1.2"
destdir="${WEBINF}/tlds"
shortname="basic"
filename="mytaglib.tld"/>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 45 Enhance J2EE component reuse with XDoclets

Also notice that you added a sub element under the deploymentdescriptor sub task
to generate the taglib declaration in the web.xml file as follows:

<deploymentdescriptor servletspec="2.3"
destdir="${WEBINF}" >

<taglib uri="mytaglib"
location="WEB-INF/tlds/mytaglib.tld"

/>

The above would generate the following entry in the web.xml file as follows:

<taglib>
<taglib-uri>mytaglib</taglib-uri>
<taglib-location>WEB-INF/tlds/mytaglib.tld</taglib-location>

</taglib>

Testing your new JSP Custom Tag

Granted this JSP Custom tag is basic and does not do much--but it does work and
demonstrates a lot of the features you can implement with Custom Tags There is a
JSP file called happy.jsp in the docroot of this project. Once you run the Ant deploy
target, you can edit the JSP file and try all the alternatives. Essentially, it will iterate the
body as many times as you specify with the iterate attribute. The includeBody attribute
flags specifies whether or not the body should be included, and the includePage
attribute specifies whether or not the rest of the JSP file should be evaluated. I tried
many permutations and it works as advertised.

<%@page contentType="text/html"%>
<%@taglib uri="mytaglib" prefix="mytag"%>
<html>
<head><title>I am a happy JSP page. Yeah!</title></head>
<body>

<mytag:BasicTag includePage="true" includeBody="true" iterate="2">
Current iteration is <%=currentIter%>

</mytag:BasicTag>

</body>
</html>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 23 of 45

Section 4. Step-by-step EJB technology example

XDoclet and EJB technology

I started using XDoclet because of EJB technology. It allowed me to port my EJB
components to many J2EE application servers. This is especially important with CMP
as XDoclet generates vendor specific mappings for CMP/CMR to RDBMS. I had my
own EJB code generator written in Jython but my cohort, Erik Hatcher, kept telling me
how great XDoclet was until I finally broke down and tried it.

XDoclet does more than just facilitate porting of EJB components, it also makes EJB
development much easier. How so? Now instead of having 5 or more files for a single
EJB component, you only have one source file to work with. This will make an XDoclet
fan out of any EJB developer.

Think about it. Now instead of maintaining a primary key class, local, and remote
interfaces, local and remote homes, value classes, deployment descriptors, multiple
vendor specific deployment descriptors, and more; I just have one file to maintain. I just
use JavaDoc tags to markup my implementation class and XDoclet takes care of the
rest. This is more than cool. This makes EJB technology easier to use. This helps fulfill
the vision of component architecture.

Some vendors have started supporting XDoclet as part of their tools that ship with the
J2EE application server (JRun). Hopefully this will be a trend. I'd love to see IBM and
BEA ship their products with XDoclet support. Currently the vendor specific XDoclet
templates lag behind the release a few months. Don't bother asking for them sooner.
The XDoclet developers will tell you to implement them yourselves. XDoclet is open
source in case you forgot. Actually the templates are pretty easy to modify, perhaps in
a follow-up tutorial, I will add CMP/CMR support to some vendors product.

Note if you are an EJB neophyte, there are plenty of resources listed in the resource
section to help you understand this section better. However, this section does assume
some prior experience with EJB technology.

XDoclet is nice for Servlets, really nice for Custom Tags and just about essential for
EJB technology. I'll cover how to use XDoclet with EJB with another step-by-step
example.

XDoclet and EJB technology continued

Let's define two CMP entity beans (Dept and Employee) that have a one-to-many
relationship (Dept has many Employees) and a Session bean (HRSystem) that can

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 45 Enhance J2EE component reuse with XDoclets

Here are the steps to complete this section:

1. Use ejb.bean tag to declare the EJB component's structure

2. Declare the names of the home and remote interfaces to be generated with
ejb.home and ejb.interface tags.

3. Specify class level Object Relation (OR) Mapping: Map the Entity to a table with
vendor specific tags

4. Specify finder methods for EntityBeans with ejb.finder tag

5. Mark the create method with ejb.create tag

6. Mark the primary key cmp field with ejb.pk-field

7. Mark the fields that are persistent

8. Set the vendor specific OR mapping for cmp fields

9. Add methods to an interface with ejb.interface

10. Setup a relationship between two Entities with ejb.relation tag

11. Setup OR relationship mappings between two Entities

12. Working with Session beans

13. Adding EJB references from the Session to the Entity with ejb.ejb-ref tag

14. Using the XDoclet Ant tag ejbdoclet to generate EJB support files

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 25 of 45

XDoclet and EJB: ejb.bean

The ejb.bean allows you to specify the type of the bean. The first bean I will cover
will be an CMP 2.0 entity bean. You will need to specify that it is a CMP bean, that is
uses cmp-version 2.x, give it a schema name, and specify its primary key (if it is not
using a complex primary key), and the primary key type. Here is the Xdoclet tags for
ejbs as demonstrated with the Dept bean:

/**...
* @ejb.bean
* type="CMP"
* cmp-version="2.x"
* name="DeptBean"
* schema="Dept"
* local-jndi-name="DeptBean"
* view-type="local"
* primkey-field="id"
*
*
* @ejb.pk class="java.lang.Integer"
*

*/
public abstract class DeptBean implements EntityBean {

Notice that the primary key class is specified with the tags class attribute. The names
are very close to what you would expect them to be. It is fairly intuitive as the
corresponding meta-data matches that which you would find for the ejb-jar.xml file.
What may not be obvious is the view-type parameter. The view-type parameter
specifies if this is going to be a local bean, a remote bean or both. The above XDoclet
tags would generate the following elements in the EJB deployment descriptor
(ejb-jar.xml):

<entity >
<description>This entity bean represents a Department of Employees.
</description>

<ejb-name>DeptBean</ejb-name>

...

<ejb-class>ejb.DeptBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Dept</abstract-schema-name>
...
<primkey-field>id</primkey-field>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 45 Enhance J2EE component reuse with XDoclets

Notice that the <primkey-field> specifies the single cmp field that is used for the
primary key. If you were using a compound primary key then you would need to create
a primary key class. XDoclet can easily generate the primary key class for you.

Another important point to notice is that you never specified the class of the EJB
component directly. XDoclet, which parses the Java code, has access to the parse tree
thus it knows the package name and class name already. This also means that if you
change the name or package name, you would not have to manually update the
deployment descriptor.

XDoclet and EJB technology: ejb.home and
ejb.interface tags

XDoclet will generate the homes and interfaces for the class. You can give the
interfaces that will be generated a name using ejb.home and ejb.interface tags.
Or you can let XDoclet pick a name based on a pattern that you specified. In this
example, you specify the name of the local home and local interface in the class file.

/**...
* @ejb.home generate="local" local-class="ejb.DeptHome"
* @ejb.interface generate="local" local-class="ejb.Dept"
* ...
*/
public abstract class DeptBean implements EntityBean {

Notice that with the ejb.home and ejb.interface you can specify to generate the
local, remote or both. The above will cause an ejb.DeptHome home interface to be
generated and a local interface called ejb.Dept to be generated. In addition the
following elements will be defined in the ejb-jar.xml deployment descriptor based on
the above tags.

<entity >
...

<ejb-name>DeptBean</ejb-name>

<local-home>ejb.DeptHome</local-home>
<local>ejb.Dept</local>
...

XDoclet and EJB technology: ejb.persistence tag

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 27 of 45

There is no standard OR mapping defined by the EJB specification. But most
application servers that implement EJB CMP CMR use a similar strategy, that is,
mapping Entities to classes and fields to columns. The DeptBean EJB component is
going to be mapped to a table called TBL_USER.

In older versions of XDoclet, every vendor implementation had their own support for
EJB CMP CMR, yet they all seemed to pick different tags names for doing the same
thing. The newer version of XDoclet defined a tag called ejb.persistence to specify
the table name that the entity maps to.

I noticed the Resin XDoclet templates did not support the new ejb.persistence tag
yet. I added the support but the new template was not committed into the project yet. It
was actually really easy to modify the template to add the support for the new tag.

Here is the code to map the database table to the entity using the vendor specific
Resin mapping, and the vendor neutral way. Currently not all vendor products are
supported by the new tags. The vendor specific mapping tag is not needed if the
templates for the vendor were updated to support ejb.persistence.

/**...
* @resin-ejb.entity-bean sql-table="DEPT"
* @ejb.persistence table-name="TBL_USER"
* ...
*/
public abstract class DeptBean implements EntityBean {

The above tags generates the following in the vendor specific mapping files. Resin is
shown as an example.

<!-- generated from ejb.DeptBean -->
<entity>

<ejb-name>DeptBean</ejb-name>
<sql-table>DEPT</sql-table>

...

Notice that this example only works with these one application servers, but nothing
stops you from using many others. Currently, XDoclet supports Orion, Pramati, IBM
WebSphere, BEA WebLogic, JRun, JBoss, and a few more.

Not every implementation has the best support and the most up-to-date templates. It is
open source so support will vary. However, it is fairly easy to update existing templates
to work with other vendors.

Macromedia's JRun supports the templates themselves to ease development, that is,
the commercial company supports and updates the XDoclet templates and modules. I
hope this becomes a trend. However, it is fairly easy to modify the templates and
create modules, and there are a lot of examples to look at as a basis.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 45 Enhance J2EE component reuse with XDoclets

XDoclet and EJB technology: ejb.finder

To define the finder method for the Entity bean, you just add the ejb.finder tag at
the class level to identify the finder method signature with its EJB-QL query as
follows:

/**
*
* @ejb.finder
* signature="Dept findByDeptName(java.lang.String name)"
* unchecked="true"
* query="SELECT OBJECT(dept) FROM Dept dept where dept.name = ?1"
* result-type-mapping="Local"
*
* @ejb.finder
* signature="Collection findAll()"
* unchecked="true"
* query="SELECT OBJECT(dept) FROM Dept dept"
* result-type-mapping="Local"
*
*/
public abstract class DeptBean implements EntityBean {

This will define two finder methods in the generated home as well as <query>
element definitions in the EJB deployment descriptor as follows:

/*
* Generated by XDoclet - Do not edit!
*/
package ejb;

/**
* Local home interface for DeptBean.
*/
public interface DeptHome

extends javax.ejb.EJBLocalHome
{

...

public ejb.Dept findByDeptName(java.lang.String name)
throws javax.ejb.FinderException;

public java.util.Collection findAll()
throws javax.ejb.FinderException;

public ejb.Dept findByPrimaryKey(java.lang.Integer pk)
throws javax.ejb.FinderException;

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 29 of 45

<entity >
<description>This entity bean represents a Department of Employees.</description>

<ejb-name>DeptBean</ejb-name>

<local-home>ejb.DeptHome</local-home>
<local>ejb.Dept</local>

...

<query>
<query-method>

<method-name>findByDeptName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<result-type-mapping>Local</result-type-mapping>
<ejb-ql>SELECT OBJECT(dept) FROM Dept dept where dept.name =?1
</ejb-ql>

</query>
<query>

<query-method>
<method-name>findAll</method-name>
<method-params>
</method-params>

</query-method>
<result-type-mapping>Local</result-type-mapping>
<ejb-ql>SELECT OBJECT(dept) FROM Dept dept</ejb-ql>

</query>
<!-- Write a file named ejb-finders-DeptBean.xml if you
want to define extra finders. -->
</entity>

XDoclet and EJB: ejb.create tag

The ejb.create tag is used to identify create methods. All create methods
(ejbCreateXXX) will have corresponding create methods generated in the generated
home by XDoclet. Here is an example of using the ejb.create tag.

public abstract class DeptBean implements EntityBean {

/**
*
* @ejb.create-method
*/
public Integer ejbCreate(String name)

throws CreateException {
setName(name);

return null;
}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 45 Enhance J2EE component reuse with XDoclets

The above ejb.create tag would cause XDoclet to generate the following create
method in the home.

/*
* Generated by XDoclet - Do not edit!
*/
package ejb;

/**
* Local home interface for DeptBean.
*/
public interface DeptHome

extends javax.ejb.EJBLocalHome
{

...
public ejb.Dept create(java.lang.String name)

throws javax.ejb.CreateException;

...

}

XDoclet and EJB technology: ejb.pk-field

The ejb.pk-field marks a CMP field as participating as part of a compound key.
You do not need this for this example. But if the DeptBean had a complex you would
need it.

/**
* This is a cmp field.
* And it is the primary key.
*
* @ejb:pk-field
*/

public abstract Integer getId();
public abstract void setId(Integer id);

XDoclet and EJB technology: ejb.persistent-field

The ejb.persistent-field tag marks a getter method as being part of a CMP field

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 31 of 45

declaration. This will cause the corresponding cmp-field elements to be generated in
the EJB deployment descriptor:

/**
* This is a cmp field.
* And it is the primary key.
*
* @ejb.persistent-field
...
*/

public abstract Integer getId();
public abstract void setId(Integer id);

The above XDoclet tag would cause the following <cmp-field> to be generated.

<entity >
<description>This entity bean represents a Department of

Employees.</description>

<ejb-name>DeptBean</ejb-name>

...
<cmp-field >

<description>This is a cmp field.</description>
<field-name>id</field-name>

</cmp-field>

Notice that with the ejb.persistent-field you do not specify the name of the field. Thus if
you changed the names of the CMP field, that is, getTheID, setTheID, you would
not have to manually sync the deployment descriptor. This is the beauty of XDoclet; it
knows about the context of the declaration. These are the features that make
refactoring code easier.

XDoclet and EJB technology: Set the vendor specific
OR mapping with the vendor specific tag (or not)

The ejb.persistence tag allows you to specify the mapping from a cmp field to a
table column. Here is an example of using the ejb.persistence tag with the
DeptBean's ID CMP field as follows:

/**

* This is a cmp field. The cmp field is read only.
* And it is the primary key.
*
* @ejb.pk-field
* @ejb.persistent-field

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 45 Enhance J2EE component reuse with XDoclets

* @ejb.interface-method view-type="local"
* @ejb.persistence column-name="DEPTID"
* @resin-ejb.cmp-field sql-column="DEPTID"
*/

public abstract Integer getId();
public abstract void setId(Integer id);

Notice that the above ejb.persistence maps the ID CMP field to the DEPTID column.
(In this example I also use the vendor specific mapping tag since not all vendor
templates support the new ejb.persistence tag yet). The above XDoclet tags
would generate the following mappings in the vendor specific RDBMS mapping files.

Resin's resin.ejb

<!-- generated from ejb.DeptBean -->
<entity>

<ejb-name>DeptBean</ejb-name>
<sql-table>DEPT</sql-table>

<cmp-field>
<field-name>id</field-name>
<sql-column>DEPTID</sql-column>

</cmp-field>

XDoclet and EJB technology: ejb.interface tag

To declare that a method in the implementation should show up in the remote or local
interface you use the ejb.interface tag as follows:

/**
...
* @ejb:interface-method view-type="local"
...
*/

public abstract Integer getId();
public abstract void setId(Integer id);

The ejb.interface tag specifies a view-type parameter. The view-type parameter
tells XDoclet where it should generate the method: local, remote or both for the local
interface, the remote interface of both interfaces. The above XDoclet tag would cause
the following method to be generated in the local interface as follows:

/*
* Generated by XDoclet - Do not edit!
*/

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 33 of 45

package ejb;

/**
* Local interface for DeptBean.
*/
public interface Dept

extends javax.ejb.EJBLocalObject
{
...

/**
* This is a cmp field. The cmp field is read only. And it is the primary key.
*/
public java.lang.Integer getId() ;

...

}

Notice that only the getter method was exported to the local interface because only the
getter method had the XDoclet ejb.interface tag associated with it.

XDoclet and EJB technology: ejb.relation tag

The ejb.relation tag allows you to define a CMR relationship. The tag is fairly
straight forward as the attribute names match the corresponding element names really
closely in the EJB deployment descriptor.

The following example sets up a one to many relationship from the DeptBean to the
EmployeeBean.

...
public abstract class DeptBean implements EntityBean {

...

/**
* @return return employees in this department
*
* @ejb.interface-method view-type="local"
*
* @ejb.transaction type="Required"
*
* @ejb.relation
* name="EmployeesInADepartmentRelation"
* role-name="DeptHasEmployees"
* target-role-name="EmployeeInADept"
* target-cascade-delete="no"
*/

public abstract Collection getEmployees();
/** @ejb.interface-method view-type="local" */

public abstract void setEmployees(Collection collection);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 45 Enhance J2EE component reuse with XDoclets

...

Notice that the relationship is given a name. Then you describe the DeptBeans role in
the relationship. You could also specify that when an instance of this bean is deleted
that all of its children in the relationship are also deleted with the
target-cascade-delete attribute. Notice that you also specified the
target-role-name. The attributes that start with target are really only needed for one
way relationships (unidirectional). Since this example is bi-directional you could have
left this out. The multiplicity of the relationship is based on the return type of the getter
method in the cmr field. Since getEmployees returns a Collection, XDoclet infers that
the multiplicity of Employee is many.

No matter how flat a pancake is, its always got two sides just like an CMR relationship.
Here is the other side of the CMR relationship.

public abstract class EmployeeBean implements EntityBean {

...

/**
* @return Return the group this user is in.
*
* @ejb.interface-method view-type="local"
*
* @ejb.transaction type="Required"
*
* @ejb.relation
* name="EmployeesInADeptartmentRelation"
* role-name="EmployeeInADept"
* target-role-name="DeptHasEmployees"
*
*/
public abstract Dept getDept();
/** @ejb.interface-method view-type="local" */
public abstract void setDept(Dept dept);

Again the target attribute is a little bit of extra information that is really only needed in
the case on a unidirection relationship, but it is here for good measure. Notice that the
Relationship name is the same as the relationship name on the Dept side of the
relationship. This is what XDoclet uses to correlated the two members of the
relationship.

The above ejb.relation tags would generate the following entries in the deployment
descriptor.

<!-- Relationships -->
<relationships >

<ejb-relation >
<ejb-relation-name>EmployeesInADeptartmentRelation</ejb-relation-name>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 35 of 45

<ejb-relationship-role >
<ejb-relationship-role-name>EmployeeInADept</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source >

<ejb-name>EmployeeBean</ejb-name>
</relationship-role-source>
<cmr-field >

<cmr-field-name>dept</cmr-field-name>
</cmr-field>

</ejb-relationship-role>

<ejb-relationship-role >
<ejb-relationship-role-name>DeptHasEmployees</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source >

<ejb-name>DeptBean</ejb-name>
</relationship-role-source>
<cmr-field >

<cmr-field-name>employees</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

</ejb-relation>
</relationships>

With XDoclet you had to write one tag with two attributes for each side of the
relationship. Compare this to the 26 lines of XML you would have had to have written
without XDoclet. I don't see how anyone would want to do EJB development without
XDoclet.

XDoclet and EJB technology: Setup OR relationship
mappings between two Entities

So far you have defined the relationship between two beans. This does not amount to a
hill of beans, unless you add relationship mapping details about the underlying
database tables. The generated vendor implementations need these mappings so it
knows how to implement the relationship.

Unfortunately there is not a common way with XDoclet to specify the OR relationship
mappings. Currently you have to learn each set of vendor specific tags. Below is an
example that uses both the vendor neutral tag and Resin's OR relationship mapping
tag.

/**
* @return Return the group this user is in.
*

...
*

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 45 Enhance J2EE component reuse with XDoclets

* @resin-ejb.relation sql-column="DEPTID"
*
*
*/
public abstract Dept getDept();
/** @ejb:interface-method view-type="local" */
public abstract void setDept(Dept dept);

The resin-ejb.relation tag has a single parameter (sql-column) that points the
column involved in the relationship, that is, the foreign key. It assumes that the foreign
key is pointing to the primary key of the other side of the relationship.

Some vendor specific mappings take two parameters the foreign key and the name of
the column in the other table (Dept) that the foreign key points to. To put this in
perspective, let's show the actual SQL DDL for these tables.

CREATE TABLE DEPT (
DEPTID INT IDENTITY PRIMARY KEY,
NAME VARCHAR (80)

);

CREATE TABLE EMPLOYEE (
EMPID INT IDENTITY PRIMARY KEY,
FNAME VARCHAR (80),
LNAME VARCHAR (80),
PHONE VARCHAR (80),
DEPTID INT,
CONSTRAINT DEPTFK FOREIGN KEY (DEPTID)

REFERENCES DEPT (DEPTID)
);

The employee table has a foreign key DEPTID that references the department's
primary key DEPTID.

XDoclet and EJB technology: Working with Session
beans

Now that you defined some Entity beans let's create a session bean that access the
Entity beans as follows:

/**
* Provides a session facade that works with cmp/cmr from EJB 2.0
* based entity beans.
*
* This bean must uses container-managed transactions.
* It works with the others entity beans to provide authentication services.
* This bean does not maintain any state; thus, it can be stateless.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 37 of 45

*
*
* @ejb.bean name="HRSystem" type="Stateless"
* local-jndi-name="HRSystem"
*
*
* @ejb.ejb-ref ejb-name="DeptBean" view-type="local"
* @ejb.ejb-ref ejb-name="EmployeeBean" view-type="local"
*
*/
public class HRSystemBean implements SessionBean {

/**
* Get a list of all the depts.
*
* @return All the group names.
*

* This method is part of the ejb interface.
* @ejb.interface-method view-type="local"
* @ejb.transaction type="Required"
*/
public String[] getDepts() {

ArrayList deptList = new ArrayList(50);
Collection collection = LocalFinderUtils.findAll("DeptBean");
Iterator iterator = collection.iterator();
while (iterator.hasNext()) {

Dept group = (Dept) iterator.next();
deptList.add(group.getName());

}
return (String[]) deptList.toArray(new String[deptList.size()]);

}

Notice that the Session bean use the same ejb.bean tag, but instead of specifying
CMP, it specifies that this is a Stateless bean as follows:

/**
* Provides a session facade that works with cmp/cmr from EJB 2.0
* based entity beans.
*
*
*
* @ejb.bean name="HRSystem" type="Stateless"
* local-jndi-name="HRSystem"
*
...
*
*/
public class HRSystemBean implements SessionBean {

...

The above would cause XDoclet to generate the following listing.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 45 Enhance J2EE component reuse with XDoclets

<enterprise-beans>

<!-- Session Beans -->
<session >

<description>provides a session facade that works with
cmp/cmr from EJB 2.0 based entity beans.</description>

<ejb-name>HRSystem</ejb-name>

<home>ejb.HRSystemHome</home>
<remote>ejb.HRSystem</remote>
<local-home>ejb.HRSystemLocalHome</local-home>
<local>ejb.HRSystemLocal</local>
<ejb-class>ejb.HRSystemBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
...

I am so glad XDoclet generates that and I don't have to write it out.

XDoclet and EJB technology: Adding EJB references
from the Session to the Entity with ejb.ejb-ref tag

In order for your session bean to access the entity beans that you created, you will
need to add a reference to the entity beans. You can do this with the ejb.ejb-ref
tag as follows:

/**
...
* @ejb.ejb-ref ejb-name="DeptBean" view-type="local"
* @ejb.ejb-ref ejb-name="EmployeeBean" view-type="local"
*
*/
public class HRSystemBean implements SessionBean {

Note that the two little lines of tag code generate the following ejb-local-ref tag listings.

<enterprise-beans>

<!-- Session Beans -->
<session >

...
<ejb-name>HRSystem</ejb-name>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 39 of 45

...

<ejb-local-ref >
<ejb-ref-name>ejb/DeptBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>ejb.DeptHome</local-home>
<local>ejb.Dept</local>
<ejb-link>DeptBean</ejb-link>

</ejb-local-ref>
<ejb-local-ref >

<ejb-ref-name>ejb/EmployeeBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>ejb.EmployeeHome</local-home>
<local>ejb.Employee</local>
<ejb-link>EmployeeBean</ejb-link>

</ejb-local-ref>
...

Two lines of XDoclet tags corresponds to 15 lines of XML in the deployment descriptor,
and when or if you refactor the included classes the deployment descriptor stays in
sync. This is highly significant.

XDoclet and EJB technology: Using the XDoclet Ant
task ejbdoclet

Now that you define all of your beans, you need to modify your Ant build script to use
the XDoclet JavaDoc tags to generate the dependent files as follows:

<target name="ejbdoclet" >

<taskdef
name="ejbdoclet"
classname="xdoclet.modules.ejb.EjbDocletTask"
classpathref="xdocpath"
/>

<ejbdoclet
ejbspec="2.0"
mergeDir="${src}"

destDir="${gen.src}"

>

<fileset dir="${src}">
<include name="ejb/*Bean.java" />

</fileset>

<localinterface/>
<localhomeinterface />
<remoteinterface/>
<homeinterface />

<entitypk/>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 45 Enhance J2EE component reuse with XDoclets

<deploymentdescriptor
destdir="META-INF"
destinationFile="ejb-jar.xml"
validatexml="true" />

<deploymentdescriptor
destdir="${WEBINF}"
destinationFile="cmp-xdoclet.ejb"
validatexml="true" />

<resin-ejb-xml destDir="${WEBINF}"/>

</ejbdoclet>

The above ant script defines the ejbdoclet task with taskdef task. It then uses the
ejbdoclet task to generate all manners of support files. It uses the nested fileset to
select the source that XDoclet will use in this case all classes ending with Bean. It then
uses the following subtasks: localinterface, localhomeinterface,
remoteinterface, homeinterface and entitypk to generate the following local
interfaces, local homes, remote interface, remote homes and primary key classes
respectively (This example does not have primary key classes as the entities use
simple one field keys).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 41 of 45

Section 5. xPetstore

This tutorial just scratches the surface

I have only scratched the surface of what you can do with XDoclet and Ant. EJB
technology alone has a dizzying array of features and support. XDoclet provides you
with powerful tools in your toolbox. XDoclet modules make Web development easier.
Ant is powerful tool, and XDoclet is an example how Ant can be extended to simplify
Web development. I provided a small glimpse of Ant. For some this is enough; for
others, a more detailed description is in order.

See the resource section for other examples of using XDoclet.

This tutorial just scratches the surface of things you can do, the xPetstore example
gives much more detail, but still does not cover it all.

xPetstore

xPetstore re-implements Sun's Microsystem PetStore using XDoclet. It is an excellent
source for information on how to use XDoclet with great examples. The xPetstore
demonstrates the use of Ant and XDoclet to build WODRA (Write Once, Deploy and
Run Anywhere) J2EE applications. There are currently two version of xPetsore.

The first version of xPetstore is a pure J2EE version that uses EJB components
(CMPCMR 2.0), JSP, Struts, and Sitemesh. The second version of xPetstore is a
Servlet based solution that uses Velocity, WebWork, Sitemesh, POJO, and Hibernate.
XDoclet provides custom handlers, templates, and Ant tasks to do for Struts,
WebWork, and Hibernate what this tutorial showed XDoclet can do for EJB, Custom
Tags, and Servlets. The xPetstore shows how to develop EJB (CMP CMR 2.0),
Custom Tags (TagLib), JSP, Struts, WebWork, Servlet Filters, Hibernate with XDoclet.
Check out the xPetstore before you start using XDoclet on your project.

xPestore has been deployed and tested on the following platforms:

Operating system:
• Linux

• Windows

Application Servers:
• JBoss 3.x

• WebLogic 7.x

Databases:
• Hypersonic SQL

• PostgreSQL

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 45 Enhance J2EE component reuse with XDoclets

http://xpetstore.sourceforge.net/

• SapDB

• MySQL

• Oracle

• MS SQL Server

xPetstore demonstrates the following uses for XDoclet: generate EJB 2.0 files, home
and business interfaces (local and remotes) for EJBs, EJB deployment descriptors
(ejb-jar.xml), vendor specific deployment descriptors, ejb design patterns, the use of
J2EE 1.3 features like CMP 2.0 and CMR, generate Web deployment descriptors for:
Servlets, Web Filters and JSP Taglibs.

In addition the example demonstrates the how to generate Struts deployment
descriptors, Webwork deployment descriptor, how to use technologies like Velocity,
how to use persistence layers like Hibernate, and the use of XDoclet merge points. All
of the components are tested using the JUnitEE testing framework.

xPetstore is a great resource for learning how to use XDoclet modules.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 43 of 45

Section 6. Summary

Summary

This tutorial showed J2EE developers how to use XDoclet to speed development by
showing three step-by-step tutorials for using XDoclet.

XDoclet enables simplified continuous integration, and refactoring with
component-oriented development using attribute-oriented programming. XDoclet
allows you to radically reduce development time, by generating deployment descriptors
and support code, allowing you to focus on application logic code.

You learned how to use XDoclet with Servlets, Custom Tags, and EJB Session and
Entity beans.

XDoclet generates these related support files by parsing your source files similar to the
way the JavaDoc engine parses your source to create JavaDoc documentation.
XDoclet, like JavaDoc, not only has access to these extra tags that you added, but also
access to the structure of your source. XDoclet applies this hierarchy tree of data and
context to templates. It uses all of this to generate what would otherwise be
monotonous support files.

XDoclet speeds development by being less verbose than corresponding deployment
descriptors, by keeping the source in sync with the deployment descriptors and support
files which enable refactoring, and lastly by generating a metric ton of support files; in
the case of EJB one source to five generated files is not uncommon.

Resources

If you are new to EJB technology:
• Check out Brett McLaughlin's EJB best practices column on developerWorks Java

technology zone.

• Take the first tutorial in a series of five on Introduction to container-managed
persistence and relationships (example code uses XDoclet) by Rick Hightower
(developerWorks, March 2002)

• The Developer's Guide to Understanding EJB 2.0 (gain deeper understanding of the
specification)

If you are new to Custom Tags:
• JSP taglibs: Better usability by design, by Noel J. Bergman (developerWorks,

December 2001)

• J2EE Tutorial: Custom Tag tutorial

If you want more detail about Ant:
• Ant Primer

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 45 Enhance J2EE component reuse with XDoclets

http://www-106.ibm.com/developerworks/java/library/j-ejbcol.html
http://www-106.ibm.com/developerworks/java/library/j-ejbcol.html
http://www-106.ibm.com/developerworks/java/library/j-ejbcol.html
http://www-106.ibm.com/developerworks/java/library/j-ejbcol.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wscomp-i.html
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPTags.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPTags.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPTags.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPTags.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPTags.html
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm

• Book: Java Tools for Extreme Programming covers Ant

If you want to learn how to work with Struts and XDoclet
• Mastering Struts (Struts tutorial that uses XDoclet)

If you want a more complex EJB example (for example, many to many relationship,
and primary key classes) ported to JBoss, Resin and others EJB servers get the
source code for the 5 part series on using EJB technology with CMP/CMR 2.0.
• More XDoclet examples

Special thanks to the XDoclet team for developing such a useful tool.

Feedback

Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enhance J2EE component reuse with XDoclets Page 45 of 45

http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.triveratech.com/downloads2/index.htm
http://www.rickhightower.com/ejbcmpcmrtut.html
http://www.rickhightower.com/ejbcmpcmrtut.html
http://www.rickhightower.com/ejbcmpcmrtut.html
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Purpose of this tutorial
	What do I need to know for this tutorial?
	What this tutorial covers
	About the author
	Tools you will need for this tutorial

	Step-by-step Servlet example
	Servlet XDoclet example
	Step one: define Servlet element
	Step two: define init parameters for Servlet
	Step three: combine Ant and XDoclet to configure components
	Step four: define Servlet mappings
	Step five: define J2EE resources
	Using the webdoclet task to generate Web application deployment descriptors
	Installing XDoclet
	Install and configure the example
	Details about Configuring build.properites for your environment
	Defining the webdoclet task
	Using the webdoclet task
	Running Ant
	Running Ant with Eclipse

	Step-by-step Custom Tag example (TagLib)
	Using the XDoclet?s webdoclet task to create Custom Tag TLDs
	Method level JavaDoc tags for Custom Tags
	Adding TagLib generation to XDoclet
	Testing your new JSP Custom Tag

	Step-by-step EJB technology example
	XDoclet and EJB technology
	XDoclet and EJB technology continued
	XDoclet and EJB: ejb.bean
	XDoclet and EJB technology: ejb.home and ejb.interface tags
	XDoclet and EJB technology: ejb.persistence tag
	XDoclet and EJB technology: ejb.finder
	XDoclet and EJB: ejb.create tag
	XDoclet and EJB technology: ejb.pk-field
	XDoclet and EJB technology: ejb.persistent-field
	XDoclet and EJB technology: Set the vendor specific OR mapping with the vendor specific tag (or not)
	XDoclet and EJB technology: ejb.interface tag
	XDoclet and EJB technology: ejb.relation tag
	XDoclet and EJB technology: Setup OR relationship mappings between two Entities
	XDoclet and EJB technology: Working with Session beans
	XDoclet and EJB technology: Adding EJB references from the Session to the Entity with ejb.ejb-ref tag
	XDoclet and EJB technology: Using the XDoclet Ant task ejbdoclet

	xPetstore
	This tutorial just scratches the surface
	xPetstore

	Summary
	Summary
	Resources
	Feedback

