Migrate your Swing application to SWT

Presented by developerWorks, your source for great tutorials

I bm conl devel oper Wr ks

Table of Contents

If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial..........cccoi e 2
2. The history of Swing and SWT......ccoovvii i, 5
3. Differences between Swingand SWT ..., 8
4. Migrate your Swing code to SWT with minimal change ......... 14
D WGBS et 31
6. Complete example: Migrating a Swing dialog..................... 81
7. Wrap-Up @nd rESOUICES .....coviiiiiieiiiiiiiaa e e ee e eeeeaaeeeenn 95

Migrate your Swing application to SWT Page 1 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 1. About this tutorial

What is this tutorial about?

Since its first release and its donation to the open source community in 2001, the Eclipse
platform has been continually gaining importance in the tool-provider community. The Eclipse
consortium already regroups more than 40 industry-leading companies that deliver or plan to
deliver tools that can be plugged in the Eclipse platform, or products based on the Eclipse
platform.

The advantages of the Eclipse platform for tool developers are obvious:

» For the first time, there is a high-performing, vendor-independent platform that has been
widely accepted by the industry.

» The platform's highly modular nature and great extensibility allow a seamless integration of
a variety of tools coming from different vendors. Users can get the best tools from different
providers, and use them together without having to worry about interoperability.

» By providing tools as Eclipse plugins, tools providers can cover with one release all the
Eclipse-based products on the market. They don't have to build a workbench around their
tool and can concentrate their effort on the development of their core features.

« The consistent Ul among the different Eclipse tools reduces the learning curve for users.

One of the reasons for the success of the Eclipse platform is the performance of its user
interface compared to other Java applications. This level of performance was reached thanks
to the Standard Widget Toolkit (SWT), a widget library that was developed as an alternative
to Swing. SWT allows you to build cross-platform user interfaces that are as rich as Swing
Uls and that perform as well as native Uls.

Although programmers who try SWT tend to be very enthusiastic about it, this toolkit does
have a drawback: SWT is not compatible with AWT (the Abstract Window Toolkit) and
Swing. Mixing SWT and AWT panels in the same application can, in the worst case, cause
the JVM to crash on some platforms. Thus, if you want to deliver an existing Swing tool as an
Eclipse plugin, you need to rewrite its Ul with SWT. This task can be very tedious for
complex Uls.

Considering the number of tools on the market that currently use a Swing Ul, a bridge
technology or method that would allow developers to port an existing application from Swing
to SWT with a minimum of change would be in great demand. This is always a very hot topic
in the discussion forums about Eclipse and SWT.

The purpose of this tutorial is to introduce a methodology for such a migration. The
techniques presented here won't allow you to automatically port an existing application
without any code modification, but they will show you how to do a manual migration of the
Swing code with very few changes to the original code.

We will begin with a study of the main differences between AWT/Swing and SWT. We'll then
examine migration techniques that can be used to successfully port Swing code to SWT with

Page 2 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

a minimum of change, and we'll compare each Swing component with its SWT equivalent in
detail, and discuss the problems you might encounter in porting. Finally, we'll work through a
concrete example where a Swing dialog is ported to SWT using the techniques we've
presented.

This tutorial includes sample code applying the described methods on the standard
components of the Swing library. You are free to use and modify this code in your own
projects.

Should | take this tutorial?

Before you take this tutorial, you should have a good knowledge of the Swing API, as well as
a basic knowledge of SWT. This tutorial was written for people who want to migrate a Swing
application to SWT, or for Swing programmers who want to know which features available in
Swing are also available in SWT, and what limitations they should expect. For this reason,
this tutorial uses a lot of terms and comparisons that are relevant specifically to Swing
development. It mainly focuses on how features available in Swing can be programmed in
SWT, not on features that are available in SWT but not in Swing.

This tutorial is neither an introduction to Ul programming, nor an introduction to SWT. If you
need an introduction to SWT, you will find relevant links in Resources on page 95 that you
should read before taking this tutorial.

To complete this tutorial, you will need to install Eclipse 2.1 or an equivalent product (IBM
WebSphere Studio Application Developer 5.1 for instance), which includes the SWT
packages. You may also wish to review the SWT development resources.

Note that this tutorial is very comprehensive and will require significant time to complete.
However, it serves as excellent reference material. | recommend you download the PDF after
you complete the tutorial for offline viewing.

. About the author

Yannick Saillet is a software engineer at the IBM
Laboratory of Boeblingen in Germany. Yannick
joined IBM Germany as software developer in
1998. He first worked for IBM Learning Services as
a software engineer in several distributed learning
projects. He joined the IBM Boeblingen Laboratory
in 2000 and since that date has been active in the
development of the DB2 Intelligent Miner products.
He received his master degree from the ESSTIN
(Ecole Superieure des Sciences et Technologies
de I'Ingenieur de Nancy) at the University of Nancy
in France.

For technical questions or comments about the
content of this tutorial, contact Yannick Saillet at
ysaillet@de.ibm.com, or click Feedback at the top

Migrate your Swing application to SWT Page 3 of 97


http://www.eclipse.org
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
mailto:ysaillet@de.ibm.com

i bm coni devel oper Wr ks Presented by developerWorks, your source for great tutorials

F | of any panel.

Page 4 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 2. The history of Swing and SWT
AWT and Swing

If you are reading this tutorial, you are probably quite familiar with AWT and Swing. In this
section, we will refresh your memory on the history and the basic architecture of these
libraries, so that you can better understand what makes SWT different.

AWT (the Abstract Windowing Toolkit) was the Java language's first widget library; it
accompanied version 1.0 of the language in early 1995. The original idea was to define a set
of widgets that were common to all platforms, and to map these widgets to the native
components of the underlying windowing system on each particular platform.

For each widget available in AWT, there is:

» A public Java class, defining the public API of the component. These classes, defined in
the package j ava. awt , are implemented once for all platforms.

* A native peer class relaying the API calls from the public class to the native widget. The
native classes form the JNI layer for the native API of the windowing system and are
reimplemented for each platform.

This approach originally seemed like a good idea. By introducing an abstraction layer
between the native API of the platform and the application itself, it allowed developers to
write user interfaces that could run on any platform, fulfilling Java technology's "Write Once,
Run Anywhere" motto. Furthermore, porting AWT to a new platform would only involve
porting the thin JNI layer for the new windowing system.

However, this architecture also had some major drawbacks. AWT did not perform well and
had a lot of bugs. More seriously, AWT's functionality was too limited. Because the approach
was to take only the least common denominator of all the windowing toolkits on the market, if
a certain feature was not available on a single platform, it was excluded from AWT. For this
reason, AWT doesn't provide such common components as trees, tables, tabbed panes, and
rich text, although these components are nowadays quite standard and used in nearly every
modern UL.

Swing came later and tried to solve this problem by providing a 100 percent pure Java
emulated library of widgets. The term emulated here means that Swing makes no use of any
native API to draw or create its widgets, but reimplements its own look and feel created from
scratch using the Java language only.

The advantage here is that the created widgets are very flexible -- nearly everything can be
customized -- and that the look and feel is exactly the same on all platforms. But Swing
unfortunately has several drawbacks as well:

* The API is complicated -- that's the price to pay for flexibility.

» The performance is not good; because everything is emulated and drawn using basic
G aphi cs2D calls, software and hardware optimizations from the native system are not
possible.

Migrate your Swing application to SWT Page 5 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

« The look and feel of a Swing application are not exactly the same as those of a native
application. The developers of Swing keep trying to reproduce the look and feel of systems
like Windows, but they can't stay synchronized with new OS versions. Furthermore, the
customization of the colors and font schemes of the underlying windowing system are
difficult to propagate in the emulated widgets.

SWT and JFace

SWT (the Standard Widget Toolkit) is an alternative toolkit that was created by IBM and has
become popular due to its use in the Eclipse platform. SWT has now been donated to the
open source community along with the rest of the Eclipse platform.

SWT was created to solve the problems existing in AWT (lack of functionality) and Swing
(inconsistency with the native look and feel, and poor performance). This has been achieved
by using a solution that lies between the two extreme approaches represented by AWT
(using the smallest set of common features) and Swing (emulating everything). Like Swing,
SWT provides a rich collection of widgets with all the functionality required by a modern Ul --
but like AWT, SWT also makes use of the native widgets and libraries of the underlying
platform.

The collection of widgets provided by SWT includes all the components a Ul programmer
might need to build a modern user interface: trees, tables, progress indicators, sliders,
tabbed panes, and so on. Although the internal implementation makes use of a proprietary
API on each platform, the public API, against which a Ul developer will program, is
completely OS-independent and quite simple to use -- like AWT.

The reason why SWT can offer much more functionality than AWT is that it uses native
widgets where possible, but emulates widgets that may not be available on a specific
platform, just like Swing does for all widgets. For example, Motif doesn't provide any tree
component, but Windows and GTK do. The implementations of the tree widget under
Windows and GTK simply make use of the native widgets. The Motif implementation
emulates a tree by combining several simpler widgets. The programmer using SWT doesn't
notice the difference, because the public API is the same for all platforms. The emulated
widget under Motif may not perform as well as a native widget would, but this performance
issue would only concern this particular widget on this particular platform.

SWT is a standalone library. It doesn't make use of any AWT classes, and has no
dependency on Eclipse itself. Thus, you can see SWT as an alternative to AWT or Swing.
The advantages are obvious:

» Because, for the most part, it uses native components, SWT preforms much better than
Swing.

« With SWT, you get a better integration with the underlying windowing system. The look
and feel are that of the underlying system, and the color and font schemes of the system
are used. A Java application using SWT cannot be distinguished from a native application.

» SWT has already been ported to most of the platforms on the market, so platform port is
not an issue.

Page 6 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

For more information on the design of SWT, read "SWT: The Standard Widget Toolkit, Part
1" by Steve Northover. A link to this article is available in Resources on page 95 .

JFace is a pure Java API that groups SWT widgets into a set of more complex components
or frameworks with a higher level of functionality. SWT only provides the basic components
comprising a user interface, such as buttons, lists, text fields, and so on. JFace provides the
more complex dialogs and Ul components that are quite often reused when building a Ul.
Examples of such components include wizard dialogs, preference dialogs and progress
indicators.

Migrate your Swing application to SWT Page 7 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 3. Differences between Swing and SWT

Graphical resources and garbage collection

Switching from AWT/Swing to SWT doesn't just mean learning a new API; it also requires
former Swing programmers to change some of their habits and to care about new coding
rules they didn't have to deal with in the Swing world.

SWT uses a completely different philosophy than AWT and Swing do when it comes to
handling graphical resources. In AWT and Swing, you can, in most cases, rely on the JVM's
garbage collector to free up graphical resources (image handles, colors, cursors, fonts,
widgets, etc.) when these are not needed anymore. | emphasize the words "in most cases,"
because even in AWT this isn't always the case. For example, aj ava. awt . | mage must be
freed up explicitly by invoking the method f | ush() if you want the pixels to be freed.
Programmers of applications making heavy use of images often fall into the trap of thinking
that if the garbage collector finalizes the reference to an image, it will free up the platform
resources assigned to it as well. Then they wonder where the memory leaks in their
applications come from. There are some other examples of resources that have to be
explicitly freed up in AWT --j ava. awmt . Di al og and j ava. awt . G aphi cs both have a
di spose() method, for instance -- while other resources, such as fonts or colors, are
automatically released by the garbage collector. This is quite confusing for programmers.

SWT uses a different approach: All SWT objects allocating platform resources (Col or ,
Cursor, Di spl ay, Font, GC, | mage, Pri nt er, Regi on, W dget , and their subclasses)
have to be explicitly discarded. The JVM's garbage collector will finalize unreferenced SWT
objects, but it will not dispose of the platform resources used by them. Thus, if you delete all
the references to one of these objects without having previously discarded it, you will have a
memory leak. This sounds like a very constricting rule, but it is a clear rule and it is the price
you pay for better Ul performance.

To avoid resource leaks in an SWT application, you must follow this simple rule: If you
instantiate an object that consumes graphical resources, you have to dispose of it yourself.
Objects obtained from getters, diverse methods, or parameters should not be discarded by
the code obtaining them, because the objects were not created there, and may be used by
other parts of the application. The only exceptions are widgets: Disposing of a parent
container will automatically dispose of all its children.

If you follow this rule, you won't have any problem with memory leaks of graphical resources.

Note that JFace provides helper classes and frameworks to help you to manage and discard
resources (fonts and images) that may be shared by several components. These classes are
contained in the package or g. ecl i pse. j face. resour ce.

If you want to get a better understanding of the rules listed above, and the reasons why SWT
doesn't behave like AWT when managing graphical resources, read "SWT: The Standard
Widget Toolkit, Part 2" by Steve Northover and Carolyn MacLeod. A link to this article is
available in Resources on page 95 .

The Swing component hierarchy

Page 8 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials

i bm conm devel oper Wr ks

The most obvious difference between Swing and SWT is the component hierarchy. To
facilitate the comparison between the Swing's and SWT component hierarchies, I've
illustrated Swing's component tree in the following figure:

JLayeredPane

JDesktopPane

Component
I
Container
I
JComponent
: ]
AbstractButton
—1JColorChooser JPanel — J5plitFane [ I 1
JButton JMenultem IJToggleButton
F— JComboBox JPopupMenu | — JTabbedPane
. JCheckBox- .
F— JFileChooser JProgressBar | — JTahle Menultem JRadioButton
—JInternalFrame JRootPane | — JTableHeader JRadioButton JCheckBox
Menultem
— JLabel JScrollBar — JToolBar JTextComponent Menu
4{ JList | JScrollPane |—{ JToolTip | | | | |
—  JMenuBar JSeparator = JTree JEditorPane| | /TextArea| |ITextField
I I
— JOptionPane JSlider L JViewport JTextPane UPasswordField

The boxes with a yellow background represent ready-to-use widgets that can be deployed in
a user interface. The boxes with a blue background represent abstract classes that are not
intended to be used directly.

As you can see, nearly all Swing components directly inherit from JConponent , which is
itself a subclass of an AWT Cont ai ner .

The SWT component hierarchy

Now let's take a look at SWT's component hierarchy:

Migrate your Swing application to SWT

Page 9 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Widget
Menu Control ScrollBar Ite m Tracker
| |
— Button —  Sash Cooltem Tabltem TableTreeltem
— Label —  Scale CTabltem Table Column Toolltem
ProgressBar| “—  Slider Scrollable Me nultem Tableltem Treeltem
List Composite Text
Canvas — CoolBar — Group TabFolder ToolBar
CCombo —CTabFaolder| — SashForm Table Tree
DnliDown- Scrolled- )
Combo — Composite | | Composite TableTres ViewForm

As you can see, the number of available widgets here is pretty similar to what Swing offers,
but the names and the hierarchy of the components is quite different.

The superclass for all SWT components is W dget , which directly inherits from Obj ect .

» The two most important subclasses of W dget are Control andItem Control isthe
superclass for all widgets that can be added in a parent container and whose position and
size can be set. | t emis the superclass for components or sub-components that can only
exist within another specific component, such as menu items, toolbar items, table rows or
column, etc.

« Seven widgets directly inherit from Cont r ol . Six of these subclasses are simple
components that don't allow children, such as buttons or labels. Scr ol | abl e is an
abstract class, and is the superclass of all components that may be scrollable (tables, lists,
text fields, and so on).

» Conposi t e is an important class in the component hierarchy. It is the equivalent of AWT's
Cont ai ner and is the superclass of all components that allow children to be placed in
them.

The correspondence between each Swing component and its equivalent in SWT will be
introduced in Widgets on page 31 .

Containers and layouts

Page 10 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

The equivalent of an AWT Cont ai ner is an SWT Conposi t e. As with a Cont ai ner, you
can add controls to a Conposi t e, and set a layout manager that will relocate and resize the
children as the parent composite is being resized.

However, there are some differences in this domain between AWT and SWT. If you look at
the API documentation of Conposi t e, keeping in mind that it is the equivalent of an AWT
Cont ai ner, you may be surprised to see that there is no direct equivalent for the methods
add(...) orrenove(...), whichin AWT allow you to add a child to or remove a child
from its parent.

SWT controls are automatically added to their parent at construction time. When you
construct an SWT control, the first parameter required by the constructor is always the
reference to the parent composite. For this reason, Conposi t e doesn't provide any
add(...) method, as AWT's Cont ai ner does. Although Cont r ol has a

set Par ent ( Conposi t ) method that allows you to reparent a control -- that is, to remove
it from its original parent and add it to a new parent -- this feature is not available for all
widgets and all platforms, so you can't rely on it if your application has to be cross-platform.
For example, Motif doesn't allow a control to be reparented. To test if this feature is
supported by a particular platform or widget, you can use the method

Control . i sReparent abl e() . Invoking set Par ent ( Conposi t €) on a widget that is not
reparentable will throw an exception.

Because the addition to the parent composite is done during the instantiation of a control, the
order in which controls are instantiated defines the index the controls have in their parent.
The index of a control in its parent may have an influence on the way the layout manager
places it in the container. This can be an issue when porting existing Swing code, because in
AWT/Swing, the order of instantiation of the children is not important -- in fact, a child can be
instantiated before its parent. Only the order of addition of the children plays a role. When
porting Swing code, you may have to change the order of creation of some widgets to get the
same result as in Swing.

Conposi t e doesn't provide ar enove(...) method to remove a child as AWT's

Cont ai ner does. To remove a control from its parent, you have to dispose of it. However,
you should be aware that a control that has been discarded can't be used anymore. There is
no way to add a control to its parent again after it has been eliminated. You have to
instantiate a new control again. Here, you don't have the flexibility of AWT, which allows you
to remove a component, keep it instantiated offscreen, and later add it again to the same or a
different parent.

Like AWT, SWT makes use of layout managers to place children of a container. The layout
algorithms that are available are different, however. To get an overview of the SWT layout
algorithms, read "Understanding Layouts in SWT" by Carolyn MacLeod and Shantha
Ramachandran. A link to this article is available in Resources on page 95 .

As in AWT, some SWT layouts require you to set some layout constraints on widgets so that
you can influence how the children of a container are going to be laid out. In AWT, you set
this constraint by passing it as the second parameter to the method

Cont ai ner. add( Conponent, Obj ect) . Because Conposi t e doesn't provide any
method to add a child, you have to set it by invoking a method named

set Layout Dat a( Obj ect ) on the child component itself.

Migrate your Swing application to SWT Page 11 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Data models and cell renderers vs. content providers
and label providers

One of the most beautiful aspects of Swing's architecture is its strict adherence to the
Model-View-Controller pattern. The clean separation between model, view, and controller
can be above all observed in components like JTabl e or JTr ee, which use a data model:

» A data model provides, in an unformatted form, the raw content to be displayed by the
component.

* The component uses a cell renderer to display the content of each cell in the component.
Swing allows the cell renderer to be any kind of Swing component.

» The controller role -- modification of the model and of the presentation after a user
interaction -- is assumed by the component itself.

SWT components don't have such a clean separation between model, view, and controller. If
you create a table or tree using the SWT API only (that is, without using JFace), you'll
probably miss the data models and cell renderers used in Swing. Creating a table using only
the pure SWT API obliges you to create each row and each column like a standard control in
a container, and to initialize them with rendered text and images. There is no support in SWT
for data models.

Fortunately, on top of the standard SWT controls, JFace provides a framework that is
comparable to the concepts used in Swing. To use this framework, you have to instantiate a
JFace viewer on top of the basic SWT table or tree. There are different viewers specialized
for each kind of control: Tabl eVi ewer for a table, Tr eeVi ewer for a tree, etc. A viewer is a
class that will extract data from a data model and automatically create and initialize the rows
or items to display.

The equivalent of Swing's data model is in JFace called a content provider (see

org. eclipse.jface.viewers. | ContentProvider). Like a Swing Tr eeMbdel or

Tabl eMbdel , a content provider provides unformatted raw data that has to be displayed in
the component. Unlike Swing's data models, JFace's content providers don't contain the data
itself; instead, they extract that data from an input object that can be any kind of object. In
this way, a JFace content provider acts as a data extractor: it knows how to extract data from
a specific sort of input object, and provides a public interface used by the viewer to fill the
underlying SWT component.

The equivalent of Swing's cell renderers in JFace is called a label provider (see

org. eclipse.jface.vi ewers. | Label Provi der). Like Swing's renderers, the label
provider defines how raw data provided by the content provider has to be displayed in the
SWT component. JFace is here not as flexible as Swing is. In SWT/JFace, a cell of a tree or
a table can only be represented by an icon and/or text. If you need custom rendering for
some other kind of data, you have to display the renderer into an image and make the label
provider return that image.

For more information and examples of how to use JFace viewers, read the related articles in
Resources on page 95 .

Page 12 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Events

Like AWT and Swing, SWT lets your application react to user interactions by registering
event listeners on components. There is not much difference in this area; the events thrown
are all subclasses of j ava. uti | . Event Qbj ect, and the kind of events that are thrown,
along with the listeners or adapters that are notified, are comparable to those in AWT and
Swing.

Of course, the hierarchy of the events and their associated listeners is different. In Widgets

on page 31, we'll see what kind of events are thrown for SWT controls, and compare each to
its Swing equivalent.

Migrate your Swing application to SWT Page 13 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 4. Migrate your Swing code to SWT with minimal
change

Migrate the layout managers

The layout managers -- the algorithms that define the location of the components of a
container and how they are resized when the size of the container changes -- are the core of
the Ul design of a panel or dialog. Usually, when you design a panel, you first draw on a
piece of paper the components that will compose the piece of GUI you are designing. Then
you decide which layout managers are going to be used and, eventually, how the
components will be grouped in invisible panels using other layout managers, so that the
result looks like what you have originally designed. Thus, a GUI is typically made up of a
combination of simple widgets and panels having their own layout and containing other
widgets. When complex layout managers are used, each widget is additionally initialized with
some layout information, which is interpreted by the specific layout manager in use.

Although the concept of a layout manager is quite common in most Ul toolkits, each toolkit
usually defines its own layout algorithms, which are not available in the other toolkits.
AWT/Swing and SWT unfortunately confirm this rule: The most commonly used AWT layout
managers, such as Bor der Layout , Gri dBagLayout , and Fl owLayout , have no direct
equivalent in SWT. Of course, the layout managers provided by SWT are as powerful as
those provided by AWT, but when you port an existing GUI, you'll need to design the layout
of the Ul again, so that you get the same layout with the new algorithms.

Thus, the layout managers used by the Swing application that you want to migrate are the
first things that you should port to SWT. Most Swing applications always reuse a small
number of layout managers. Porting them to SWT takes some extra work at the beginning of
a project, but will save a lot of time during the migration of the GUI itself.

Porting an AWT layout manager to SWT doesn't present any technical problems because the
methods to implement in order to create a new layout manager are quite similar in both
toolkits. Creating an AWT layout manager -- a subclass of j ava. awt . Layout Manager --
requires you to implement the three following methods:

e public Dinension mninunLayout Si ze( Cont ai ner parent) : Computes the
minimum size that a parent container should have when using this layout.

e public Dinension preferredLayout Si ze(Cont ai ner parent): Computes the
preferred size that a parent container should have when using this layout.

e public void | ayout Contai ner (Cont ai ner parent): Sets the size and location of
the children of the parent container.

Creating an SWT layout -- a subclass of or g. ecl i pse. swt . wi dget s. Layout -- requires
you to implement the two following methods:

e protected Point conputeSize(Conposite parent, int wH nt, int hHint,

bool ean fl ushCache): Computes the size that a parent composite should have when
using this layout.

Page 14 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

e« protected void | ayout (Conposite parent, bool ean flushCache): Setsthe
size and location of the children of the parent composite.

As you can see, the methods of an SWT layout are quite similar to the methods of an AWT
layout manager. SWT has no equivalent for AWT's minimum size of a component. That
means that all that you have to do is to port the algorithm of AWT's

pref erredLayout Si ze( Cont ai ner) into SWT's conput eSi ze( Conposite, int,

i nt, bool ean), and to port the algorithm of AWT's | ayout Cont ai ner ( Cont ai ner)
into SWT's | ayout ( Conposi te, bool ean).

If you own the source code of the AWT layout manager to port, you can easily do this with a
couple of search-and-replace actions to adapt the layout algorithm to the SWT API.

You may think that I've made porting the standard AWT layout managers sound easier than it
is. But here's some good news: I've already done the job for the standard AWT layout
managers, so that you just have to concentrate on those layout managers that you wrote
yourself.

You'll find the source code of the ported AWT layout managers in the following files of the
j-swing2swtsrc.zip download in Resources on page 95 . Feel free to reuse this code in your
projects, and eventually modify it to your needs.

For more information on the SWT layout, read "Understanding Layouts in SWT," by Carolyn
MacLeod and Shantha Ramachandran. A link to this article is available in Resources on
page 95 .

API mapping

After the layout managers you used in your Swing code have been ported to the SWT world,
you will be confronted with the next problem: the differences existing between the Swing and
SWT APIs. This is the most obvious problem when you port a GUI from one toolkit to the
other: Nearly all the functionality you used in the Swing toolkit is also available in the SWT
toolkit, but the class hierarchy, and the names of the methods and their syntax, are different
in the new toolkit.

Your first strategy in tackling this problem may be to undertake a manual translation job: you
analyse each line of code of your existing Swing GUI, search in the SWT documentation for
an equivalent, and rewrite the code again with the new API

This strategy may be the fastest one if you only have a small amount of code to port, but if
you plan to port a complete application with several dozen panels and dialogs, it can quickly
turn into an astronomical amount of work.

There is a much better strategy to use. For each Swing component used by your application
(see The Swing component hierarchy on page 8 ), you can write a wrapper class around the
equivalent SWT component. Each wrapper class provides the same methods with the same
syntax as the Swing component it emulates. Each of these methods invokes the equivalent
method in the wrapped SWT component, ensuring the proper translation between the syntax
used in Swing and that used in SWT.

The result of this work, which you should undertake before the migration of your code takes

Migrate your Swing application to SWT Page 15 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

place, is a component hierarchy that is the mirror of the Swing component hierarchy, but has
no dependency on any Swing or AWT class. The implementation of the Swing API
exclusively invokes SWT methods.

This may seem like extra labor on your part, but it reduces a lot the work necessary to
migrate your code: Because the SWT components can be controlled with an API that is a
clone of the Swing API, you can migrate your code with simple search-and-replace
operations.

The following code snippet shows you what such a wrapper class would look like.
SWIConponent is the wrapper class on top of the wrapper class hierarchy. It corresponds to
Swing's JConponent .

public class SWrConponent {
(...)
/~k
* SWI control to which this object is doing the APl mapping.
*/
protected Control control;
(...)
/*
* Constructs a new APl mapper on an existing SW control .
* @aramcontrol the SWI control whose APl is nmapped

*/
publ i c SWrConponent (Control control) {
this.control = control;
control . set Dat a( KEY_SWI_COVPONENT, this);
}
/**

* Returns the SWI control whose APl is mapped by this object
*/
public final Control getControl () {

return control;

}
/l--- emulation of the AW/ Swi ng net hods ---

public final int getHeight() {
return control.getSize().vy;

}

public final Point getLocationOnScreen() {
return control.tobisplay(0, 0);

}
(...)

public final SWrContainer getParent() {
return (SWICont ai ner) get SWConponent (control . getParent());

}
(...)

public final bool ean hasFocus() {
return control.isFocusControl ();

}

public final void requestFocus() {
control . set Focus();

Page 16 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

}
(...)

public final void setPreferredSi ze(Di nension preferredSize) {
get Control (). set Dat a( KEY_PREFERRED SI ZE, preferredSize);

public final Dinension getPreferredSize() {

/1l check if a preferred size was set with setPreferredSi ze

Di nensi on preferredSi ze =
(Di mensi on) get Control (). get Dat a( KEY_PREFERRED Sl ZE) ;

/1 if not, conpute it with conputeSize

if (preferredSize == null) {
Poi nt size = getControl (). conputeSi ze( SWI. DEFAULT, SWI. DEFAULT);
preferredSi ze = new Di nmensi on(si ze. x, size.y);

Eeturn preferredSi ze;
}
(...)
/l--- Hel per nethods ---
| %%

* Returns the SWIConponent controlling a specific SW control
* @aramcontrol the SWI control

* @eturn the SWConponent assigned to it, or null if none.
*/

public static SWrConponent get SWIConponent (Control control) {
return (SWIrConponent) control . get Dat a( KEY_SWI_COVPONENT) ;

}
}

This snippet is only a small part of the complete implementation. The complete source code
for SWI'Conponent is in the j-swing2swtsrc.zip file in Resources on page 95 .

You'll notice that:

» The field cont r ol stores the reference to the wrapped SWT control.

* The method get Locat i onOnScr een() illustrates the emulation of the Swing API on top
of SWT. This method emulates j ava. awt . Conponent . get Locati onOnScr een(), the
AWT method that returns the absolute coordinates of a component on the screen. SWT
has a similar method, but with a different syntax: Cont r ol . t oDi spl ay(i nt, int)
converts coordinates in the coordinate system of the control to coordinates in the system
of the screen. By passing ( 0, 0) as parameters, you get the absolute coordinates of the
component on the screen. With this method, you can use the AWT API on an SWT control,
and you don't need to modify the existing code invoking Swing methods. Because the
method is f i nal , the compiler inlines the core of the method -- the code using the SWT
API -- where it is invoked, so that you don't incur any performance penalty by using the
wrapper class instead of rewriting your code with the SWT API.

» The method set Pr ef err edSi ze( Di nensi on) stores the preferred size as user data in
the SWT control. With W dget . set Data(Stri ng key, Cbject val ue), SWT lets
you store any widget data in a kind of hashtable. This data can be retrieved at any time by
invoking get Dat a( Stri ng key) on the widget. Because SWT doesn't let you set the

Migrate your Swing application to SWT Page 17 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

preferred size of the component, we use user data to store this information. The
implementation of get Pr ef erredSi ze() first checks to see if a preferred size was
previously set with set Pr ef erredSi ze() . If not, it invokes the method

comput eSi ze( .. .), which is the equivalent of AWT's get Pr ef erredSi ze() . The
layout managers introduced in Migrate the layout managers on page 14 check for each
component to lay out if a preferred size was stored as user data in the component.

Because j avax. swi ng. JConponent is an abstract class without a constructor, the only
constructor available in SWTConponent takes an already instantiated SWT control as its
parameter. This constructor allows you to instantiate a wrapper class on any existing SWT
control that may have been instantiated somewhere else in your application.

The following example shows you how a wrapper class can be instantiated around an
existing SWT component. The object but t on is an SWT button created and initialized with
the SWT API. By instantiating the class SWIr'Conponent presented earlier in this section,
with the SWT button passed as an argument in the constructor, you create a wrapper class
that allows you to use the AWT/Swing API on the SWT component. When

get Locati onOnScreen() (from the Swing API) is invoked on the wrapper, the wrapper
converts the call into its SWT API equivalent and invokes the corresponding SWT method on
the wrapped SWT component. In this way, you can at any time use the Swing syntax of a
method on an SWT component. The method SWI'Conponent . get Cont r ol () lets you
retrieve the reference of the wrapped SWT component from the wrapper class. This can be
useful if you need to invoke an SWT method and only have a reference to the wrapper class.

Button button = new Button(parent, SW. PUSH);

(...)

SWrConponent wr apper = new SWrConponent (button);

/1 from here you can use the AWI/ Swing APl on the button...
Poi nt pt = wrapper.getlLocati onOnScreen();

/1 ... or use the SWI' APl at your conveni ence

wr apper. get Control (). addD sposelLi stener(listener);

The wrapper class for a non-abstract component would emulate the Swing constructors as
well, so you can instantiate an SWT control and its wrapper class with a single invocation of
the constructor of the wrapper class.

The following code snippet shows the wrapper class of Swing's JLabel :

public class SWLabel extends SWConponent {

publ i c SWILabel (Label |abel) {
super (| abel ) ;

public SWILabel (SWICont ai ner parent) ({
t hi s(new Label (parent. get Conposite(), SW.NONE));

}

public SWILabel (SWICont ai ner parent, String text) {
thi s(parent);
get Label (). set Text (text);

public SWLabel (SWICont ai ner parent, String text, int horizontal Alignment) {
thi s(parent, text);

Page 18 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

set Hori zont al Al'i gnnent (hori zontal Al'i gnnent);

}

public Label getlLabel () {
return (Label)getControl ();

}

public void setText(String text) {
get Label (). set Text (text);

public String getText() {
return getLabel ().getText();

}
(...)
}

This snippet is only a small part of the complete implementation. The complete source code
of SWI'Label is in the j-swing2swtsrc.zip download in Resources on page 95 .

Because SWT requires that the parent of a control be passed as an argument when
constructing a new control (remember, an SWT control is added automatically to its parent at
creation time), the constructor of the wrapper class always requires one more parameter
than its Swing equivalent: the reference to the parent container needs to be passed to the
constructor.

The constructor of the wrapper class is the only part of the wrapper API that differs from its
Swing equivalent. The migration of Swing code is easy, however. As an example, consider
following Swing code:

JLabel |abel = new JLabel ("Label Text", Swi ngConstants. CENTER);

It can be ported to SWT as follows:

SWILabel |abel = new SWIiLabel (parent, "Label Text", Sw ngConstants. CENTER);

As with the layout managers presented in the previous section, you will find wrapper classes
for all the main Swing components included with the sample code provided with this tutorial
(see Resources on page 95). Feel free to use these classes in your projects and eventually
modify them to implement Swing methods | may not have implemented.

For more information on the individual Swing components' wrapper classes, read the panels
describing the migration of the various components later in this tutorial -- see Widgets on
page 31 to get an overview.

Trigger AWT/Swing event listeners from SWT

The code of a Swing application can usually be divided into three categories: model, view,
and controller, as defined in the famous design pattern.

» Code belonging to the view defines what the GUI looks like, such as: how the widgets are
arranged, with which properties (colors, font, etc.) they are initialized, and so on.

Migrate your Swing application to SWT Page 19 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

« Code belonging to the model is responsible for filling the content of the widgets -- how the
tables, lists, trees, and similar components are filled.

« Code belonging to the controller category how the widgets and panels interact with each
other -- what happens when a specific button is pressed, for example, or when a specific
item in a table is selected.

With the migration of the layout managers and the API mapping of the widgets composing
your panel, you have ported the code belonging to the view category. That means that if you
comment out all the code of your application that has not yet been ported by using the
migration techniques described in the previous panels, and then run your application, a GUI
similar to the original Swing application should show up without content and logic because
the widgets are still empty and don't trigger actions when the user interacts with them.

In this panel, we will focus on the controller code. In Swing, this is mainly made up of
AWT/Swing event listeners, triggered by user interactions with the GUI.

The concept of event listeners, like the concept of layout managers, is something that is used
by most of the modern GUI toolkits, but which is implemented differently in each toolkit. For
example, to trigger an action when the user presses a button, Swing lets you register an

Act i onLi st ener on that button, and implement the method

acti onPerfornmed(Acti onEvent) in the listener itself. If you want to program the same
behavior in SWT, you have to register a Sel ecti onLi st ener on the button, and
implement the method wi dget Sel ect ed( Sel ecti onEvent) in the listener. Even if both
toolkits throw the same kind of events, the class hierarchy and the API to catch those events
is completely different. Thus, without a good migration technique, porting the controller code
of a Swing application would be as tiresome as migrating the widgets themselves if you had
to do it by hand.

To solve this problem, we will use the same technique that we used for the APl mapping. As
we saw in the previous section, this mapping was realized by constructing wrapper classes
around SWT controls, with a public API that is similar to Swing's API. These wrapper classes
can be improved so that they not only map the methods, but also the events.

To be able to do the event mapping, each wrapper class will store a list of AWT listeners and
provide the add/r enoveXXXLi st ener ( XXX) methods defined in the AWT/Swing API of the
widget to port. Additionally, the wrapper class will listen to the SWT events thrown by the
wrapped SWT control. When an SWT event is detected -- for example, when a

Sel ecti onEvent is detected after a button has been pressed -- the corresponding AWT
event is created and thrown to the AWT listeners that have been registered in the wrapper
class.

By using this technique, you need not migrate your AWT/Swing listeners. The event mapping
is programmed once in the wrapper classes, so the AWT/Swing listeners are notified when
the user interacts with the SWT control.

The following code snippet illustrates how such an event mapping can be implemented. This
is a snippet of the wrapper class corresponding to Swing's Abst r act But t on. The only
event that is mapped here is the Sel ecti onEvent of SWT, which has to be converted into
an AWT Acti onEvent and thrown to the registered Act i onLi st eners.

Page 20 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

public class SWAbstract Button
ext ends SWIConponent
i npl ements Sel ecti onLi st ener {

public SWrAbstract Button(Button button) {
super (button);
butt on. addSel ecti onLi stener (this);

}

public Button getButton() {
return (Button)getControl();

}
(...)

public void setAction(Action action) {
String acti onName = (String)action. getVal ue( Acti on. NAME) ;
if (actionNane != null)
get Button(). set Text (acti onNane) ;
addActi onLi st ener (action);

}

public void addActi onLi stener (ActionListener listener) {
event Li st ener Li st. add(ActionLi stener.class, listener);

}

public void renpveActi onLi stener (ActionListener |istener) {
event Li st ener Li st.renove(ActionLi stener.class, l|istener);

N i npl enment ati on of Sel ectionListener ------------------
public void wi dget Def aul t Sel ect ed( Sel ecti onEvent e) {}

public void w dget Sel ect ed(Sel ecti onEvent e) {
/'l propagate an Action event to the ActionListeners
ActionEvent actionEvent = null;
Event Li stener[] actionListeners =
event Li st ener Li st. get Li st eners(Acti onLi st ener. cl ass);
for (int i = 0; i < actionListeners.length; i++) {
if (actionEvent == null)
acti onEvent =
new ActionEvent (
this,
Act i onEvent . ACTI ON_PERFORIVED,
getButton().get Text());

((ActionListener)actionListeners[i]).actionPerforned(actionEvent);
}

This snippet was only a part of the complete implementation. The complete source code of
SWI'Abst r act But t onis in the j-swing2swtsrc.zip download in Resources on page 95 .

The important parts of the code are formatted in bold:

« In the constructor SWr'Abst r act But t on( But t on) , the wrapper class registers itself as
an SWT selection listener on the wrapped SWT component.

« AWT Acti onLi st ener s can be registered and deregistered in the wrapper class by

Migrate your Swing application to SWT Page 21 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

using the methods add/r enmoveAct i onLi st ener (Acti onLi st ener) . The listeners are
stored in a protected Event Li st ener Li st declared in the superclass SWrConponent .
The list of listeners in SWIConponent is declared as follows:

protected EventListenerList eventlListenerList = new EventListenerList();

* When the user presses the SWT button, the method
wi dget Sel ect ed( Sel ecti onEvent) is invoked by SWT. The core of this method
checks to see if some AWT Act i onLi st ener s are registered, builds an equivalent AWT
Act i onEvent, and notifies all the registered AWT listeners.

By implementing the event mapping in the wrapper classes, we make the migration of Swing
code using listeners straightforward. Consider the following Swing code:

JButton button = new JButton("OK");
but t on. addActi onLi st ener (new Acti onLi stener() {
public void actionPerformed(ActionEvent e) {
/1 do action
}

1),

It will be migrated as follows (the modified parts are in bold):

SWIButt on button = new SWIButt on( parent, "OK");
but t on. addActi onLi st ener (new Acti onLi stener() {
public void actionPerformed(ActionEvent e) {
/1 do action
}

1)

The wrapper classes provided with this tutorial's sample code (see Resources on page 95)
already perform event mappings for most of the events you may have used in your Swing
application. If your project listens for events that are not mapped in the sample code, feel
free to use the code as basis for implementing the missing features in your project.

For more information on the individual Swing components' wrapper classes, read the
sections describing the migration of the various components later in this tutorial -- see
Widgets on page 31 to get an overview.

Swing's models adapters: Reuse your Swing data
models in SWT widgets

Now we are going to focus on the port of the data models used by your Swing application.

In Data models and cell renderers vs. content providers and label providers on page 12 , we
saw that JFace's viewers allow you to separate the data model used to fill a widget from the
widget itself, just as Swing's data models do. However, although the basic idea is the same,
the API and the way JFace's viewers and content providers work is quite different from
Swing's Tabl eMbdel , Tr eeModel , or Li st Mbdel s.

At first glance, it looks like these differences will oblige you to entirely migrate your Swing

Page 22 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

data models to JFace content providers. This conversion could be tedious, especially if your
code uses customized model classes that extract the data from an external source.

Fortunately, it's not necessary to migrate the models themselves. We have seen previously
that the content providers used by JFace's viewers are not data containers, but rather are
data extractors. Content providers can be written to extract data from any kind of input
object, including a Swing data model. It is quite easy to write a custom content provider to
extract data from any kind of Swing data model and fill an SWT component with that data.

The following code snippet demonstrates how a JFace Tabl eVi ewer can be filled with data
from a Swing Tabl eMbdel :

public class SWiTabl e ext ends SWIConponent
i mpl enent s Tabl eCol umMbdel Li st ener, ListSel ectionListener, Sel ectionLi stener,
Pr opert yChangeli st ener, Control Li stener {

/** SWI"s Tabl eVi ewer on the table conponent */
private Tabl eVi ewer tableViewer;

/** Swing's Tabl eModel */
private Tabl eModel nodel;

public SWTabl e(Tabl e table) {
super (tabl e);
t abl e. addSel ecti onLi stener (this);
t abl eVi ewer = new Tabl eVi ewer (t abl e);

t abl eVi ewer . set Cont ent Provi der (new Tabl eMbdel Cont ent Provi der());
t abl eVi ewer . set Label Provi der (new Tabl eMbdel Label Provi der ())
(...)

}

public SWTabl e( SWICont ai ner parent) {
t hi s(parent, new Defaul t Tabl eMbdel ());

public SWITabl e( SWICont ai ner parent, Tabl eModel nodel) {
thi s(parent, nodel, null);
set Col uimMbdel (cr eat eDef aul t Col utmMbdel ());
cr eat eDef aul t Col umsFr onvbdel () ;

}

public SWITabl e(SWCont ai ner parent, Vector rowbData, Vector col umNanes) ({
t hi s(parent, new Defaul t Tabl eMbdel (rowDat a, col unmNanes));

}
(...)
[]----

public final Table getTable() {
return (Tabl e)getControl ();

}

public final Tabl eViewer getTableViewer() {
return tabl eVi ewer;

}

public final Tabl eMbdel getMdel () {
return nodel;

}

Migrate your Swing application to SWT Page 23 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

public final void setMdel (Tabl eModel nodel) {
thi s. nodel = nodel;
t abl eVi ewer. set | nput (nodel ) ;
cr eat eDef aul t Col utmsFr onivbdel () ;

}

public final void setVal ueAt ((bject value, int row, int columm) {
get Model (). set Val ueAt (val ue, row, convert Col uml ndexToModel (col unm));
Tabl eVi ewer tv = get Tabl eVi ewer ();
tv.refresh(tv. getEl enent At (colum), false);

/**
* Content Provider taking as input the content of the Swi ng Tabl eMbdel
*/
private class Tabl eMbdel Cont ent Provi der
i npl ements | StructuredCont ent Provi der {
public Object[] cachedEl enents;

/**
* Takes as argunent the current Swi ng Tabl eMbdel used by the table
* and returns an array of Vectors containing the content of the nodel.
* Each vector represents a row in the nodel.
*/
public Object[] getEl ements(Chject inputEl enment) ({

if (cachedEl enments != null)

return cachedEl enments;

if (inputEl enent instanceof Tabl eMbdel) ({
Tabl eModel tm = (Tabl eModel )i nput El enent ;
Vector[] rows = new Vector[tm get RowCount ()] ;

for (int i =0; i < tmgetRowCount(); i++) {
rows[i] = new Vector(tm get Col umCount());
for (int j =0; j <tmgetColumCount(); j++) {

rows[i].add(tm getValueAt(i, j));

}
cachedEl ements = rows;

return cachedEl enent s;

}

public void dispose() {
cachedEl enents = nul | ;
}

public void inputChanged(Vi ewer viewer, Cbject oldl nput, Object new nput) {
cachedEl ements = nul | ;
}

}

/**
* Label Provi der delegating the formatting to a SWCel | Render er
*/
private class Tabl eModel Label Provi der inpl enments | Tabl eLabel Provi der {
public I mage get Col uml nage( Obj ect el enent, int colummlndex) {
return null;
}

public String getCol unmmText ((bj ect el enent, int columlndex) {
if (elenent instanceof Vector) {

Page 24 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

bject item= ((Vector)el enment).get(col umlndex);
if (item== null) return "";
el se return itemtoString();

nn

} else return :

public void addLi st ener (| Label Provi derListener |istener) {}

public void dispose() {}

public bool ean isLabel Property(Object elenent, String property) {
return true

public void renovelLi st ener (Il Label Provi derListener listener) {}

}
(...)
}

This snippet is only a part of the complete implementation of the wrapper class for JTabl e.
The complete source code for SWI'Tabl e is in the j-swing2swtsrc.zip download in Resources
on page 95

The important part of the code is in bold:

When the wrapper class is constructed on top of an SWT table, it automatically creates a
JFace viewer on it and sets a customized content provider and a label provider.

* When set Model ( Tabl eModel ) is invoked to set the Swing model, the model is passed
to the content provider as new input, so that the rows of the table are reconstructed to
display the new model.

» The inner class Tabl eMbdel Cont ent Pr ovi der is the most interesting part of the code.
It does the conversion between the Swing TableModel API and the API of the JFace
content provider. The method get El ement s( Obj ect) returns an array of vectors; each
vector contains the data for a single row of the model. For performance reasons, the
extracted rows are cached until a new model is used.

* The inner class Tabl eMbdel Label Provi der extracts (from the row vector provided by
the content provider) the elements contained in each cell of the row, and converts them to
the string to be displayed in the SWT table. We will see in the next panel how this label
provider can be improved to have functionality similar to Swing's cell renderers.

If you look in the wrapper classes SWILi st and SWI'Tr ee, you will see how a similar method
can be used to adapt Swing Li st Model s and Tr eeMobdel s to JFace viewers. These
classes are available in the source code in Resources on page 95 .

Migrate Swing's cell renderers and editors

In Data models and cell renderers vs. content providers and label providers on page 12 we
saw that the JFace equivalent for a Swing cell renderer is a label provider. Label providers
are not as flexible as Swing cell renderers, because they don't allow you to use any kind of
component to render a cell. In SWT, a table, tree, or list cell is basically represented as a
label with an image and text. This means that complicated Swing renderers can't be migrated
easily to SWT.

Migrate your Swing application to SWT Page 25 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Fortunately, in most cases the renderers that are used in Swing applications are themselves
some kind of labels, with text and an icon. This kind of renderer can be converted easily into
a JFace label provider.

From my experience as a Swing programmer, the typical scenario in which customized cell
renderers are used with tables, trees, or lists goes something like this:

» The data model contains non-St r i ng objects, which have to be represented in the
application with a St r i ng that is different from the St ri ng returned by thet oSt ri ng()
method. Typical examples are:

» The data are Nunber s or Dat es and have to be formatted with a Nunber For mat or a
Dat eFor mat , the formatting being locale dependent.

» The data are objects that can't be easily represented with a string, and a custom icon
has to be used. Typical examples are Col or s or boolean values.

« A default cell renderer in Swing is subclassed (Def aul t Li st Cel | Render er for a list,
Def aul t Tr eeCel | Render er for a tree, or Def aul t Tabl eCel | Render er for a table).
These default cell renderers are subclasses of JLabel . The newly created custom
renderer simply converts the object to be formatted into a St ri ng and an icon, and sets
them with set Text (String) andsetl con(lcon), likein a normal JLabel .

Here's an example of such a custom renderer:

Tabl eCel | Render er custonRenderer = new Def aul t Tabl eCel | Renderer () {
publ i ¢ Conmponent get Tabl eCel | Render er Conponent (JTabl e tabl e,
hj ect val ue,
bool ean i sSel ect ed,
bool ean hasFocus,
int row,
int colum) {
i f (value instanceof Date) {
Dat eFormat formatter = Dat eFor mat. get Dat el nst ance( Dat eFor mat . SHORT) ;
String text = formatter. format ((Date)val ue);
set Text (text);
} el se setText(value.toString());
return this;
}
i

Such a cell renderer is easy to rewrite as a JFace label provider:

| Label Provi der | abel Provi der = new Label Provider () {
public I mage getl mage(Cbject element) {
return null;

}

public String get Text(Cbject element) {
if (elenent instanceof Date) ({
Dat eFormat formatter = Dat eFor nat. get Dat el nst ance( Dat eFor mat . SHORT) ;
return formatter. format ((Date)val ue);
} else return value.toString();

}

Page 26 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

b

As you can see, the migration of a single cell renderer to a JFace label provider doesn't
present much difficulty for standard renderers, even if the code has to be slightly modified.

The problem is more complicated when you try to migrate a JTabl e using different
renderers for each column. Swing's JTabl e allows you to set a different renderer for each
column, as well as several default renderers, depending on the type of the data.

On the other hand, a JFace Tabl eVi ewer uses a single | Tabl eLabel Provi der to format
all the cells of a column. | Tabl eLabel Pr ovi der is a subclass of | Label Provi der and
provides two methods to return the text and image of a specific column for a specific row:

e public Inmage get Col unml mage( Cbj ect el enment, int col uml ndex);
e public String getCol umText (Object elenent, int colummlndex);

While the migration of several Tabl eCel | Render er s used by a JTabl e into a single

| Tabl eLabel Provi der used by a Tabl eVi ewer is technically possible, it can be tedious
work to analyse the Swing code to find out which renderers are used by which column
indices. A better solution is to:

» Create a class simulating the behavior of Swing's Tabl eCel | Render er .

» Extend the wrapper class SWITabl e so that it can store a separate renderer for each
column and data type, like Swing's JTabl e.

» Create a central label provider that asks the table for the renderer to use for a specific cell,
and delegate the formatting of a cell to it.

The following code snippet shows you how our renderer class could be implemented:

public class SWCel | Renderer
i npl ement s Tabl eCel | Renderer {

publ i c Conmponent get Tabl eCel | Render er Conponent (
JTabl e table,
Cbj ect val ue,
bool ean i sSel ect ed,
bool ean hasFocus,
int row,
int colum) {
return null;

}

public String getCell Text(Object value, int row, int colum) {
return value.toString();

}

public I nmage getCell I nage(Object value, int row, int colum) {
return null;

}

}

Migrate your Swing application to SWT Page 27 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Get the complete source code for this SWI'Cel | Render er from
/swing2swt/components/SWTCellRenderer.java in the j-swing2swtsrc.zip download in
Resources on page 95 . The class provides a dummy implementation of Swing's

Tabl eCel | Render er, so that an instance of SWI'Cel | Render er can be stored in an
instance of Swing's Tabl eCol urm. The two methods get Cel | Text (Obj ect, int,
i nt) and get Cel I | mage( Cbj ect, int, int) have to be overridden so that the
renderer can do the formatting that it should do.

The wrapper class for Tabl e is modified as follows:

public class SWTabl e extends SWConponent
i mpl enents Tabl eCol uimMbdel Li st ener,
(...)

/** Swing's colum nodel */
private Tabl eCol umModel col umMbdel ;

/**

* Hashtable storing the cell renderers to use for each data types
*/

private Hashtabl e default Renderers = null;

public SWTabl e(Tabl e table) {
super (tabl e);
t abl e. addSel ecti onLi stener (this);
tabl eVi ewer = new Tabl eVi ewer (t abl e);
t abl eVi ewer . set Cont ent Pr ovi der (new Tabl eMbdel Cont ent Provi der ()
t abl eVi ewer . set Label Provi der (new Tabl eMbdel Label Provi der());
(...)
}
(...)

public SWCel | Renderer getCell Renderer(int row, int colum) {
Tabl eCol uimmMbdel cm = get Col utmModel () ;
if (cm!=null) {
bj ect renderer = cm get Col um( col unn). get Cel | Renderer () ;
if (renderer instanceof SWCell Renderer)
} return (SWICel | Renderer)renderer;

return get Def aul t Render er (get Col umd ass(col um));

}
(...)

public final SWICel | Renderer get DefaultRenderer(Cd ass col umd ass) {
if (defaultRenderers == null || columd ass == null)
return null;
SWICel | Renderer renderer =
(SWICel | Render er) def aul t Render er s. get (col umd ass) ;
if (renderer !'= null)
return renderer;

/1 if a renderer was not found for this specific class, try recursively
/1 to find a renderer for one of the superclasses
return get Def aul t Render er (col umd ass. get Supercl ass());

}
(...)

public final void setDefaul t Renderer (

Page 28 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

G ass col umd ass,
SWICel | Renderer cel |l Renderer) {
if (defaultRenderers == null)
def aul t Renderers = new Hashtabl e();
def aul t Render ers. put (col unmd ass, cell Renderer);
get Tabl eVi ewer (). refresh();

* Label Provi der delegating the formatting to a SWCel | Render er
*
/
private class Tabl eModel Label Provi der inpl enments | Tabl eLabel Provi der {
public | nage get Col uml nage( Chj ect el enent, int columlndex) {
if (elenment instanceof Vector) {
Cbject item=
((Vector)el enent). get (convert Col uml ndexToModel (col uml ndex)) ;
if (item== null)
return null;
el se {
/1l get the renderer for this columm
int rowl ndex = get Row ndex(el ement);
SWICel | Renderer renderer = get Cel | Renderer(row ndex, col uml ndex);

if (renderer !'= null)
return renderer.getCelllmage(item row ndex, colummlndex);
el se
return null;
} else
return null;

public String getCol umText(Chject elenent, int columlndex) {
if (elenment instanceof Vector) {
bject item=
((Vector)el enent) . get (convert Col uml ndexToModel (col uml ndex)) ;
if (item== null)
return "";
el se {
/1l get the renderer for this columm
int rowl ndex = get Row ndex(el ement);
SWICel | Renderer renderer = get Cel |l Renderer(row ndex, col uml ndex);
if (renderer !'= null)
return renderer.getCell Text(item row ndex, columlndex);
el se
return itemtoString();

} else
return "";
}
public void addLi st ener (1 Label Provi derListener listener) {}
public void dispose() {}

publ i c bool ean isLabel Property(Object elenent, String property) {
return true

}

public void renovelLi st ener (Il Label Provi derListener listener) {}

(...)

Migrate your Swing application to SWT Page 29 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

For the complete source code for this SWITabl e, see
/swing2swt/components/SWTTable.java in the j-swing2swtsrc.zip download from Resources
on page 95 . Like Swing'§Tabl e, this object provides a set Def aul t Renderer(...),
allowing you to register different renderers for different column types. Like JTabl e, it uses a
Swing Tabl eCol unnModel to store a renderer in each column. The inner class

Tabl eMobdel Label Provi der searches for the cell renderer that has to be used for a
specific column, and delegates the formatting of a cell value to it.

Yoy can use the same method for cell editors. The class SWICel | Edi t or

(/swing2swt/components/SWTCellEditor.java) is a wrapper class allowing you to emulate the
Swing API with JFace Cel | Edi t ors.

Page 30 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials

Section 5. Widgets

Overview

i bm conm devel oper Wr ks

In this section, we'll see how to translate each Swing component into a corresponding SWT
component in our framework. The following table gives you an overview of the
correspondence between the components in the two toolsets. For each Swing component
listed in the first column, you can read in the second column the name of the equivalent SWT
component, as well as the eventual style constants to use. The third column contains a link
to the panel where the migration issues of the component are explained in detalil.

(Styl e=SWI'. CHECK)

Swing SWT Panel

JBut t on Butt on JButton, JToggleButton, JCheckBox,
(Styl e=SWI'. PUSH) and JRadioButton on page 33

JCheckBox Button JButton, JToggleButton, JCheckBox,

and JRadioButton on page 33

JCheckBoxMenul t em

Menul tem
(Styl e=SWI'. CHECK)

JMenu, JPopupMenu, and JMenultem
on page 48

JCol or Chooser

Col or Di al og

JColorChooser on page 35

JComboBox

Conbo or CConbo

JComboBox on page 36

JDeskt opPane

No equivalent in SWT; use
GEF if needed

JDesktopPane, JinternalFrame,
JLayeredPane, and JRootPane on
page 39

JEdi t or Pane

Styl edText

JEditorPane on page 39

JFi | eChooser

Fi | eDi al og or
Di rectoryDi al og

JFileChooser on page 40

JI nt er nal Frane

No equivalent in SWT; use
GEF if needed

JDesktopPane, JinternalFrame,
JLayeredPane, and JRootPane on
page 39

JLabel

Label or CLabel

JLabel on page 42

JLayer edPane

No equivalent in SWT; use
GEF if needed

JDesktopPane, JinternalFrame,
JLayeredPane, and JRootPane on
page 39

| nput Di al og

JLi st Li st JList on page 44

JMenu Menu, or Menul t em JMenu, JPopupMenu, and JMenultem
(Styl e=SWI. CASCADE) if |on page 48
in a menu

JMenuBar Menu (Styl e=SW. BAR) JMenu, JPopupMenu, and JMenultem

on page 48

JMenultem Menul t em JMenu, JPopupMenu, and JMenultem
(Styl e=SWI. PUSH) on page 48

JOpt i onPane MessageDi al og or JOptionPane on page 51

Migrate your Swing application to SWT

Page 31 of 97




i bm cont devel oper Wr ks

Presented by developerWorks, your source for great tutorials

JPanel

Conposi te or G oup

JPanel on page 53

JPasswor dFi el d

Text
(Styl e=SWI. SI NGLE) ; use
set EchoChar (char)

JTextField, JTextArea, and
JPasswordField on page 72

JPopupMenu

Menu
(Styl e=SWI. POP_UP)

JMenu, JPopupMenu, and JMenultem
on page 48

JProgr essBar

Pr ogr essBar ,
Pr ogr essl ndi cat or, or
Pr ogr esshbni t or Di al og

JProgressBar on page 55

JRadi oBut t on

But t on
(Styl e=SWI'. RADI O

JButton, JToggleButton, JCheckBox,
and JRadioButton on page 33

JRadi oBut t onMenul t e

Venul t em

(Styl e=SWI. RADI O)

JMenu, JPopupMenu, and JMenultem
on page 48

JRoot Pane

No equivalent in SWT; use
GEF if needed

JDesktopPane, JinternalFrame,
JLayeredPane, and JRootPane on
page 39

JScrol | Pane

Scrol | edConposite
(Styl e=SWI. H_ SCRCLL |
SWI'. V_SCROLL)

JScrollPane and JViewport on page 57

JSepar at or

Label

(Styl e=SWI. SEPARATOR) ,
or Menultem

(Styl e=SWI. SEPARATOR)
if in a menu

JSeparator on page 60

JSIider Sl i der or Scal e JSlider on page 60

JSpl it Pane SashForm JSplitPane on page 62
JTabbedPane TabFol der or CTabFol der |JTabbedPane on page 64
JTabl e Tabl e JTable on page 67

JTabl eHeader

No equivalent; use
Tabl e. set Header Vi si bl e

JTable on page 67
true)

JText Area Text JTextField, JTextArea, and
(Styl e=SWI. MULTI) JPasswordField on page 72
JText Fiel d Text JTextField, JTextArea, and
(Styl e=SWI. SI NGLE) JPasswordField on page 72
JText Pane Styl edText JEditorPane on page 39
JToggl eButt on But t on JButton, JToggleButton, JCheckBox,

(Styl e=SWI. TOGGLE)

and JRadioButton on page 33

JTool Bar Tool Bar or Cool Bar JToolBar on page 75
JTool Tip No equivalent; use -

Control . set Tool Ti pText [ Stri ng)
JTree Tree JTree on page 77

Page 32 of 97

Migrate your Swing application to SWT




Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

JVi ewport Scrol | edConposite JScrollPane and JViewport on page 57
(Styl e=SWI'. NONE)

JButton, JToggleButton, JCheckBox, and JRadioButton

The equivalent of these four Swing components is a single SWT component: But t on, shown
in the image below. Instead of using different classes to represent the different types of
buttons, SWT uses different type constants, which are passed as parameters in the
constructor of the component:

SWI'. PUSH is used to create a push button like a JBut t on.

SWI. TOGGLE is used to create a two-state push button like a JToogl eBut t on.
SWI'. CHECK is used to create a checkbox like a JCheckBox.

SWI. RADI Ois used to create a radio button like a JRadi oBut t on.

SWT.PUSH | v SWT.CHECEK (& SWTRADIO |SWTTOGGLE

Text and icon

As in Swing, SWT buttons can contain text and/or an image. (Note that on some platforms,
such as Maotif, you can't display text and an image in the same button. If you try, the image

will simply be ignored.) However, in SWT you can't define different images for the different

states of the button as you can in Swing. The alignment of the text and image of the button

can be defined in the constructor by combining the style SWI'. LEFT or SWI. RI GHT with the
type of the button, or by invoking set Al i gnment (i nt) after the creation of the button.

Keyboard navigation

Mnemonics -- the underlined characters that can be used as keyboard shortcuts to activate
buttons -- are not set by invoking set Mhenoni c(char) as in Swing, but simply by adding
an ampersand character (&) in the text of the button at the position before the mnemonic
character, like so:

but t on. set Text (" &Execute");

Events

Where Swing's buttons throw three kinds of event -- an Act i onEvent , indicating that an
action has been performed, an | t enEvent , indicating that the state of a toggle button has
changed, and a ChangeEvent , whose role is not really clearly defined -- SWT only uses one
event: Sel ecti onEvent .

To detect when a button is pressed, or when the state of a toggle button, check box, or radio
button has changed, just use the addSel ect i onLi st ener ( Sel ecti onLi st ener)
method and implement the interface Sel ect i onLi st ener or subclass

Sel ecti onAdapt er . Then, implement the method

wi dget Sel ect ed( Sel ecti onEvent) . To know the state of the button, just get the source
of the event, cast it to But t on, and invoke the get Sel ecti on() method.

Migrate your Swing application to SWT Page 33 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

The following code listing illustrates all of these code concepts in action:

/l--- Creation of a push button with a left aligned text
Button button = new Button(parent, SW.PUSH | SW.LEFT);
butt on. set Text ("&Button Text");
/1l Trigger an action when the button is pressed
butt on. addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void w dget Sel ect ed(Sel ecti onEvent event) {
Systemout.println("Button "+event. get Source()+" pressed");
i
1)

//--- Creation of a radio button
Button radi oButton = new Button(parent, SW.RADIO;
radi oButt on. set Text (" &Radi oButton Text");
/1 Trigger an action when the state of the radi o button changes
but t on. addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void wi dget Sel ect ed(Sel ecti onEvent event) {
Button b = (Button)event. get Source();
if (b.getSelection()) Systemout.println("Button "+b+" selected");
el se Systemout.println("Button "+b+" desel ected");

3
1),

Migrate existing Swing code

The migration of Swing buttons to SWT doesn't present any particular difficulty, as the two
toolkits offer the same functionality. The sample code provided with this tutorial contains
several wrapper classes that make migration easier:

e SWIAbstract Button
e SWIBuUtton

e SWIToggl eButton

« SWI'Radi oBut t on

* SWI'CheckBox

These wrapper classes use the APl and event mapping introduced in Migrate your Swing
code to SWT with minimal change on page 14 , so the migration work you'll have to do is
limited to the following simple steps:

» Search for occurrences of the Swing types and replace them with the new wrapper type.

» Search for constructors where a button is created and add the reference to the parent of
the button in the arguments list.

Here's an example of such a migration. Consider the following Swing code:

Action nyAction = ...;
JButton buttonl = new JButton(nyAction);
par ent . add(buttonl);

JButton button2 = new JButton("Button 2");
butt on2. addAct i onLi st ener (anActi onLi st ener);
par ent . add(button2);

JCheckBox checkBox = new JCheckBox(" CheckBox", true);
par ent . add( checkBox) ;

Page 34 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Here's what this code would look like after being migrated to SWT:

Action nmyAction = ...;
SWIButt on buttonl = new SWIBuUtton(parent, myAction);
par ent . add(buttonl);

SWIBut t on button2 = new SWIButton(parent, "Button 2");
but t on2. addAct i onLi st ener (anActi onLi st ener);
par ent . add( but ton2);

SWICheckBox checkBox = new SWICheckBox( parent, "CheckBox", true);
par ent . add( checkBox) ;

JColorChooser

SWT provides the standard dialog Col or Di al og to choose a color. Its APl is very simple
and only contains three methods: set RGB( RGB) , open() , and get RGB() .

The dialog is a system dialog. This means that its look and feel is different for each platform,
and that you can't customize it.

The following screenshots shows what the color dialog looks like under Motif and GTK,
respectively:

X A Colors [=1iE3

(o ]

[ T T T T T T I ITT L]
ERREEEEEEN Cancel
Sample Selection

A Sample Text Current Selection

Migrate your Swing application to SWT Page 35 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

XH %]

Hue: (270 |5 Red: [160 |5
Saturation: |135 |3 Green: [103 |3
Walue: [218 |3 Blue: |213 |5

Color Mame: |[#4067048

& Cancel ‘ @QI{

l l
SWT doesn't provide any color chooser control that can be embedded in a panel.

JComboBox

Combo boxes can be created in SWT either by using the component Conbo, which is
mapped to a native widget, or by using the customized widget CConbo, located in the
org. ecl i pse. sw . cust ompackage.

The APIs for both components are nearly identical. Most of the time, you will want to use
Conbo in order to have a native component with better performance and a standard look and
feel. CCombo allows you to customize the look of the control and should only be used in
special cases where a native component is not suitable.

There are two possible reasons why you might prefer a CConbo to a native Conbo:

* You need a combo box without any border: Native Conbos are always drawn with a
border. By using a CConbo with the style constant SWI'. FLAT, you get a combo box
without any border. This can be useful if the combo box is added to another component
having its own border. To create a CConbo with a border similar to Conbo, use the style
constant SWI'. BORDER.

* You need a more compact combo box: On some platforms, such as Motif, even the
smallest native combo box is too large to be added to another component, such as a
toolbar. Using a CConbo allows you to get a component whose minimum size is the same
on all platforms and which is compact enough to fit in a toolbar.

Page 36 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Combo CCombo
iterm b item
itetm
iteme iteme
iterm3 iterms
iternd itemd

Items

Unlike Swing's JConboBox, SWT combos can only contain normal St ri ngs without any
icons. The renderer mechanism of Swing that allowed you to put any kind of objects into a
combo box model and render them in a customized way is not available in SWT. SWT
doesn't use a separate model class to store the items and selection of the combo box as
Swing does.

To set the items in the combo box, use the method set I tenms(String[]). To append or
insert an item at a specific position, use add( Stri ng) oradd(String, int).Toremove
items, use one of the several r enove methods.

Editable vs. read-only combos

As is true in Swing, an SWT combo is made up of a text field and a list. The text field can be
either freely editable -- that is, the user can enter a value that is not available in the list -- or
read only -- that is, the user can only select a value already available in the list. In Swing's
JConboBox, you can control this feature by using the set Edi t abl e( bool ean) method
after the creation of the widget. In SWT, you have to use the style SWI. READ_ONLY in the
constructor of the component if you want it to be read only.

Management of the selection

The currently selected item in a combo can be retrieved by using any of several methods:

» get Sel ecti onl ndex() returns the index of the currently selected item. If the combo is
not read only, and the user enters text that is not in the list of the items, this method will
return -1.

e get Text () returns the current text of the field of the combo. If the combo is read only, it
corresponds to the currently selected item in the list.

Be careful not to mix up get Sel ecti onl ndex() and get Sel ecti on() . The latter returns
a Poi nt containing the start and end position of the character selection of the text field of the
combo. It is the equivalent of Text . get Sel ecti on() and has nothing to do with the item
selection of the combo.

You can set the selection by using one of these methods:

« sel ect (i nt) selects the item at a specific position.
* set Text (String) sets the text to display in the field of the combo.

Migrate your Swing application to SWT Page 37 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Do not mix up these methods with set Sel ect i on( Poi nt) , which is the equivalent of
Text . set Sel ecti on( poi nt) and is used to set the character selection in the field of the
combo.

Events

Two kind of events are thrown by an SWT combo:

* A Sel ecti onEvent is thrown when the user chooses an item in the list of the combo. To
detect a change in the selection, register a Sel ect i onLi st ener by using the method
addSel ecti onLi st ener ( Sel ecti onLi st ener) . The listener method that is triggered
by the event and should be implemented is
Sel ecti onLi st ener. wi dget Sel ect ed( Sel ecti onEvent).

* A Modi f yEvent is thrown when the text in the field of the combo changes. This event is
the same as the event thrown by the Text component. To learn more about
Modi f yEvent s, read JTextField, JTextArea, and JPasswordField on page 72 . Note that,
unlike Text , a combo box doesn't throw Ver i f yEvent s.

The following code snippet illustrates SWT combo boxes in action:

/l--- Creation of a read-only conbo box containing 3 itens
Conbo conbo = new Conbo(parent, SW. DROP_DOAN | SWI. READ ONLY);
conbo.setltens(new String[]{"iteml", "itenR", "itenB8"});

//--- Detect changes in the selection

conbo. addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void wi dget Sel ect ed(Sel ecti onEvent e) {
/1 trigger action

}
});

/l--- Get the current selected item
String sel ectedltem = conbo. get Text () ;

Migrate existing Swing code

The migration of existing Swing code is not problematic for combo boxes that only contain

St ri ng items and don't use special renderers. If this is not the case, you have to replace the
Swing renderer with a kind of label provider that converts the items into St r i ngs before they
are added in the combo. Icons are not supported.

The wrapper class SWIConboBox, included with the sample code provided with this tutorial,
makes the migration easier. It uses the API and event mapping introduced in Migrate your
Swing code to SWT with minimal change on page 14 , so that the migration work you'll have
to do is limited to a few simple steps:

» Search for occurrences of the Swing type JConboBox and replace them with the new
wrapper type SWIConboBox.

« Search for constructors where a combo box is created and add the reference to the parent
of the combo box in the arguments list.

Let's look at a migration example. Consider the following Swing code:

Page 38 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

String[] items = new String[]{"iteml", "itenR", "itenmB8", "itemi"};
JConboBox conboBox = new JConboBox(itens);
conboBox. set Acti on(new Abstract Action() {
public void actionPerformed(ActionEvent e) {
/1 do action...

}
1)
par ent . add( comrboBox) ;

Here's what it would look like migrated to SWT:

String[] itens = new String[]{"item", "itenR", "itenmB8", "itemi"};
SWIConboBox conboBox = new SWIConboBox( parent, itens);
conboBox. set Acti on(new Abstract Action() {
public void actionPerformed(ActionEvent e) {
/1 do action...

pa’r ent . add( comrboBox) ;

JDesktopPane, JinternalFrame, JLayeredPane, and
JRootPane

Because SWT components are native components that don't support transparency, there is
no direct SWT equivalent for Swing's JRoot Pane and JLayer edPane. As of version 2.1 of
the toolkit, there are no multiple document interface (MDI) widgets in SWT like Swing's
JDeskt opPane or JI nt er nal Fr ame. However, the Eclipse sub-project GEF provides
some of the functionality of these components that is not available in the standard SWT
library. GEF is a graphical library that can be used to build graphical SWT applications such
as GUI designers and diagram editors. It provides a framework that allows you to build
lightweight widgets with support for transparency and multiple layers, like those available in
Swing. For more information on GEF, consult Resources on page 95 .

JEditorPane

With St yl edText , SWT provides a component that is similar to Swing's JEdi t or Pane and
JText Pane. Like a JEdi t or Pane, a St yl edText is a widget that can be used to display
and edit text with different font styles and colors, as illustrated below:

& window contains ane or mare perspectives. & perspective || &)
and editors for working with your resources.

The shortcut bar at the far left of the window allows you to open
betwyeen perspectives that are already open. The perspective y
I5 shown in the title of the window and in the shortcut bar as a

-

A i1

Migrate your Swing application to SWT Page 39 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Unlike Swing's JText Pane, a St yl edText can only display text. Things like images or
tables are not supported. Additionally, SWT has no equivalent for Swing's Edi t or Ki t ,
which allows a Swing JText Pane to read or write documents in HTML or RTF format.

The API and usage of St yl edText is not covered in detail in this tutorial. To learn more
about it, you should read the articles "Getting your feet wet with the SWT St yl edText
widget" and "Into the deep end of the SWT St yl edText widget" by Lynne Kues and Knut
Radloff. You can find links to both in Resources on page 95 .

JFileChooser

SWT provides two dialogs to select files or directories.

Fi | eDi al og is a dialog to select a file on the filesystem. You can choose whether the dialog
should be used to open or save a file by using one of two type constants, SWI'. OPEN and
SWI'. CLCSE. Some platforms use different dialogs for open and save operations. You can
set the initial directory and filename by invoking set Fi | t er Pat h( St ri ng) and

set Fi | eNanme( String), respectively. You can get the selected file after the dialog has
been closed by invoking get Fi | t er Pat h() to have the directory of the selected file, or

get Fi | eNane() to get the selected file name. The following code and figure illustrate

Fi | eDi al og in action:

Fil eDi al og dial og = new Fil eDi al og(shel |, SW. OPEN)
di al og. set Text ("Title"); // title of the dialog
di al og. open();
File selectedFile = null;
if (dialog.getFileNane()!=null)
selectedFile = new Fil e(dialog.getFilterPath(), dialog.getFileNane());

Page 40 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

¥ -4 Messange =13
Mews Faolder Celete File | Bename File |
fetc | ¥
Folders 2l Files 3
A J DIR_COLORS
A HOSTHARE
susEconfigd | Muitre
Wehsphere_studiod ausE-release
Windowhdakers | ¥F8ECanfig
#11/ adjtime
aliases.of aliases
alsa.df x| | aliazes.db hd|
aelection: Jetc
AFGECanfiy

& Cancel ‘ {;Qgh:

l |
Di rect oryDi al og is a dialog to select a directory on the filesystem. You can set the initial
directory by invoking set Fi | t er Pat h( St ri ng) . You can get the selection of the user by

invoking get Fi | t er Pat h() . The following code and figure show Di r ect or yDi al og in
action:

Di rectoryDi al og dialog = new DirectoryDi al og(shell, SW. OPEN);
dial og.set Text("Title"); // title of the dialog
di al og. open();
File selectedDirectory = null;
if (dialog.getFilterPath()!=null)
sel ectedDirectory = new Fil e(dial og.getFilterPath());

Migrate your Swing application to SWT Page 41 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

X -4 Message [=1{E3

fetc| % |

Folders

g

L

susEconfigd
Wehsphere_studiod
Windowhklakers
#1174

aliazes.df

alsa.df hd
aelection: Jetc

11

LI

& Cancel ‘ QPQI{

The look and feel of these dialogs is platform specific. The screenshots shown above were
taken under Linux and GTK.

SWT doesn't provide a file chooser component that you can embed in a panel. File and
directory choosers are only available as standalone system dialogs, whose look and feel
can't be customized.

Migrate existing Swing code

The migration of existing Swing code is not problematic as long as you use standard
standalone dialogs to choose a file or a directory. If the JFi | eChooser of your Swing
application is embedded in a panel, or if it has been customized to display a preview of the
selected file, you will probably have to create your own SWT component.

JLabel

SWT provides two components that can be used as labels:
org.eclipse.sw.w dget. Label andorg. eclipse. swt.custom CLabel .

» Label uses a native widget of the underlying windowing system and has an API that is
quite similar to the API of But t on (see JButton, JToggleButton, JCheckBox, and
JRadioButton on page 33). Like buttons, Label s are not very customizable; on some
platforms, such as Motif, images and text can not be on the same label at the same time.

Page 42 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

e CLabel is an emulated widget: It is not a single native widget, but a composition of simpler
widgets. It provides more functionality than Label , such as support on all platforms for an
image and text coexisting, support for additional borders (SWI'. SHADOW | N or
SWI'. SHADOW QUT), and support for using an image or a gradient of color as background.

Label

® cuanel D

Most of the time you should use Label . It keeps application performance high and is more
consistent with the underlying platform for simple labels displaying a simple text or image.
For those rare cases in which a normal label is not sufficient (if you need a customized
background, for instance), use CLabel .

Alignment

You can only set horizontal alignment for Label and CLabel . You can do this by using one
of three styles, SWI'. LEFT, SWI'. CENTER, or SWI. Rl GHT, in the constructor, or by invoking
set Al i gnment (i nt). You can't control the vertical alignment or the position of the text
relative to the icon.

Note that Label accepts a style called SWI'. WRAP, which is not available for CLabel and
has no equivalent in Swing. When this style is used, the label text is wrapped on several
lines if it is longer than the Label . CLabel uses a strategy similar to Swing's JLabel to
shorten text that is too long for a label: it replaces a part of the text -- the middle part, unlike
JLabel --with an ellipsis (...) to symbolize that there is more to the text than the visible
portion.

Mnemonics

As with buttons (see JButton, JToggleButton, JCheckBox, and JRadioButton on page 33 ),
with SWT labels you do not set mnemonics with a special method, as you would in Swing,
but by inserting an ampersand character (&) in the text just before the character to use as

mnemonic. This functionality is however only available in Label and notin CLabel .

Borders

Label and CLabel use different border styles:

« Label accepts only one border style: SWI'. BORDER. The look of the resulting border
depends on the platform.

e ClLabel ignores the style SWI'. BORDER but accepts two other styles, SWI'. SHADOW | N
and SWI'. SHADOW QUT. The look of these borders is platform independent.

The following code snippet illustrates SWT labels in action.

/l--- Creation of a sinple Iabel with menonic on the 1st character
Label | abel = new Label (parent, SWI. NONE);

| abel . set Text (" &L.abel Text");

/l--- Creation of a right aligned | abel w th word-w apping and border
Label |abel2 = new Label (parent, SWI.RI GHT | SWI. WRAP | SWI. BORDER) ;

| abel 2. set Text ("Ri ght Ali gned Label");

Migrate your Swing application to SWT Page 43 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Migrate existing Swing code

Because labels are simple, non-interacting components, porting from Swing to SWT should
not cause any problem.

The wrapper class SWI'Label , included in the sample code provided with this tutorial, makes
the migration easier. It uses the APl and event mapping introduced in Migrate your Swing
code to SWT with minimal change on page 14 , so the migration work you'll have to do is
limited to a few simple steps:

» Search for occurrences of the Swing type JLabel and replace them with the new wrapper
type SWi'Label .

» Search for constructors where a label is created and add the reference to the parent of the
label in the arguments list.

Here's a migration example. Consider the following Swing code:

JLabel 1abel = new JLabel ("Label Text", Swi ngConstants. CENTER);

Here's how you would migrate this code to SWT:

SWILabel |abel = new SWIiLabel (parent, "Label Text", Sw ngConstants. CENTER);

JList

A list is one of the most common widgets that any toolkit must provide. So it is not really
surprising that SWT provides nearly the same functionality as Swing's JLi st in a component
named Li st , illustrated below:

first item |

second item

third item

fourth iterm

fitth item hd|
Although the functionality provided by SWT lists is quite similar to that provided by Swing,
there are some small differences you should be aware of.

First, SWT's Li st can only display its elements in a textual form. Icons are not supported,
and all the items are displayed with the same background and foreground colors and in the
same font. There is no renderer mechanism allowing you to represent an element with any
kind of component, as you can in Swing. If you need to represent the elements of the list with
icons or variable colors, or if you need a list of checkable items, you may want to use a

Tabl e with a single column. This will give you more flexibility in the representation of the

Page 44 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

items, and will offer you the same functionality. For more information on SWT's table, read
JTable on page 67 .

In addition, SWT's Li st doesn't use a data model like Swing's Li st Model . To fill the list,
you simply set the items as strings with the add(...),setlten(String, int) or
setltens(String[]) methods. However, if you need a separation between the data to
display and the string used to represent these data in the list, you can use JFace's

Li st Vi ewer with a content and label provider. The content provider supplies the elements
of the list like Swing's Li st Model does -- and these can be any kind of objects -- while the
label provider converts these elements into string representations that are displayed in the
Li st by the Li st Vi ewer . For more information on JFace's viewers, read Data models and
cell renderers vs. content providers and label providers on page 12 .

Finally, like many other SWT components, SWT Li st s are by nature scrollable and don't
have to be put in a scroll pane in order to have scrollbars. To make the horizontal and/or
vertical scrollbar appear, use in the constructor of the list a bitwise combination of the style
constants SWI'. H SCROLL and/or SWI'. V_SCROLL.

Management of the selection

As in Swing, a list can accept either a single selection or multiple selections. In Swing, you
have to set this behavior in the Sel ect i onMbdel . SWT lets you control this behavior in the
constructor of the component by using one of two style constants: SWI'. SI NGLE or

SWI. MULTI .

In fact, SWT doesn't have any equivalent for Swing's Sel ect i onModel . The methods to set
or get the selection in the list are found in the list itself, or in the Li st Vi ewer :

e« SWT's Li st provides simple methods to set or get the selection. These methods work
with either the indices of the items comprising the selection, or the displayed strings
themselves. The APl is easy to use and is simpler than Swing's Li st Mbdel API.

» JFace's Li st Vi ewer provides two methods, get Sel ecti on() and
set Sel ection(| Sel ecti on, bool ean), that are inherited from St r uct ur edVi ewer
and work on a higher abstraction level. The | Sel ect i on object returned or used by these
methods is in fact a St r uct ur edSel ect i on that provides an iterator or an array
containing the selected elements as provided by the content providers, and is independent
from their string representation or their representation order.

Borders

Lists are by default created without any border around them. However, you may often want
to use the style SWI'. BORDER to get a standard border around a list. The appearance of the
border depends on the platform.

Events

An SWT list throws only one kind of event. A Sel ect i onEvent is thrown to notify the
listeners that a change has occurred in the selection. To detect a change in the selection,
register a Sel ect i onLi st ener by using the

addSel ecti onLi st ener (Sel ecti onLi st ener) method. The listener method that is
triggered by the event and should be implemented is

Sel ecti onLi st ener. wi dget Sel ect ed( Sel ecti onEvent).

Migrate your Swing application to SWT Page 45 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

The following code snippet shows SWT lists in action:

/l--- Creation of a list containing 3 itens

List list = new List(parent, SW.BORDER | SW.V_SCROLL | SWI. H SCROLL
| SWI. MULTI);

list.setltens(new String[]{"iteml", "itenR", "itenB"});

/1--- Detect changes in the selection

|ist.addSel ectionLi stener(new Sel ecti onAdapter () {
public void w dget Sel ect ed(Sel ecti onEvent e) {
/1 trigger action

1)

//--- Get the selected itens

String[] selectedltens = |ist.getSelection();

[]------ Exanpl e of use of a ListViewer ------

/l--- Creation of a list displaying 3 java.util.Local e objects

Li stViewer |istViewer = new ListViewer(parent, SW.H SCROLL | SW.V_SCROLL
| SWI. MULTI | SWI. BORDER);
IistViewer.setContentProvider(new ArrayContent Provider());
listViewer.setlnput(new Local e[]{Local e. FRANCE, Local e. GERVANY, Local e.US});
/l--- Use a | abel provider displaying the full localized name of the |ocales
/l--- instead of their toString() representation
IistViewer.setlLabel Provider(new Label Provider() {
public String get Text(Cbject elenment) {
if (elenent instanceof Locale) return ((Local e)el enent). getDi spl ayNane();
el se return elenment.toString();

}
1)
/1--- Detect changes in the selection
listViewer.getlList().addSel ectionListener(new Sel ecti onAdapter() {
public void wi dget Sel ect ed(Sel ecti onEvent e) {
/1 get the selection as an array
StructuredSel ection sel ection=(StructuredSel ection)listViewer.getSelection();
hj ect[] sel ectedEl enments = selection.toArray();
/1 trigger action

}
1)
Migrate existing Swing code

The migration of existing Swing code is not problematic for lists that only contain St ri ng
items and don't use special renderers. If this is not the case, you have to replace the Swing
renderer with a label provider used in combination with a content provider and a

Li st Vi ener.

The wrapper class SWILi st , included in the sample code provided with this tutorial, makes
the migration easier. It uses the APl and event mapping introduced in the section Migrate
your Swing code to SWT with minimal change on page 14 , so the migration work you'll have
to do is limited to a few simple steps:

» Search for occurrences of the Swing type JLi st and replace them with the new wrapper
type SWILi st .

» Search for constructors where a list is created. Add the reference to the parent of the list
as the first argument in the constructor and a boolean indicating if only a single selection is
allowed as the second argument.

Page 46 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

 ltis very likely that the Swing lists of your application are contained in JScr ol | Panes.
Modify the code so that no JScr ol | Pane is created and the lists are directly added to
their parent.

« Convert Swing renderers into SWICel | Render er s.

Here's a migration example. Consider the following Swing code:

/] --- sinple list wthout special renderer
String[] items = new String[]{"iteml", "itenR", "itemB8", "itemi"};
JList listl = new JList(itens);
listl. getSelectionMddel ().addLi stSel ectionLi stener(new ListSel ectionListener() {
public void val ueChanged(Li st Sel ecti onEvent e) ({
/1 do action

1)
parent.add(listl);

/Il --- list with custonized renderers
hj ect[] locales = new hject[] {Local e. FRANCE, Local e. GERVANY, Local e. US};
JList list2 = new JList(local es);

Li st Cel | Renderer cell Renderer = new Defaul tListCell Renderer() {
publ i ¢ Conponent getLi st Cel | Render er Conponent (JLi st |ist, Gbject val ue,
i nt index, boolean isSelected, bool ean cel |l HasFocus) {
JLabel 1abel = (JLabel)super. getListCell Renderer Conponent (list, val ue,
i ndex, isSelected, cellHasFocus);
i f (value instanceof Locale)
| abel . set Text (((Local e) val ue). get Di spl ayName());
return | abel;

}
)
list2.setCell Renderer(cell Renderer);
par ent Cont ai ner. add( i st 2);

Here's the same code migrated to SWT:

/Il --- sinple list wthout special renderer
String[] itenms = new String[]{"item", "itenR", "itenB", "itemi"};
SWILi st listl = new SWILi st (parent, true, itens);
listl. getSelectionMddel ().addListSel ectionLi stener(new ListSelectionListener() {
public void val ueChanged(Li st Sel ecti onEvent e) {
/1 do action

1)
parent.add(listl);

/[l --- list with custom zed renderers
oj ect[] locales = new hject[] {Local e. FRANCE, Local e. GERVANY, Local e. US};
SWILi st list2 = new SWLi st(parent, true, |ocales);

SWICel | Renderer cell Renderer = new SWICel | Renderer () {
public String getCell Text(Cbject value, int row, int columm)
if (value instanceof Locale) return ((Local e)val ue). getDi splayNanme();
el se return value.toString();

}
b

Migrate your Swing application to SWT Page 47 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

| ist2.setCell Renderer(cell Renderer);
par ent Cont ai ner. add(|i st 2);

JMenu, JPopupMenu, and JMenultem

SWT has a very simple API to create menus:

» The widget Menu is used to create menu bars, menus, and pop-up menus -- the equivalent
of Swing's JMenuBar , JMenu, and JPopupMenu.

» The widget Menul t emis used to create all kinds of menu items -- the equivalent of
Swing's JMenul t em JCheckBoxMenul t em and JRadi oBut t onMenul t em

The type of the parent passed as a parameter when constructing a Menu defines the kind of
menu that will be created:

* If the parent is of type Decor at i ons -- in most cases it will be a Shel | , which is the SWT
equivalent of an AWT W ndow -- a menu bar will be created. In this case, you have to use
the style SWI'. BAR. Note that the menu bar is added to the window only after the
set MenuBar ( Menu) method has been invoked on the window.

 If the parentis a Cont r ol , the menu will be a pop-up menu. To display this menu, you
have to set its location with set Locati on(i nt, int) andthen make it visible with
set Vi si bl e(bool ean) . Note that the coordinates passed to set Locati on(i nt,
i nt) are screen coordinates. Because pop-up menus are usually triggered by a mouse
event on the parent component, and the click coordinates stored in the event are
component coordinates, you have to convert them to screen coordinates by using
Control .toDisplay(int, int).

* If the parent is another Menu, the menu created will be a cascading menu. It has to be
associated with a Menul t emin the parent menu that has the style SWI'. CASCADE; you
would associate it by invoking set Menu( Menu) on the Menul t em

You can create different kinds of menu items by using different style constants when
constructing your Menul t ens:

» The style SWI'. PUSH creates a normal menu item similar to Swing's JMenul t em

» The style SWI'. CHECK creates a menu item that works like a checkbox, similar to Swing's
JCheckBoxMenul t em

» The style SWI'. RADI Ocreates a menu item that works like a radio button, similar to
Swing's JRadi oBut t onMenul t em

» The style SWI'. CASCADE creates a menu item that opens a cascading menu, similar to
Swing's JMenu. The menu opened by this menu item has to be set with the

Page 48 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

set Menu( Menu) method.

* The style SWI'. SEPARATOR creates a menu separator similar to Swing's JSepar at or .

Text and icon

As in Swing, SWT menu items can contain text and/or an image. Note that some platforms,
such as Motif, ignore images.

Keyboard navigation

Mnemonics -- the underlined characters that can be used as key shortcut to activate an item
-- are set by adding an ampersand character (&) in the text of the item at the position before
the mnemonic character, like so:

menul t em set Text (" &Run");

Accelerators -- the key combination activating the action triggered by the menu item, such as
Ctrl-C -- are set by using the method Menul t em set Accel er at or (i nt). The parameter
is a bitwise combination of SWT key constants -- SWI'. CONTROL, SWI. SHI FT, SWI. ALT --
and a key character, like so:

nenul t em set Accel erator (SWI. CONTROL | 'C);
Events

Menul t ens throw two kinds of events:

* An ArnEvent (use addAr nii st ener (Ar i st ener) to receive it) is thrown when the
mouse pointer enters the menu item, but before it has been clicked.

« ASel ectionEvent (use addSel ecti onLi stener (Sel ecti onLi st ener) to receive
it) is thrown when the menu item is selected.

Menus throw a MenuEvent (use addMenulLi st ener ( MenulLi st ener) to receive it) when
the menu is about to be shown or to be hidden.

The following code listing shows SWT menus in action:

//--- Creation of a nmenu bar
Menu nmenuBar = new Menu(shell, SW. BAR);

/'l Create a sub menu "File" with 2 items "Open" and " Save"
Menul tem fil eMenul tem = new Menul t em( menuBar, SWI. CASCADE) ;
fileMenultem set Text ("&File");

Menu fileMenu = new Menu(nmenuBar);

Menul t em openMenul tem = new Menulten(fil eMenu, SW. PUSH);
openMenul t em set Text (" &pen. .. ");

openMenul t em set | mage( openl mage) ;

Menul t em saveMenul tem = new Menul ten(fil eMenu, SWI. PUSH) ;
saveMenul t em set Text (" &Save");

Migrate your Swing application to SWT Page 49 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

saveMenul t em set | mage(savel mage) ;

/1l Create a sub nenu "Edit" with 1 item " Copy"

Menul t em edi t Menul tem = new Menul t em( menuBar, SWI. CASCADE) ;
edi t Menul tem set Text ("&Edit");

Menu edi t Menu = new Menu(nenuBar) ;

Menul t em copyMenul t em = new Menul t en( edit Menu, SWI. PUSH) ;
copyMenul t em set Text (" & opy") ;

copyMenul t em set | mage( copyl mage) ;

shel | . set MenuBar ( nenu) ;

/l--- Create a pop-up nenu in a control
Menu popupMenu = new Menu(control);

Menultemitem = new Menul t em popupMenu, SWI.PUSH); // add an item "itenl"
itemset Text("iteml");

new Menul tem( menu, SWI. SEPARATOR); // add a separator

item = new Menulten(nenu, SW.PUSH); // add an item"itenR"
itemsetText("item2");

/1 create a cascading nenu "sub-nmenu" containing 1 item"sub-itent
Menu subMenu = new Menu( popupMenu) ;

Menul t em subl t em=new Menul t em( subMenu, SWI. PUSH) ;

subltem set Text ("sub-item');

item = new Menul t en{ popupMenu, SWI. CASCADE) ;
item set Text (" sub-nmenu");
i tem set Menu( subMenu) ;

/1 Di spl ays the popup nenu on a right-click on the control
control . addMbuselLi st ener (new MouseAdapter () {
public void nouseDown(MouseEvent e) {
if (e.button==3) {
popupMenu. set Location(control .toDi splay(e.x, e.y));
popupMenu. set Vi si bl e(true);

}
1)

Migrate existing Swing code

The migration of Swing menus to SWT doesn't present any particular challenge, because
both toolkits have the same functionality in this area. The sample code provided with this
tutorial contains several wrapper classes that make the migration easier:

e SWIMenu

« SWIPopupMenu

e SWIMenul tem

e SWIRadi oBut t onMenul t em
e SWICheckBoxMenul tem

These wrapper classes use the APl and event mapping introduced in Migrate your Swing
code to SWT with minimal change on page 14 .

Let's look at a migration example. Consider the following Swing code:

Action myAction = ...;

Page 50 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

JPopupMenu popupMenu = new JPopupMenu();

popupMenu. add( new JMenul t em( nyAction));

popupMenu. addSepar at or () ;

popupMenu. add( new JRadi oBut t onMenul t em( " Radi oButton"));

popupMenu. show( conponent, event.x, event.y);

Here's what the code looks like after migration to SWT:

Action myAction = ...

SWIPopupMenu popupl\/enu = new SWIPopupMenu( conponent) ;

popupMenu. add( new SWIMenul t en{ popupMenu, nyAction));

popupMenu. addSepar at or () ;

popupMenu. add( new SWIRadi oBut t onMenul t en{ popupMenu, " Radi oButton"));

popupMenu. show( conponent, event.x, event.y);

JOptionPane

With the class MessageDi al og, JFace provides a framework that is similar to Swing's

JOpt i onPane. Both serve as the basis of all kinds of confirmation, error, and input dialogs.

As with JOpt i onPane, you can subclass MessageDi al og and create your own customized

dialogs, but most of the time you will just use one of the static methods it provides:

» MessageDi al og. openConfirmnm(Shell, String, String):Openan OK/Cancel
confirmation dialog.

¥ -4 MessageDialog.openConfirm(...) |E||§||E|

@ Message

(8] Cancel

 MessageDi al og. openError(Shell, String, String):Open a dialog displaying
an error message.

X -4 Message Dialog.openError(...) |E||§||E|

Q Meszage

Ok

Migrate your Swing application to SWT Page 51 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

 MessageDi al og. openl nformati on(Shell, String, String): Open a dialog
displaying a simple message.

X -4 MessageDialog.openinformation(...) |E||§||E|

@ Meszage

Ok

» MessageDi al og. openQuestion(Shell, String, String):Opena Yes/No dialog
asking the user to answer a question.

M -1 MessageDialog.openQuestion(...) |E||§||E|

@ Message

» MessageDi al og. openVar ni ng(Shell, String, String): Open adialog
displaying a warning.

¥ -4 MessageDialog.openWarming(...) |E||§||E|

& heszage

0]

You can create an input dialog asking the user to enter a string by using | nput Di al og:

I nput Di al og di al og = new | nput Di al og(shell, "title", "nmessage", null, null);
di al og. open();
String value = dial og. get Val ue();

Page 52 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

¥ - InputDialog BIEE

Message

8] Cancel

Note that you can also use the JFace dialog Er r or Di al og to display error messages. This
dialog offers some additional functionality for displaying a stack trace or a detailed message.

Migrate existing Swing code

The migration of JOpt i onPane dialogs should not be problematic if you use static methods
to open the standard dialogs. If you created a customized JOpt i onPane, you will have to
create your own dialog by subclassing one of JFace's standard dialogs.

For an easier migration, you can use the helper class SWIOpt i onPane, provided in the
sample code accompanying this tutorial. This class provides static methods that are similar
to the static methods used in JOpt i onPane to open a standard dialog.

Let's look at a migration example. Consider the following Swing code:

i f (JOptionPane. showConfirnDi al og(parent, "Do you confirnP")
== JOptionPane. YES OPTIQN) ....

You could migrate it to SWT as follows:

if (SWIOpti onPane. showConfirnDi al og(parent, "Do you confirn®")
== SWIOpt i onPane. YES_OPTI ON)

JPanel

SWT provides two panel components that can be used to group together some controls of a
Ul, each with its own layout: Conposi t e and Gr oup.

Conposi t e is comparable to j ava. awt . Panel . It is a container that can contain other
controls and arrange them in a specific layout. You can't set a customized border for a
Conposi t e as you can for a Swing JPanel . Thus, a Conposi t e is generally used as an
invisible container to lay out controls in a specific way. Note that a Conposi t e can display a
basic border if it is created with the style SWI'. BORDER. The appearance of the border
depends on the underlying platform.

Group is a subclass of Conposi t e and offers more possibilities to customize its
appearance. A Gr oup usually has a border around it and can have a title. Several types of
borders are available. You can set one of them by using any one of several styles:

SWI'. SHADOW ETCHED | N, SWI'. SHADOW ETCHED OUT, SHADOW | N, and SHADOW OUT
(see the screenshot below). You can set a title for the group by using the method

Migrate your Swing application to SWT Page 53 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

set Text (St ri ng) . The title is then displayed in the border as it is in Swing's
Ti t | edBor der.

aWT.aHaDOW_ETCHED_IM aWT.aHADOW _ETCHED_OUT

P T o HADOW 1M aWT.SHADOW _QUT

Use a Conposi t e when you need an invisible panel to solve a specific layout problem. Use
a & oup when you need a visible panel with a border.

The following code shippet shows an example of SWT panels in action:

/l--- Creation of an invisible panel

Conposite conposite = new Conposite(parent, SW.NONE);
conposi te. set Layout (new Fl owlLayout ());

/1 add sone controls

Button button = new Button(conposite, SW. PUSH);

/l--- Creation of a titled panel with border

Group group = new Group(parent, SW.SHADOW ETCHED I N);
group.setText ("Goup Title");

group. set Layout (new Fl owLayout ());

// add sone controls

Button checkBox = new Button(group, SW.CHECK);

Migrate existing Swing code

The migration of a JPanel is not problematic, as it is a passive component. However, you
may encounter some problems if your panels make use of customized borders. In such a
case, it may be easier to subclass Conposi t e and create a customized control that can
draw all kinds of borders.

The wrapper class SWIPanel , included with the sample code provided with this tutorial,
makes the migration easier. It uses the API mapping introduced in Migrate your Swing code
to SWT with minimal change on page 14 , so the migration work you'll have to do is limited to
the following simple steps:

» Search for occurrences of the Swing type JPanel and replace them with the new wrapper
type SWIPanel .

Page 54 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

« Search for constructors where a panel is created and add the reference to the parent of
the panel in the arguments list.

Let's look at a migration example. Consider the following Swing code:

JPanel p = new JPanel (new BorderLayout ());
p. add(new JButton("button"), BorderlLayout. CENTER);
par ent . add(p);

Here's how you would migrate that code to SWT:
SWIPanel p = new SWI'Panel ( parent, new BorderLayout());

p. add(new JButton("button"), BorderlLayout. CENTER);
par ent . add(p);

JProgressBar

SWT and JFace provide two components that can be used to display the progress of a task:
Pr ogr essBar and Progr essl ndi cat or.

ProgressBar

Pr ogr essBar is the basic progress component provided by SWT. Its API and functionality
are quite similar to Swing's JPr ogr essBar . The orientation of the bar must be defined in the
constructor by using one of two styles: SWI'. HORI ZONTAL or SWI'. VERTI CAL. There is no
way to change this orientation after the component has been created. A standard

Pr ogr essBar is illustrated in the figure below:

You can combine other style constants with the orientation styles:

« SWI. SMOOTH s a style that modifies the look of the progress indicator. When this style is
used, task progress is represented as a plain bar that can take any value, instead of a
chain of blocks that only grows when there is enough progress to display an additional
block. A Pr ogr essBar with the SWI'. SMOOTH constructor would look like this:

This style may be ignored by those platforms, such as Motif, that always display a smooth
progress bar.

« SWI. | NDETERM NATE is a style you can use when the length of the task represented by
the progress bar is unknown. When this style is used, the progress bar displays a
continuous animation showing that the task is still running. This is the equivalent of
JProgressBar. set | ndet er m nat e( bool ean) , which was introduced in Swing in
J2SE 1.4.

Migrate your Swing application to SWT Page 55 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Like Swing, SWT provides methods to set the minimum, maximum, and current values of a
progress bar. All of these values must be integers. Note that the equivalent of
JProgressBar. set Val ue(int) is ProgressBar. set Sel ecti on(int) in SWT. Unlike
Swing's bar, SWT's progress bar can't display customized text.

Progressindicator

Pr ogr essl ndi cat or is provided by JFace (in the package
org. eclipse.jface. di al ogs). It does the same thing as Pr ogr essBar --in fact, itis a
Conposi t e containing a Pr ogr essBar -- but it uses a simplified API.

A Progr essl ndi cat or only needs to be initialized with the single method

begi nTask(i nt), which takes as its parameter the maximum progression value. When the
task being monitored has progressed, you invoke wor ked( doubl e) with the amount of new
progress as a parameter. Be careful: This value does not represent the current progress
value, like its equivalent in Pr ogr essBar . set Sel ecti on(i nt), but rather represents the
relative amount of progress since the last invocation of wor ked( doubl e) . To move the
progress indicator to the end, invoke sendRemai ni ngWor k() . The method done()
reinitializes the progress bar, indicating that no task is running.

Note that, unlike a Pr ogr essBar, a Pr ogr essl ndi cat or can switch its state from a set
amount of progress to an undetermined amount of progress after the component has been
created. Invoke begi nAni nat edTask() to switch to an undetermined progression, and
begi nTask(i nt) to switch back to a set amount of progress.

Because the constructor of Pr ogr essl ndi cat or doesn't accept any style as a parameter,
the widget's orientation must be horizontal, and it is not possible to use the smooth
progression mode as you can with Pr ogr essBar .

Note that if you need a dialog that can both display the progress of a long task and give the
user the option to cancel that task, you may want to use the JFace dialog
org. eclipse.jface. di al ogs. ProgresshbnitorDi al og.

The following code shippet shows SWT progress bars and indicators in action:

/l--- Creation of an horizontal progress bar

ProgressBar progressBar = new ProgressBar (parent, SW. HORI ZONTAL) ;
progressBar. set Maxi nrum(500); // set the maxi num val ue to 500
progressBar. set Sel ecti on(100); // set the current value to 100

/l--- Creation of a snoboth progress bar with an autonmatic ani mation
new ProgressBar (parent, SW.HORI ZONTAL | SW. SMOOTH | SWI. UNDETERM NATE) ;

/l--- Creation of a progress indicator

Pr ogr essl ndi cat or progresslndicator = new Progresslndi cator (parent);

progr essl ndi cat or. begi nTask(100) ;

progressl ndi cat or.wor ked(10.0); // noves the bar of 10 units of work forward
progr essl ndi cat or . begi nAni mat edTask(); // switch in automatic animation nodus.

Migrate existing Swing code

The migration of a JPr ogr essBar to a Progr essBar is not problematic, because a
progress bar is a passive component, and the Swing and SWT components provide nearly
the same functionality.

Page 56 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

The wrapper class SWI'Pr ogr essBar , included in the sample code provided with this
tutorial, makes the migration easier. It uses the APl and event mapping introduced in Migrate
your Swing code to SWT with minimal change on page 14 , so the migration work you'll have
to do is limited to a few simple steps:

« Search for occurrences of the Swing type JPr ogr essBar and replace them with the new
wrapper type SWIPr ogr essBar .

» Search for constructors where a progress bar is created and add the reference to the
parent of the label in the arguments list.

Let's look at a migration example. Consider the following Swing code:

JProgressBar progressBar = new JProgressBar (JProgressBar. HORI ZONTAL, 0, 100);
par ent . add( pr ogressBar) ;
progressBar. set Val ue(50);

Here's what that code would look like migrated to SWT:

SWI'Pr ogr essBar progressBar = new SWIProgr essBar (parent, SWProgressBar. HORI ZONTAL, G

par ent . add( progressBar) ;
progressBar. set Val ue(50);

JScrollPane and JViewport

The SWT equivalent of Swing's JScr ol | Pane or JVi ewpor t is the widget
org. eclipse.sw.custom Scrol | edConposi t e, illustrated below:

el

hd

Al | il
Note that, unlike Swing, SWT doesn't require you to explicitly put lists, trees, tables, or text

components in a scrollpane to make them scrollable. These components are made scrollable
by creating them with the style constants SWI'. H SCROLL and SWI'. V_SCROLL, like so:

[/--- Creation of a nultiline text area with both scrollbars

Migrate your Swing application to SWT Page 57 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Text text = new Text(parent, SWI. MJLTI | SWI.H SCROLL | SWI. V_SCROLL);

/l--- Creation of a list with a vertical scrollbar only
List list = new List(parent, SW.SINGE | SW.V_SCROLL);

Thus, you should only use a Scr ol | edConposi t e if you need to make one of the following
scrollable:

* Acanvas
» One of your customized widgets (based on a canvas)
« A composite containing other widgets

The use of a Scr ol | edConposi t e is similar to the use of the combination

JScr ol | Pane/JVi ewport in Swing. The viewed component can be set with the method
set Cont ent (Cont r ol ), and, as with JVi ewpor t, you can programmatically set the
position of the visible area. The methods to do that are set Ori gi n( Poi nt) and

get Ori gi n(), the latter returning the current position of the viewer.

As you may have noticed, SWT doesn't make the distinction Swing makes between a
JScrol | Pane and a JVi ewpor t . If you need the equivalent of a JVi ewport -- a "viewing
hole" that can be moved programmatically to display a rectangular area of a larger
component -- you just have to create a Scr ol | edConposi t e without scrollbars by using the
style SWI'. NONE.

Note that there is some functionality available in Swing but not in SWT for these
components. There is no way to define row and column headers -- that is, vertical and
horizontal components placed on the left-hand side or the top of the scrolling area. If you
need this functionality, you will have to implement your own widget from a Conposi t e.

Scrollbar policy

In SWT, you control the visibility of the scrollbars in a slightly different way than you do in
Swing; using the styles SWI. H_SCROLL and/or SWI. V_SCROLL you can define at
construction time whether scrollbars are to be used for horizontal scrolling, vertical scrolling,
scrolling in both directions, or no scrolling at all. Then, the method

set Al waysShowScr ol | Bar s( bool ean) allows you to define whether the enabled
scrollbars are always shown or shown only when they are needed.

Size of the viewed component

In Swing, you set the size of a viewed component by invoking

set Pref erredSi ze( Di mensi on) on it. If the scrollpane is smaller than the preferred size,
the view becomes its preferred size. If the scrollpane is larger, the view becomes the size of
the scrollpane. SWT's Scr ol | edConposi t e provides two ways of defining the size of its
content:

« If you simply invoke set Si ze(i nt, int) onthe content, it will have a constant size. If
the Scr ol | edConposi t e is smaller than its content, it will be scrollable. If it is larger, the
scrollbars are disabled but the size of the content remains unchanged.

 If you invoke the methods set ExpandHori zont al (true),
set ExpandVertical (true),and setM nSi ze(int, int) onthe
Scr ol | edConposi t e, the behavior will be similar to what it would be in Swing. If the

Page 58 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Scrol | edConposi t e is smaller than the size defined by set M nSi ze(int, int),the
content will have that size and the scrollbars will be enabled. If the Scr ol | edConposi te
is larger, the content will be enlarged to its size. set ExpandHori zont al (t rue),

set ExpandVertical (true),and set M nSi ze(i nt, int) mustbe invoked after the
content is set with set Cont ent (Control).

The following code shippet shows an SWT Scr ol | edConposi t e in action:

/l--- Creation of a ScrolledConposite displaying a child conposite
Scrol | edConposite scrol |l edConposite = new Scrol | edConposit e(
parent, SW.H SCROLL | SWI.V_SCROLL | SWI. BORDER);
Conposite chil dConposite = new Conposite(scrol |l edConposite, SW. NONE);
chi | dConposite. set Si ze( 1000, 1000);
scrol | edConposite. set Content (chil dConposite);

Migrate existing Swing code

Before migrating a JScr ol | Pane, you should ask yourself if you really need a

Scr ol | edConposi t e. Remember that widgets that are usually scrollable, such as text,
lists, tables, or trees, only need the styles SWI'. H SCROLL and SWI. V_SCROLL to be
scrollable. If you do need to port a JScr ol | Pane or JVi ewpor t, you can use the following
wrapper classes:

e SWIScrol | Pane
* SWI'Vi ewpor t

These classes use the API and event mapping introduced in Migrate your Swing code to
SWT with minimal change on page 14 , so the migration work you'll have to do is limited to
the following simple steps:

» Search for occurrences of the Swing types JScr ol | Pane and JVi ewport and replace
them with the new wrapper types SWI'Scr ol | Pane and SWI'Vi ewpor t , respectively.

» Search for constructors where a scrollpane or a viewport is created and add the reference
to the parent of the label in the arguments list. Note that if your Swing code uses the
JScr ol | Pane( Conmponent ) constructor with the component to view provided as the
argument, in the ported code you'll have to explicitly set the component to view with
SWI'Scr ol | Pane. set Vi ew( SWIConponent ) . This is because in SWT you can't create
the component to view before its parent -- the scrollpane, in this case -- is constructed.

Let's look at a migration example. Consider the following Swing code:

JScrol | Pane scrol |l Pane = new JScrol | Pane( conponent ToVi ew) ;
scrol | Pane. get Vi ewport (). set Vi ewPosi ti on(new Poi nt (100, 100));
par ent . add(scrol | Pane);

Here's what this code would look like ported to SWT:

SWIScrol | Pane scrol | Pane = new SWIScrol | Pane( parent);
scrol | Pane. set Vi e conponent ToVi ew) ;

scrol | Pane. get Vi ewport (). set Vi ewPosi ti on(new Poi nt (100, 100));
par ent . add(scrol | Pane);

Migrate your Swing application to SWT Page 59 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

JSeparator

Separators -- visual dividers used to separate widgets in a container, or a logical group of
menu items in a menu -- are not represented in SWT by a unique class like Swing's
JSepar at or . Menu separators are created by instantiating a Menul t emhaving the style
SWI. SEPARATOR. Widget separators in a panel or a toolbar are created by instantiating a
Label having the style SWI'. SEPARATOR combined with one of two style constants,

SWI. HORI ZONTAL or SWI'. VERTI CAL, that define the orientation of the separator. The
orientation must be defined at construction time.

Here's what a separator would look like:

The following code snippet illustrates both kinds of separators in action:

/l--- Creation of a menu separator
new Menul t en( par ent Menu, SWI. SEPARATOR) ;

/l--- Creation of a vertical separator in a parent conposite
new Label (parent, SW.SEPARATOR | SWI. VERTI CAL);

Migrate existing Swing code

Because Swing's separators can't be customized, their migration to SWT is not problematic.

The wrapper class SWI'Separ at or , included with the sample code provided with this tutorial,
makes the migration easier. It uses the API and event mapping introduced in Migrate your
Swing code to SWT with minimal change on page 14 , so the migration work you'll have to do
is limited to a few simple steps:

» Search for occurrences of the Swing type JSepar at or and replace them with the new
wrapper type SWI'Separ at or .

» Search for constructors where a separator is created and add the reference to the parent
of the separator in the arguments list.

Let's look at a migration example. Consider the following Swing code:

/l--- Add a vertical separator in a panel
panel . add( new JSepar at or (Swi hgConst ant s. VERTI CAL) ) ;
You could migrate this code to SWT as follows:

//--- Add a vertical separator in a panel
panel . add(new SWI'Separ at or ( panel , Swi ngConst ants. VERTI CAL) ) ;

JSlider

Page 60 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Once again, SWT provides here two alternatives to replace a single Swing component. Both
SWT components -- Scal e and Sl i der -- have functionality that is quite similar to that of
Swing's JSI i der . In fact, when you read SWT's API documentation, you don't really get a
sense of the difference between these two components: Both are used to select a numeric
value within a bound of values, and both have nearly the same API and functionality. The
only difference between Scal e and Sl i der is in their look and feel:

« A Slider has at both ends arrows to increment or decrement the selected value, like a
scroll bar does. The cursor, whose position represents the current value, has a variable
width that can be programmatically set by using the method set Thunb(i nt) -- this is the
equivalent of Swing's JSI i der . set Ext ent (i nt) method, with the difference being that
SWT's set Thunb(i nt) requires a positive, non-zero argument, where Swing's
set Ext ent (i nt) accepts a zero argument.

A B Ld

» A Scal e is simpler. It doesn't contain the arrows and its cursor has an invariable size. The
rest of its APl is exactly the same as Sl i der's.

1

As you can with Swing's JSl i der, you can set the minimum and maximum values for these
components by invoking set M ni nun(i nt) and set Maxi mun(i nt) . The method to set
the current value is in SWT named set Sel ecti on(i nt) and notset Val ue(int).

SWT doesn't offer the flexibility to customize the look of the slider that Swing offers. There is
no way to define whether gradations are displayed or not, or to display customized labels.

Events

Sl i der s and Scal es only throw one type of event: A Sel ecti onEvent is thrown each
time the value of the slider or scale changes.

The following code shippet shows SWT sliders and scales in action:

/] Create a slider

Slider slider = new Slider(parent, SW.HORI ZONTAL);

//set mninum maxi mum thunb, and increments value in a single line
sl i der. setVal ues(50, 0, 100, 30, 1, 10);

slider.setSelection(60); // change the current val ue
//Create a scale
Scal e scal e = new Scal e(parent, SW. HORI ZONTAL) ;

sl i der. set Maxi num( 200) ;
slider.set Sel ection(50);

Migrate existing Swing code

Migrate your Swing application to SWT Page 61 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

The migration of existing Swing code is not problematic as long as you don't need a slider
with customized labels.

The wrapper class SWI'SI i der, included with the sample code provided with this tutorial,
makes the migration easier. It uses the API and event mapping introduced Migrate your
Swing code to SWT with minimal change on page 14 , so the migration work you'll have to do
is limited to a few simple steps:

» Search for occurrences of the Swing type JSl i der and replace them with the new
wrapper type SWI'S| i der.

« Search for constructors where a slider is created and add the reference to the parent of the
slider in the arguments list.

Let's look at a migration example. Consider the following Swing code:

JSlider slider = new JSlider();
sl i der. addChangelLi st ener (new ChangelLi stener () {
public void stateChanged(ChangeEvent e) {
/1 do action

pa’r ent . add(slider);

You can convert this code to SWT as follows:
SWISlider slider = new SWIS| i der (parent);

sl i der. addChangelLi st ener (new ChangelLi stener () {

public void stateChanged(ChangeEvent e) {
/1 do action

1)
parent . add(slider);

JSplitPane

The equivalent of Swing's JSpl i t Pane in SWT is the customized widget
org. eclipse. sw. cust om SashFor m illustrated in the figure below:

Page 62 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

= |0 %]

Where Swing's JSpl i t Pane only allows you to divide a panel into two parts with a divider
between them, a SashFor mis a composite that can be split into as many parts as its number
of children. A draggable divider is added between children. As in Swing, you can control the
orientation of the split (horizontal or vertical) by passing one of two style constants,

SWI'. HORI ZONTAL or SWI'. VERTI CAL, in the constructor, or by invoking the method
setOientation(int).

Because a SashFor mcan be divided into more than two parts, there are no

set Ri ght Conponent ( Conponent) or set Left Conponent ( Conponent ) methods as
there are for JSpl i t Pane. The order of creation of the child components defines their
position on the screen, as with a Fl owlLayout :

« |f the SashFor mis horizontal, the children will be laid out from left to right.
« If the SashFor mis vertical, the children will be laid out from top to bottom.

The position of the divider can be set by invoking the method set Wei ght s(int[]). This
method expects an array containing as many integers as the number of children in the
SashFor m Each of these values defines the relative width or height (depending on the
orientation) of the children. Note that this method must be invoked after all the children of the
SashFor mare created.

SWT's SashFor mhas a feature that is not available in Swing's JSpl i t Pane. You can
programmatically maximize one child of the SashFor mby invoking the method

set Maxi m zedCont rol (Control ). This operation can by reversed by invoking the same
method with nul | as its parameter.

The following code snippet shows an example of an SWT SashFor min action:

/l--- Creation of a horizontal SashForm containing two children conposites
SashFor m sashFor m = new SashFor n( parent, SW. HORI ZONTAL) ;

Conposite | eft Conposite = new Conposite(sashForm SW. NONE);

Conmposite rightConposite = new Conposite(sashForm SW. NONE);

/]--- Set the position of the divider to 1/3

sashForm set Wi ghts(new int[] {1,2});

Migrate existing Swing code

The migration from Swing to SWT is not really problematic here, because both toolkits offer

Migrate your Swing application to SWT Page 63 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

similar functionality. TThe wrapper class SWTTabbedPane, included in the sample code
provided with this tutorial, makes the migration easier. However, because SashFor muses its
children's creation order to decide where those children are to be placed, you may have to
change the order of some lines of code. Note that it is not possible in SWT to pass the
children as arguments in the constructor as you can in JSpl i t Pane, because the child
components need an already constructed parent container in order to be constructed
themselves.

To migrate Swing code with the help of SWI'Spl i t Pane, you should proceed as follows:

Replace all the references to the class JSpl i t Pane with the class SWI'Spl i t Pane.

« Search for any invocation of a constructor of JSpl i t Pane and replace it with the
constructor of SWI'Spl i t Pane, passing the parent of the split pane as the first parameter
and the orientation as the second parameter.

» Search for the code creating the two children of the split pane, migrate it to SWT, and
move it or reorder it so that the children are created just after the SashFor m the left- or
topmost component being the first child to be created.

* Remove any invocation of set Lef t Conponent (), set R ght Conponent (),
set TopConponent (), or set Bot t onConponent ().

Let's look at a migration example. Consider the following Swing code:

JPanel |eftPanel = new JPanel ();
JPanel rightPanel = new JPanel ();
JSplitPane splitPane = new JSplitPane(
JSpl it Pane. HORI ZONTAL_SPLI T, | eftPanel, rightPanel);
splitPane. set Di vi der Locati on(0. 3);

Here's what this code would look like after being migrated to SWT:

SWISpl i t Pane splitPane = new SWISpl it Pane( parent, SWSplitPane. HORI ZONTAL_SPLI T);
SWIPanel | eft Panel = new SWIPanel (spl it Pane);

SWIPanel ri ght Panel = new SWIPanel (split Pane);

splitPane. set Di vi der Locati on(0. 3);

JTabbedPane

SWT provides two components that can be used to replace a Swing JTabbedPane.

TabFol der uses a native widget from the underlying platform. Its functionality is quite
similar to Swing's JTabbedPane, with one limitation: you can't modify the placement of the
tabs. The look and feel of the widget is not customizable. This is what a TabFol der would
look like:

Page 64 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

X =[O ]

Tah1|Tah2|Tah3|

Cormpanent 1

CTabFol der, from the package or g. ecl i pse. swt . cust om is an emulated widget that
provides more functionality and possibilities for customization than TabFol der . The look
and feel of the widget is the same on all platforms. By using in the constructor one of two
style constants, SWI'. TOP or SWI'. BOTTOM you can control the position at which the tabs are
displayed. (Note that SWT doesn't offer the possibility of displaying the tabs on the sides of
the component as Swing does.) Additionally, CTabFol der lets you set the height of the tabs
and allows you to place a visual separator between two tabs by using the method

set I nsert Mar k(). There is one more feature that is specific to CTabFol der and is
available neither in SWT's TabFol der nor in Swing's JTabbedPane: By adding a

CTabFol der Li st ener on the component, the tabs become closeable. Once a listener is
registered, each tab has a button with a cross icon that automatically make the tab disappear
when the user clicks on it. The listeners are then notified that a tab has been closed. This is
the same behavior used in Eclipse when you close an editor by clicking on the close button
in its tab. This is what a CTabFol der would look like:

X = |[oaf[x]

Tab1 = TahZ Tab 3

Campanent 1

l l

Whether you use a TabFol der or a CTabFol der to replace a JTabbedPane depends on
the level of customization required by your application. If the standard look and feel of the
native TabFol der is good enough, it is better to use it to get the best performance. If the
tabs have to be placed on the bottom of the component, of if you need a tab folder without
border or more compact tabs whose height can be precisely defined, using a CTabFol der is
the only choice you have. Both components have nearly the same API, so you can easily try
out both in you application to find out which one better fit your needs.

Adding and removing items

SWT's method for adding and removing tabs or pages is different from Swing's. For each tab
in the folder, you have to create a widget -- a Tabl t emor CTabl t em depending on whether
you are using a TabFol der or a CTabFol der. A Tabl t emrepresents an empty tab in the
folder. The constructor lets you indicate the index at which the tab should be inserted. To
assign a control, a title, an icon, or a tooltip to a tab, you would invoke the methods
setControl (Control),setText(String),setlmage(l mage), and

Migrate your Swing application to SWT Page 65 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

set Tool Ti pText (St ri ng), respectively. Successive calls of
TabFol der. set Control (Control) letyou change the content of a page without having
to re-create the Tabl t em

You can remove a tab by invoking the method di spose() on the Tabl t em Once a tab has
been discarded, it cannot be used anymore and has to be recreated if you need to add it
again.

Note that discarding a Tabl t emdoesn't dispose of the control that was associated to it with
set Control (Cont rol). Thus, although a discarded Tabl t emis not reusable, its content
can be reassigned to a new Tabl t em

Events

A Sel ecti onEvent is thrown each time a new tab is selected. To detect a change in the
selection, register a Sel ect i onLi st ener by using the method

addSel ecti onLi st ener ( Sel ecti onLi st ener) . The listener method that is triggered
by the event is Sel ecti onLi st ener. w dget Sel ect ed( Sel ecti onEvent).
Additionally, a CTabFol der throws a CTabFol der Event to its CTabFol der Li st ener
when the user closes a tab by clicking on its close button. By setting the doi t field of the
event to f al se, you can programmatically forbid the user to close the tab.

The following code snippet illustrates SWT tabs in action:

/l--- Creation of a native TabFol der containing 3 tabs, each tab contains a button
TabFol der tabFol der = new TabFol der (parent, SW. NONE);

Button bl = new Button(tabFol der, SW. PUSH);

bl. set Text (" Conmponent 1");

Tabltem tabltem = new Tabl ten(tabFol der, SW. NONE);
tabltem set Text ("Tab 1");

tabltem set Control (bl);

Button b2 = new Button(tabFol der, SW.PUSH);
b2. set Text (" Conponent 2");

tabltem = new Tabl ten(tabFol der, SW. NONE);
tabltem set Text ("Tab 2");

tabltem set Control (b2);

Button b3 = new Button(tabFol der, SW. PUSH);
b3. set Text (" Conmponent 3");

tabltem = new Tabl ten(t abFol der, SW. NONE);
tabltem set Text ("Tab 3");

tabltem set Control (b3);

/1 Insert afterwards a new tab at index 1
tabltem = new Tablten(tabFol der, SWI. NONE, 1);
tabltem set Text ("I nserted Tab");

tabltem set Control (control);

/l--- Creation of a CTabFolder with 2 tabs displayed on the bottom of the conponent
CTabFol der ctabFol der = new CTabFol der (parent, SW.BOITOM ;

Button ba = new Button(ctabFol der, SW. PUSH);

ba. set Text (" Conponent A");

CTabltem ctabl tem = new CTabl t en{ct abFol der, SW. NONE) ;
ctabltem set Text ("Tab A");

ctabltem set Control (ba);

Page 66 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Button bb = new Button(ctabFol der, SW. PUSH)
bb. set Text (" Conponent B");

ctabltem = new CTabl t en{ct abFol der, SWI. NONE) ;
ctabltem set Text ("Tab B");
ctabltem set Control (bb);

/1 Make the tabs cl oseabl e
ct abFol der. addCTabFol der Li st ener (new CTabFol der Li stener () {
public void itenC osed(CTabFol der Event event) {

}
});

Migrate existing Swing code

The migration of existing Swing code is only problematic if in Swing you use a JTabbedPane
whose tabs have to be placed on the side of the component. In any other case, you won't
encounter any problem.

The wrapper class SWITabbedPane, included in the sample code provided with this tutorial,
makes the migration easier. It uses the APl and event mapping introduced in Migrate your
Swing code to SWT with minimal change on page 14 , so the migration work you'll have to do
is limited to a few simple steps:

» Search for occurrences of the Swing type JTabbedPane and replace them with the new
wrapper type SWI TabbedPane.

» Search for constructors where a tabbed pane is created and add the reference to the
parent of the tabbed pane in the arguments list.

Let's look at a migration example. Consider the following Swing code:

JTabbedPane t abbedPane = new JTabbedPane();
t abbedPane. add(" Tab 1", conponent1);

t abbedPane. add(" Tab 2", conponent 2);

t abbedPane. add(" Tab 3", conponent 3);

t abbedPane. set Sel ect edl ndex(1);

par ent . add(t abbedPane) ;

You can migrate this code to SWT like so:

SWTabbedPane tabbedPane = new SWITabbedPane( parent) ;
t abbedPane. add(" Tab 1", conponentl1);

t abbedPane. add(" Tab 2", conponent 2);

t abbedPane. add(" Tab 3", conponent 3);

t abbedPane. set Sel ect edl ndex(1);

par ent . add(t abbedPane) ;

JTable

SWT's equivalent for Swing's JTabl e is the component Tabl e. It can be used in
combination with JFace's Tabl eVi ewer .

The use of a pure SWT table, without JFace's Tabl eVi ewer , is, from the programmer’s
perspective, quite different from the use of Swing's JTabl e:

Migrate your Swing application to SWT Page 67 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

« The major difference between Swing's JTabl e and SWT's Tabl e is that SWT doesn't
make use of a data model like Swing's Tabl eMbdel . In SWT, each table row is a widget
of type Tabl el t emthat must be instantiated with the Tabl e itself as parent. A
Tabl el t emcan display text and an image for each column of the table. The content of the
table is set in the Tabl el t ens themselves by invoking one of two methods,

Tabl eltem setlnage(...) and Tabl el tem set Text (...).

* SWT has no equivalent for Swing's Tabl eCel | Render er . An SWT table can only display
text and an image in each cell.

 Like the rows, the columns of a table are widgets that have to be instantiated as children of
the Tabl e as parent. The class for the column widgets is Tabl eCol unn. Tabl eCol umms
can be instantiated with one of the three styles -- SWI'. LEFT, SWI'. CENTER, and
SWI'. RI GHT -- defining the alignment of the content of the table in the column. Note that
some platforms, like GTK on Linux, ignore this constant. As with Tabl el t ens, you can
set on a Tabl eCol umm text and an image with the methods
Tabl eCol um. set Text (Stri ng) and Tabl eCol umm. set | mage( | mage) . The text
and image of a column are displayed in the header of the table when it is visible.

« Because each table row is its own widget, an SWT table is not as scalable as Swing's
JTabl e. SWT programmers are trying to solve this problem for future releases, but as of
SWT 2.1 you have to keep in mind that very large tables (more than 10,000 rows) may
present performance problems, mainly in the initialization time of the table.

The following code snippet shows the use of a pure SWT table, without a JFace viewer:

/1--- Exanple of creation of a sinple table wi thout Tabl eVi ewer
Tabl e tabl e = new Tabl e(conposite, SW.BORDER | SW.H SCROLL | SWI.V_SCROLL | SWI. FULL_.
t abl e. set Header Vi si bl e(true);

/1l Create 2 col umms

Tabl eCol umm col um1 = new Tabl eCol uim(t abl e, SWI. LEFT);
col uml. set Text (" Col 1");

col umml. set Wdt h(100);

Tabl eCol um col um2 = new Tabl eCol um(table, SW.LEFT);
col uma2. set Text (" Col 2");

col um2. set Wdt h(100);

/l Create 5 rows
i nt nbCol ums = tabl e. get Col utmCount () ;
for (int row1l ; row=5 ; rowt+) {
Tabl eltem tabl eltem = new Tabl el ten{tabl e, SW. NONE);
for (int col=0 ; col <nbCol umms ; col ++)
tabl eltem set Text(col, "item "+rowt"-"+(col +1));
}
}

And here's what such a table would look like:

Page 68 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

ol 1 ol &

item 1-1 item 1-2
item 2-1 item 2-2
item 3-1 item 3-2
item 4-1 item 4-2
itetm o1 item o-2

JFace's TableViewer

Most of the time, however, you wouldn't create a table as shown above. Rather, you will use
a JFace Tabl eVi ewer . A Tabl eVi ewer is a JFace viewer created on top of an SWT

Tabl e. It automatically creates and sets up the Tabl el t ens to represent a data model
provided by a content provider in a text/icon form defined by a label provider. In this way, you
have a mechanism that is much closer to Swing's Tabl eMbdel / Tabl eCel | Render er
mechanism. For more information on JFace's viewers, read Data models and cell renderers
vs. content providers and label providers on page 12, or read the articles listed in the
Resources on page 95 . For concrete examples showing how to use @abl eVi ewer , you
should focus on "Using the Eclipse GUI outside the Eclipse Workbench" by Adrian Van
Emmenis, and "Building and delivering a table editor with SWT/JFace" by Laurent Gauthier.

Table items

If you use a JFace Tabl eVi ewer, you don't have to care about the Tabl el t ens of the
table, because those are automatically created by the viewer. However, in some cases it can
be useful to work with the Tabl el t ens directly, even if they are automatically created.

By using the Tabl e's API, you can get the list of all the Tabl el t ens, or of those items that
are selected. By invoking set Backgr ound( Col or) or set For egr ound( Col or), you can
modify the colors of single rows. This is something that you can't do with the API of JFace
Tabl eVi ewer and its label provider.

Table columns and table headers

SWT has no equivalent for Swing's Tabl eCol urmMbdel . For each column, you have to
create a Tabl eCol utm widget. You can decide whether a column is resizable or not by
using the Tabl eCol umm. set Resi zabl e( bool ean) method. There is no automatic
resizing policy for the columns as there is in Swing. You have to set the width of each column
by invoking Tabl eCol um. set Wdt h(i nt).

In SWT, the table header displayed on top of the table is not a separate widget like Swing's
JTabl eHeader, but is a part of the Tabl e itself. By default, the table header is not shown.
You can make it visible by invoking Tabl e. set Header Vi si bl e( bool ean) . For each
column, the table header can display a column name and an optional icon, though the icon
may be ignored on some platforms. To set the name and icon to display for each column,
you have to invoke the methods set Text (Stri ng) and set | nage(| mage) on the

Tabl eCol umms.

Migrate your Swing application to SWT Page 69 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Management of the selection

SWT has no equivalent for Swing's Sel ect i onMbdel . You can define whether or not
multiple selection is allowed by using one of two style constants, SWI. MULTI or

SWI'. SI NGLE, when constructing the table. You can't switch from one mode to the other after
the table has been created.

SWT's Tabl e doesn't support cell or column selection, as Swing's JTabl e does. Only rows
can be selected. If you don't use the style constant SWI'. FULL_SELECTI ON, only the first cell
of the selected rows is displayed as being selected. Using SWI'. FULL_ SELECTI ON, you can
select a complete row, as you can in Swing. If you don't want the selection to be displayed,
you can use the style constant SWI'. H DE_SELECTI ON. You can set and get the selection
programmatically in two different ways:

 SWT's Tabl e provides simple methods to set or get the selection. These methods work
with either the indices of the items composing the selection or with the Tabl el t ens
themselves.

» JFace's Tabl eVi ewer provides two methods, get Sel ecti on() and
set Sel ection( | Sel ecti on, bool ean), that are inherited from
St ruct ur edVi ewer ; they work on a higher abstraction level. The | Sel ect i on object
returned or used by these methods is in fact a St r uct ur edSel ect i on that provides an
iterator or an array containing the selected elements as supplied by the content providers,
and is independent from their string representation or their representation order.

Cell editing

Like Swing's JTabl e, JFace's Tabl eVi ewer allows cell editing. The concepts used by
SWT/JFace here are pretty similar to those used in Swing. You can define for each column a
Cel | Edi t or that allows you to use any kind of SWT component to edit the value of a cell. A
small difference is that JFace requires that you also set a | Cel | Modi fi er on the viewer.
The cell modifier decides whether or not a cell is editable, and does the translation between
the data model and the editor: it provides the value that will be edited to the cell editor, and
modifies the data model once the editing is completed.

For more information about cell editing in a JFace Tabl eVi ewer , read the article "Building
and delivering a table editor with SWT/JFace" by Laurent Gauthier (see Resources on page 95
for a link).

Events

The only event thrown by a Tabl e is a Sel ect i onEvent that notifies the
Sel ecti onLi st ener s when the selection has changed.

Migrate existing Swing code

The migration of existing Swing code for a JTabl e is not problematic for tables that use
standard renderers -- icons and/or text -- and don't need single cell selection. Note that you
may encounter scalability problems if your table has to display a very large number of rows.

The wrapper class SWITabl e, included with the sample code provided with this tutorial,

makes the migration easier by emulating the API of Swing, as introduced in Migrate your
Swing code to SWT with minimal change on page 14 . This class is able to reuse an existing

Page 70 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Swing Tabl eMbdel and Tabl eCol unmmMbdel . To migrate existing code using the wrapper
class, you'll need to follow these steps:

» Search for occurrences of the Swing type JTabl e and replace them with the new wrapper
type SWI'Tabl e.

» Search for constructors where a table is created and add the reference to the parent of the
table in the arguments list.

* Itis very probable that the Swing tables of your application are contained in
JScr ol | Panes. Modify the code so that no JScr ol | Pane is created, and so the tables
are directly added to their parent.

« Convert optional Swing renderers into SWICel | Render er s.

Let's look at a migration example. Consider the following Swing code:

/l--- Create a data nodel containing 4x4 strings
oject[][] data = new Object[4][4];
for (int i=0 ; i<data.length ; i++) {
for (int j=0 ; j<data[i].length ; j++)
datal[i][j] = (i+1)+"-"+(j+1);

/1 create the nane of the colums
String[] columNames = new String[4];
for (int i=0 ; i<columNanes.|length ; i++) columNanes[i]="col "+(i+1);

/]l create a table to display the data
JTabl e table = new JTabl e(data, col utmmNanes);

/1 add a selection listener on the table
t abl e. get Sel ecti onMbdel (). addLi st Sel ecti onLi st ener (new Li st Sel ecti onLi stener () {
public void val ueChanged(Li st Sel ecti onEvent e) {
/1 do action
}
1)

/1 create a customrenderer for the 1st columm of the table
Tabl eCel | Render er cust onRenderer = new Def aul t Tabl eCel | Renderer () {
publ i ¢ Conmponent get Tabl eCel | Render er Conponent (
JTabl e tabl e, Object value, bool ean isSel ected,
bool ean hasFocus, int row, int colum) ({
super . get Tabl eCel | Render er Conponent (t abl e, val ue, isSel ected, hasFocus, row, col ul
set Text ("custom "+val ue.toString());
return this;

} }
t:abl e. get Col umModel (). get Col um(0). set Cel | Render er (cust onRender er) ;

par ent . add(new JScrol | Pane(table));

Here's what this code would look like after migration to SWT:

/l--- Create a data nodel containing 4x4 strings
hject[][] data = new Object[4][4];
for (int i=0; i<data.length ; i++) {

for (int j=0; j<data[i].length ; j++)

Migrate your Swing application to SWT Page 71 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

datali][j] = (i+1)+"-"+(j +1);

/1 create the nane of the col umms
String[] col umNanes = new String[4];
for (int i=0 ; i<columNanes.|length ; i++) columNanes[i]="col "+(i+1);

/1l create a table to display the data
SWITabl e table = new SWITabl e(parent, data, col utmNanes);

/1 add a selection listener on the table
t abl e. get Sel ecti onModel (). addLi st Sel ecti onLi st ener (new Li st Sel ecti onLi stener() {
public void val ueChanged(Li st Sel ecti onEvent e) ({
/1 do action

}
1),
/Il create a customrenderer for the 1st columm of the table
SWICel | Render er custonRenderer = new SWCel | Renderer () {

public String getCell Text(Cbject value, int row, int colum) {
return "custom "+value.toString();

}
b

t abl e. get Col umMbdel () . get Col umm(0) . set Cel | Render er (cust onRenderer) ;

parent.add(tabl e);

JTextField, JTextArea, and JPasswordField

For even its simplest text components, such as JText Fi el d or JText Ar ea, Swing uses a
pretty complicated API and class hierarchy. For normal text fields, SWT uses a much simpler
design. All text fields, whether they are single-line fields, multiple-line areas, or password
fields, are created by using the same component, Text , using different styles:

» Single-line text fields, like JText Fi el d, are created by using the style SWI'. SI NGLE.

« Password fields, like JPasswor dFi el d, are in SWT normal text fields (with a style of
SWI. SI NGLE) on which the method set EchoChar ( char) is invoked.

e Multiline text areas, like JText Ar ea, are created by using the style SWI'. MULTI . You can
combine this style with SWI'. WRAP to build a text field whose lines are wrapped when they
exceed the width of the component. Note that you don't need to put a text component in a
scrollpane to make it scrollable; simply add the styles V_SCROLL and/or H SCROLL if you
want scrollbars to be added to the text component. Unlike a Swing JText Ar ea, an SWT
text component is always scrollable with the keyboard, whether you use the styles
V_SCROLL and H_SCROLL or not. These styles only define whether or not scrollbars
appear.

All these elements are illustrated in the figure below.

Page 72 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

multi line Text |
(SWT.MULTI) J

single line Text (SWT.5INGLE)

1] |+

Borders

Text components are by default created without any border around them. However, you may
often want to use the style SWI'. BORDER to create a text component surrounded by the
standard border that the platform uses to draw text fields.

Selection and caret position

SWT's Text has an API for handling text selection that is quite similar to the API for Swing's
JText Conponent . You can programmatically set the selection by using

set Sel ection(int, int), passing the start and end indices of the selection as
arguments. Note that if you set the selection to a part of the text that is currently outside the
visible area, the text component won't scroll automatically to the selected text. To do that,
you have to additionally invoke the method showSel ecti on().

As in Swing, the currently selected text can be retrieved by invoking a method named

get Sel ect edText () . However, the start and end indices of the selection can be retrieved
by invoking a single method named get Sel ect i on() ; this is not possible in Swing. This
method returns a Poi nt that contains in its x field the start index of the selection, and in its y
field its end index. The unusual return type of this method is puzzling and leads some to think
that it returns some screen coordinates. In fact, SWT simply misuses the Poi nt object as a
container object for two integer values.

Events

Like Swing, SWT gives you the capability to register listeners to notify you when the text of a
text component is modified. The API for detecting such changes in a Swing text component
is pretty complicated and not very intuitive -- you have to get the Docunent of the text object
and register a Docunent Li st ener on it. SWT offers a much simpler and more powerful
way to detect such changes. SWT's Text throws a Veri f yEvent toits Veri f yLi st eners
when its content is about to be changed. This event is thrown directly after the user presses
the key provoking the change, but before the text is updated in the component. Thus, you
can analyze the change that is going to take place and potentially modify or cancel that
change before it occurs. That's why the event is called Ver i f yEvent : because it lets you
verify whether or not the change should take place. Ver i f yEvent has four fields that you
can use to analyse the change and eventually cancel it:

» start is aread-only field, which means that any changes you make in its value will be
ignored. It indicates the index at which the text insertion or deletion will take place.

» end is also a read-only field. It indicates the end index of the modification. If its value is the
same as st ar t , text will be inserted. If its value is greater that st ar t , text will be deleted.

Migrate your Swing application to SWT Page 73 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

« text contains the text that is going to be inserted or deleted. If text is going to be inserted,
you can modify the value of this field to change the text to insert. If text is going to be
deleted, changes you may make in this field will be ignored.

« doit is a field that you can set to f al se to cancel the event. In such a case, the change
will be ignored and the text in the component remain unchanged.

Text next throws a Mbdi f yEvent to its Modi f yLi st ener s after the text is in the
component, assuming that the Ver i f yEvent was not canceled programmatically by setting
its doi t fieldtof al se.

Additionally, single-line text components throw a Sel ect i onEvent event when the user
presses Enter, just as Swing's JText Fi el d throws an Acti onEvent in the same situation.
Note that the method from Sel ect i onLi st ener that is invoked is here is

wi dget Def aul t Sel ect ed( Sel ecti onEvent) and not

wi dget Sel ect ed( Sel ecti onEvent).

The following code snippet shows an example of SWT text fields in action:

/l--- Create a single line text field
Text textField = new Text(parent, SW.SINGLE | SW. BORDER);
//--- Create a scrollable nmultiple line text area

Text textArea = new Text(parent, SW.MILTI | SW.BORDER
| SWI.H SCROLL | SWI. V_SCROLL);

Migrate existing Swing code

The migration of a JText Fi el d, a JText Ar ea, or a JPasswor dFi el d to SWT should not
be problematic, because the functionality is basically the same in both toolkits. However,
SWT's APl is much simpler than Swing's, so that minimal code change may be necessary.
The deepest changes you will have to make will be in event handling if you use listeners on
the document.

The following wrapper classes can facilitate the migration by emulating the Swing API under
SWT:

SWIText Conponent
SWText Field
SWText Area

e SWIPasswor dFi el d

The Swing Docunent ChangeEvent for the insertion and the deletion of text is also
emulated. However, because SWT has no equivalent for Swing's Docunent , the methods
addDocunent Li st ener ( Docunent Li st ener) and

renmoveDocunent Li st ener ( Docunent Li st ener) are implemented in

SWIText Conponent itself. SWI'Text Conponent implements a method called

get Docunent (), which returns the SWI'Text Conponent itself; thus, existing code to
register listeners (t ext Fi el d. get Docunent (). addDocunent Li stener (| i stener))
need not be modified.

Page 74 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Let's look at a code migration example. Consider the following Swing code:

/l--- Create a single line text field

JTextField textField = new JTextField("initial text");
text Fi el d. get Docunent (). addDocunent Li st ener (aLi st ener);
parent . add(textField);

//--- Create a text area

JText Area text Area = new JTextArea("initial text");

t ext Ar ea. get Docunent (). addDocunent Li st ener (aLi st ener);
par ent . add(t ext Area) ;

Here's what that code would look like after being migrated to SWT:

//--- Create a single line text field

SWText Field textField = new SWIText Fi el d(parent, "initial text");
t ext Fi el d. addDocunent Li st ener (aLi st ener);

parent . add(textField);

//--- Create a text area

SWIText Area text Area = new SWIText Area(parent, "initial text");
t ext Ar ea. addDocunent Li st ener (aLi st ener) ;

par ent . add(t ext Area);

JToolBar

SWT provides two components that can be used to build a toolbar: Tool Bar and Cool Bar .
Unlike other SWT controls, these two components are not alternatives to one another, but
are designed to be used together

Tool Bar is the basic toolbar component that lays out tool items -- usually buttons displaying
an icon -- and optional separators. Its functionality is quite similar to Swing's JTool Bar ,
except that SWT's Tool Bar can't be made floatable like its Swing counterpart. The
orientation of the toolbar -- horizontal or vertical -- can be defined by using one of two styles,
SWI. HORI ZONTAL and SWI'. VERTI CAL, in the constructor. Other styles allow you to modify
the look of the bar:

« SWI'. BORDER adds a border around the toolbar.

e SWI. FLAT makes the items flat. If you don't use this style, the items are represented as
normal push buttons.

* SWI. WRAP wraps the items in several rows if there is not enough space to display them all.
Note that this style is ignored by some platforms, such as GTK on Linux.

5 0B @0 ol@

You can add items to the toolbar by creating Tool | t ens. The API of Tool | t emis quite
similar to the API of But t on. By using in an item's constructor one of several styles --

SWI'. PUSH, SWI'. CHECK, SWI. RADI O, or SWI'. DROP_DOWN -- you will create a normal push
item, a check box, a radio button, or an item displaying a drop-down menu, respectively. By

Migrate your Swing application to SWT Page 75 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

using the style SWI'. SEPARATOR, you will create a visual separator between two items. By
using the methods Tool | t em set | nage(i mage), Tool It em set Hot | mage(i nage),
and Tool | t em set Di sabl el nage(i mage) , you can define different icons to be displayed
when the tool item is in its normal state, when the mouse pointer is on it, and when it is
disabled, respectively. You can also add any SWT control to a toolbar -- it is for example
quite usual to include a combo box in a toolbar to allow the user to change a font size or a
zoom factor -- by creating a Tool | t emwith the style SWI'. SEPARATOR, and then invoking
the method set Cont r ol (Control ) onit. You will then have to set its width by invoking the
method set W dt h(i nt) on the Tool It em Note that the height of a Tool Bar and all its
Tool | t ens is defined by the platform and can't be changed.

A Cool Bar is a multiline toolbar whose items can be moved and reordered by the user. A

Cool Bar usually contains several Tool Bar s. Each Tool Bar is an atomic group of items
that can be reordered by the user within the Cool Bar .

G 0@

Civ G-

SO0 @

You add items to the coolbar by creating Cool | t ens and setting SWT controls on them with
the method Cool | t em set Contr ol (Control ). Unlike Tool I t em Cool | t emlets you set
its width and height. The layout of the Cool Bar -- the order of its items, their sizes, and the
indices at which the row is wrapped -- can be set programmatically by using
setltemLayout (int[], int[], Point[]).Keepinmind that each item in a Cool Bar
can be reordered by the user. Thus, you should avoid adding too many single components to
the Cool Bar and rather use it to contain several Tool Bar s, each of them defining a logical
grouping of items.

The following code snippet illustrates SWT Cool Bar s and Tool Bar s in action:

/l--- Create a Cool Bar containing a Tool Bar and a Conbo
Cool Bar cool Bar = new Cool Bar ( parent, SW.BORDER);

//- Create the Tool Bar, representing the 1st group of itens in the Cool Bar
Tool Bar groupl = new Tool Bar (cool Bar, SWI. FLAT);

Tool Itemitem = new Tool Iten{groupl, SW.NONE); // add a 1st item

item setlmage(iconl);

item set Tool Ti pText (" Action 1");

item = new Tool Iten(groupl, SW.SEPARATOR); // add a separator
item = new Tool Iten(groupl, SW.NONE); // add a second item
item setl mage(icon2);

item set Tool Ti pText ("Action 2");

/1 add the Tool Bar as 1st itemin the Cool Bar

Cool Item cool Item = new Cool Iten(cool Bar, SW. NONE) ;
cool Item set Cont rol (groupl);

Page 76 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

cool Item set Si ze(groupl. conput eSi ze( SWI. DEFAULT, SWI. DEFAULT) ) ;

//- Create a Conbo to add as 2nd itemin the Cool Bar
Conmbo conmbo = new Conbo(cool Bar, SWI. DROP_DOWN) ;
conbo. setltens(new String[]{"item", "itenR", "itenB8"});

cool Item = new Cool I ten{cool Bar, SW. NONE);
cool It em set Cont r ol (conbo) ;
cool I tem set Si ze(conbo. conput eSi ze( SWI. DEFAULT, SWI. DEFAULT) ) ;

Migrate existing Swing code

The migration of existing Swing code for a JTool Bar shouldn't present any problem. The
wrapper class SWI'Tool Bar , included in the sample code provided with this tutorial, makes
the migration easier by emulating the API of Swing as introduced in Migrate your Swing code
to SWT with minimal change on page 14 . To migrate existing code using the wrapper class,
you'll need to take the following steps:

» Search for occurrences of the Swing type JTool Bar and replace them with the new
wrapper type SWI'Tool Bar .

» Search for constructors where a toolbar is created and add the reference to the parent of
the tabbed pane in the arguments list.

Let's look at a migration example. Consider the following Swing code:

JTool Bar tool Bar = new JTool Bar () ;
t ool Bar. add(anActi on);

t ool Bar . add( aConponent) ;

t ool Bar. addSepar at or () ;

t ool Bar . add( anot her Acti on) ;

par ent . add(t ool Bar) ;

Here's what the code would look like migrated to SWT:

SWITool Bar tool Bar = new SWITool Bar ( parent) ;
t ool Bar. add(anActi on);

t ool Bar . add( aConponent ) ;

t ool Bar. addSeparat or () ;

t ool Bar . add( anot her Acti on) ;

par ent . add(t ool Bar);

JTree

SWT's equivalent for Swing's JTr ee is the component Tr ee. It can be used in combination
with JFace's Tr eeVi ewer .

Migrate your Swing application to SWT Page 77 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

- 3 Mode 1 =]
Mode 1.1
v Mode £
Mode 2.1
o Mode 2.2 |

The constraints of using a pure SWT Tr ee without a JFace Tr eeVi ewer are the same as
those for a table (see JTable on page 67 ). There is no data model and you have to create
each tree node manually, as in the following example:

/l--- Exanple of creation of a SWI' Tree w t hout TreeVi ewer

Tree tree = new Tree(parent, SWI.SINGLE | SWI. H SCROLL | SWI.V_SCROLL);

/1l create a 1st root node "Node 1" containing 2 children "Node 1-1" & "Node 1-2"
Treeltem nodel = new Treelten(tree, SW. NONE);

nodel. set Text (" Node 1");

Treeltem nodell = new Treel tenmnodel, SWI. NONE);

nodell. set Text (" Node 1-1");

Treel tem nodel2 = new Treelten(nodel, SWI. NONE);

nodel2. set Text (" Node 1-2");

/1l create a 2nd root node "Node 2" containing 2 children "Node 2-1" & "Node 2-2"
Treeltem node2 = new Treelten(tree, SW. NONE);

node?2. set Text (" Node 2");

Treeltem node21 = new Treel temnode2, SWI. NONE);

node2l. set Text (" Node 2-1");

Treel tem node22 = new Treel ten(node2, SWI. NONE);

node22. set Text (" Node 2-2");

JFace's TreeViewer

Most of the time, you wouldn't create a tree as shown above, but would instead use a JFace
TreeVi ewer. A TreeVi ewer is a JFace viewer created on top of an SWT Tr ee. The
viewer automatically creates and sets up the Tr eel t ens to represent a data model supplied
by a content provider in a text/icon form defined by a label provider. In this way, you have a
mechanism that is similar to Swing's Tr eeMbdel /Tr eeCel | Render er mechanism.

For more information on JFace's viewers, read Data models and cell renderers vs. content
providers and label providers on page 12, or read the articles listed in the Resources on
page 95 . For concrete examples showing how to use @r eeVi ewer , you should read in
particular "Using the Eclipse GUI outside the Eclipse Workbench" by Adrian Van Emmenis,
and "How to use the JFace Tree Viewer" by Chris Grindstaff.

Tree items

If you use a JFace Tr eeVi ewer , you don't have to care about the Tr eel t ens of the tree,
because they are automatically created by the viewer. However, in some cases it can be
useful to work with the Tr eel t ens directly, even if they are automatically created.

By using the API of Tr ee, you can get the list of all the root Tr eel t ens and navigate
through all the items of the tree. By invoking set Backgr ound( Col or) or

set For egr ound( Col or ), you can modify the colors of single items. This is something that
you can't do with the API of JFace's Tr eeVi ewer and its label provider.

Page 78 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Expand/collapse items

As in Swing, you can programmatically expand or collapse items. Tr eeVi ewer provides
several methods to expand the tree up to a specific depth, or to expand or collapse the
nodes corresponding to some specific elements in the data model. Check the API of the
following methods:

Abstract TreeVi ewer . expandAl | ()

* Abstract TreeVi ewer. expandt oLevel (.. .)

e Abstract Tr eeVi ewer . set ExpandedEl enent s( Cbj ect[])

* Abstract TreeVi ewer. set ExpandedSt at e( Cbj ect, bool ean)

Another way to expand or collapse an item is to get the Tr eel t emof its node, and then
invoke the method set Expanded( bool ean) onit.

Editing

A limitation of JFace's Tr eeVi ewer is that it doesn't allow the editing of nodes, as its Swing
equivalent does. If you really need to do this, SWT provides Tr eeEdi t or , which can be
installed on top of an SWT Tr ee. If you use it in combination with a JFace Tr eeVi ewer and
a content provider, you will have to write some code to modify the data model once the
editing of a node is completed.

If you want an example showing how to use Tr eeEdi t or, look at the code snippets at the
dev.eclipse.org site (see Resources on page 95 for a link).

Management of the selection

SWT has no equivalent for Swing's Sel ect i onMbdel . You can define whether multiple
selection is allowed or not by using one of two style constants, SWI. MULTI or SWI. SI NGLE,
when constructing the tree. You can't switch from one mode to the other after the tree has
been created. You can set and get the selection programmatically in two different ways:

» SWT's Tr ee provides simple methods to set or get the selection. These methods work
with the Tr eel t ens populating the tree.

» JFace's Tr eeVi ewer provides two methods, get Sel ecti on() and
set Sel ection(I Sel ecti on, bool ean), that are inherited from St r uct ur edVi ewer
and work on a higher abstraction level. The | Sel ect i on object returned or used by these
methods is in fact a St r uct ur edSel ect i on. This object provides an iterator or an array
containing the selected elements as provided by the content provider, and is independent
from their string representation or their representation order.

Events

An SWT Tree throws two kind of events:

* A Sel ecti onEvent is thrown to notify the listeners that a change occurred in the
selection. To detect a change in the selection, register a Sel ect i onLi st ener by using
the addSel ect i onLi st ener ( Sel ecti onLi st ener) method. The listener method that
is triggered by the event and should be implemented is
Sel ecti onLi st ener. wi dget Sel ect ed( Sel ecti onEvent).

Migrate your Swing application to SWT Page 79 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

« ATreeEvent isthrown each time a node is expanded or collapsed. You can receive this
event by registering a Tr eeLi st ener on the Tr ee.

Migrate existing Swing code

The migration of existing Swing code for a JTr ee doesn't present any problem as long as
you don't need complex renderers that can't be realized with a JFace label provider.

The wrapper class SWI'Tr ee, included with the sample code provided with this tutorial,
makes the migration easier by emulating the API of Swing as outlined in Migrate your Swing
code to SWT with minimal change on page 14 . You don't have to port your original Swing
Tr eeMbdel .

To migrate existing code using the wrapper class, follow these steps:

» Search for occurrences of the Swing type JTr ee and replace them with the new wrapper
type SWI'Tr ee.

» Search for constructors where a tree is created and add the reference to the parent of the
tree in the arguments list.

» The Swing trees of your application are probably contained in JScr ol | Panes. Modify the
code so that no JScr ol | Pane is created and the trees are added directly to their parent.

e Convert any Swing renderers into SWI'Cel | Render er s.

Let's look at a migration example. Consider the following Swing code:

TreeMbdel nodel = ...;
JTree tree = new JTree(nodel);
tree. set Root Vi si bl e(fal se);
tree. expandRow( 0) ;
tree. addTreeSel ecti onLi st ener (new TreeSel ecti onLi stener () {
public void val ueChanged(TreeSel ecti onEvent e) {
/1 do action

pa’r ent . add(new JScrol | Pane(tree));

After migration, the equivalent SWT code would look like this:

TreeModel nodel = ...;
SWTree tree = new SWTree(parent, nodel);
tree. set Root Vi si bl e(fal se);
tree. expandRow( 0) ;
tree. addTr eeSel ecti onLi st ener (new TreeSel ecti onLi stener () {
public void val ueChanged(TreeSel ecti onEvent e) ({
/1 do action

pa’r ent.add(tree);

Page 80 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 6. Complete example: Migrating a Swing dialog

Our sample dialog

In this section, we are going to apply the migration techniques and the wrapper classes
introduced in this tutorial to migrate a complete Swing panel to SWT.

The following screenshot shows the Swing panel that we are going to migrate to SWT:

X+ B=1(ES

Axvailable items: Chosen items:

Item 1 -~ Item 4 -~
[tem 2
Itemn 3
Item 5
Item 6
Item ¢
Item 8 = =
Item 9 - -

==

Ok Cancel

| |

This is a fairly common dialog. It allows the user to select one or more items from a list of
available items. The list on the left-hand side is a list of available items that have not been
chosen by the user yet; the list on the right-hand side is the list of the items that have been
chosen by the user. From top to bottom, the buttons between the two lists allow the user to:

* Move the selected items from the list on the left side to the list on the right side.
Move all the items from the list on the left side to the list on the right side.
* Move the selected items from the list on the right side to the list on the left side.
Move all the items from the list on the right side to the list on the left side.

The status of the buttons (enabled or disabled) depends on the selection and on whether or
not the lists are empty:

» The buttons to move the selected items from one list to the other are enabled only when at
least one item in the source list is selected.

* The buttons to move all the items from one list to the other are enabled only when the
source list contains at least one item.

The OK and Cancel buttons on the bottom of the panel trigger two methods (per f or mOK()
and per f or nCancel ()) that can be overloaded.

Migrate your Swing application to SWT Page 81 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

This panel is a simple but quite useful example, illustrating the typical Swing-to-SWT
migration issues we discussed earlier. The layout of the component is realized by using a
complex arrangement of invisible panels using different layout managers. The AWT layout
managers used by this panel are FIl owLayout , Bor der Layout and Gri dLayout . The
components of the dialog interact with each other through event listeners: a change in the
selection of the lists modifies the status of the buttons, and the buttons modify the content of
the lists.

The content of the lists is defined by using customized Li st Model s.

If you wanted to migrate such a panel to SWT without using the migration technigues
presented in this tutorial, it would be probably quickest to rewrite the whole panel from
scratch, because almost none of the existing code could be reused; the layout managers, the
events and the API of the components are different. In the following panels, we'll see how to
use our migration techniques to make that migration a lot easier.

Source code of the Swing panel

Here is the source code of the Swing panel presented on the previous panel (See the
SwingSamplePanel.java file in the j-swing2swtsrc.zip download available in Resources on
page 95 .)

The class contains a main method that allows you to test the panel without having to
integrate it in an application. To compile and run this sample, follow these steps:

1. Save the file SwingSamplePanel.java in a local directory.
2. Compile it by using the command j avac Swi ngSanpl ePanel . j ava.
3. Launch it by using the command j ava -cl asspath . Sw ngSanpl ePanel .

i mport java.awt.*;

i mport java.awt. BorderLayout;

i nport java. awt. Fl owLayout ;

i mport java.awt. G i dLayout;

i mport java.aw .event.Acti onEvent;

i mport java.awt.event. ActionLi stener;

i mport javax.sw ng.*;

i mport javax.sw ng. event. Li st Sel ecti onEvent;

i mport javax.sw ng.event. Li st Sel ecti onLi st ener;

public class Swi ngSanpl ePanel extends JPanel inplenments ListSelectionListener {

private JList leftList, rightList;
private JButton sel ectButton, selectAllButton;
private JButton desel ect Button, desel ect Al lButton;

private Defaul tLi st Mdel |eftListMdel = new DefaultListMdel();
private DefaultListMdel rightListMdel = new DefaultListMdel();

public Sw ngSanpl ePanel () {
JPanel content = new JPanel (new BorderLayout (5, 5));
add(content);
cont ent . add( Bor der Layout . SOUTH, creat eButtonsPanel ());
cont ent . add( Bor der Layout . CENTER, creat eSoshPanel ());

Page 82 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

i nitContent();

}

prot ected JConponent createSoshPanel () {
JPanel rmai nPanel = new JPanel (new BorderLayout (5, 5));
JPanel |eftPanel = new JPanel (new BorderLayout (5, 5));

| ef t Panel . add( Bor der Layout . NORTH, new JLabel ("Available itens:"));
leftList = new JList(IleftListMdel);

| eftList.setPreferredSi ze(new Di nensi on(100, 150));

| ef t Li st. get Sel ecti onModel (). addLi st Sel ecti onLi stener(this);

| ef t Panel . add(new JScrol | Pane(l eftList));

mai nPanel . add( Bor der Layout . WEST, | ef t Panel ) ;

JPanel centerPanel = new JPanel (new Border Layout ());
mai nPanel . add( cent er Panel ) ;

JPanel pl = new JPanel ();

cent er Panel . add( Bor der Layout . SOUTH, p1l);

JPanel p2 = new JPanel (new BorderLayout());

pl. add(p2);

JPanel buttonsPanel = new JPanel (new GridLayout(0, 1, 10, 10));
p2. add( Bor der Layout . NORTH, buttonsPanel);

sel ectButton = new JButton(">");
sel ect Butt on. addActi onLi st ener (new Acti onLi stener () {
public void actionPerforned(ActionEvent e) {
hj ect[] selectedltens = leftlList.getSel ectedVal ues();
for (int i =0; i < selectedltens.length; i++) {
rightListMdel.addEl enent (sel ectedltens[i]);
| ef t Li st Model . renpoveEl enent (sel ectedltens[i]);
updat eBut t onsSt at e() ;

}
}
IDE

but t onsPanel . add( sel ect Button);

sel ect All Button = new JButton(">>");
sel ect Al | Butt on. addActi onLi st ener (new Acti onLi stener () {
public void actionPerformed(ActionEvent e) {
ohject[] itens = |l eftListMdel.toArray();
for (int i =0; i <itenms.length; i++) {
rightLi st Mbdel . addEl enent (itens[i]);
| ef t Li st Model . renmoveEl enent (itens[i]);
updat eButt onsSt at e() ;

}
}
1)
but t onsPanel . add(sel ect Al | Button);

desel ect Button = new JButton("<");
desel ect But t on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerfornmed(ActionEvent e) {
bj ect[] selectedltens = rightList.getSel ectedVal ues();
for (int i =0; i < selectedltens.length; i++) {
| ef t Li st Model . addEl enent (sel ectedltens[i]);
ri ght Li st Model . renoveEl enent (sel ectedl tens[i]);
updat eButtonsStat e() ;

}
}
IDE

but t onsPanel . add( desel ect Button);

desel ect Al l Button = new JButton("<<");

Migrate your Swing application to SWT Page 83 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

desel ect Al | But t on. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerfornmed(ActionEvent e) {
bject[] itens = rightListMdel.toArray();
for (int i =0; i <items.length; i++) {
| ef tLi st Model . addEl enent (i tens[i]);
rightListMdel.renoveEl enent(itens[i]);
updat eButtonsStat e() ;

}

}
1)
but t onsPanel . add( desel ect Al | Button);

JPanel rightPanel = new JPanel (new BorderlLayout (5, 5));

ri ght Panel . add( Bor der Layout . NORTH, new JLabel (" Chosen itens:"));
rightLi st = new JList(rightListMdel);

rightList.setPreferredSi ze(new Di nensi on(100, 150));
rightList.getSel ecti onMbdel (). addLi st Sel ecti onLi stener(this);

ri ght Panel . add(new JScrol | Pane(rightList));

mai nPanel . add( Bor der Layout . EAST, ri ght Panel);

updat eButt onsSt at e() ;
return mai nPanel ;

}

protected JConponent createButtonsPanel () {
JPanel buttonsPanel = new JPanel (new BorderLayout ());
but t onsPanel . add( Bor der Layout . NORTH, new JSeparator());
JPanel subPanel = new JPanel (new Fl owLayout (Fl owlLayout. Rl GHT));
but t onsPanel . add( Bor der Layout . CENTER, subPanel);

JButton okButton = new JButton("OK");
okBut t on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerfornmed(ActionEvent e) {
perfor moK() ;

1)
subPanel . add( okBut t on) ;

JButton cancel Button = new JButton("Cancel");
cancel But t on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerfornmed(ActionEvent e) {
per f or nCancel () ;

}
subPanel . add(cancel Button);

return buttonsPanel ;

}

protected void initContent() ({
for (int i =0; i < 10; i++) {
| ef t Li st Model . addEl enent ("Item " + (i + 1));

}
rightListMdel.addEl enent("ltem 11");
}

protected void performX() {
Systemout. println("OK perfornmed");

}

protected void perfornCancel () {
System out. println("Cancel perforned");

}

Page 84 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

private void updateButtonsState() ({
sel ect Button. set Enabl ed(! I eft Li st. get Sel ecti onModel ().isSel ecti onEnpty());
sel ect Al | But t on. set Enabl ed(! 1 ef t Li st Model . i sEnpty());
desel ect But t on. set Enabl ed(! ri ght Li st. get Sel ecti onModel ().isSel ecti onEnpty());
desel ect Al | But t on. set Enabl ed(! ri ght Li st Model . i sEnpty());

}

/1 1nplenentation of ListSelectionListener
public void val ueChanged(Li st Sel ecti onEvent e) ({
if (e.getSource() == leftlList.getSelectionMdel/()
|| e.getSource() == rightList.getSelectionhMdel()) {
updat eBut t onsSt at e() ;
}
}

public static void main(String[] args) {
JFrame frame = new JFrane();
frane. set Def aul t O oseOperati on(JFrane. EXIT_ON CLCSE);
franme. get Cont ent Pane() . add( new Swi ngSanpl ePanel ());
franme. pack();
frane. setVisible(true);

Set up your build and run environment

In this panel, we are going to set up a Java project in Eclipse, which is able to compile and
run a standalone SWT/JFace application using the wrapper classes provided with this
tutorial. The version of Eclipse | use in this tutorial is 2.1.

Create a new Java project in Eclipse called t est . Use the subdirectory . / src/ to the
source files.

Download j-swing2swtsrc.zip from Resources on page 95 , which contains the sample code
provided by this tutorial, into a local directory.

Import the content of the zip file in the new created Java project by using
File=>Import...=>Zip File. Then, import all the files contained in downloaded zip file into
the project directory.

Migrate your Swing application to SWT Page 85 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

A Import o]
Zip file =
Import the contents of a Zip file from the local file system.
From zip file: | mpssro.zip _.‘ Browse...
EHWL= / (] SWTabstractButton java - '
EHWIEE sre SWTButon java
FHWIE= swingZ st ] SWTCellEditar java
MPSY components (] SWTCellRendarar java
Wz layout SWTCheckBox java

W [J] SWTCheckBoxMenultem java
W [J] SWTComboBox java
SWTComponentjava

i [ SWTrantainer iawa

Filter Types... select All Deselect All |

Into folder: | test Browse...

_|Dvenurite existing resources without warning

= Back | BT 5 | Finish | Cancel

The imported classes (the Java packages swi ng2swt . conponent s and
swi ng2swt . | ayout ) should be compiled. You will get some compilation errors, because
the JAR files for SWT and JFace are not in the classpath yet.

Right-click on the Java project and open its properties. Go in the category Java Build Path
and add the following JAR files, taken from the installation directory of Eclipse:
* boot.jar from the plugin or g. ecl i pse. cor e. boot.

« resources.jar from the plugin or g. ecl i pse. core. resour ces.
e runtime.jar from the plugin or g. ecl i pse. core.runti ne.

* jface.jar from the plugin or g. ecl i pse. j f ace.

» workbench.jar from the plugin or g. ecl i pse. ui . wor kbench.

« swt.jar from the plugin or g. ecl i pse. swt . XXX (where XXX is the name of the platform
you use); some platforms (such as GTK) provide several JAR files for SWT. Add all of
them.

Page 86 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

[&4 Properties for test ICIES

Infa Java Build Path
ChWC

External Tools Builders
Java Build Path

(= gnur::el 1= Projects i, Libraries | 11 Crder and Export
JARs and class folders on the build path:

Java Compiler
Javadoc Location (i, swijar - foptIBM/W ehSphereStudiosapplicationD add JARS |
Java Task Tags {h swi-pijar - /optIBMAYehSphereStudio/applicatio =

Project References

[+

@ ECLIPSE_HOME/MIugins/ory.eclipse.core.boof_2
ECLIPSE_HOME plugins/oryg eclipse.core.resaurc
# ECLIPSE_HOME/luginsforg.eclipse.core.runtime |

#dd External JARs... |

[+

e

add Variahble...
# ECLIPSE_HOME/luginsforg.eclipse.jface_2.1.14 =
& ECLIPSE_HOMEMlugins/ory.eclipse.uiworkbenc
. . Add Library.. |
il JRE System Library [eclipse] =

Add Class Folder.. |

Default output folder:

testrbin Browse...

(a]4 | Cancel |

Once the JAR files are added in the classpath, the compilation errors should disappear.
The next screenshot shows what the package explorer should look like at this point:

= 8% (default package)
[J] SwingSamplePanel java
[J] 3WTSamplePanel java
B swing2swt components
B swingZ2swtlayout
il JRE System Library [eclipse]
(i, ECLIPSE_HOME/plugins/org.eclipse jface_z2.1.14face jar - foptieclipsedpluginsiorg.eclipse
(W, ECLIPSE_HOME/plugins/org.eclipse.core.runtime_2.1.1/runtime jar - foptfeclipsesplugins/o
ﬁ'}; ECLIPSE_HOME/ plugins/ory. eclipse. core resources_2.1.1/resources. jar - fopteclipse/plug
ﬁ'}; ECLIPSE_HOMEplugins/org. eclipse.core boot_2.1.1/o0ot jar - foptfeclipse/plugins/org.ecl
ﬁh ECLIPSE_HOME/pluginsiorg.eclipse.uiworkbench_2.1 1Avarkbench jar - foptfeclipsedplug
(i, swijar - foptIBM/WebSphereStudio/applicationDeveloper/vs.1/eclipse/plugins/org.eclipse
(W, swipijar - foptIBM/WebSphereStudio/dpplicationDeveloper/vs 1/eclipse/plugins/arg.eclif

Fackage Explnrer‘Hierarchy

Migrate your Swing application to SWT Page 87 of 97




i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

For more information on launching SWT/JFace applications outside Eclipse, read the
developerWorks article "Using the Eclipse GUI outside the Eclipse workbench" by Adrian
Van Emmenis. You can find a link in Resources on page 95 .

Migrate the Swing code to SWT

By using the wrapper classes and layout managers provided with this tutorial, you can
migrate the Swing code with a sequence of search-and-replace actions.

First, copy the original class Swi ngSanpl ePanel into a new class named
SWI'Sanpl ePanel .

Next, in the new class, remove all the i nport statements and replace them with these
statements:

i mport sw ng2swt.conponents. *;
i mport sw ng2swt .| ayout.*;

i mport java.awt.event.*;

i mport j avax.sw ng.event.*;

Now, save the file and try to compile it; you'll get about 100 compilation errors, saying that
the Swing classes (JPanel , JLi st, JBut t on, etc...) cannot be located.

Next, use the automatic search-and-replace functions of your editor to successively:

» Replace all occurrences of JPanel with SWI'Panel

» Replace all occurrences of JLi st with SWILi st

* Replace all occurrences of JBut t on with SWIBut t on

» Replace all occurrences of JConponent with SWrConponent
* Replace all occurrences of JLabel with SWI'Label

» Replace all occurrences of JSepar at or with SWI'Separ at or

Save the file and try to compile it again; the number of compilation errors should now be
reduced to about 50.

Most of the remaining errors complain that the constructor of the wrapper classes is not
defined. As you learned earlier, all the wrapper classes require the reference to the parent
component to be passed as the first argument in their constructor. This can be done in a
semi-automatic way by using the search function of your text editor. Search from the
beginning of the class for all the occurrences of the string add( . This will show you all the
places in the code where a component is added to its parent.

The lines of code found by the search function show you the parent container in which each
component is contained, and should have one of the following forms:

aCont ai ner . add( aConponent ) ;
aCont ai ner. add( aConstrai nt, aConponent);

where aCont ai ner is the parent container where aConponent is added. For each

Page 88 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

occurrence found by the search function, notice the name of the component (aConponent )
and the name of its container (aCont ai ner). Search in the code where the component
(aConmponent ) is created and add the container (aCont ai ner) as first argument in the
constructor.

For example, the first occurrence of add( found in the source code is at line 17,

add( cont ent) (which is equivalenttot hi s. add( cont ent) ). The component is cont ent
and the container is t hi s. The component cont ent is created at line 16: SWI'Panel
content = new SWIPanel (new Bor der Layout (5, 5));.The name of the container
(t hi s) should be added as the first argument in the constructor.

Thus, the original code

SWIPanel content = new SWIPanel (new Bor der Layout (5, 5));
add(content);

should be transformed into:

SWIPanel content = new SWIPanel (t hi s, new BorderLayout (5, 5));
add(content);

Here's another example. Consider the block of code at lines 26-32:

SWPanel | eftPanel = new SWPanel (new BorderLayout (5, 5));

| ef t Panel . add( Bor der Layout . NORTH, new SWILabel ("Available itens:"));
| eftList = new SWILi st (| eftLi st Mbdel );

| eftList.setPreferredSi ze(new Di nensi on(100, 150));

| ef t Li st. get Sel ecti onModel (). addLi st Sel ecti onLi stener(this);

| ef t Panel . add(new JScrol | Pane(l eftList));

mai nPanel . add( Bor der Layout . WEST, | ef t Panel ) ;

This code should be modified as follows:

SWIPanel |eftPanel = new SWIPanel (rmai nPanel , new Border Layout (5, 5));

| ef t Panel . add( Bor der Layout . NORTH, new SWrLabel (| eft Panel, "Available itens:"));
leftList = new SWILi st (| eft Panel, |eftListMdel);

| eftList.setPreferredSi ze(new Di mensi on(100, 150));

| ef tLi st.get Sel ecti onModel (). addLi st Sel ecti onLi st ener (this);

| eft Panel . add(l eftList);

mai nPanel . add( Bor der Layout . WVEST, | ef t Panel ) ;

Note that line 31 -- | ef t Panel . add( new JScrol | Pane(l eftList)); --was modified
intol ef t Panel . add(l eftLi st); because an SWT list is by nature scrollable and doesn't
have to be added into a scrollpane like in Swing.

For the same reason -- because an SWT component needs a reference of its parent
container at construction time -- we have to slightly modify the signature of the methods
creat eSoshPanel () and cr eat eBut t onsPanel () to pass the reference of the parent
container as a parameter. First, we'll modify cr eat eSoshPanel () . Here's the code before
modification:

prot ected SWConponent createSoshPanel () {

Migrate your Swing application to SWT Page 89 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

SWPanel nmai nPanel = new SWIPanel (new Bor der Layout (5, 5));
(...)

And here's the modified code:

prot ected SWI'Conponent creat eSoshPanel (SWICont ai ner parent) {
SWrPanel mai nPanel = new SWIPanel (par ent, new BorderLayout(5, 5));

(...)

Next, let's modify cr eat eBut t onsPanel () . Here's the code before modification:

protected SWConponent createButtonsPanel () {
SWrPanel buttonsPanel = new SWiPanel (new Bor der Layout ());

(...)

And here's the modified code:

prot ected SWI'Conponent creat eButtonsPanel (SWICont ai ner parent) {
SWrPanel buttonsPanel = new SWiPanel (parent, new BorderLayout()):;

(...)

Finally, we need to modify the constructor SWI'Sanpl ePanel , which invokes these methods.
Here's the code before modification:

public SWrSanpl ePanel () {
SWIPanel content = new SWIPanel (this, new BorderLayout (5, 5));
add(content);
cont ent . add( Bor der Layout . SOUTH, creat eButtonsPanel ());
cont ent . add( Bor der Layout . CENTER, creat eSoshPanel ());
i nitContent();

}

And here's the code after modification:

publ i ¢ SWI'Sanpl ePanel (SWICont ai ner parent) {
super (parent);
SWIPanel content = new SWIPanel (this, new BorderLayout (5, 5));
add(content);
cont ent . add( Bor der Layout . SOUTH, creat eButtonsPanel (content));
cont ent . add( Bor der Layout . CENTER, creat eSoshPanel (content));
i nitContent();

}

Now, save the file and try to compile it. The number of compilation errors should have been
reduced to about 25. Most of these errors are due to some missing import statements. Add
the following import statements at the beginning of the class:

i mport javax.sw ng. Def aul tLi st Model ;
i mport java.awt . D nension;

The number of compilation errors should have been reduced to four, all of them contained in
the mai n() method. Let's fix these now. Replace the mai n() method used to test the code
with this one:

Page 90 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

public static void main(String[] args) {
org. eclipse.sw.w dgets. Display display =
new org. ecli pse. sw.w dgets. Di splay();
org. eclipse.sw.wdgets. Shell shell =
new org. eclipse. sw.w dgets. Shel | (di spl ay);
shel | . set Layout (new Bor der Layout ());
new SWISanpl ePanel (new SWICont ai ner (shel 1)) ;
shel | . pack();
shel | . open();
while (!shell.isDisposed ()) {
if (!display.readAndDi spatch ()) display.sleep ();

}
di spl ay. di spose ();

Source code for the migrated panel

Here is the complete source code of the panel migrated to SWT. (See the
SWTSamplePanel.java file in the j-swing2swtsrc.zip download available in Resources on
page 95 .)

i mport sw ng2swt.conponents. *;

i mport swi ng2swt .| ayout. *;

i mport java.awt.event.*;

i mport javax.sw ng.event.*;

i mport javax.sw ng. Defaul tLi st Model
i mport j ava. awt . Di mensi on;

public class SWSanpl ePanel extends SWIPanel inplenments ListSel ectionListener {

private SWIList leftList, rightList;
private SWIButton sel ectButton, selectAllButton
private SWIButton desel ect Button, desel ectAll Button

private Defaul tListMdel |eftListMdel = new DefaultlListMdel();
private DefaultListMdel rightListMdel = new DefaultListMdel();

publ i c SWISanpl ePanel (SWI'Cont ai ner parent) {
super (parent);
SWIPanel content = new SWIPanel (this, new BorderLayout (5, 5));
add(content);
cont ent . add( Bor der Layout . SOUTH, creat eButt onsPanel (content));
cont ent . add( Bor der Layout . CENTER, creat eSoshPanel (content));
i nitContent();

}

prot ected SWConponent createSoshPanel (SWICont ai ner parent) {
SWPanel nmai nPanel = new SWIPanel ( parent, new BorderlLayout (5, 5));
SWIPanel | eft Panel = new SWrPanel (nai nPanel, new BorderLayout (5, 5));

| ef t Panel . add(
Bor der Layout . NORTH,
new SWILabel (1 eft Panel, "Available items:"));
| eftList = new SWILi st (| eft Panel, |eftListModel);
| eftList.setPreferredSi ze(new Di mensi on(100, 150));
| ef t Li st. get Sel ecti onModel (). addLi st Sel ecti onLi stener(this);
| ef t Panel . add(l eftList);
mai nPanel . add( Bor der Layout . WVEST, | ef t Panel ) ;

Migrate your Swing application to SWT Page 91 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

SWIPanel centerPanel = new SWIPanel (mai nPanel , new BorderLayout());
mai nPanel . add( cent er Panel ) ;

SWPanel pl = new SWIPanel (cent er Panel ) ;

cent er Panel . add( Bor der Layout . SOUTH, pl);

SWPanel p2 = new SWIPanel (pl, new BorderLayout ());

pl. add(p2);

SWIPanel buttonsPanel = new SWIPanel (p2, new GidLayout (0, 1, 10, 10));
p2. add( Bor der Layout . NORTH, buttonsPanel);

sel ect Button = new SWIButton(buttonsPanel, ">");
sel ect But t on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerfornmed(ActionEvent e) {
oj ect[] selectedltens = | eftlList.getSelectedVal ues();
for (int i =0; i < selectedltens.length; i++) {
rightListMdel.addEl enent (sel ectedltens[i]);
| ef t Li st Model . renoveEl enent (sel ectedltens[i]);
updat eButtonsStat e() ;

}
}
IDE

but t onsPanel . add( sel ect Button);

sel ect Al l Button = new SWIButt on(buttonsPanel, ">>");
sel ect Al | But t on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerforned(ActionEvent e) {
bject[] itens = | eftListMdel.toArray();
for (int i =0; i <items.length; i++) {
rightListMdel.addEl ement(itens[i]);
| ef t Li st Model . renoveEl enent (itens[i]);
updat eButtonsStat e();

}

}
1)
but t onsPanel . add(sel ect Al | Button);

desel ect Button = new SWIButton(buttonsPanel, "<");
desel ect Butt on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerforned(ActionEvent e) {
hj ect[] selectedltens = rightList.getSel ectedVal ues();
for (int i =0; i < selectedltens.length; i++) {
| ef t Li st Model . addEl enent (sel ectedltens[i]);
rightLi st Mdel.renoveEl enent (sel ectedltens[i]);
updat eBut t onsSt at e() ;

}
}
IDE

but t onsPanel . add( desel ect Button);

desel ect Al | Button = new SWIButton(buttonsPanel, "<<");
desel ect Al | Butt on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerformed(ActionEvent e) {
oject[] itens = rightListMdel.toArray();
for (int i =0; i <itenms.length; i++) {
| ef t Li st Model . addEl enent (itens[i]);
rightListMdel.renoveEl ement(itens[i]);
updat eButt onsSt at e() ;
}
}
1)
but t onsPanel . add(desel ect Al | Button);

SWIPanel ri ght Panel = new SWIPanel (mai nPanel , new Bor der Layout (5, 5));
ri ght Panel . add(

Page 92 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Bor der Layout . NORTH,

new SWILabel (ri ght Panel, "Chosen itens:"));
rightList = new SWLi st (rightPanel, rightListMdel);
rightList.setPreferredSi ze(new Di nensi on(100, 150));
rightList.getSel ectionMbdel (). addLi st Sel ecti onLi stener(this);
ri ght Panel . add(ri ghtList);
mai nPanel . add( Bor der Layout . EAST, ri ght Panel);

updat eButt onsSt at e() ;
return mai nPanel ;

}

prot ected SWConponent creat eButtonsPanel (SWICont ai ner parent) ({
SWIPanel buttonsPanel = new SWIPanel (parent, new BorderLayout());
but t onsPanel . add( Bor der Layout . NORTH, new SWISepar at or (butt onsPanel ) ) ;
SWIPanel subPanel =
new SWPanel (buttonsPanel, new Fl owLayout ( Fl owLayout . RI GHT) ) ;
but t onsPanel . add( Bor der Layout . CENTER, subPanel);

SWIBut t on okButton = new SWIButton(subPanel, "OK");
okBut t on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerforned(ActionEvent e) {
perfor moK() ;

1)
subPanel . add( okBut t on) ;

SWIBut t on cancel Button = new SWIButt on(subPanel, "Cancel");
cancel But t on. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerfornmed(ActionEvent e) {
per f or nCancel () ;

subPaneI .add(cancel Button);

return buttonsPanel ;

}

protected void initContent() {
for (int i =0; i < 10; i++) {
| ef tLi st Model . addEl enent ("lItem " + (i + 1));

}
rightLi st Mdel.addEl enent("lItem 11");
}

protected void perfornmX() {
Systemout. println("OK perfornmed");

}

protected void perfornCancel () {
System out. println("Cancel perforned");

}

private void updateButtonsState() {
sel ect Button. set Enabl ed(! | ef t Li st. get Sel ecti onModel ().isSel ecti onEnpty());
sel ect Al | Butt on. set Enabl ed(! 1 ef t Li st Model . i sEnpty());
desel ect But t on. set Enabl ed(
I'rightList.getSelectionhdel ().isSelectionEnpty());
desel ect Al | Butt on. set Enabl ed(! ri ght Li st Model . i seEnpty());

}

/1 1nplenentation of ListSelectionListener
public void val ueChanged(Li st Sel ecti onEvent e) {
if (e.getSource() == leftList.getSel ectionhMdel ()

Migrate your Swing application to SWT Page 93 of 97



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

|| e.getSource() == rightlList.getSelectionhMdel()) {
updat eButtonsStat e() ;
}
}

public static void main(String[] args) {
org. eclipse.sw.w dgets. Display display =
new org. ecli pse. sw.w dgets. Di splay();
org. eclipse.sw.wdgets. Shell shell =
new org. eclipse. sw.w dgets. Shel | (di spl ay);
shel | . set Layout (new Bor der Layout ());
new SWISanpl ePanel (new SWI'Cont ai ner (shel 1)) ;
shel | . pack();
shel | . open();
while (!shell.isDisposed()) {
if (!display.readAndDi spatch())
di spl ay. sl eep();

}
di spl ay. di spose();

Migrated panel

You can now launch the migrated code:

X L= (O] [¢]
available items: Chosen items:
— =

ltem 1 2 — 1 jtem 4

ltem & ==

[tem 3

[tem 5 — <

[tem &

ltem 7 | o

DI{| Cancel |
| |

The migrated panel has the same layout and same behavior as the original Swing panel. The
modifications that we have made in the code were purely syntactic. The original layout
managers, event listeners and data models have remained unchanged. We achieved this
migration without reengineering or even deeply understanding the original Swing code.

Page 94 of 97 Migrate your Swing application to SWT



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 7. Wrap-up and resources

Summary

In this tutorial, you have learned the main differences between AWT/Swing and SWT/JFace.
You also how to simplify the migration of an existing Swing application by first porting the
AWT layout managers to SWT, then creating wrapper classes around SWT controls that
emulate the API of Swing, and finally converting the SWT events into AWT events sent to
AWT listeners. You have also seen that Swing data models can be easily reused in
SWT/JFace.

You studied in detail the equivalent SWT component for each Swing component, and saw
the differences that exist and the issues you have to expect during the migration of your
application.

The sample code used in this tutorial provided a guide for applying the migration techniques
described in the first part of the tutorial to most of the standard Swing components. By using
this sample code in your project, you should be able to migrate a Swing Ul using standard
components and layout managers. I've even offered a simplified the migration of code to a
series of search-and-replace operations.

Finally, you saw a concrete example, where a Swing panel was ported to SWT by using this
method. Hopefully all this will help you port your legacy Swing and AWT code to the
higher-performing SWT toolkit.

Resources

Source code

« Download the sample code used in this tutorial -- the AWT layout managers converted to
SWT and the wrapper classes.

APIs

» Consult the Eclipse and SWT API at Eclipse.org.

» Consult the Swing API in the APl documentation of the J2SE platform.

General Eclipse and SWT articles

* Visit Eclipse.org for downloads, documentation, mail archives, and articles.
» Check out the IBM WebSphere Studio Application Developer 5.1.

» For Eclipse project development plans, a FAQ, and a list of handy SWT code snippets,
check out the component development resources.

» See collection of code snippets for the code illustrating the use of Tr eeEdi t or .

Migrate your Swing application to SWT Page 95 of 97


j-swing2swtsrc.zip
j-swing2swtsrc.zip
http://www.eclipse.org/documentation/html/plugins/org.eclipse.platform.doc.isv/doc/reference/api/index.html
http://www.eclipse.org/documentation/html/plugins/org.eclipse.platform.doc.isv/doc/reference/api/index.html
http://www.eclipse.org/documentation/html/plugins/org.eclipse.platform.doc.isv/doc/reference/api/index.html
http://www.eclipse.org/documentation/html/plugins/org.eclipse.platform.doc.isv/doc/reference/api/index.html
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://www.eclipse.org
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html#snippets
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html#snippets
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html#snippets
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html#snippets

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

« Read more about the GEF project.

* In"SWT: The Standard Widget Toolkit, Part 1" (Eclipse Corner, March 2001), Steve
Northover gives an introduction to the design strategies used in SWT.

* In"Plug a Swing-based development tool into Eclipse " (developerWorks, October 2002),
Terry Chan describes how to integrate a Swing application into the Eclipse platform.

« Read "Understanding Layouts in SWT" by Carolyn MacLeod and Shantha Ramachandran
(Eclipse Corner, May 2002) to get an introduction to SWT's layouts.

* In their articles "Getting your feet wet with the SWT StyledText widget" and "Into the deep
end of the SWT StyledText widget" (Eclipse Corner, September 2002), Lynne Kues and
Knut Radloff explain how to use the St yl edText widget to display and edit formatted text
in SWT.

Articles on resource management and garbage collection in SWT
* In"SWT: The Standard Widget Toolkit, Part 2," (Eclipse Corner, November 2001), Steve

Northover and Carolyn MacLeod provide a list of rules to follow to manage graphical
resources when programming in SWT.

» "SWT color model," James Moody and Carolyn MacLeod (Eclipse Corner, April 2001)
gives some tip about the management of color resources in SWT.

Articles on the JFace viewers API
* In his article "Using the Eclipse GUI outside the Eclipse Workbench" (developerWorks,

January 2003), Adrian Van Emmenis demonstrates the use of JFace viewers, content
providers, and label providers with SWT tables and trees.

* In his article "Building and delivering a table editor with SWT/JFace" (Eclipse Corner, July
2003), Laurent Gauthier explains how to build an editable and sortable table, using the
Tabl eVi ewer API of JFace.

« In"How to use the JFace Tree Viewer" (Eclipse Corner, May 2002), Chris Grindstaff
explains how to use the JFace Tr eeVi ewer API.

Additional resources

» Download the latest Eclipse technologies from IBM alphaWorks.

« Get the latest news on the Websphere Studio tools at the WebSphere Studio Zone.

« See the Java technology zone tutorials page for a complete listing of free Java-related
tutorials from developerWorks.

Page 96 of 97 Migrate your Swing application to SWT


http://www.eclipse.org/gef
http://www.eclipse.org/gef
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/SWT%20Color%20Model/swt-color-model.htm
http://www.eclipse.org/articles/SWT%20Color%20Model/swt-color-model.htm
http://www.eclipse.org/articles/SWT%20Color%20Model/swt-color-model.htm
http://www.eclipse.org/articles/SWT%20Color%20Model/swt-color-model.htm
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/eclipse
http://www-106.ibm.com/developerworks/websphere/zones/studio/
http://www-106.ibm.com/developerworks/websphere/zones/studio/
http://www-106.ibm.com/developerworks/websphere/zones/studio/
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

« Stay on top of the Eclipse platform at the developerWorks Open source projects zone.

» Find hundreds of articles about every aspect of Java programming in the developerWorks
Java technology zone.

Feedback

Please let us know whether this tutorial was helpful to you and how we could make it
better. We'd also like to hear about other tutorial topics you'd like to see covered.
Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Migrate your Swing application to SWT Page 97 of 97


http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/java/
http://www-136.ibm.com/developerworks/java/
http://www-136.ibm.com/developerworks/java/
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	About the author

	The history of Swing and SWT
	AWT and Swing
	SWT and JFace

	Differences between Swing and SWT
	Graphical resources and garbage collection
	The Swing component hierarchy
	The SWT component hierarchy
	Containers and layouts
	Data models and cell renderers vs. content providers and label providers
	Events

	Migrate your Swing code to SWT with minimal change
	Migrate the layout managers
	API mapping
	Trigger AWT/Swing event listeners from SWT
	Swing's models adapters: Reuse your Swing data models in SWT widgets
	Migrate Swing's cell renderers and editors

	Widgets
	Overview
	JButton, JToggleButton, JCheckBox, and JRadioButton
	JColorChooser
	JComboBox
	JDesktopPane, JInternalFrame, JLayeredPane, and JRootPane
	JEditorPane
	JFileChooser
	JLabel
	JList
	JMenu, JPopupMenu, and JMenuItem
	JOptionPane
	JPanel
	JProgressBar
	JScrollPane and JViewport
	JSeparator
	JSlider
	JSplitPane
	JTabbedPane
	JTable
	JTextField, JTextArea, and JPasswordField
	JToolBar
	JTree

	Complete example: Migrating a Swing dialog
	Our sample dialog
	Source code of the Swing panel
	Set up your build and run environment
	Migrate the Swing code to SWT
	Source code for the migrated panel
	Migrated panel

	Wrap-up and resources
	Summary
	Resources
	Feedback


