
Migrate your Swing application to SWT

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. The history of Swing and SWT....................................... 5
3. Differences between Swing and SWT 8
4. Migrate your Swing code to SWT with minimal change 14
5. Widgets .. 31
6. Complete example: Migrating a Swing dialog 81
7. Wrap-up and resources ... 95

Migrate your Swing application to SWT Page 1 of 97

Section 1. About this tutorial

What is this tutorial about?
Since its first release and its donation to the open source community in 2001, the Eclipse
platform has been continually gaining importance in the tool-provider community. The Eclipse
consortium already regroups more than 40 industry-leading companies that deliver or plan to
deliver tools that can be plugged in the Eclipse platform, or products based on the Eclipse
platform.

The advantages of the Eclipse platform for tool developers are obvious:

• For the first time, there is a high-performing, vendor-independent platform that has been
widely accepted by the industry.

• The platform's highly modular nature and great extensibility allow a seamless integration of
a variety of tools coming from different vendors. Users can get the best tools from different
providers, and use them together without having to worry about interoperability.

• By providing tools as Eclipse plugins, tools providers can cover with one release all the
Eclipse-based products on the market. They don't have to build a workbench around their
tool and can concentrate their effort on the development of their core features.

• The consistent UI among the different Eclipse tools reduces the learning curve for users.

One of the reasons for the success of the Eclipse platform is the performance of its user
interface compared to other Java applications. This level of performance was reached thanks
to the Standard Widget Toolkit (SWT), a widget library that was developed as an alternative
to Swing. SWT allows you to build cross-platform user interfaces that are as rich as Swing
UIs and that perform as well as native UIs.

Although programmers who try SWT tend to be very enthusiastic about it, this toolkit does
have a drawback: SWT is not compatible with AWT (the Abstract Window Toolkit) and
Swing. Mixing SWT and AWT panels in the same application can, in the worst case, cause
the JVM to crash on some platforms. Thus, if you want to deliver an existing Swing tool as an
Eclipse plugin, you need to rewrite its UI with SWT. This task can be very tedious for
complex UIs.

Considering the number of tools on the market that currently use a Swing UI, a bridge
technology or method that would allow developers to port an existing application from Swing
to SWT with a minimum of change would be in great demand. This is always a very hot topic
in the discussion forums about Eclipse and SWT.

The purpose of this tutorial is to introduce a methodology for such a migration. The
techniques presented here won't allow you to automatically port an existing application
without any code modification, but they will show you how to do a manual migration of the
Swing code with very few changes to the original code.

We will begin with a study of the main differences between AWT/Swing and SWT. We'll then
examine migration techniques that can be used to successfully port Swing code to SWT with

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 97 Migrate your Swing application to SWT

a minimum of change, and we'll compare each Swing component with its SWT equivalent in
detail, and discuss the problems you might encounter in porting. Finally, we'll work through a
concrete example where a Swing dialog is ported to SWT using the techniques we've
presented.

This tutorial includes sample code applying the described methods on the standard
components of the Swing library. You are free to use and modify this code in your own
projects.

Should I take this tutorial?
Before you take this tutorial, you should have a good knowledge of the Swing API, as well as
a basic knowledge of SWT. This tutorial was written for people who want to migrate a Swing
application to SWT, or for Swing programmers who want to know which features available in
Swing are also available in SWT, and what limitations they should expect. For this reason,
this tutorial uses a lot of terms and comparisons that are relevant specifically to Swing
development. It mainly focuses on how features available in Swing can be programmed in
SWT, not on features that are available in SWT but not in Swing.

This tutorial is neither an introduction to UI programming, nor an introduction to SWT. If you
need an introduction to SWT, you will find relevant links in Resources on page 95 that you
should read before taking this tutorial.

To complete this tutorial, you will need to install Eclipse 2.1 or an equivalent product (IBM
WebSphere Studio Application Developer 5.1 for instance), which includes the SWT
packages. You may also wish to review the SWT development resources.

Note that this tutorial is very comprehensive and will require significant time to complete.
However, it serves as excellent reference material. I recommend you download the PDF after
you complete the tutorial for offline viewing.

About the author
Yannick Saillet is a software engineer at the IBM
Laboratory of Boeblingen in Germany. Yannick
joined IBM Germany as software developer in
1998. He first worked for IBM Learning Services as
a software engineer in several distributed learning
projects. He joined the IBM Boeblingen Laboratory
in 2000 and since that date has been active in the
development of the DB2 Intelligent Miner products.
He received his master degree from the ESSTIN
(Ecole Superieure des Sciences et Technologies
de l'Ingenieur de Nancy) at the University of Nancy
in France.

For technical questions or comments about the
content of this tutorial, contact Yannick Saillet at
ysaillet@de.ibm.com, or click Feedback at the top

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 3 of 97

http://www.eclipse.org
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
mailto:ysaillet@de.ibm.com

of any panel.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 97 Migrate your Swing application to SWT

Section 2. The history of Swing and SWT

AWT and Swing
If you are reading this tutorial, you are probably quite familiar with AWT and Swing. In this
section, we will refresh your memory on the history and the basic architecture of these
libraries, so that you can better understand what makes SWT different.

AWT (the Abstract Windowing Toolkit) was the Java language's first widget library; it
accompanied version 1.0 of the language in early 1995. The original idea was to define a set
of widgets that were common to all platforms, and to map these widgets to the native
components of the underlying windowing system on each particular platform.

For each widget available in AWT, there is:

• A public Java class, defining the public API of the component. These classes, defined in
the package java.awt, are implemented once for all platforms.

• A native peer class relaying the API calls from the public class to the native widget. The
native classes form the JNI layer for the native API of the windowing system and are
reimplemented for each platform.

This approach originally seemed like a good idea. By introducing an abstraction layer
between the native API of the platform and the application itself, it allowed developers to
write user interfaces that could run on any platform, fulfilling Java technology's "Write Once,
Run Anywhere" motto. Furthermore, porting AWT to a new platform would only involve
porting the thin JNI layer for the new windowing system.

However, this architecture also had some major drawbacks. AWT did not perform well and
had a lot of bugs. More seriously, AWT's functionality was too limited. Because the approach
was to take only the least common denominator of all the windowing toolkits on the market, if
a certain feature was not available on a single platform, it was excluded from AWT. For this
reason, AWT doesn't provide such common components as trees, tables, tabbed panes, and
rich text, although these components are nowadays quite standard and used in nearly every
modern UI.

Swing came later and tried to solve this problem by providing a 100 percent pure Java
emulated library of widgets. The term emulated here means that Swing makes no use of any
native API to draw or create its widgets, but reimplements its own look and feel created from
scratch using the Java language only.

The advantage here is that the created widgets are very flexible -- nearly everything can be
customized -- and that the look and feel is exactly the same on all platforms. But Swing
unfortunately has several drawbacks as well:

• The API is complicated -- that's the price to pay for flexibility.

• The performance is not good; because everything is emulated and drawn using basic
Graphics2D calls, software and hardware optimizations from the native system are not
possible.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 5 of 97

• The look and feel of a Swing application are not exactly the same as those of a native
application. The developers of Swing keep trying to reproduce the look and feel of systems
like Windows, but they can't stay synchronized with new OS versions. Furthermore, the
customization of the colors and font schemes of the underlying windowing system are
difficult to propagate in the emulated widgets.

SWT and JFace
SWT (the Standard Widget Toolkit) is an alternative toolkit that was created by IBM and has
become popular due to its use in the Eclipse platform. SWT has now been donated to the
open source community along with the rest of the Eclipse platform.

SWT was created to solve the problems existing in AWT (lack of functionality) and Swing
(inconsistency with the native look and feel, and poor performance). This has been achieved
by using a solution that lies between the two extreme approaches represented by AWT
(using the smallest set of common features) and Swing (emulating everything). Like Swing,
SWT provides a rich collection of widgets with all the functionality required by a modern UI --
but like AWT, SWT also makes use of the native widgets and libraries of the underlying
platform.

The collection of widgets provided by SWT includes all the components a UI programmer
might need to build a modern user interface: trees, tables, progress indicators, sliders,
tabbed panes, and so on. Although the internal implementation makes use of a proprietary
API on each platform, the public API, against which a UI developer will program, is
completely OS-independent and quite simple to use -- like AWT.

The reason why SWT can offer much more functionality than AWT is that it uses native
widgets where possible, but emulates widgets that may not be available on a specific
platform, just like Swing does for all widgets. For example, Motif doesn't provide any tree
component, but Windows and GTK do. The implementations of the tree widget under
Windows and GTK simply make use of the native widgets. The Motif implementation
emulates a tree by combining several simpler widgets. The programmer using SWT doesn't
notice the difference, because the public API is the same for all platforms. The emulated
widget under Motif may not perform as well as a native widget would, but this performance
issue would only concern this particular widget on this particular platform.

SWT is a standalone library. It doesn't make use of any AWT classes, and has no
dependency on Eclipse itself. Thus, you can see SWT as an alternative to AWT or Swing.
The advantages are obvious:

• Because, for the most part, it uses native components, SWT preforms much better than
Swing.

• With SWT, you get a better integration with the underlying windowing system. The look
and feel are that of the underlying system, and the color and font schemes of the system
are used. A Java application using SWT cannot be distinguished from a native application.

• SWT has already been ported to most of the platforms on the market, so platform port is
not an issue.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 97 Migrate your Swing application to SWT

For more information on the design of SWT, read "SWT: The Standard Widget Toolkit, Part
1" by Steve Northover. A link to this article is available in Resources on page 95 .

JFace is a pure Java API that groups SWT widgets into a set of more complex components
or frameworks with a higher level of functionality. SWT only provides the basic components
comprising a user interface, such as buttons, lists, text fields, and so on. JFace provides the
more complex dialogs and UI components that are quite often reused when building a UI.
Examples of such components include wizard dialogs, preference dialogs and progress
indicators.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 7 of 97

Section 3. Differences between Swing and SWT

Graphical resources and garbage collection
Switching from AWT/Swing to SWT doesn't just mean learning a new API; it also requires
former Swing programmers to change some of their habits and to care about new coding
rules they didn't have to deal with in the Swing world.

SWT uses a completely different philosophy than AWT and Swing do when it comes to
handling graphical resources. In AWT and Swing, you can, in most cases, rely on the JVM's
garbage collector to free up graphical resources (image handles, colors, cursors, fonts,
widgets, etc.) when these are not needed anymore. I emphasize the words "in most cases,"
because even in AWT this isn't always the case. For example, a java.awt.Image must be
freed up explicitly by invoking the method flush() if you want the pixels to be freed.
Programmers of applications making heavy use of images often fall into the trap of thinking
that if the garbage collector finalizes the reference to an image, it will free up the platform
resources assigned to it as well. Then they wonder where the memory leaks in their
applications come from. There are some other examples of resources that have to be
explicitly freed up in AWT -- java.awt.Dialog and java.awt.Graphics both have a
dispose() method, for instance -- while other resources, such as fonts or colors, are
automatically released by the garbage collector. This is quite confusing for programmers.

SWT uses a different approach: All SWT objects allocating platform resources (Color,
Cursor, Display, Font, GC, Image, Printer, Region, Widget, and their subclasses)
have to be explicitly discarded. The JVM's garbage collector will finalize unreferenced SWT
objects, but it will not dispose of the platform resources used by them. Thus, if you delete all
the references to one of these objects without having previously discarded it, you will have a
memory leak. This sounds like a very constricting rule, but it is a clear rule and it is the price
you pay for better UI performance.

To avoid resource leaks in an SWT application, you must follow this simple rule: If you
instantiate an object that consumes graphical resources, you have to dispose of it yourself.
Objects obtained from getters, diverse methods, or parameters should not be discarded by
the code obtaining them, because the objects were not created there, and may be used by
other parts of the application. The only exceptions are widgets: Disposing of a parent
container will automatically dispose of all its children.

If you follow this rule, you won't have any problem with memory leaks of graphical resources.

Note that JFace provides helper classes and frameworks to help you to manage and discard
resources (fonts and images) that may be shared by several components. These classes are
contained in the package org.eclipse.jface.resource.

If you want to get a better understanding of the rules listed above, and the reasons why SWT
doesn't behave like AWT when managing graphical resources, read "SWT: The Standard
Widget Toolkit, Part 2" by Steve Northover and Carolyn MacLeod. A link to this article is
available in Resources on page 95 .

The Swing component hierarchy

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 97 Migrate your Swing application to SWT

The most obvious difference between Swing and SWT is the component hierarchy. To
facilitate the comparison between the Swing's and SWT component hierarchies, I've
illustrated Swing's component tree in the following figure:

The boxes with a yellow background represent ready-to-use widgets that can be deployed in
a user interface. The boxes with a blue background represent abstract classes that are not
intended to be used directly.

As you can see, nearly all Swing components directly inherit from JComponent, which is
itself a subclass of an AWT Container.

The SWT component hierarchy
Now let's take a look at SWT's component hierarchy:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 9 of 97

As you can see, the number of available widgets here is pretty similar to what Swing offers,
but the names and the hierarchy of the components is quite different.

• The superclass for all SWT components is Widget, which directly inherits from Object.

• The two most important subclasses of Widget are Control and Item. Control is the
superclass for all widgets that can be added in a parent container and whose position and
size can be set. Item is the superclass for components or sub-components that can only
exist within another specific component, such as menu items, toolbar items, table rows or
column, etc.

• Seven widgets directly inherit from Control. Six of these subclasses are simple
components that don't allow children, such as buttons or labels. Scrollable is an
abstract class, and is the superclass of all components that may be scrollable (tables, lists,
text fields, and so on).

• Composite is an important class in the component hierarchy. It is the equivalent of AWT's
Container and is the superclass of all components that allow children to be placed in
them.

The correspondence between each Swing component and its equivalent in SWT will be
introduced in Widgets on page 31 .

Containers and layouts

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 97 Migrate your Swing application to SWT

The equivalent of an AWT Container is an SWT Composite. As with a Container, you
can add controls to a Composite, and set a layout manager that will relocate and resize the
children as the parent composite is being resized.

However, there are some differences in this domain between AWT and SWT. If you look at
the API documentation of Composite, keeping in mind that it is the equivalent of an AWT
Container, you may be surprised to see that there is no direct equivalent for the methods
add(...) or remove(...), which in AWT allow you to add a child to or remove a child
from its parent.

SWT controls are automatically added to their parent at construction time. When you
construct an SWT control, the first parameter required by the constructor is always the
reference to the parent composite. For this reason, Composite doesn't provide any
add(...) method, as AWT's Container does. Although Control has a
setParent(Composite) method that allows you to reparent a control -- that is, to remove
it from its original parent and add it to a new parent -- this feature is not available for all
widgets and all platforms, so you can't rely on it if your application has to be cross-platform.
For example, Motif doesn't allow a control to be reparented. To test if this feature is
supported by a particular platform or widget, you can use the method
Control.isReparentable(). Invoking setParent(Composite) on a widget that is not
reparentable will throw an exception.

Because the addition to the parent composite is done during the instantiation of a control, the
order in which controls are instantiated defines the index the controls have in their parent.
The index of a control in its parent may have an influence on the way the layout manager
places it in the container. This can be an issue when porting existing Swing code, because in
AWT/Swing, the order of instantiation of the children is not important -- in fact, a child can be
instantiated before its parent. Only the order of addition of the children plays a role. When
porting Swing code, you may have to change the order of creation of some widgets to get the
same result as in Swing.

Composite doesn't provide a remove(...) method to remove a child as AWT's
Container does. To remove a control from its parent, you have to dispose of it. However,
you should be aware that a control that has been discarded can't be used anymore. There is
no way to add a control to its parent again after it has been eliminated. You have to
instantiate a new control again. Here, you don't have the flexibility of AWT, which allows you
to remove a component, keep it instantiated offscreen, and later add it again to the same or a
different parent.

Like AWT, SWT makes use of layout managers to place children of a container. The layout
algorithms that are available are different, however. To get an overview of the SWT layout
algorithms, read "Understanding Layouts in SWT" by Carolyn MacLeod and Shantha
Ramachandran. A link to this article is available in Resources on page 95 .

As in AWT, some SWT layouts require you to set some layout constraints on widgets so that
you can influence how the children of a container are going to be laid out. In AWT, you set
this constraint by passing it as the second parameter to the method
Container.add(Component, Object). Because Composite doesn't provide any
method to add a child, you have to set it by invoking a method named
setLayoutData(Object) on the child component itself.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 11 of 97

Data models and cell renderers vs. content providers
and label providers
One of the most beautiful aspects of Swing's architecture is its strict adherence to the
Model-View-Controller pattern. The clean separation between model, view, and controller
can be above all observed in components like JTable or JTree, which use a data model:

• A data model provides, in an unformatted form, the raw content to be displayed by the
component.

• The component uses a cell renderer to display the content of each cell in the component.
Swing allows the cell renderer to be any kind of Swing component.

• The controller role -- modification of the model and of the presentation after a user
interaction -- is assumed by the component itself.

SWT components don't have such a clean separation between model, view, and controller. If
you create a table or tree using the SWT API only (that is, without using JFace), you'll
probably miss the data models and cell renderers used in Swing. Creating a table using only
the pure SWT API obliges you to create each row and each column like a standard control in
a container, and to initialize them with rendered text and images. There is no support in SWT
for data models.

Fortunately, on top of the standard SWT controls, JFace provides a framework that is
comparable to the concepts used in Swing. To use this framework, you have to instantiate a
JFace viewer on top of the basic SWT table or tree. There are different viewers specialized
for each kind of control: TableViewer for a table, TreeViewer for a tree, etc. A viewer is a
class that will extract data from a data model and automatically create and initialize the rows
or items to display.

The equivalent of Swing's data model is in JFace called a content provider (see
org.eclipse.jface.viewers.IContentProvider). Like a Swing TreeModel or
TableModel, a content provider provides unformatted raw data that has to be displayed in
the component. Unlike Swing's data models, JFace's content providers don't contain the data
itself; instead, they extract that data from an input object that can be any kind of object. In
this way, a JFace content provider acts as a data extractor: it knows how to extract data from
a specific sort of input object, and provides a public interface used by the viewer to fill the
underlying SWT component.

The equivalent of Swing's cell renderers in JFace is called a label provider (see
org.eclipse.jface.viewers.ILabelProvider). Like Swing's renderers, the label
provider defines how raw data provided by the content provider has to be displayed in the
SWT component. JFace is here not as flexible as Swing is. In SWT/JFace, a cell of a tree or
a table can only be represented by an icon and/or text. If you need custom rendering for
some other kind of data, you have to display the renderer into an image and make the label
provider return that image.

For more information and examples of how to use JFace viewers, read the related articles in
Resources on page 95 .

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 97 Migrate your Swing application to SWT

Events
Like AWT and Swing, SWT lets your application react to user interactions by registering
event listeners on components. There is not much difference in this area; the events thrown
are all subclasses of java.util.EventObject, and the kind of events that are thrown,
along with the listeners or adapters that are notified, are comparable to those in AWT and
Swing.

Of course, the hierarchy of the events and their associated listeners is different. In Widgets
on page 31 , we'll see what kind of events are thrown for SWT controls, and compare each to
its Swing equivalent.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 13 of 97

Section 4. Migrate your Swing code to SWT with minimal
change

Migrate the layout managers
The layout managers -- the algorithms that define the location of the components of a
container and how they are resized when the size of the container changes -- are the core of
the UI design of a panel or dialog. Usually, when you design a panel, you first draw on a
piece of paper the components that will compose the piece of GUI you are designing. Then
you decide which layout managers are going to be used and, eventually, how the
components will be grouped in invisible panels using other layout managers, so that the
result looks like what you have originally designed. Thus, a GUI is typically made up of a
combination of simple widgets and panels having their own layout and containing other
widgets. When complex layout managers are used, each widget is additionally initialized with
some layout information, which is interpreted by the specific layout manager in use.

Although the concept of a layout manager is quite common in most UI toolkits, each toolkit
usually defines its own layout algorithms, which are not available in the other toolkits.
AWT/Swing and SWT unfortunately confirm this rule: The most commonly used AWT layout
managers, such as BorderLayout, GridBagLayout, and FlowLayout, have no direct
equivalent in SWT. Of course, the layout managers provided by SWT are as powerful as
those provided by AWT, but when you port an existing GUI, you'll need to design the layout
of the UI again, so that you get the same layout with the new algorithms.

Thus, the layout managers used by the Swing application that you want to migrate are the
first things that you should port to SWT. Most Swing applications always reuse a small
number of layout managers. Porting them to SWT takes some extra work at the beginning of
a project, but will save a lot of time during the migration of the GUI itself.

Porting an AWT layout manager to SWT doesn't present any technical problems because the
methods to implement in order to create a new layout manager are quite similar in both
toolkits. Creating an AWT layout manager -- a subclass of java.awt.LayoutManager --
requires you to implement the three following methods:

• public Dimension minimumLayoutSize(Container parent): Computes the
minimum size that a parent container should have when using this layout.

• public Dimension preferredLayoutSize(Container parent): Computes the
preferred size that a parent container should have when using this layout.

• public void layoutContainer(Container parent): Sets the size and location of
the children of the parent container.

Creating an SWT layout -- a subclass of org.eclipse.swt.widgets.Layout -- requires
you to implement the two following methods:

• protected Point computeSize(Composite parent, int wHint, int hHint,
boolean flushCache): Computes the size that a parent composite should have when
using this layout.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 97 Migrate your Swing application to SWT

• protected void layout(Composite parent, boolean flushCache): Sets the
size and location of the children of the parent composite.

As you can see, the methods of an SWT layout are quite similar to the methods of an AWT
layout manager. SWT has no equivalent for AWT's minimum size of a component. That
means that all that you have to do is to port the algorithm of AWT's
preferredLayoutSize(Container) into SWT's computeSize(Composite, int,
int, boolean), and to port the algorithm of AWT's layoutContainer(Container)
into SWT's layout(Composite, boolean).

If you own the source code of the AWT layout manager to port, you can easily do this with a
couple of search-and-replace actions to adapt the layout algorithm to the SWT API.

You may think that I've made porting the standard AWT layout managers sound easier than it
is. But here's some good news: I've already done the job for the standard AWT layout
managers, so that you just have to concentrate on those layout managers that you wrote
yourself.

You'll find the source code of the ported AWT layout managers in the following files of the
j-swing2swtsrc.zip download in Resources on page 95 . Feel free to reuse this code in your
projects, and eventually modify it to your needs.

For more information on the SWT layout, read "Understanding Layouts in SWT," by Carolyn
MacLeod and Shantha Ramachandran. A link to this article is available in Resources on
page 95 .

API mapping
After the layout managers you used in your Swing code have been ported to the SWT world,
you will be confronted with the next problem: the differences existing between the Swing and
SWT APIs. This is the most obvious problem when you port a GUI from one toolkit to the
other: Nearly all the functionality you used in the Swing toolkit is also available in the SWT
toolkit, but the class hierarchy, and the names of the methods and their syntax, are different
in the new toolkit.

Your first strategy in tackling this problem may be to undertake a manual translation job: you
analyse each line of code of your existing Swing GUI, search in the SWT documentation for
an equivalent, and rewrite the code again with the new API

This strategy may be the fastest one if you only have a small amount of code to port, but if
you plan to port a complete application with several dozen panels and dialogs, it can quickly
turn into an astronomical amount of work.

There is a much better strategy to use. For each Swing component used by your application
(see The Swing component hierarchy on page 8), you can write a wrapper class around the
equivalent SWT component. Each wrapper class provides the same methods with the same
syntax as the Swing component it emulates. Each of these methods invokes the equivalent
method in the wrapped SWT component, ensuring the proper translation between the syntax
used in Swing and that used in SWT.

The result of this work, which you should undertake before the migration of your code takes

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 15 of 97

place, is a component hierarchy that is the mirror of the Swing component hierarchy, but has
no dependency on any Swing or AWT class. The implementation of the Swing API
exclusively invokes SWT methods.

This may seem like extra labor on your part, but it reduces a lot the work necessary to
migrate your code: Because the SWT components can be controlled with an API that is a
clone of the Swing API, you can migrate your code with simple search-and-replace
operations.

The following code snippet shows you what such a wrapper class would look like.
SWTComponent is the wrapper class on top of the wrapper class hierarchy. It corresponds to
Swing's JComponent.

public class SWTComponent {
(...)
/**
* SWT control to which this object is doing the API mapping.
*/
protected Control control;
(...)
/**
* Constructs a new API mapper on an existing SWT control.
* @param control the SWT control whose API is mapped
*/
public SWTComponent(Control control) {
this.control = control;
control.setData(KEY_SWT_COMPONENT, this);

}

/**
* Returns the SWT control whose API is mapped by this object
*/
public final Control getControl() {
return control;

}

//--- emulation of the AWT/Swing methods ---

public final int getHeight() {
return control.getSize().y;

}

public final Point getLocationOnScreen() {
return control.toDisplay(0, 0);

}

(...)

public final SWTContainer getParent() {
return (SWTContainer)getSWTComponent(control.getParent());

}

(...)

public final boolean hasFocus() {
return control.isFocusControl();

}

public final void requestFocus() {
control.setFocus();

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 97 Migrate your Swing application to SWT

}

(...)

public final void setPreferredSize(Dimension preferredSize) {
getControl().setData(KEY_PREFERRED_SIZE, preferredSize);

}

public final Dimension getPreferredSize() {
// check if a preferred size was set with setPreferredSize
Dimension preferredSize =
(Dimension)getControl().getData(KEY_PREFERRED_SIZE);

// if not, compute it with computeSize
if (preferredSize == null) {
Point size = getControl().computeSize(SWT.DEFAULT, SWT.DEFAULT);
preferredSize = new Dimension(size.x, size.y);

}
return preferredSize;

}

(...)

//--- Helper methods ---

/**
* Returns the SWTComponent controlling a specific SWT control
* @param control the SWT control
* @return the SWTComponent assigned to it, or null if none.
*/
public static SWTComponent getSWTComponent(Control control) {
return (SWTComponent)control.getData(KEY_SWT_COMPONENT);

}

}

This snippet is only a small part of the complete implementation. The complete source code
for SWTComponent is in the j-swing2swtsrc.zip file in Resources on page 95 .

You'll notice that:

• The field control stores the reference to the wrapped SWT control.

• The method getLocationOnScreen() illustrates the emulation of the Swing API on top
of SWT. This method emulates java.awt.Component.getLocationOnScreen(), the
AWT method that returns the absolute coordinates of a component on the screen. SWT
has a similar method, but with a different syntax: Control.toDisplay(int, int)
converts coordinates in the coordinate system of the control to coordinates in the system
of the screen. By passing (0,0) as parameters, you get the absolute coordinates of the
component on the screen. With this method, you can use the AWT API on an SWT control,
and you don't need to modify the existing code invoking Swing methods. Because the
method is final, the compiler inlines the core of the method -- the code using the SWT
API -- where it is invoked, so that you don't incur any performance penalty by using the
wrapper class instead of rewriting your code with the SWT API.

• The method setPreferredSize(Dimension) stores the preferred size as user data in
the SWT control. With Widget.setData(String key, Object value), SWT lets
you store any widget data in a kind of hashtable. This data can be retrieved at any time by
invoking getData(String key) on the widget. Because SWT doesn't let you set the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 17 of 97

preferred size of the component, we use user data to store this information. The
implementation of getPreferredSize() first checks to see if a preferred size was
previously set with setPreferredSize(). If not, it invokes the method
computeSize(...), which is the equivalent of AWT's getPreferredSize(). The
layout managers introduced in Migrate the layout managers on page 14 check for each
component to lay out if a preferred size was stored as user data in the component.

Because javax.swing.JComponent is an abstract class without a constructor, the only
constructor available in SWTComponent takes an already instantiated SWT control as its
parameter. This constructor allows you to instantiate a wrapper class on any existing SWT
control that may have been instantiated somewhere else in your application.

The following example shows you how a wrapper class can be instantiated around an
existing SWT component. The object button is an SWT button created and initialized with
the SWT API. By instantiating the class SWTComponent presented earlier in this section,
with the SWT button passed as an argument in the constructor, you create a wrapper class
that allows you to use the AWT/Swing API on the SWT component. When
getLocationOnScreen() (from the Swing API) is invoked on the wrapper, the wrapper
converts the call into its SWT API equivalent and invokes the corresponding SWT method on
the wrapped SWT component. In this way, you can at any time use the Swing syntax of a
method on an SWT component. The method SWTComponent.getControl() lets you
retrieve the reference of the wrapped SWT component from the wrapper class. This can be
useful if you need to invoke an SWT method and only have a reference to the wrapper class.

Button button = new Button(parent, SWT.PUSH);
(...)
SWTComponent wrapper = new SWTComponent(button);
// from here you can use the AWT/Swing API on the button...
Point pt = wrapper.getLocationOnScreen();
// ... or use the SWT API at your convenience
wrapper.getControl().addDisposeListener(listener);

The wrapper class for a non-abstract component would emulate the Swing constructors as
well, so you can instantiate an SWT control and its wrapper class with a single invocation of
the constructor of the wrapper class.

The following code snippet shows the wrapper class of Swing's JLabel:

public class SWTLabel extends SWTComponent {

public SWTLabel(Label label) {
super(label);

}

public SWTLabel(SWTContainer parent) {
this(new Label(parent.getComposite(), SWT.NONE));

}

public SWTLabel(SWTContainer parent, String text) {
this(parent);
getLabel().setText(text);

}

public SWTLabel(SWTContainer parent, String text, int horizontalAlignment) {
this(parent, text);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 97 Migrate your Swing application to SWT

setHorizontalAlignment(horizontalAlignment);
}

public Label getLabel() {
return (Label)getControl();

}

public void setText(String text) {
getLabel().setText(text);

}

public String getText() {
return getLabel().getText();

}
(...)

}

This snippet is only a small part of the complete implementation. The complete source code
of SWTLabel is in the j-swing2swtsrc.zip download in Resources on page 95 .

Because SWT requires that the parent of a control be passed as an argument when
constructing a new control (remember, an SWT control is added automatically to its parent at
creation time), the constructor of the wrapper class always requires one more parameter
than its Swing equivalent: the reference to the parent container needs to be passed to the
constructor.

The constructor of the wrapper class is the only part of the wrapper API that differs from its
Swing equivalent. The migration of Swing code is easy, however. As an example, consider
following Swing code:

JLabel label = new JLabel("Label Text", SwingConstants.CENTER);

It can be ported to SWT as follows:

SWTLabel label = new SWTLabel(parent, "Label Text", SwingConstants.CENTER);

As with the layout managers presented in the previous section, you will find wrapper classes
for all the main Swing components included with the sample code provided with this tutorial
(see Resources on page 95). Feel free to use these classes in your projects and eventually
modify them to implement Swing methods I may not have implemented.

For more information on the individual Swing components' wrapper classes, read the panels
describing the migration of the various components later in this tutorial -- see Widgets on
page 31 to get an overview.

Trigger AWT/Swing event listeners from SWT
The code of a Swing application can usually be divided into three categories: model, view,
and controller, as defined in the famous design pattern.

• Code belonging to the view defines what the GUI looks like, such as: how the widgets are
arranged, with which properties (colors, font, etc.) they are initialized, and so on.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 19 of 97

• Code belonging to the model is responsible for filling the content of the widgets -- how the
tables, lists, trees, and similar components are filled.

• Code belonging to the controller category how the widgets and panels interact with each
other -- what happens when a specific button is pressed, for example, or when a specific
item in a table is selected.

With the migration of the layout managers and the API mapping of the widgets composing
your panel, you have ported the code belonging to the view category. That means that if you
comment out all the code of your application that has not yet been ported by using the
migration techniques described in the previous panels, and then run your application, a GUI
similar to the original Swing application should show up without content and logic because
the widgets are still empty and don't trigger actions when the user interacts with them.

In this panel, we will focus on the controller code. In Swing, this is mainly made up of
AWT/Swing event listeners, triggered by user interactions with the GUI.

The concept of event listeners, like the concept of layout managers, is something that is used
by most of the modern GUI toolkits, but which is implemented differently in each toolkit. For
example, to trigger an action when the user presses a button, Swing lets you register an
ActionListener on that button, and implement the method
actionPerformed(ActionEvent) in the listener itself. If you want to program the same
behavior in SWT, you have to register a SelectionListener on the button, and
implement the method widgetSelected(SelectionEvent) in the listener. Even if both
toolkits throw the same kind of events, the class hierarchy and the API to catch those events
is completely different. Thus, without a good migration technique, porting the controller code
of a Swing application would be as tiresome as migrating the widgets themselves if you had
to do it by hand.

To solve this problem, we will use the same technique that we used for the API mapping. As
we saw in the previous section, this mapping was realized by constructing wrapper classes
around SWT controls, with a public API that is similar to Swing's API. These wrapper classes
can be improved so that they not only map the methods, but also the events.

To be able to do the event mapping, each wrapper class will store a list of AWT listeners and
provide the add/removeXXXListener(XXX) methods defined in the AWT/Swing API of the
widget to port. Additionally, the wrapper class will listen to the SWT events thrown by the
wrapped SWT control. When an SWT event is detected -- for example, when a
SelectionEvent is detected after a button has been pressed -- the corresponding AWT
event is created and thrown to the AWT listeners that have been registered in the wrapper
class.

By using this technique, you need not migrate your AWT/Swing listeners. The event mapping
is programmed once in the wrapper classes, so the AWT/Swing listeners are notified when
the user interacts with the SWT control.

The following code snippet illustrates how such an event mapping can be implemented. This
is a snippet of the wrapper class corresponding to Swing's AbstractButton. The only
event that is mapped here is the SelectionEvent of SWT, which has to be converted into
an AWT ActionEvent and thrown to the registered ActionListeners.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 97 Migrate your Swing application to SWT

public class SWTAbstractButton
extends SWTComponent
implements SelectionListener{

public SWTAbstractButton(Button button) {
super(button);
button.addSelectionListener(this);

}

public Button getButton() {
return (Button)getControl();

}

(...)

public void setAction(Action action) {
String actionName = (String)action.getValue(Action.NAME);
if (actionName != null)
getButton().setText(actionName);

addActionListener(action);
}

public void addActionListener(ActionListener listener) {
eventListenerList.add(ActionListener.class, listener);

}

public void removeActionListener(ActionListener listener) {
eventListenerList.remove(ActionListener.class, listener);

}

//--------------- implementation of SelectionListener ------------------

public void widgetDefaultSelected(SelectionEvent e) {}

public void widgetSelected(SelectionEvent e) {
// propagate an Action event to the ActionListeners
ActionEvent actionEvent = null;
EventListener[] actionListeners =

eventListenerList.getListeners(ActionListener.class);
for (int i = 0; i < actionListeners.length; i++) {

if (actionEvent == null)
actionEvent =
new ActionEvent(
this,
ActionEvent.ACTION_PERFORMED,
getButton().getText());

((ActionListener)actionListeners[i]).actionPerformed(actionEvent);
}

}

This snippet was only a part of the complete implementation. The complete source code of
SWTAbstractButtonis in the j-swing2swtsrc.zip download in Resources on page 95 .

The important parts of the code are formatted in bold:

• In the constructor SWTAbstractButton(Button), the wrapper class registers itself as
an SWT selection listener on the wrapped SWT component.

• AWT ActionListeners can be registered and deregistered in the wrapper class by

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 21 of 97

using the methods add/removeActionListener(ActionListener). The listeners are
stored in a protected EventListenerList declared in the superclass SWTComponent.
The list of listeners in SWTComponent is declared as follows:

protected EventListenerList eventListenerList = new EventListenerList();

• When the user presses the SWT button, the method
widgetSelected(SelectionEvent) is invoked by SWT. The core of this method
checks to see if some AWT ActionListeners are registered, builds an equivalent AWT
ActionEvent, and notifies all the registered AWT listeners.

By implementing the event mapping in the wrapper classes, we make the migration of Swing
code using listeners straightforward. Consider the following Swing code:

JButton button = new JButton("OK");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
// do action

}
});

It will be migrated as follows (the modified parts are in bold):

SWTButton button = new SWTButton(parent, "OK");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
// do action

}
});

The wrapper classes provided with this tutorial's sample code (see Resources on page 95)
already perform event mappings for most of the events you may have used in your Swing
application. If your project listens for events that are not mapped in the sample code, feel
free to use the code as basis for implementing the missing features in your project.

For more information on the individual Swing components' wrapper classes, read the
sections describing the migration of the various components later in this tutorial -- see
Widgets on page 31 to get an overview.

Swing's models adapters: Reuse your Swing data
models in SWT widgets
Now we are going to focus on the port of the data models used by your Swing application.

In Data models and cell renderers vs. content providers and label providers on page 12 , we
saw that JFace's viewers allow you to separate the data model used to fill a widget from the
widget itself, just as Swing's data models do. However, although the basic idea is the same,
the API and the way JFace's viewers and content providers work is quite different from
Swing's TableModel, TreeModel, or ListModels.

At first glance, it looks like these differences will oblige you to entirely migrate your Swing

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 97 Migrate your Swing application to SWT

data models to JFace content providers. This conversion could be tedious, especially if your
code uses customized model classes that extract the data from an external source.

Fortunately, it's not necessary to migrate the models themselves. We have seen previously
that the content providers used by JFace's viewers are not data containers, but rather are
data extractors. Content providers can be written to extract data from any kind of input
object, including a Swing data model. It is quite easy to write a custom content provider to
extract data from any kind of Swing data model and fill an SWT component with that data.

The following code snippet demonstrates how a JFace TableViewer can be filled with data
from a Swing TableModel:

public class SWTTable extends SWTComponent
implements TableColumnModelListener, ListSelectionListener, SelectionListener,

PropertyChangeListener, ControlListener {

/** SWT's TableViewer on the table component */
private TableViewer tableViewer;

/** Swing's TableModel */
private TableModel model;
(...)
//--

public SWTTable(Table table) {
super(table);
table.addSelectionListener(this);
tableViewer = new TableViewer(table);

tableViewer.setContentProvider(new TableModelContentProvider());
tableViewer.setLabelProvider(new TableModelLabelProvider());
(...)

}

public SWTTable(SWTContainer parent) {
this(parent, new DefaultTableModel());

}

public SWTTable(SWTContainer parent, TableModel model) {
this(parent, model, null);
setColumnModel(createDefaultColumnModel());
createDefaultColumnsFromModel();

}

public SWTTable(SWTContainer parent, Vector rowData, Vector columnNames) {
this(parent, new DefaultTableModel(rowData, columnNames));

}
(...)
//----

public final Table getTable() {
return (Table)getControl();

}

public final TableViewer getTableViewer() {
return tableViewer;

}

public final TableModel getModel() {
return model;

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 23 of 97

public final void setModel(TableModel model) {
this.model = model;
tableViewer.setInput(model);
createDefaultColumnsFromModel();

}

public final void setValueAt(Object value, int row, int column) {
getModel().setValueAt(value, row, convertColumnIndexToModel(column));
TableViewer tv = getTableViewer();
tv.refresh(tv.getElementAt(column), false);

}
(...)
//---

/**
* Content Provider taking as input the content of the Swing TableModel
*/

private class TableModelContentProvider
implements IStructuredContentProvider {
public Object[] cachedElements;

/**
* Takes as argument the current Swing TableModel used by the table
* and returns an array of Vectors containing the content of the model.
* Each vector represents a row in the model.
*/
public Object[] getElements(Object inputElement) {

if (cachedElements != null)
return cachedElements;

if (inputElement instanceof TableModel) {
TableModel tm = (TableModel)inputElement;
Vector[] rows = new Vector[tm.getRowCount()];
for (int i = 0; i < tm.getRowCount(); i++) {
rows[i] = new Vector(tm.getColumnCount());
for (int j = 0; j < tm.getColumnCount(); j++) {
rows[i].add(tm.getValueAt(i, j));

}
}
cachedElements = rows;

}
return cachedElements;

}

public void dispose() {
cachedElements = null;

}

public void inputChanged(Viewer viewer, Object oldInput, Object newInput) {
cachedElements = null;

}
}

/**
* LabelProvider delegating the formatting to a SWTCellRenderer
*/

private class TableModelLabelProvider implements ITableLabelProvider {
public Image getColumnImage(Object element, int columnIndex) {

return null;
}

public String getColumnText(Object element, int columnIndex) {
if (element instanceof Vector) {

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 97 Migrate your Swing application to SWT

Object item = ((Vector)element).get(columnIndex);
if (item == null) return "";
else return item.toString();

} else return "";
}

public void addListener(ILabelProviderListener listener) {}
public void dispose() {}
public boolean isLabelProperty(Object element, String property) {
return true;

}
public void removeListener(ILabelProviderListener listener) {}

}
(...)

}

This snippet is only a part of the complete implementation of the wrapper class for JTable.
The complete source code for SWTTable is in the j-swing2swtsrc.zip download in Resources
on page 95

The important part of the code is in bold:

• When the wrapper class is constructed on top of an SWT table, it automatically creates a
JFace viewer on it and sets a customized content provider and a label provider.

• When setModel(TableModel) is invoked to set the Swing model, the model is passed
to the content provider as new input, so that the rows of the table are reconstructed to
display the new model.

• The inner class TableModelContentProvider is the most interesting part of the code.
It does the conversion between the Swing TableModel API and the API of the JFace
content provider. The method getElements(Object) returns an array of vectors; each
vector contains the data for a single row of the model. For performance reasons, the
extracted rows are cached until a new model is used.

• The inner class TableModelLabelProvider extracts (from the row vector provided by
the content provider) the elements contained in each cell of the row, and converts them to
the string to be displayed in the SWT table. We will see in the next panel how this label
provider can be improved to have functionality similar to Swing's cell renderers.

If you look in the wrapper classes SWTList and SWTTree, you will see how a similar method
can be used to adapt Swing ListModels and TreeModels to JFace viewers. These
classes are available in the source code in Resources on page 95 .

Migrate Swing's cell renderers and editors
In Data models and cell renderers vs. content providers and label providers on page 12 we
saw that the JFace equivalent for a Swing cell renderer is a label provider. Label providers
are not as flexible as Swing cell renderers, because they don't allow you to use any kind of
component to render a cell. In SWT, a table, tree, or list cell is basically represented as a
label with an image and text. This means that complicated Swing renderers can't be migrated
easily to SWT.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 25 of 97

Fortunately, in most cases the renderers that are used in Swing applications are themselves
some kind of labels, with text and an icon. This kind of renderer can be converted easily into
a JFace label provider.

From my experience as a Swing programmer, the typical scenario in which customized cell
renderers are used with tables, trees, or lists goes something like this:

• The data model contains non-String objects, which have to be represented in the
application with a String that is different from the String returned by the toString()
method. Typical examples are:
• The data are Numbers or Dates and have to be formatted with a NumberFormat or a
DateFormat, the formatting being locale dependent.

• The data are objects that can't be easily represented with a string, and a custom icon
has to be used. Typical examples are Colors or boolean values.

• A default cell renderer in Swing is subclassed (DefaultListCellRenderer for a list,
DefaultTreeCellRenderer for a tree, or DefaultTableCellRenderer for a table).
These default cell renderers are subclasses of JLabel. The newly created custom
renderer simply converts the object to be formatted into a String and an icon, and sets
them with setText(String) and setIcon(Icon), like in a normal JLabel.

Here's an example of such a custom renderer:

TableCellRenderer customRenderer = new DefaultTableCellRenderer() {
public Component getTableCellRendererComponent(JTable table,

Object value,
boolean isSelected,
boolean hasFocus,
int row,
int column) {

if (value instanceof Date) {
DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
String text = formatter.format((Date)value);
setText(text);

} else setText(value.toString());
return this;

}
};

Such a cell renderer is easy to rewrite as a JFace label provider:

ILabelProvider labelProvider = new LabelProvider() {
public Image getImage(Object element) {
return null;

}

public String getText(Object element) {
if (element instanceof Date) {
DateFormat formatter = DateFormat.getDateInstance(DateFormat.SHORT);
return formatter.format((Date)value);

} else return value.toString();
}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 97 Migrate your Swing application to SWT

};

As you can see, the migration of a single cell renderer to a JFace label provider doesn't
present much difficulty for standard renderers, even if the code has to be slightly modified.

The problem is more complicated when you try to migrate a JTable using different
renderers for each column. Swing's JTable allows you to set a different renderer for each
column, as well as several default renderers, depending on the type of the data.

On the other hand, a JFace TableViewer uses a single ITableLabelProvider to format
all the cells of a column. ITableLabelProvider is a subclass of ILabelProvider and
provides two methods to return the text and image of a specific column for a specific row:

• public Image getColumnImage(Object element, int columnIndex);

• public String getColumnText(Object element, int columnIndex);

While the migration of several TableCellRenderers used by a JTable into a single
ITableLabelProvider used by a TableViewer is technically possible, it can be tedious
work to analyse the Swing code to find out which renderers are used by which column
indices. A better solution is to:

• Create a class simulating the behavior of Swing's TableCellRenderer.

• Extend the wrapper class SWTTable so that it can store a separate renderer for each
column and data type, like Swing's JTable.

• Create a central label provider that asks the table for the renderer to use for a specific cell,
and delegate the formatting of a cell to it.

The following code snippet shows you how our renderer class could be implemented:

public class SWTCellRenderer
implements TableCellRenderer {

public Component getTableCellRendererComponent(
JTable table,
Object value,
boolean isSelected,
boolean hasFocus,
int row,
int column) {
return null;

}

public String getCellText(Object value, int row, int column) {
return value.toString();

}

public Image getCellImage(Object value, int row, int column) {
return null;

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 27 of 97

Get the complete source code for this SWTCellRenderer from
/swing2swt/components/SWTCellRenderer.java in the j-swing2swtsrc.zip download in
Resources on page 95 . The class provides a dummy implementation of Swing's
TableCellRenderer, so that an instance of SWTCellRenderer can be stored in an
instance of Swing's TableColumn. The two methods getCellText(Object, int,
int) and getCellImage(Object, int, int) have to be overridden so that the
renderer can do the formatting that it should do.

The wrapper class for Table is modified as follows:

public class SWTTable extends SWTComponent
implements TableColumnModelListener, ...

(...)
/** Swing's column model */
private TableColumnModel columnModel;

/**
* Hashtable storing the cell renderers to use for each data types
*/
private Hashtable defaultRenderers = null;
(...)
//--

public SWTTable(Table table) {
super(table);
table.addSelectionListener(this);
tableViewer = new TableViewer(table);
tableViewer.setContentProvider(new TableModelContentProvider());

tableViewer.setLabelProvider(new TableModelLabelProvider());
(...)

}
(...)

public SWTCellRenderer getCellRenderer(int row, int column) {
TableColumnModel cm = getColumnModel();
if (cm != null) {

Object renderer = cm.getColumn(column).getCellRenderer();
if (renderer instanceof SWTCellRenderer)
return (SWTCellRenderer)renderer;

}
return getDefaultRenderer(getColumnClass(column));

}
(...)

public final SWTCellRenderer getDefaultRenderer(Class columnClass) {
if (defaultRenderers == null || columnClass == null)
return null;

SWTCellRenderer renderer =
(SWTCellRenderer)defaultRenderers.get(columnClass);

if (renderer != null)
return renderer;

// if a renderer was not found for this specific class, try recursively
// to find a renderer for one of the superclasses
return getDefaultRenderer(columnClass.getSuperclass());

}
(...)

public final void setDefaultRenderer(

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 97 Migrate your Swing application to SWT

Class columnClass,
SWTCellRenderer cellRenderer) {
if (defaultRenderers == null)
defaultRenderers = new Hashtable();

defaultRenderers.put(columnClass, cellRenderer);
getTableViewer().refresh();

}
(...)
//---

/**
* LabelProvider delegating the formatting to a SWTCellRenderer
*/
private class TableModelLabelProvider implements ITableLabelProvider {
public Image getColumnImage(Object element, int columnIndex) {

if (element instanceof Vector) {
Object item =
((Vector)element).get(convertColumnIndexToModel(columnIndex));

if (item == null)
return null;

else {
// get the renderer for this column
int rowIndex = getRowIndex(element);
SWTCellRenderer renderer = getCellRenderer(rowIndex, columnIndex);
if (renderer != null)
return renderer.getCellImage(item, rowIndex, columnIndex);

else
return null;

}
} else
return null;

}

public String getColumnText(Object element, int columnIndex) {
if (element instanceof Vector) {
Object item =
((Vector)element).get(convertColumnIndexToModel(columnIndex));

if (item == null)
return "";

else {
// get the renderer for this column
int rowIndex = getRowIndex(element);
SWTCellRenderer renderer = getCellRenderer(rowIndex, columnIndex);
if (renderer != null)
return renderer.getCellText(item, rowIndex, columnIndex);

else
return item.toString();

}
} else
return "";

}

public void addListener(ILabelProviderListener listener) {}

public void dispose() {}

public boolean isLabelProperty(Object element, String property) {
return true;

}

public void removeListener(ILabelProviderListener listener) {}
}
(...)

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 29 of 97

For the complete source code for this SWTTable, see
/swing2swt/components/SWTTable.java in the j-swing2swtsrc.zip download from Resources
on page 95 . Like Swing'sJTable, this object provides a setDefaultRenderer(...),
allowing you to register different renderers for different column types. Like JTable, it uses a
Swing TableColumnModel to store a renderer in each column. The inner class
TableModelLabelProvider searches for the cell renderer that has to be used for a
specific column, and delegates the formatting of a cell value to it.

Yoy can use the same method for cell editors. The class SWTCellEditor
(/swing2swt/components/SWTCellEditor.java) is a wrapper class allowing you to emulate the
Swing API with JFace CellEditors.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 97 Migrate your Swing application to SWT

Section 5. Widgets

Overview
In this section, we'll see how to translate each Swing component into a corresponding SWT
component in our framework. The following table gives you an overview of the
correspondence between the components in the two toolsets. For each Swing component
listed in the first column, you can read in the second column the name of the equivalent SWT
component, as well as the eventual style constants to use. The third column contains a link
to the panel where the migration issues of the component are explained in detail.

Swing SWT Panel

JButton Button
(Style=SWT.PUSH)

JButton, JToggleButton, JCheckBox,
and JRadioButton on page 33

JCheckBox Button
(Style=SWT.CHECK)

JButton, JToggleButton, JCheckBox,
and JRadioButton on page 33

JCheckBoxMenuItem MenuItem
(Style=SWT.CHECK)

JMenu, JPopupMenu, and JMenuItem
on page 48

JColorChooser ColorDialog JColorChooser on page 35

JComboBox Combo or CCombo JComboBox on page 36

JDesktopPane No equivalent in SWT; use
GEF if needed

JDesktopPane, JInternalFrame,
JLayeredPane, and JRootPane on
page 39

JEditorPane StyledText JEditorPane on page 39

JFileChooser FileDialog or
DirectoryDialog

JFileChooser on page 40

JInternalFrame No equivalent in SWT; use
GEF if needed

JDesktopPane, JInternalFrame,
JLayeredPane, and JRootPane on
page 39

JLabel Label or CLabel JLabel on page 42

JLayeredPane No equivalent in SWT; use
GEF if needed

JDesktopPane, JInternalFrame,
JLayeredPane, and JRootPane on
page 39

JList List JList on page 44

JMenu Menu, or MenuItem
(Style=SWT.CASCADE) if
in a menu

JMenu, JPopupMenu, and JMenuItem
on page 48

JMenuBar Menu (Style=SWT.BAR) JMenu, JPopupMenu, and JMenuItem
on page 48

JMenuItem MenuItem
(Style=SWT.PUSH)

JMenu, JPopupMenu, and JMenuItem
on page 48

JOptionPane MessageDialog or
InputDialog

JOptionPane on page 51

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 31 of 97

JPanel Composite or Group JPanel on page 53

JPasswordField Text
(Style=SWT.SINGLE); use
setEchoChar(char)

JTextField, JTextArea, and
JPasswordField on page 72

JPopupMenu Menu
(Style=SWT.POP_UP)

JMenu, JPopupMenu, and JMenuItem
on page 48

JProgressBar ProgressBar,
ProgressIndicator, or
ProgressMonitorDialog

JProgressBar on page 55

JRadioButton Button
(Style=SWT.RADIO)

JButton, JToggleButton, JCheckBox,
and JRadioButton on page 33

JRadioButtonMenuItemMenuItem
(Style=SWT.RADIO)

JMenu, JPopupMenu, and JMenuItem
on page 48

JRootPane No equivalent in SWT; use
GEF if needed

JDesktopPane, JInternalFrame,
JLayeredPane, and JRootPane on
page 39

JScrollPane ScrolledComposite
(Style=SWT.H_SCROLL |
SWT.V_SCROLL)

JScrollPane and JViewport on page 57

JSeparator Label
(Style=SWT.SEPARATOR),
or MenuItem
(Style=SWT.SEPARATOR)
if in a menu

JSeparator on page 60

JSlider Slider or Scale JSlider on page 60

JSplitPane SashForm JSplitPane on page 62

JTabbedPane TabFolder or CTabFolder JTabbedPane on page 64

JTable Table JTable on page 67

JTableHeader No equivalent; use
Table.setHeaderVisible(true)

JTable on page 67

JTextArea Text
(Style=SWT.MULTI)

JTextField, JTextArea, and
JPasswordField on page 72

JTextField Text
(Style=SWT.SINGLE)

JTextField, JTextArea, and
JPasswordField on page 72

JTextPane StyledText JEditorPane on page 39

JToggleButton Button
(Style=SWT.TOGGLE)

JButton, JToggleButton, JCheckBox,
and JRadioButton on page 33

JToolBar ToolBar or CoolBar JToolBar on page 75

JToolTip No equivalent; use
Control.setToolTipText(String)

-

JTree Tree JTree on page 77

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 97 Migrate your Swing application to SWT

JViewport ScrolledComposite
(Style=SWT.NONE)

JScrollPane and JViewport on page 57

JButton, JToggleButton, JCheckBox, and JRadioButton
The equivalent of these four Swing components is a single SWT component: Button, shown
in the image below. Instead of using different classes to represent the different types of
buttons, SWT uses different type constants, which are passed as parameters in the
constructor of the component:

• SWT.PUSH is used to create a push button like a JButton.

• SWT.TOGGLE is used to create a two-state push button like a JToogleButton.

• SWT.CHECK is used to create a checkbox like a JCheckBox.

• SWT.RADIO is used to create a radio button like a JRadioButton.

Text and icon

As in Swing, SWT buttons can contain text and/or an image. (Note that on some platforms,
such as Motif, you can't display text and an image in the same button. If you try, the image
will simply be ignored.) However, in SWT you can't define different images for the different
states of the button as you can in Swing. The alignment of the text and image of the button
can be defined in the constructor by combining the style SWT.LEFT or SWT.RIGHT with the
type of the button, or by invoking setAlignment(int) after the creation of the button.

Keyboard navigation

Mnemonics -- the underlined characters that can be used as keyboard shortcuts to activate
buttons -- are not set by invoking setMnemonic(char) as in Swing, but simply by adding
an ampersand character (&) in the text of the button at the position before the mnemonic
character, like so:

button.setText("&Execute");

Events

Where Swing's buttons throw three kinds of event -- an ActionEvent, indicating that an
action has been performed, an ItemEvent, indicating that the state of a toggle button has
changed, and a ChangeEvent, whose role is not really clearly defined -- SWT only uses one
event: SelectionEvent.

To detect when a button is pressed, or when the state of a toggle button, check box, or radio
button has changed, just use the addSelectionListener(SelectionListener)
method and implement the interface SelectionListener or subclass
SelectionAdapter. Then, implement the method
widgetSelected(SelectionEvent). To know the state of the button, just get the source
of the event, cast it to Button, and invoke the getSelection() method.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 33 of 97

The following code listing illustrates all of these code concepts in action:

//--- Creation of a push button with a left aligned text
Button button = new Button(parent, SWT.PUSH | SWT.LEFT);
button.setText("&Button Text");
// Trigger an action when the button is pressed
button.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent event) {
System.out.println("Button "+event.getSource()+" pressed");

};
});

//--- Creation of a radio button
Button radioButton = new Button(parent, SWT.RADIO);
radioButton.setText("&RadioButton Text");
// Trigger an action when the state of the radio button changes
button.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent event) {
Button b = (Button)event.getSource();
if (b.getSelection()) System.out.println("Button "+b+" selected");
else System.out.println("Button "+b+" deselected");

};
});

Migrate existing Swing code

The migration of Swing buttons to SWT doesn't present any particular difficulty, as the two
toolkits offer the same functionality. The sample code provided with this tutorial contains
several wrapper classes that make migration easier:

• SWTAbstractButton

• SWTButton

• SWTToggleButton

• SWTRadioButton

• SWTCheckBox

These wrapper classes use the API and event mapping introduced in Migrate your Swing
code to SWT with minimal change on page 14 , so the migration work you'll have to do is
limited to the following simple steps:

• Search for occurrences of the Swing types and replace them with the new wrapper type.

• Search for constructors where a button is created and add the reference to the parent of
the button in the arguments list.

Here's an example of such a migration. Consider the following Swing code:

Action myAction = ...;
JButton button1 = new JButton(myAction);
parent.add(button1);

JButton button2 = new JButton("Button 2");
button2.addActionListener(anActionListener);
parent.add(button2);

JCheckBox checkBox = new JCheckBox("CheckBox", true);
parent.add(checkBox);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 97 Migrate your Swing application to SWT

Here's what this code would look like after being migrated to SWT:

Action myAction = ...;
SWTButton button1 = new SWTButton(parent, myAction);
parent.add(button1);

SWTButton button2 = new SWTButton(parent, "Button 2");
button2.addActionListener(anActionListener);
parent.add(button2);

SWTCheckBox checkBox = new SWTCheckBox(parent, "CheckBox", true);
parent.add(checkBox);

JColorChooser
SWT provides the standard dialog ColorDialog to choose a color. Its API is very simple
and only contains three methods: setRGB(RGB), open(), and getRGB().

The dialog is a system dialog. This means that its look and feel is different for each platform,
and that you can't customize it.

The following screenshots shows what the color dialog looks like under Motif and GTK,
respectively:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 35 of 97

SWT doesn't provide any color chooser control that can be embedded in a panel.

JComboBox
Combo boxes can be created in SWT either by using the component Combo, which is
mapped to a native widget, or by using the customized widget CCombo, located in the
org.eclipse.swt.custom package.

The APIs for both components are nearly identical. Most of the time, you will want to use
Combo in order to have a native component with better performance and a standard look and
feel. CCombo allows you to customize the look of the control and should only be used in
special cases where a native component is not suitable.

There are two possible reasons why you might prefer a CCombo to a native Combo:

• You need a combo box without any border: Native Combos are always drawn with a
border. By using a CCombo with the style constant SWT.FLAT, you get a combo box
without any border. This can be useful if the combo box is added to another component
having its own border. To create a CCombo with a border similar to Combo, use the style
constant SWT.BORDER.

• You need a more compact combo box: On some platforms, such as Motif, even the
smallest native combo box is too large to be added to another component, such as a
toolbar. Using a CCombo allows you to get a component whose minimum size is the same
on all platforms and which is compact enough to fit in a toolbar.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 97 Migrate your Swing application to SWT

Items

Unlike Swing's JComboBox, SWT combos can only contain normal Strings without any
icons. The renderer mechanism of Swing that allowed you to put any kind of objects into a
combo box model and render them in a customized way is not available in SWT. SWT
doesn't use a separate model class to store the items and selection of the combo box as
Swing does.

To set the items in the combo box, use the method setItems(String[]). To append or
insert an item at a specific position, use add(String) or add(String, int). To remove
items, use one of the several remove methods.

Editable vs. read-only combos

As is true in Swing, an SWT combo is made up of a text field and a list. The text field can be
either freely editable -- that is, the user can enter a value that is not available in the list -- or
read only -- that is, the user can only select a value already available in the list. In Swing's
JComboBox, you can control this feature by using the setEditable(boolean) method
after the creation of the widget. In SWT, you have to use the style SWT.READ_ONLY in the
constructor of the component if you want it to be read only.

Management of the selection

The currently selected item in a combo can be retrieved by using any of several methods:

• getSelectionIndex() returns the index of the currently selected item. If the combo is
not read only, and the user enters text that is not in the list of the items, this method will
return -1.

• getText() returns the current text of the field of the combo. If the combo is read only, it
corresponds to the currently selected item in the list.

Be careful not to mix up getSelectionIndex() and getSelection(). The latter returns
a Point containing the start and end position of the character selection of the text field of the
combo. It is the equivalent of Text.getSelection() and has nothing to do with the item
selection of the combo.

You can set the selection by using one of these methods:

• select(int) selects the item at a specific position.

• setText(String) sets the text to display in the field of the combo.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 37 of 97

Do not mix up these methods with setSelection(Point), which is the equivalent of
Text.setSelection(point) and is used to set the character selection in the field of the
combo.

Events

Two kind of events are thrown by an SWT combo:

• A SelectionEvent is thrown when the user chooses an item in the list of the combo. To
detect a change in the selection, register a SelectionListener by using the method
addSelectionListener(SelectionListener). The listener method that is triggered
by the event and should be implemented is
SelectionListener.widgetSelected(SelectionEvent).

• A ModifyEvent is thrown when the text in the field of the combo changes. This event is
the same as the event thrown by the Text component. To learn more about
ModifyEvents, read JTextField, JTextArea, and JPasswordField on page 72 . Note that,
unlike Text, a combo box doesn't throw VerifyEvents.

The following code snippet illustrates SWT combo boxes in action:

//--- Creation of a read-only combo box containing 3 items
Combo combo = new Combo(parent, SWT.DROP_DOWN | SWT.READ_ONLY);
combo.setItems(new String[]{"item1", "item2", "item3"});
//--- Detect changes in the selection
combo.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
// trigger action

}
});
//--- Get the current selected item
String selectedItem = combo.getText();

Migrate existing Swing code

The migration of existing Swing code is not problematic for combo boxes that only contain
String items and don't use special renderers. If this is not the case, you have to replace the
Swing renderer with a kind of label provider that converts the items into Strings before they
are added in the combo. Icons are not supported.

The wrapper class SWTComboBox, included with the sample code provided with this tutorial,
makes the migration easier. It uses the API and event mapping introduced in Migrate your
Swing code to SWT with minimal change on page 14 , so that the migration work you'll have
to do is limited to a few simple steps:

• Search for occurrences of the Swing type JComboBox and replace them with the new
wrapper type SWTComboBox.

• Search for constructors where a combo box is created and add the reference to the parent
of the combo box in the arguments list.

Let's look at a migration example. Consider the following Swing code:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 97 Migrate your Swing application to SWT

String[] items = new String[]{"item1", "item2", "item3", "item4"};
JComboBox comboBox = new JComboBox(items);
comboBox.setAction(new AbstractAction() {
public void actionPerformed(ActionEvent e) {
// do action...

}
});
parent.add(comboBox);

Here's what it would look like migrated to SWT:

String[] items = new String[]{"item1", "item2", "item3", "item4"};
SWTComboBox comboBox = new SWTComboBox(parent, items);
comboBox.setAction(new AbstractAction() {
public void actionPerformed(ActionEvent e) {
// do action...

}
});
parent.add(comboBox);

JDesktopPane, JInternalFrame, JLayeredPane, and
JRootPane
Because SWT components are native components that don't support transparency, there is
no direct SWT equivalent for Swing's JRootPane and JLayeredPane. As of version 2.1 of
the toolkit, there are no multiple document interface (MDI) widgets in SWT like Swing's
JDesktopPane or JInternalFrame. However, the Eclipse sub-project GEF provides
some of the functionality of these components that is not available in the standard SWT
library. GEF is a graphical library that can be used to build graphical SWT applications such
as GUI designers and diagram editors. It provides a framework that allows you to build
lightweight widgets with support for transparency and multiple layers, like those available in
Swing. For more information on GEF, consult Resources on page 95 .

JEditorPane
With StyledText, SWT provides a component that is similar to Swing's JEditorPane and
JTextPane. Like a JEditorPane, a StyledText is a widget that can be used to display
and edit text with different font styles and colors, as illustrated below:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 39 of 97

Unlike Swing's JTextPane, a StyledText can only display text. Things like images or
tables are not supported. Additionally, SWT has no equivalent for Swing's EditorKit,
which allows a Swing JTextPane to read or write documents in HTML or RTF format.

The API and usage of StyledText is not covered in detail in this tutorial. To learn more
about it, you should read the articles "Getting your feet wet with the SWT StyledText
widget" and "Into the deep end of the SWT StyledText widget" by Lynne Kues and Knut
Radloff. You can find links to both in Resources on page 95 .

JFileChooser
SWT provides two dialogs to select files or directories.

FileDialog is a dialog to select a file on the filesystem. You can choose whether the dialog
should be used to open or save a file by using one of two type constants, SWT.OPEN and
SWT.CLOSE. Some platforms use different dialogs for open and save operations. You can
set the initial directory and filename by invoking setFilterPath(String) and
setFileName(String), respectively. You can get the selected file after the dialog has
been closed by invoking getFilterPath() to have the directory of the selected file, or
getFileName() to get the selected file name. The following code and figure illustrate
FileDialog in action:

FileDialog dialog = new FileDialog(shell, SWT.OPEN);
dialog.setText("Title"); // title of the dialog
dialog.open();
File selectedFile = null;
if (dialog.getFileName()!=null)

selectedFile = new File(dialog.getFilterPath(), dialog.getFileName());

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 97 Migrate your Swing application to SWT

DirectoryDialog is a dialog to select a directory on the filesystem. You can set the initial
directory by invoking setFilterPath(String). You can get the selection of the user by
invoking getFilterPath(). The following code and figure show DirectoryDialog in
action:

DirectoryDialog dialog = new DirectoryDialog(shell, SWT.OPEN);
dialog.setText("Title"); // title of the dialog
dialog.open();
File selectedDirectory = null;
if (dialog.getFilterPath()!=null)

selectedDirectory = new File(dialog.getFilterPath());

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 41 of 97

The look and feel of these dialogs is platform specific. The screenshots shown above were
taken under Linux and GTK.

SWT doesn't provide a file chooser component that you can embed in a panel. File and
directory choosers are only available as standalone system dialogs, whose look and feel
can't be customized.

Migrate existing Swing code

The migration of existing Swing code is not problematic as long as you use standard
standalone dialogs to choose a file or a directory. If the JFileChooser of your Swing
application is embedded in a panel, or if it has been customized to display a preview of the
selected file, you will probably have to create your own SWT component.

JLabel
SWT provides two components that can be used as labels:
org.eclipse.swt.widget.Label and org.eclipse.swt.custom.CLabel.

• Label uses a native widget of the underlying windowing system and has an API that is
quite similar to the API of Button (see JButton, JToggleButton, JCheckBox, and
JRadioButton on page 33). Like buttons, Labels are not very customizable; on some
platforms, such as Motif, images and text can not be on the same label at the same time.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 97 Migrate your Swing application to SWT

• CLabel is an emulated widget: It is not a single native widget, but a composition of simpler
widgets. It provides more functionality than Label, such as support on all platforms for an
image and text coexisting, support for additional borders (SWT.SHADOW_IN or
SWT.SHADOW_OUT), and support for using an image or a gradient of color as background.

Most of the time you should use Label. It keeps application performance high and is more
consistent with the underlying platform for simple labels displaying a simple text or image.
For those rare cases in which a normal label is not sufficient (if you need a customized
background, for instance), use CLabel.

Alignment

You can only set horizontal alignment for Label and CLabel. You can do this by using one
of three styles, SWT.LEFT, SWT.CENTER, or SWT.RIGHT, in the constructor, or by invoking
setAlignment(int). You can't control the vertical alignment or the position of the text
relative to the icon.

Note that Label accepts a style called SWT.WRAP, which is not available for CLabel and
has no equivalent in Swing. When this style is used, the label text is wrapped on several
lines if it is longer than the Label. CLabel uses a strategy similar to Swing's JLabel to
shorten text that is too long for a label: it replaces a part of the text -- the middle part, unlike
JLabel -- with an ellipsis (...) to symbolize that there is more to the text than the visible
portion.

Mnemonics

As with buttons (see JButton, JToggleButton, JCheckBox, and JRadioButton on page 33),
with SWT labels you do not set mnemonics with a special method, as you would in Swing,
but by inserting an ampersand character (&) in the text just before the character to use as
mnemonic. This functionality is however only available in Label and not in CLabel.

Borders

Label and CLabel use different border styles:

• Label accepts only one border style: SWT.BORDER. The look of the resulting border
depends on the platform.

• CLabel ignores the style SWT.BORDER but accepts two other styles, SWT.SHADOW_IN
and SWT.SHADOW_OUT. The look of these borders is platform independent.

The following code snippet illustrates SWT labels in action.

//--- Creation of a simple label with mnemonic on the 1st character
Label label = new Label(parent, SWT.NONE);
label.setText("&Label Text");
//--- Creation of a right aligned label with word-wrapping and border
Label label2 = new Label(parent, SWT.RIGHT | SWT.WRAP | SWT.BORDER);
label2.setText("Right Aligned Label");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 43 of 97

Migrate existing Swing code

Because labels are simple, non-interacting components, porting from Swing to SWT should
not cause any problem.

The wrapper class SWTLabel, included in the sample code provided with this tutorial, makes
the migration easier. It uses the API and event mapping introduced in Migrate your Swing
code to SWT with minimal change on page 14 , so the migration work you'll have to do is
limited to a few simple steps:

• Search for occurrences of the Swing type JLabel and replace them with the new wrapper
type SWTLabel.

• Search for constructors where a label is created and add the reference to the parent of the
label in the arguments list.

Here's a migration example. Consider the following Swing code:

JLabel label = new JLabel("Label Text", SwingConstants.CENTER);

Here's how you would migrate this code to SWT:

SWTLabel label = new SWTLabel(parent, "Label Text", SwingConstants.CENTER);

JList
A list is one of the most common widgets that any toolkit must provide. So it is not really
surprising that SWT provides nearly the same functionality as Swing's JList in a component
named List, illustrated below:

Although the functionality provided by SWT lists is quite similar to that provided by Swing,
there are some small differences you should be aware of.

First, SWT's List can only display its elements in a textual form. Icons are not supported,
and all the items are displayed with the same background and foreground colors and in the
same font. There is no renderer mechanism allowing you to represent an element with any
kind of component, as you can in Swing. If you need to represent the elements of the list with
icons or variable colors, or if you need a list of checkable items, you may want to use a
Table with a single column. This will give you more flexibility in the representation of the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 97 Migrate your Swing application to SWT

items, and will offer you the same functionality. For more information on SWT's table, read
JTable on page 67 .

In addition, SWT's List doesn't use a data model like Swing's ListModel. To fill the list,
you simply set the items as strings with the add(...), setItem(String, int) or
setItems(String[]) methods. However, if you need a separation between the data to
display and the string used to represent these data in the list, you can use JFace's
ListViewer with a content and label provider. The content provider supplies the elements
of the list like Swing's ListModel does -- and these can be any kind of objects -- while the
label provider converts these elements into string representations that are displayed in the
List by the ListViewer. For more information on JFace's viewers, read Data models and
cell renderers vs. content providers and label providers on page 12 .

Finally, like many other SWT components, SWT Lists are by nature scrollable and don't
have to be put in a scroll pane in order to have scrollbars. To make the horizontal and/or
vertical scrollbar appear, use in the constructor of the list a bitwise combination of the style
constants SWT.H_SCROLL and/or SWT.V_SCROLL.

Management of the selection

As in Swing, a list can accept either a single selection or multiple selections. In Swing, you
have to set this behavior in the SelectionModel. SWT lets you control this behavior in the
constructor of the component by using one of two style constants: SWT.SINGLE or
SWT.MULTI.

In fact, SWT doesn't have any equivalent for Swing's SelectionModel. The methods to set
or get the selection in the list are found in the list itself, or in the ListViewer:

• SWT's List provides simple methods to set or get the selection. These methods work
with either the indices of the items comprising the selection, or the displayed strings
themselves. The API is easy to use and is simpler than Swing's ListModel API.

• JFace's ListViewer provides two methods, getSelection() and
setSelection(ISelection, boolean), that are inherited from StructuredViewer
and work on a higher abstraction level. The ISelection object returned or used by these
methods is in fact a StructuredSelection that provides an iterator or an array
containing the selected elements as provided by the content providers, and is independent
from their string representation or their representation order.

Borders

Lists are by default created without any border around them. However, you may often want
to use the style SWT.BORDER to get a standard border around a list. The appearance of the
border depends on the platform.

Events

An SWT list throws only one kind of event. A SelectionEvent is thrown to notify the
listeners that a change has occurred in the selection. To detect a change in the selection,
register a SelectionListener by using the
addSelectionListener(SelectionListener) method. The listener method that is
triggered by the event and should be implemented is
SelectionListener.widgetSelected(SelectionEvent).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 45 of 97

The following code snippet shows SWT lists in action:

//--- Creation of a list containing 3 items
List list = new List(parent, SWT.BORDER | SWT.V_SCROLL | SWT.H_SCROLL

| SWT.MULTI);
list.setItems(new String[]{"item1", "item2", "item3"});
//--- Detect changes in the selection
list.addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
// trigger action

}
});
//--- Get the selected items
String[] selectedItems = list.getSelection();

//------ Example of use of a ListViewer ------

//--- Creation of a list displaying 3 java.util.Locale objects
ListViewer listViewer = new ListViewer(parent, SWT.H_SCROLL | SWT.V_SCROLL

| SWT.MULTI | SWT.BORDER);
listViewer.setContentProvider(new ArrayContentProvider());
listViewer.setInput(new Locale[]{Locale.FRANCE, Locale.GERMANY, Locale.US});
//--- Use a label provider displaying the full localized name of the locales
//--- instead of their toString() representation
listViewer.setLabelProvider(new LabelProvider() {
public String getText(Object element) {
if (element instanceof Locale) return ((Locale)element).getDisplayName();
else return element.toString();

}
});
//--- Detect changes in the selection
listViewer.getList().addSelectionListener(new SelectionAdapter() {
public void widgetSelected(SelectionEvent e) {
// get the selection as an array
StructuredSelection selection=(StructuredSelection)listViewer.getSelection();
Object[] selectedElements = selection.toArray();
// trigger action

}
});

Migrate existing Swing code

The migration of existing Swing code is not problematic for lists that only contain String
items and don't use special renderers. If this is not the case, you have to replace the Swing
renderer with a label provider used in combination with a content provider and a
ListViewer.

The wrapper class SWTList, included in the sample code provided with this tutorial, makes
the migration easier. It uses the API and event mapping introduced in the section Migrate
your Swing code to SWT with minimal change on page 14 , so the migration work you'll have
to do is limited to a few simple steps:

• Search for occurrences of the Swing type JList and replace them with the new wrapper
type SWTList.

• Search for constructors where a list is created. Add the reference to the parent of the list
as the first argument in the constructor and a boolean indicating if only a single selection is
allowed as the second argument.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 46 of 97 Migrate your Swing application to SWT

• It is very likely that the Swing lists of your application are contained in JScrollPanes.
Modify the code so that no JScrollPane is created and the lists are directly added to
their parent.

• Convert Swing renderers into SWTCellRenderers.

Here's a migration example. Consider the following Swing code:

// --- simple list without special renderer
String[] items = new String[]{"item1", "item2", "item3", "item4"};
JList list1 = new JList(items);
list1.getSelectionModel().addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent e) {
// do action

}
});
parent.add(list1);

// --- list with customized renderers
Object[] locales = new Object[] {Locale.FRANCE, Locale.GERMANY, Locale.US};
JList list2 = new JList(locales);

ListCellRenderer cellRenderer = new DefaultListCellRenderer() {
public Component getListCellRendererComponent(JList list,Object value,

int index, boolean isSelected, boolean cellHasFocus) {
JLabel label = (JLabel)super.getListCellRendererComponent(list, value,

index, isSelected, cellHasFocus);
if (value instanceof Locale)
label.setText(((Locale)value).getDisplayName());

return label;
}

};
list2.setCellRenderer(cellRenderer);
parentContainer.add(list2);

Here's the same code migrated to SWT:

// --- simple list without special renderer
String[] items = new String[]{"item1", "item2", "item3", "item4"};
SWTList list1 = new SWTList(parent, true, items);
list1.getSelectionModel().addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent e) {
// do action

}
});
parent.add(list1);

// --- list with customized renderers
Object[] locales = new Object[] {Locale.FRANCE, Locale.GERMANY, Locale.US};
SWTList list2 = new SWTList(parent, true, locales);

SWTCellRenderer cellRenderer = new SWTCellRenderer() {
public String getCellText(Object value, int row, int column) {
if (value instanceof Locale) return ((Locale)value).getDisplayName();
else return value.toString();

}
};

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 47 of 97

list2.setCellRenderer(cellRenderer);
parentContainer.add(list2);

JMenu, JPopupMenu, and JMenuItem
SWT has a very simple API to create menus:

• The widget Menu is used to create menu bars, menus, and pop-up menus -- the equivalent
of Swing's JMenuBar, JMenu, and JPopupMenu.

• The widget MenuItem is used to create all kinds of menu items -- the equivalent of
Swing's JMenuItem, JCheckBoxMenuItem, and JRadioButtonMenuItem.

The type of the parent passed as a parameter when constructing a Menu defines the kind of
menu that will be created:

• If the parent is of type Decorations -- in most cases it will be a Shell, which is the SWT
equivalent of an AWT Window -- a menu bar will be created. In this case, you have to use
the style SWT.BAR. Note that the menu bar is added to the window only after the
setMenuBar(Menu) method has been invoked on the window.

• If the parent is a Control, the menu will be a pop-up menu. To display this menu, you
have to set its location with setLocation(int, int) and then make it visible with
setVisible(boolean). Note that the coordinates passed to setLocation(int,
int) are screen coordinates. Because pop-up menus are usually triggered by a mouse
event on the parent component, and the click coordinates stored in the event are
component coordinates, you have to convert them to screen coordinates by using
Control.toDisplay(int, int).

• If the parent is another Menu, the menu created will be a cascading menu. It has to be
associated with a MenuItem in the parent menu that has the style SWT.CASCADE; you
would associate it by invoking setMenu(Menu) on the MenuItem.

You can create different kinds of menu items by using different style constants when
constructing your MenuItems:

• The style SWT.PUSH creates a normal menu item similar to Swing's JMenuItem.

• The style SWT.CHECK creates a menu item that works like a checkbox, similar to Swing's
JCheckBoxMenuItem.

• The style SWT.RADIO creates a menu item that works like a radio button, similar to
Swing's JRadioButtonMenuItem.

• The style SWT.CASCADE creates a menu item that opens a cascading menu, similar to
Swing's JMenu. The menu opened by this menu item has to be set with the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 48 of 97 Migrate your Swing application to SWT

setMenu(Menu) method.

• The style SWT.SEPARATOR creates a menu separator similar to Swing's JSeparator.

Text and icon

As in Swing, SWT menu items can contain text and/or an image. Note that some platforms,
such as Motif, ignore images.

Keyboard navigation

Mnemonics -- the underlined characters that can be used as key shortcut to activate an item
-- are set by adding an ampersand character (&) in the text of the item at the position before
the mnemonic character, like so:

menuItem.setText("&Run");

Accelerators -- the key combination activating the action triggered by the menu item, such as
Ctrl-C -- are set by using the method MenuItem.setAccelerator(int). The parameter
is a bitwise combination of SWT key constants -- SWT.CONTROL, SWT.SHIFT, SWT.ALT --
and a key character, like so:

menuItem.setAccelerator(SWT.CONTROL | 'C');

Events

MenuItems throw two kinds of events:

• An ArmEvent (use addArmListener(ArmListener) to receive it) is thrown when the
mouse pointer enters the menu item, but before it has been clicked.

• A SelectionEvent (use addSelectionListener(SelectionListener) to receive
it) is thrown when the menu item is selected.

Menus throw a MenuEvent (use addMenuListener(MenuListener) to receive it) when
the menu is about to be shown or to be hidden.

The following code listing shows SWT menus in action:

//--- Creation of a menu bar
Menu menuBar = new Menu(shell, SWT.BAR);

// Create a sub menu "File" with 2 items "Open" and "Save"
MenuItem fileMenuItem = new MenuItem(menuBar, SWT.CASCADE);
fileMenuItem.setText("&File");
Menu fileMenu = new Menu(menuBar);
MenuItem openMenuItem = new MenuItem(fileMenu, SWT.PUSH);
openMenuItem.setText("&Open...");
openMenuItem.setImage(openImage);
MenuItem saveMenuItem = new MenuItem(fileMenu, SWT.PUSH);
saveMenuItem.setText("&Save");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 49 of 97

saveMenuItem.setImage(saveImage);

// Create a sub menu "Edit" with 1 item "Copy"
MenuItem editMenuItem = new MenuItem(menuBar, SWT.CASCADE);
editMenuItem.setText("&Edit");
Menu editMenu = new Menu(menuBar);
MenuItem copyMenuItem = new MenuItem(editMenu, SWT.PUSH);
copyMenuItem.setText("&Copy");
copyMenuItem.setImage(copyImage);

shell.setMenuBar(menu);

//--- Create a pop-up menu in a control
Menu popupMenu = new Menu(control);

MenuItem item = new MenuItem(popupMenu, SWT.PUSH); // add an item "item1"
item.setText("item1");
new MenuItem(menu, SWT.SEPARATOR); // add a separator
item = new MenuItem(menu, SWT.PUSH); // add an item "item2"
item.setText("item2");

// create a cascading menu "sub-menu" containing 1 item "sub-item"
Menu subMenu = new Menu(popupMenu);
MenuItem subItem=new MenuItem(subMenu, SWT.PUSH);
subItem.setText("sub-item");

item = new MenuItem(popupMenu, SWT.CASCADE);
item.setText("sub-menu");
item.setMenu(subMenu);

//Displays the popup menu on a right-click on the control
control.addMouseListener(new MouseAdapter() {
public void mouseDown(MouseEvent e) {
if (e.button==3) {
popupMenu.setLocation(control.toDisplay(e.x, e.y));
popupMenu.setVisible(true);

}
}

});

Migrate existing Swing code

The migration of Swing menus to SWT doesn't present any particular challenge, because
both toolkits have the same functionality in this area. The sample code provided with this
tutorial contains several wrapper classes that make the migration easier:

• SWTMenu

• SWTPopupMenu

• SWTMenuItem

• SWTRadioButtonMenuItem

• SWTCheckBoxMenuItem

These wrapper classes use the API and event mapping introduced in Migrate your Swing
code to SWT with minimal change on page 14 .

Let's look at a migration example. Consider the following Swing code:

Action myAction = ...;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 50 of 97 Migrate your Swing application to SWT

JPopupMenu popupMenu = new JPopupMenu();
popupMenu.add(new JMenuItem(myAction));
popupMenu.addSeparator();
popupMenu.add(new JRadioButtonMenuItem("RadioButton"));

popupMenu.show(component, event.x, event.y);

Here's what the code looks like after migration to SWT:

Action myAction = ...;
SWTPopupMenu popupMenu = new SWTPopupMenu(component);
popupMenu.add(new SWTMenuItem(popupMenu, myAction));
popupMenu.addSeparator();
popupMenu.add(new SWTRadioButtonMenuItem(popupMenu, "RadioButton"));

popupMenu.show(component, event.x, event.y);

JOptionPane
With the class MessageDialog, JFace provides a framework that is similar to Swing's
JOptionPane. Both serve as the basis of all kinds of confirmation, error, and input dialogs.

As with JOptionPane, you can subclass MessageDialog and create your own customized
dialogs, but most of the time you will just use one of the static methods it provides:

• MessageDialog.openConfirm(Shell, String, String): Open an OK/Cancel
confirmation dialog.

• MessageDialog.openError(Shell, String, String): Open a dialog displaying
an error message.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 51 of 97

• MessageDialog.openInformation(Shell, String, String): Open a dialog
displaying a simple message.

• MessageDialog.openQuestion(Shell, String, String): Open a Yes/No dialog
asking the user to answer a question.

• MessageDialog.openWarning(Shell, String, String): Open a dialog
displaying a warning.

You can create an input dialog asking the user to enter a string by using InputDialog:

InputDialog dialog = new InputDialog(shell, "title", "message", null, null);
dialog.open();
String value = dialog.getValue();

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 52 of 97 Migrate your Swing application to SWT

Note that you can also use the JFace dialog ErrorDialog to display error messages. This
dialog offers some additional functionality for displaying a stack trace or a detailed message.

Migrate existing Swing code

The migration of JOptionPane dialogs should not be problematic if you use static methods
to open the standard dialogs. If you created a customized JOptionPane, you will have to
create your own dialog by subclassing one of JFace's standard dialogs.

For an easier migration, you can use the helper class SWTOptionPane, provided in the
sample code accompanying this tutorial. This class provides static methods that are similar
to the static methods used in JOptionPane to open a standard dialog.

Let's look at a migration example. Consider the following Swing code:

if (JOptionPane.showConfirmDialog(parent, "Do you confirm?")
== JOptionPane.YES_OPTION)

You could migrate it to SWT as follows:

if (SWTOptionPane.showConfirmDialog(parent, "Do you confirm?")
== SWTOptionPane.YES_OPTION)

JPanel
SWT provides two panel components that can be used to group together some controls of a
UI, each with its own layout: Composite and Group.

Composite is comparable to java.awt.Panel. It is a container that can contain other
controls and arrange them in a specific layout. You can't set a customized border for a
Composite as you can for a Swing JPanel. Thus, a Composite is generally used as an
invisible container to lay out controls in a specific way. Note that a Composite can display a
basic border if it is created with the style SWT.BORDER. The appearance of the border
depends on the underlying platform.

Group is a subclass of Composite and offers more possibilities to customize its
appearance. A Group usually has a border around it and can have a title. Several types of
borders are available. You can set one of them by using any one of several styles:
SWT.SHADOW_ETCHED_IN, SWT.SHADOW_ETCHED_OUT, SHADOW_IN, and SHADOW_OUT
(see the screenshot below). You can set a title for the group by using the method

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 53 of 97

setText(String). The title is then displayed in the border as it is in Swing's
TitledBorder.

Use a Composite when you need an invisible panel to solve a specific layout problem. Use
a Group when you need a visible panel with a border.

The following code snippet shows an example of SWT panels in action:

//--- Creation of an invisible panel
Composite composite = new Composite(parent, SWT.NONE);
composite.setLayout(new FlowLayout());
// add some controls
Button button = new Button(composite, SWT.PUSH);
...
//--- Creation of a titled panel with border
Group group = new Group(parent, SWT.SHADOW_ETCHED_IN);
group.setText("Group Title");
group.setLayout(new FlowLayout());
// add some controls
Button checkBox = new Button(group, SWT.CHECK);
...

Migrate existing Swing code

The migration of a JPanel is not problematic, as it is a passive component. However, you
may encounter some problems if your panels make use of customized borders. In such a
case, it may be easier to subclass Composite and create a customized control that can
draw all kinds of borders.

The wrapper class SWTPanel, included with the sample code provided with this tutorial,
makes the migration easier. It uses the API mapping introduced in Migrate your Swing code
to SWT with minimal change on page 14 , so the migration work you'll have to do is limited to
the following simple steps:

• Search for occurrences of the Swing type JPanel and replace them with the new wrapper
type SWTPanel.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 54 of 97 Migrate your Swing application to SWT

• Search for constructors where a panel is created and add the reference to the parent of
the panel in the arguments list.

Let's look at a migration example. Consider the following Swing code:

JPanel p = new JPanel(new BorderLayout());
p.add(new JButton("button"), BorderLayout.CENTER);
parent.add(p);

Here's how you would migrate that code to SWT:

SWTPanel p = new SWTPanel(parent, new BorderLayout());
p.add(new JButton("button"), BorderLayout.CENTER);
parent.add(p);

JProgressBar
SWT and JFace provide two components that can be used to display the progress of a task:
ProgressBar and ProgressIndicator.

ProgressBar

ProgressBar is the basic progress component provided by SWT. Its API and functionality
are quite similar to Swing's JProgressBar. The orientation of the bar must be defined in the
constructor by using one of two styles: SWT.HORIZONTAL or SWT.VERTICAL. There is no
way to change this orientation after the component has been created. A standard
ProgressBar is illustrated in the figure below:

You can combine other style constants with the orientation styles:

• SWT.SMOOTH is a style that modifies the look of the progress indicator. When this style is
used, task progress is represented as a plain bar that can take any value, instead of a
chain of blocks that only grows when there is enough progress to display an additional
block. A ProgressBar with the SWT.SMOOTH constructor would look like this:

This style may be ignored by those platforms, such as Motif, that always display a smooth
progress bar.

• SWT.INDETERMINATE is a style you can use when the length of the task represented by
the progress bar is unknown. When this style is used, the progress bar displays a
continuous animation showing that the task is still running. This is the equivalent of
JProgressBar.setIndeterminate(boolean), which was introduced in Swing in
J2SE 1.4.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 55 of 97

Like Swing, SWT provides methods to set the minimum, maximum, and current values of a
progress bar. All of these values must be integers. Note that the equivalent of
JProgressBar.setValue(int) is ProgressBar.setSelection(int) in SWT. Unlike
Swing's bar, SWT's progress bar can't display customized text.

ProgressIndicator

ProgressIndicator is provided by JFace (in the package
org.eclipse.jface.dialogs). It does the same thing as ProgressBar -- in fact, it is a
Composite containing a ProgressBar -- but it uses a simplified API.

A ProgressIndicator only needs to be initialized with the single method
beginTask(int), which takes as its parameter the maximum progression value. When the
task being monitored has progressed, you invoke worked(double) with the amount of new
progress as a parameter. Be careful: This value does not represent the current progress
value, like its equivalent in ProgressBar.setSelection(int), but rather represents the
relative amount of progress since the last invocation of worked(double). To move the
progress indicator to the end, invoke sendRemainingWork(). The method done()
reinitializes the progress bar, indicating that no task is running.

Note that, unlike a ProgressBar, a ProgressIndicator can switch its state from a set
amount of progress to an undetermined amount of progress after the component has been
created. Invoke beginAnimatedTask() to switch to an undetermined progression, and
beginTask(int) to switch back to a set amount of progress.

Because the constructor of ProgressIndicator doesn't accept any style as a parameter,
the widget's orientation must be horizontal, and it is not possible to use the smooth
progression mode as you can with ProgressBar.

Note that if you need a dialog that can both display the progress of a long task and give the
user the option to cancel that task, you may want to use the JFace dialog
org.eclipse.jface.dialogs.ProgressMonitorDialog.

The following code snippet shows SWT progress bars and indicators in action:

//--- Creation of an horizontal progress bar
ProgressBar progressBar = new ProgressBar(parent, SWT.HORIZONTAL);
progressBar.setMaximum(500); // set the maximum value to 500
progressBar.setSelection(100); // set the current value to 100

//--- Creation of a smooth progress bar with an automatic animation
new ProgressBar(parent, SWT.HORIZONTAL | SWT.SMOOTH | SWT.UNDETERMINATE);

//--- Creation of a progress indicator
ProgressIndicator progressIndicator = new ProgressIndicator(parent);
progressIndicator.beginTask(100);
progressIndicator.worked(10.0); // moves the bar of 10 units of work forward
progressIndicator.beginAnimatedTask(); // switch in automatic animation modus.

Migrate existing Swing code

The migration of a JProgressBar to a ProgressBar is not problematic, because a
progress bar is a passive component, and the Swing and SWT components provide nearly
the same functionality.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 56 of 97 Migrate your Swing application to SWT

The wrapper class SWTProgressBar, included in the sample code provided with this
tutorial, makes the migration easier. It uses the API and event mapping introduced in Migrate
your Swing code to SWT with minimal change on page 14 , so the migration work you'll have
to do is limited to a few simple steps:

• Search for occurrences of the Swing type JProgressBar and replace them with the new
wrapper type SWTProgressBar.

• Search for constructors where a progress bar is created and add the reference to the
parent of the label in the arguments list.

Let's look at a migration example. Consider the following Swing code:

JProgressBar progressBar = new JProgressBar(JProgressBar.HORIZONTAL, 0, 100);
parent.add(progressBar);
progressBar.setValue(50);

Here's what that code would look like migrated to SWT:

SWTProgressBar progressBar = new SWTProgressBar(parent, SWTProgressBar.HORIZONTAL, 0, 100);
parent.add(progressBar);
progressBar.setValue(50);

JScrollPane and JViewport
The SWT equivalent of Swing's JScrollPane or JViewport is the widget
org.eclipse.swt.custom.ScrolledComposite, illustrated below:

Note that, unlike Swing, SWT doesn't require you to explicitly put lists, trees, tables, or text
components in a scrollpane to make them scrollable. These components are made scrollable
by creating them with the style constants SWT.H_SCROLL and SWT.V_SCROLL, like so:

//--- Creation of a multiline text area with both scrollbars

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 57 of 97

Text text = new Text(parent, SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL);

//--- Creation of a list with a vertical scrollbar only
List list = new List(parent, SWT.SINGLE | SWT.V_SCROLL);

Thus, you should only use a ScrolledComposite if you need to make one of the following
scrollable:

• A canvas

• One of your customized widgets (based on a canvas)

• A composite containing other widgets

The use of a ScrolledComposite is similar to the use of the combination
JScrollPane/JViewport in Swing. The viewed component can be set with the method
setContent(Control), and, as with JViewport, you can programmatically set the
position of the visible area. The methods to do that are setOrigin(Point) and
getOrigin(), the latter returning the current position of the viewer.

As you may have noticed, SWT doesn't make the distinction Swing makes between a
JScrollPane and a JViewport. If you need the equivalent of a JViewport -- a "viewing
hole" that can be moved programmatically to display a rectangular area of a larger
component -- you just have to create a ScrolledComposite without scrollbars by using the
style SWT.NONE.

Note that there is some functionality available in Swing but not in SWT for these
components. There is no way to define row and column headers -- that is, vertical and
horizontal components placed on the left-hand side or the top of the scrolling area. If you
need this functionality, you will have to implement your own widget from a Composite.

Scrollbar policy

In SWT, you control the visibility of the scrollbars in a slightly different way than you do in
Swing; using the styles SWT.H_SCROLL and/or SWT.V_SCROLL you can define at
construction time whether scrollbars are to be used for horizontal scrolling, vertical scrolling,
scrolling in both directions, or no scrolling at all. Then, the method
setAlwaysShowScrollBars(boolean) allows you to define whether the enabled
scrollbars are always shown or shown only when they are needed.

Size of the viewed component

In Swing, you set the size of a viewed component by invoking
setPreferredSize(Dimension) on it. If the scrollpane is smaller than the preferred size,
the view becomes its preferred size. If the scrollpane is larger, the view becomes the size of
the scrollpane. SWT's ScrolledComposite provides two ways of defining the size of its
content:

• If you simply invoke setSize(int, int) on the content, it will have a constant size. If
the ScrolledComposite is smaller than its content, it will be scrollable. If it is larger, the
scrollbars are disabled but the size of the content remains unchanged.

• If you invoke the methods setExpandHorizontal(true),
setExpandVertical(true), and setMinSize(int, int) on the
ScrolledComposite, the behavior will be similar to what it would be in Swing. If the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 58 of 97 Migrate your Swing application to SWT

ScrolledComposite is smaller than the size defined by setMinSize(int, int), the
content will have that size and the scrollbars will be enabled. If the ScrolledComposite
is larger, the content will be enlarged to its size. setExpandHorizontal(true),
setExpandVertical(true), and setMinSize(int, int) must be invoked after the
content is set with setContent(Control).

The following code snippet shows an SWT ScrolledComposite in action:

//--- Creation of a ScrolledComposite displaying a child composite
ScrolledComposite scrolledComposite = new ScrolledComposite(

parent, SWT.H_SCROLL | SWT.V_SCROLL | SWT.BORDER);
Composite childComposite = new Composite(scrolledComposite, SWT.NONE);
childComposite.setSize(1000, 1000);
scrolledComposite.setContent(childComposite);

Migrate existing Swing code

Before migrating a JScrollPane, you should ask yourself if you really need a
ScrolledComposite. Remember that widgets that are usually scrollable, such as text,
lists, tables, or trees, only need the styles SWT.H_SCROLL and SWT.V_SCROLL to be
scrollable. If you do need to port a JScrollPane or JViewport, you can use the following
wrapper classes:

• SWTScrollPane

• SWTViewport

These classes use the API and event mapping introduced in Migrate your Swing code to
SWT with minimal change on page 14 , so the migration work you'll have to do is limited to
the following simple steps:

• Search for occurrences of the Swing types JScrollPane and JViewport and replace
them with the new wrapper types SWTScrollPane and SWTViewport, respectively.

• Search for constructors where a scrollpane or a viewport is created and add the reference
to the parent of the label in the arguments list. Note that if your Swing code uses the
JScrollPane(Component) constructor with the component to view provided as the
argument, in the ported code you'll have to explicitly set the component to view with
SWTScrollPane.setView(SWTComponent). This is because in SWT you can't create
the component to view before its parent -- the scrollpane, in this case -- is constructed.

Let's look at a migration example. Consider the following Swing code:

JScrollPane scrollPane = new JScrollPane(componentToView);
scrollPane.getViewport().setViewPosition(new Point(100,100));
parent.add(scrollPane);

Here's what this code would look like ported to SWT:

SWTScrollPane scrollPane = new SWTScrollPane(parent);
scrollPane.setView(componentToView);
scrollPane.getViewport().setViewPosition(new Point(100,100));
parent.add(scrollPane);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 59 of 97

JSeparator
Separators -- visual dividers used to separate widgets in a container, or a logical group of
menu items in a menu -- are not represented in SWT by a unique class like Swing's
JSeparator. Menu separators are created by instantiating a MenuItem having the style
SWT.SEPARATOR. Widget separators in a panel or a toolbar are created by instantiating a
Label having the style SWT.SEPARATOR combined with one of two style constants,
SWT.HORIZONTAL or SWT.VERTICAL, that define the orientation of the separator. The
orientation must be defined at construction time.

Here's what a separator would look like:

The following code snippet illustrates both kinds of separators in action:

//--- Creation of a menu separator
new MenuItem(parentMenu, SWT.SEPARATOR);

//--- Creation of a vertical separator in a parent composite
new Label(parent, SWT.SEPARATOR | SWT.VERTICAL);

Migrate existing Swing code

Because Swing's separators can't be customized, their migration to SWT is not problematic.

The wrapper class SWTSeparator, included with the sample code provided with this tutorial,
makes the migration easier. It uses the API and event mapping introduced in Migrate your
Swing code to SWT with minimal change on page 14 , so the migration work you'll have to do
is limited to a few simple steps:

• Search for occurrences of the Swing type JSeparator and replace them with the new
wrapper type SWTSeparator.

• Search for constructors where a separator is created and add the reference to the parent
of the separator in the arguments list.

Let's look at a migration example. Consider the following Swing code:

//--- Add a vertical separator in a panel
panel.add(new JSeparator(SwingConstants.VERTICAL));

You could migrate this code to SWT as follows:

//--- Add a vertical separator in a panel
panel.add(new SWTSeparator(panel, SwingConstants.VERTICAL));

JSlider

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 60 of 97 Migrate your Swing application to SWT

Once again, SWT provides here two alternatives to replace a single Swing component. Both
SWT components -- Scale and Slider -- have functionality that is quite similar to that of
Swing's JSlider. In fact, when you read SWT's API documentation, you don't really get a
sense of the difference between these two components: Both are used to select a numeric
value within a bound of values, and both have nearly the same API and functionality. The
only difference between Scale and Slider is in their look and feel:

• A Slider has at both ends arrows to increment or decrement the selected value, like a
scroll bar does. The cursor, whose position represents the current value, has a variable
width that can be programmatically set by using the method setThumb(int) -- this is the
equivalent of Swing's JSlider.setExtent(int) method, with the difference being that
SWT's setThumb(int) requires a positive, non-zero argument, where Swing's
setExtent(int) accepts a zero argument.

• A Scale is simpler. It doesn't contain the arrows and its cursor has an invariable size. The
rest of its API is exactly the same as Slider's.

As you can with Swing's JSlider, you can set the minimum and maximum values for these
components by invoking setMininum(int) and setMaximum(int). The method to set
the current value is in SWT named setSelection(int) and not setValue(int).

SWT doesn't offer the flexibility to customize the look of the slider that Swing offers. There is
no way to define whether gradations are displayed or not, or to display customized labels.

Events

Sliders and Scales only throw one type of event: A SelectionEvent is thrown each
time the value of the slider or scale changes.

The following code snippet shows SWT sliders and scales in action:

// Create a slider
Slider slider = new Slider(parent, SWT.HORIZONTAL);
//set mininum, maximum, thumb, and increments value in a single line
slider.setValues(50, 0, 100, 30, 1, 10);
...
slider.setSelection(60); // change the current value

//Create a scale
Scale scale = new Scale(parent, SWT.HORIZONTAL);
slider.setMaximum(200);
slider.setSelection(50);

Migrate existing Swing code

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 61 of 97

The migration of existing Swing code is not problematic as long as you don't need a slider
with customized labels.

The wrapper class SWTSlider, included with the sample code provided with this tutorial,
makes the migration easier. It uses the API and event mapping introduced Migrate your
Swing code to SWT with minimal change on page 14 , so the migration work you'll have to do
is limited to a few simple steps:

• Search for occurrences of the Swing type JSlider and replace them with the new
wrapper type SWTSlider.

• Search for constructors where a slider is created and add the reference to the parent of the
slider in the arguments list.

Let's look at a migration example. Consider the following Swing code:

JSlider slider = new JSlider();
slider.addChangeListener(new ChangeListener() {
public void stateChanged(ChangeEvent e) {

// do action
}

});
parent.add(slider);

You can convert this code to SWT as follows:

SWTSlider slider = new SWTSlider(parent);
slider.addChangeListener(new ChangeListener() {
public void stateChanged(ChangeEvent e) {

// do action
}

});
parent.add(slider);

JSplitPane
The equivalent of Swing's JSplitPane in SWT is the customized widget
org.eclipse.swt.custom.SashForm, illustrated in the figure below:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 62 of 97 Migrate your Swing application to SWT

Where Swing's JSplitPane only allows you to divide a panel into two parts with a divider
between them, a SashForm is a composite that can be split into as many parts as its number
of children. A draggable divider is added between children. As in Swing, you can control the
orientation of the split (horizontal or vertical) by passing one of two style constants,
SWT.HORIZONTAL or SWT.VERTICAL, in the constructor, or by invoking the method
setOrientation(int).

Because a SashForm can be divided into more than two parts, there are no
setRightComponent(Component) or setLeftComponent(Component) methods as
there are for JSplitPane. The order of creation of the child components defines their
position on the screen, as with a FlowLayout:

• If the SashForm is horizontal, the children will be laid out from left to right.

• If the SashForm is vertical, the children will be laid out from top to bottom.

The position of the divider can be set by invoking the method setWeights(int[]). This
method expects an array containing as many integers as the number of children in the
SashForm. Each of these values defines the relative width or height (depending on the
orientation) of the children. Note that this method must be invoked after all the children of the
SashForm are created.

SWT's SashForm has a feature that is not available in Swing's JSplitPane. You can
programmatically maximize one child of the SashForm by invoking the method
setMaximizedControl(Control). This operation can by reversed by invoking the same
method with null as its parameter.

The following code snippet shows an example of an SWT SashForm in action:

//--- Creation of a horizontal SashForm containing two children composites
SashForm sashForm = new SashForm(parent, SWT.HORIZONTAL);
Composite leftComposite = new Composite(sashForm, SWT.NONE);
Composite rightComposite = new Composite(sashForm, SWT.NONE);
//--- Set the position of the divider to 1/3
sashForm.setWeights(new int[] {1,2});

Migrate existing Swing code

The migration from Swing to SWT is not really problematic here, because both toolkits offer

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 63 of 97

similar functionality. TThe wrapper class SWTTabbedPane, included in the sample code
provided with this tutorial, makes the migration easier. However, because SashForm uses its
children's creation order to decide where those children are to be placed, you may have to
change the order of some lines of code. Note that it is not possible in SWT to pass the
children as arguments in the constructor as you can in JSplitPane, because the child
components need an already constructed parent container in order to be constructed
themselves.

To migrate Swing code with the help of SWTSplitPane, you should proceed as follows:

• Replace all the references to the class JSplitPane with the class SWTSplitPane.

• Search for any invocation of a constructor of JSplitPane and replace it with the
constructor of SWTSplitPane, passing the parent of the split pane as the first parameter
and the orientation as the second parameter.

• Search for the code creating the two children of the split pane, migrate it to SWT, and
move it or reorder it so that the children are created just after the SashForm, the left- or
topmost component being the first child to be created.

• Remove any invocation of setLeftComponent(), setRightComponent(),
setTopComponent(), or setBottomComponent().

Let's look at a migration example. Consider the following Swing code:

JPanel leftPanel = new JPanel();
JPanel rightPanel = new JPanel();
JSplitPane splitPane = new JSplitPane(

JSplitPane.HORIZONTAL_SPLIT, leftPanel, rightPanel);
splitPane.setDividerLocation(0.3);

Here's what this code would look like after being migrated to SWT:

SWTSplitPane splitPane = new SWTSplitPane(parent, SWTSplitPane.HORIZONTAL_SPLIT);
SWTPanel leftPanel = new SWTPanel(splitPane);
SWTPanel rightPanel = new SWTPanel(splitPane);
splitPane.setDividerLocation(0.3);

JTabbedPane
SWT provides two components that can be used to replace a Swing JTabbedPane.

TabFolder uses a native widget from the underlying platform. Its functionality is quite
similar to Swing's JTabbedPane, with one limitation: you can't modify the placement of the
tabs. The look and feel of the widget is not customizable. This is what a TabFolder would
look like:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 64 of 97 Migrate your Swing application to SWT

CTabFolder, from the package org.eclipse.swt.custom, is an emulated widget that
provides more functionality and possibilities for customization than TabFolder. The look
and feel of the widget is the same on all platforms. By using in the constructor one of two
style constants, SWT.TOP or SWT.BOTTOM, you can control the position at which the tabs are
displayed. (Note that SWT doesn't offer the possibility of displaying the tabs on the sides of
the component as Swing does.) Additionally, CTabFolder lets you set the height of the tabs
and allows you to place a visual separator between two tabs by using the method
setInsertMark(). There is one more feature that is specific to CTabFolder and is
available neither in SWT's TabFolder nor in Swing's JTabbedPane: By adding a
CTabFolderListener on the component, the tabs become closeable. Once a listener is
registered, each tab has a button with a cross icon that automatically make the tab disappear
when the user clicks on it. The listeners are then notified that a tab has been closed. This is
the same behavior used in Eclipse when you close an editor by clicking on the close button
in its tab. This is what a CTabFolder would look like:

Whether you use a TabFolder or a CTabFolder to replace a JTabbedPane depends on
the level of customization required by your application. If the standard look and feel of the
native TabFolder is good enough, it is better to use it to get the best performance. If the
tabs have to be placed on the bottom of the component, of if you need a tab folder without
border or more compact tabs whose height can be precisely defined, using a CTabFolder is
the only choice you have. Both components have nearly the same API, so you can easily try
out both in you application to find out which one better fit your needs.

Adding and removing items

SWT's method for adding and removing tabs or pages is different from Swing's. For each tab
in the folder, you have to create a widget -- a TabItem or CTabItem, depending on whether
you are using a TabFolder or a CTabFolder. A TabItem represents an empty tab in the
folder. The constructor lets you indicate the index at which the tab should be inserted. To
assign a control, a title, an icon, or a tooltip to a tab, you would invoke the methods
setControl(Control), setText(String), setImage(Image), and

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 65 of 97

setToolTipText(String), respectively. Successive calls of
TabFolder.setControl(Control) let you change the content of a page without having
to re-create the TabItem.

You can remove a tab by invoking the method dispose() on the TabItem. Once a tab has
been discarded, it cannot be used anymore and has to be recreated if you need to add it
again.

Note that discarding a TabItem doesn't dispose of the control that was associated to it with
setControl(Control). Thus, although a discarded TabItem is not reusable, its content
can be reassigned to a new TabItem.

Events

A SelectionEvent is thrown each time a new tab is selected. To detect a change in the
selection, register a SelectionListener by using the method
addSelectionListener(SelectionListener). The listener method that is triggered
by the event is SelectionListener.widgetSelected(SelectionEvent).
Additionally, a CTabFolder throws a CTabFolderEvent to its CTabFolderListener
when the user closes a tab by clicking on its close button. By setting the doit field of the
event to false, you can programmatically forbid the user to close the tab.

The following code snippet illustrates SWT tabs in action:

//--- Creation of a native TabFolder containing 3 tabs, each tab contains a button
TabFolder tabFolder = new TabFolder(parent, SWT.NONE);

Button b1 = new Button(tabFolder, SWT.PUSH);
b1.setText("Component 1");
TabItem tabItem = new TabItem(tabFolder, SWT.NONE);
tabItem.setText("Tab 1");
tabItem.setControl(b1);

Button b2 = new Button(tabFolder, SWT.PUSH);
b2.setText("Component 2");
tabItem = new TabItem(tabFolder, SWT.NONE);
tabItem.setText("Tab 2");
tabItem.setControl(b2);

Button b3 = new Button(tabFolder, SWT.PUSH);
b3.setText("Component 3");
tabItem = new TabItem(tabFolder, SWT.NONE);
tabItem.setText("Tab 3");
tabItem.setControl(b3);

// Insert afterwards a new tab at index 1
tabItem = new TabItem(tabFolder, SWT.NONE, 1);
tabItem.setText("Inserted Tab");
tabItem.setControl(control);

//--- Creation of a CTabFolder with 2 tabs displayed on the bottom of the component
CTabFolder ctabFolder = new CTabFolder(parent, SWT.BOTTOM);

Button ba = new Button(ctabFolder, SWT.PUSH);
ba.setText("Component A");
CTabItem ctabItem = new CTabItem(ctabFolder, SWT.NONE);
ctabItem.setText("Tab A");
ctabItem.setControl(ba);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 66 of 97 Migrate your Swing application to SWT

Button bb = new Button(ctabFolder, SWT.PUSH);
bb.setText("Component B");
ctabItem = new CTabItem(ctabFolder, SWT.NONE);
ctabItem.setText("Tab B");
ctabItem.setControl(bb);

// Make the tabs closeable
ctabFolder.addCTabFolderListener(new CTabFolderListener() {
public void itemClosed(CTabFolderEvent event) {
...

}
});

Migrate existing Swing code

The migration of existing Swing code is only problematic if in Swing you use a JTabbedPane
whose tabs have to be placed on the side of the component. In any other case, you won't
encounter any problem.

The wrapper class SWTTabbedPane, included in the sample code provided with this tutorial,
makes the migration easier. It uses the API and event mapping introduced in Migrate your
Swing code to SWT with minimal change on page 14 , so the migration work you'll have to do
is limited to a few simple steps:

• Search for occurrences of the Swing type JTabbedPane and replace them with the new
wrapper type SWTTabbedPane.

• Search for constructors where a tabbed pane is created and add the reference to the
parent of the tabbed pane in the arguments list.

Let's look at a migration example. Consider the following Swing code:

JTabbedPane tabbedPane = new JTabbedPane();
tabbedPane.add("Tab 1", component1);
tabbedPane.add("Tab 2", component2);
tabbedPane.add("Tab 3", component3);
tabbedPane.setSelectedIndex(1);
parent.add(tabbedPane);

You can migrate this code to SWT like so:

SWTTabbedPane tabbedPane = new SWTTabbedPane(parent);
tabbedPane.add("Tab 1", component1);
tabbedPane.add("Tab 2", component2);
tabbedPane.add("Tab 3", component3);
tabbedPane.setSelectedIndex(1);
parent.add(tabbedPane);

JTable
SWT's equivalent for Swing's JTable is the component Table. It can be used in
combination with JFace's TableViewer.

The use of a pure SWT table, without JFace's TableViewer, is, from the programmer's
perspective, quite different from the use of Swing's JTable:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 67 of 97

• The major difference between Swing's JTable and SWT's Table is that SWT doesn't
make use of a data model like Swing's TableModel. In SWT, each table row is a widget
of type TableItem that must be instantiated with the Table itself as parent. A
TableItem can display text and an image for each column of the table. The content of the
table is set in the TableItems themselves by invoking one of two methods,
TableItem.setImage(...) and TableItem.setText(...).

• SWT has no equivalent for Swing's TableCellRenderer. An SWT table can only display
text and an image in each cell.

• Like the rows, the columns of a table are widgets that have to be instantiated as children of
the Table as parent. The class for the column widgets is TableColumn. TableColumns
can be instantiated with one of the three styles -- SWT.LEFT, SWT.CENTER, and
SWT.RIGHT -- defining the alignment of the content of the table in the column. Note that
some platforms, like GTK on Linux, ignore this constant. As with TableItems, you can
set on a TableColumn text and an image with the methods
TableColumn.setText(String) and TableColumn.setImage(Image). The text
and image of a column are displayed in the header of the table when it is visible.

• Because each table row is its own widget, an SWT table is not as scalable as Swing's
JTable. SWT programmers are trying to solve this problem for future releases, but as of
SWT 2.1 you have to keep in mind that very large tables (more than 10,000 rows) may
present performance problems, mainly in the initialization time of the table.

The following code snippet shows the use of a pure SWT table, without a JFace viewer:

//--- Example of creation of a simple table without TableViewer
Table table = new Table(composite, SWT.BORDER | SWT.H_SCROLL | SWT.V_SCROLL | SWT.FULL_SELECTION);
table.setHeaderVisible(true);

// Create 2 columns
TableColumn column1 = new TableColumn(table, SWT.LEFT);
column1.setText("Col 1");
column1.setWidth(100);
TableColumn column2 = new TableColumn(table, SWT.LEFT);
column2.setText("Col 2");
column2.setWidth(100);

// Create 5 rows
int nbColumns = table.getColumnCount();
for (int row=1 ; row<=5 ; row++) {
TableItem tableItem = new TableItem(table, SWT.NONE);
for (int col=0 ; col<nbColumns ; col++) {
tableItem.setText(col, "item "+row+"-"+(col+1));

}
}

And here's what such a table would look like:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 68 of 97 Migrate your Swing application to SWT

JFace's TableViewer

Most of the time, however, you wouldn't create a table as shown above. Rather, you will use
a JFace TableViewer. A TableViewer is a JFace viewer created on top of an SWT
Table. It automatically creates and sets up the TableItems to represent a data model
provided by a content provider in a text/icon form defined by a label provider. In this way, you
have a mechanism that is much closer to Swing's TableModel/TableCellRenderer
mechanism. For more information on JFace's viewers, read Data models and cell renderers
vs. content providers and label providers on page 12 , or read the articles listed in the
Resources on page 95 . For concrete examples showing how to use aTableViewer, you
should focus on "Using the Eclipse GUI outside the Eclipse Workbench" by Adrian Van
Emmenis, and "Building and delivering a table editor with SWT/JFace" by Laurent Gauthier.

Table items

If you use a JFace TableViewer, you don't have to care about the TableItems of the
table, because those are automatically created by the viewer. However, in some cases it can
be useful to work with the TableItems directly, even if they are automatically created.

By using the Table's API, you can get the list of all the TableItems, or of those items that
are selected. By invoking setBackground(Color) or setForeground(Color), you can
modify the colors of single rows. This is something that you can't do with the API of JFace
TableViewer and its label provider.

Table columns and table headers

SWT has no equivalent for Swing's TableColumnModel. For each column, you have to
create a TableColumn widget. You can decide whether a column is resizable or not by
using the TableColumn.setResizable(boolean) method. There is no automatic
resizing policy for the columns as there is in Swing. You have to set the width of each column
by invoking TableColumn.setWidth(int).

In SWT, the table header displayed on top of the table is not a separate widget like Swing's
JTableHeader, but is a part of the Table itself. By default, the table header is not shown.
You can make it visible by invoking Table.setHeaderVisible(boolean). For each
column, the table header can display a column name and an optional icon, though the icon
may be ignored on some platforms. To set the name and icon to display for each column,
you have to invoke the methods setText(String) and setImage(Image) on the
TableColumns.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 69 of 97

Management of the selection

SWT has no equivalent for Swing's SelectionModel. You can define whether or not
multiple selection is allowed by using one of two style constants, SWT.MULTI or
SWT.SINGLE, when constructing the table. You can't switch from one mode to the other after
the table has been created.

SWT's Table doesn't support cell or column selection, as Swing's JTable does. Only rows
can be selected. If you don't use the style constant SWT.FULL_SELECTION, only the first cell
of the selected rows is displayed as being selected. Using SWT.FULL_SELECTION, you can
select a complete row, as you can in Swing. If you don't want the selection to be displayed,
you can use the style constant SWT.HIDE_SELECTION. You can set and get the selection
programmatically in two different ways:

• SWT's Table provides simple methods to set or get the selection. These methods work
with either the indices of the items composing the selection or with the TableItems
themselves.

• JFace's TableViewer provides two methods, getSelection() and
setSelection(ISelection, boolean), that are inherited from
StructuredViewer; they work on a higher abstraction level. The ISelection object
returned or used by these methods is in fact a StructuredSelection that provides an
iterator or an array containing the selected elements as supplied by the content providers,
and is independent from their string representation or their representation order.

Cell editing

Like Swing's JTable, JFace's TableViewer allows cell editing. The concepts used by
SWT/JFace here are pretty similar to those used in Swing. You can define for each column a
CellEditor that allows you to use any kind of SWT component to edit the value of a cell. A
small difference is that JFace requires that you also set a ICellModifier on the viewer.
The cell modifier decides whether or not a cell is editable, and does the translation between
the data model and the editor: it provides the value that will be edited to the cell editor, and
modifies the data model once the editing is completed.

For more information about cell editing in a JFace TableViewer, read the article "Building
and delivering a table editor with SWT/JFace" by Laurent Gauthier (see Resources on page 95
for a link).

Events

The only event thrown by a Table is a SelectionEvent that notifies the
SelectionListeners when the selection has changed.

Migrate existing Swing code

The migration of existing Swing code for a JTable is not problematic for tables that use
standard renderers -- icons and/or text -- and don't need single cell selection. Note that you
may encounter scalability problems if your table has to display a very large number of rows.

The wrapper class SWTTable, included with the sample code provided with this tutorial,
makes the migration easier by emulating the API of Swing, as introduced in Migrate your
Swing code to SWT with minimal change on page 14 . This class is able to reuse an existing

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 70 of 97 Migrate your Swing application to SWT

Swing TableModel and TableColumnModel. To migrate existing code using the wrapper
class, you'll need to follow these steps:

• Search for occurrences of the Swing type JTable and replace them with the new wrapper
type SWTTable.

• Search for constructors where a table is created and add the reference to the parent of the
table in the arguments list.

• It is very probable that the Swing tables of your application are contained in
JScrollPanes. Modify the code so that no JScrollPane is created, and so the tables
are directly added to their parent.

• Convert optional Swing renderers into SWTCellRenderers.

Let's look at a migration example. Consider the following Swing code:

//--- Create a data model containing 4x4 strings
Object[][] data = new Object[4][4];
for (int i=0 ; i<data.length ; i++) {
for (int j=0 ; j<data[i].length ; j++)
data[i][j] = (i+1)+"-"+(j+1);

}
// create the name of the columns
String[] columnNames = new String[4];
for (int i=0 ; i<columnNames.length ; i++) columnNames[i]="col"+(i+1);

// create a table to display the data
JTable table = new JTable(data, columnNames);

// add a selection listener on the table
table.getSelectionModel().addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent e) {
// do action

}
});

// create a custom renderer for the 1st column of the table
TableCellRenderer customRenderer = new DefaultTableCellRenderer() {
public Component getTableCellRendererComponent(
JTable table, Object value, boolean isSelected,
boolean hasFocus, int row, int column) {
super.getTableCellRendererComponent(table, value, isSelected, hasFocus, row, column);
setText("custom:"+value.toString());
return this;

}
};
table.getColumnModel().getColumn(0).setCellRenderer(customRenderer);

parent.add(new JScrollPane(table));

Here's what this code would look like after migration to SWT:

//--- Create a data model containing 4x4 strings
Object[][] data = new Object[4][4];
for (int i=0 ; i<data.length ; i++) {
for (int j=0 ; j<data[i].length ; j++)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 71 of 97

data[i][j] = (i+1)+"-"+(j+1);
}
// create the name of the columns
String[] columnNames = new String[4];
for (int i=0 ; i<columnNames.length ; i++) columnNames[i]="col"+(i+1);

// create a table to display the data
SWTTable table = new SWTTable(parent, data, columnNames);

// add a selection listener on the table
table.getSelectionModel().addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent e) {
// do action

}
});

// create a custom renderer for the 1st column of the table
SWTCellRenderer customRenderer = new SWTCellRenderer() {

public String getCellText(Object value, int row, int column) {
return "custom:"+value.toString();

}
};

table.getColumnModel().getColumn(0).setCellRenderer(customRenderer);

parent.add(table);

JTextField, JTextArea, and JPasswordField
For even its simplest text components, such as JTextField or JTextArea, Swing uses a
pretty complicated API and class hierarchy. For normal text fields, SWT uses a much simpler
design. All text fields, whether they are single-line fields, multiple-line areas, or password
fields, are created by using the same component, Text, using different styles:

• Single-line text fields, like JTextField, are created by using the style SWT.SINGLE.

• Password fields, like JPasswordField, are in SWT normal text fields (with a style of
SWT.SINGLE) on which the method setEchoChar(char) is invoked.

• Multiline text areas, like JTextArea, are created by using the style SWT.MULTI. You can
combine this style with SWT.WRAP to build a text field whose lines are wrapped when they
exceed the width of the component. Note that you don't need to put a text component in a
scrollpane to make it scrollable; simply add the styles V_SCROLL and/or H_SCROLL if you
want scrollbars to be added to the text component. Unlike a Swing JTextArea, an SWT
text component is always scrollable with the keyboard, whether you use the styles
V_SCROLL and H_SCROLL or not. These styles only define whether or not scrollbars
appear.

All these elements are illustrated in the figure below.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 72 of 97 Migrate your Swing application to SWT

Borders

Text components are by default created without any border around them. However, you may
often want to use the style SWT.BORDER to create a text component surrounded by the
standard border that the platform uses to draw text fields.

Selection and caret position

SWT's Text has an API for handling text selection that is quite similar to the API for Swing's
JTextComponent. You can programmatically set the selection by using
setSelection(int, int), passing the start and end indices of the selection as
arguments. Note that if you set the selection to a part of the text that is currently outside the
visible area, the text component won't scroll automatically to the selected text. To do that,
you have to additionally invoke the method showSelection().

As in Swing, the currently selected text can be retrieved by invoking a method named
getSelectedText(). However, the start and end indices of the selection can be retrieved
by invoking a single method named getSelection(); this is not possible in Swing. This
method returns a Point that contains in its x field the start index of the selection, and in its y
field its end index. The unusual return type of this method is puzzling and leads some to think
that it returns some screen coordinates. In fact, SWT simply misuses the Point object as a
container object for two integer values.

Events

Like Swing, SWT gives you the capability to register listeners to notify you when the text of a
text component is modified. The API for detecting such changes in a Swing text component
is pretty complicated and not very intuitive -- you have to get the Document of the text object
and register a DocumentListener on it. SWT offers a much simpler and more powerful
way to detect such changes. SWT's Text throws a VerifyEvent to its VerifyListeners
when its content is about to be changed. This event is thrown directly after the user presses
the key provoking the change, but before the text is updated in the component. Thus, you
can analyze the change that is going to take place and potentially modify or cancel that
change before it occurs. That's why the event is called VerifyEvent: because it lets you
verify whether or not the change should take place. VerifyEvent has four fields that you
can use to analyse the change and eventually cancel it:

• start is a read-only field, which means that any changes you make in its value will be
ignored. It indicates the index at which the text insertion or deletion will take place.

• end is also a read-only field. It indicates the end index of the modification. If its value is the
same as start, text will be inserted. If its value is greater that start, text will be deleted.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 73 of 97

• text contains the text that is going to be inserted or deleted. If text is going to be inserted,
you can modify the value of this field to change the text to insert. If text is going to be
deleted, changes you may make in this field will be ignored.

• doit is a field that you can set to false to cancel the event. In such a case, the change
will be ignored and the text in the component remain unchanged.

Text next throws a ModifyEvent to its ModifyListeners after the text is in the
component, assuming that the VerifyEvent was not canceled programmatically by setting
its doit field to false.

Additionally, single-line text components throw a SelectionEvent event when the user
presses Enter, just as Swing's JTextField throws an ActionEvent in the same situation.
Note that the method from SelectionListener that is invoked is here is
widgetDefaultSelected(SelectionEvent) and not
widgetSelected(SelectionEvent).

The following code snippet shows an example of SWT text fields in action:

//--- Create a single line text field
Text textField = new Text(parent, SWT.SINGLE | SWT.BORDER);
//--- Create a scrollable multiple line text area
Text textArea = new Text(parent, SWT.MULTI | SWT.BORDER

| SWT.H_SCROLL | SWT.V_SCROLL);

Migrate existing Swing code

The migration of a JTextField, a JTextArea, or a JPasswordField to SWT should not
be problematic, because the functionality is basically the same in both toolkits. However,
SWT's API is much simpler than Swing's, so that minimal code change may be necessary.
The deepest changes you will have to make will be in event handling if you use listeners on
the document.

The following wrapper classes can facilitate the migration by emulating the Swing API under
SWT:

• SWTTextComponent

• SWTTextField

• SWTTextArea

• SWTPasswordField

The Swing DocumentChangeEvent for the insertion and the deletion of text is also
emulated. However, because SWT has no equivalent for Swing's Document, the methods
addDocumentListener(DocumentListener) and
removeDocumentListener(DocumentListener) are implemented in
SWTTextComponent itself. SWTTextComponent implements a method called
getDocument(), which returns the SWTTextComponent itself; thus, existing code to
register listeners (textField.getDocument().addDocumentListener(listener))
need not be modified.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 74 of 97 Migrate your Swing application to SWT

Let's look at a code migration example. Consider the following Swing code:

//--- Create a single line text field
JTextField textField = new JTextField("initial text");
textField.getDocument().addDocumentListener(aListener);
parent.add(textField);

//--- Create a text area
JTextArea textArea = new JTextArea("initial text");
textArea.getDocument().addDocumentListener(aListener);
parent.add(textArea);

Here's what that code would look like after being migrated to SWT:

//--- Create a single line text field
SWTTextField textField = new SWTTextField(parent, "initial text");
textField.addDocumentListener(aListener);
parent.add(textField);

//--- Create a text area
SWTTextArea textArea = new SWTTextArea(parent, "initial text");
textArea.addDocumentListener(aListener);
parent.add(textArea);

JToolBar
SWT provides two components that can be used to build a toolbar: ToolBar and CoolBar.
Unlike other SWT controls, these two components are not alternatives to one another, but
are designed to be used together

ToolBar is the basic toolbar component that lays out tool items -- usually buttons displaying
an icon -- and optional separators. Its functionality is quite similar to Swing's JToolBar,
except that SWT's ToolBar can't be made floatable like its Swing counterpart. The
orientation of the toolbar -- horizontal or vertical -- can be defined by using one of two styles,
SWT.HORIZONTAL and SWT.VERTICAL, in the constructor. Other styles allow you to modify
the look of the bar:

• SWT.BORDER adds a border around the toolbar.

• SWT.FLAT makes the items flat. If you don't use this style, the items are represented as
normal push buttons.

• SWT.WRAP wraps the items in several rows if there is not enough space to display them all.
Note that this style is ignored by some platforms, such as GTK on Linux.

You can add items to the toolbar by creating ToolItems. The API of ToolItem is quite
similar to the API of Button. By using in an item's constructor one of several styles --
SWT.PUSH, SWT.CHECK, SWT.RADIO, or SWT.DROP_DOWN -- you will create a normal push
item, a check box, a radio button, or an item displaying a drop-down menu, respectively. By

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 75 of 97

using the style SWT.SEPARATOR, you will create a visual separator between two items. By
using the methods ToolItem.setImage(image), ToolItem.setHotImage(image),
and ToolItem.setDisableImage(image), you can define different icons to be displayed
when the tool item is in its normal state, when the mouse pointer is on it, and when it is
disabled, respectively. You can also add any SWT control to a toolbar -- it is for example
quite usual to include a combo box in a toolbar to allow the user to change a font size or a
zoom factor -- by creating a ToolItem with the style SWT.SEPARATOR, and then invoking
the method setControl(Control) on it. You will then have to set its width by invoking the
method setWidth(int) on the ToolItem. Note that the height of a ToolBar and all its
ToolItems is defined by the platform and can't be changed.

A CoolBar is a multiline toolbar whose items can be moved and reordered by the user. A
CoolBar usually contains several ToolBars. Each ToolBar is an atomic group of items
that can be reordered by the user within the CoolBar.

You add items to the coolbar by creating CoolItems and setting SWT controls on them with
the method CoolItem.setControl(Control). Unlike ToolItem, CoolItem lets you set
its width and height. The layout of the CoolBar -- the order of its items, their sizes, and the
indices at which the row is wrapped -- can be set programmatically by using
setItemLayout(int[], int[], Point[]). Keep in mind that each item in a CoolBar
can be reordered by the user. Thus, you should avoid adding too many single components to
the CoolBar and rather use it to contain several ToolBars, each of them defining a logical
grouping of items.

The following code snippet illustrates SWT CoolBars and ToolBars in action:

//--- Create a CoolBar containing a ToolBar and a Combo
CoolBar coolBar = new CoolBar(parent, SWT.BORDER);

//- Create the ToolBar, representing the 1st group of items in the CoolBar
ToolBar group1 = new ToolBar(coolBar, SWT.FLAT);
ToolItem item = new ToolItem(group1, SWT.NONE); // add a 1st item
item.setImage(icon1);
item.setToolTipText("Action 1");

item = new ToolItem(group1, SWT.SEPARATOR); // add a separator

item = new ToolItem(group1, SWT.NONE); // add a second item
item.setImage(icon2);
item.setToolTipText("Action 2");

// add the ToolBar as 1st item in the CoolBar
CoolItem coolItem = new CoolItem(coolBar, SWT.NONE);
coolItem.setControl(group1);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 76 of 97 Migrate your Swing application to SWT

coolItem.setSize(group1.computeSize(SWT.DEFAULT, SWT.DEFAULT));

//- Create a Combo to add as 2nd item in the CoolBar
Combo combo = new Combo(coolBar, SWT.DROP_DOWN);
combo.setItems(new String[]{"item1", "item2", "item3"});

coolItem = new CoolItem(coolBar, SWT.NONE);
coolItem.setControl(combo);
coolItem.setSize(combo.computeSize(SWT.DEFAULT, SWT.DEFAULT));

Migrate existing Swing code

The migration of existing Swing code for a JToolBar shouldn't present any problem. The
wrapper class SWTToolBar, included in the sample code provided with this tutorial, makes
the migration easier by emulating the API of Swing as introduced in Migrate your Swing code
to SWT with minimal change on page 14 . To migrate existing code using the wrapper class,
you'll need to take the following steps:

• Search for occurrences of the Swing type JToolBar and replace them with the new
wrapper type SWTToolBar.

• Search for constructors where a toolbar is created and add the reference to the parent of
the tabbed pane in the arguments list.

Let's look at a migration example. Consider the following Swing code:

JToolBar toolBar = new JToolBar();
toolBar.add(anAction);
toolBar.add(aComponent);
toolBar.addSeparator();
toolBar.add(anotherAction);
parent.add(toolBar);

Here's what the code would look like migrated to SWT:

SWTToolBar toolBar = new SWTToolBar(parent);
toolBar.add(anAction);
toolBar.add(aComponent);
toolBar.addSeparator();
toolBar.add(anotherAction);
parent.add(toolBar);

JTree
SWT's equivalent for Swing's JTree is the component Tree. It can be used in combination
with JFace's TreeViewer.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 77 of 97

The constraints of using a pure SWT Tree without a JFace TreeViewer are the same as
those for a table (see JTable on page 67). There is no data model and you have to create
each tree node manually, as in the following example:

//--- Example of creation of a SWT Tree without TreeViewer
Tree tree = new Tree(parent, SWT.SINGLE | SWT.H_SCROLL | SWT.V_SCROLL);
// create a 1st root node "Node 1" containing 2 children "Node 1-1" & "Node 1-2"
TreeItem node1 = new TreeItem(tree, SWT.NONE);
node1.setText("Node 1");
TreeItem node11 = new TreeItem(node1, SWT.NONE);
node11.setText("Node 1-1");
TreeItem node12 = new TreeItem(node1, SWT.NONE);
node12.setText("Node 1-2");

// create a 2nd root node "Node 2" containing 2 children "Node 2-1" & "Node 2-2"
TreeItem node2 = new TreeItem(tree, SWT.NONE);
node2.setText("Node 2");
TreeItem node21 = new TreeItem(node2, SWT.NONE);
node21.setText("Node 2-1");
TreeItem node22 = new TreeItem(node2, SWT.NONE);
node22.setText("Node 2-2");

JFace's TreeViewer

Most of the time, you wouldn't create a tree as shown above, but would instead use a JFace
TreeViewer. A TreeViewer is a JFace viewer created on top of an SWT Tree. The
viewer automatically creates and sets up the TreeItems to represent a data model supplied
by a content provider in a text/icon form defined by a label provider. In this way, you have a
mechanism that is similar to Swing's TreeModel/TreeCellRenderer mechanism.

For more information on JFace's viewers, read Data models and cell renderers vs. content
providers and label providers on page 12 , or read the articles listed in the Resources on
page 95 . For concrete examples showing how to use aTreeViewer, you should read in
particular "Using the Eclipse GUI outside the Eclipse Workbench" by Adrian Van Emmenis,
and "How to use the JFace Tree Viewer" by Chris Grindstaff.

Tree items

If you use a JFace TreeViewer, you don't have to care about the TreeItems of the tree,
because they are automatically created by the viewer. However, in some cases it can be
useful to work with the TreeItems directly, even if they are automatically created.

By using the API of Tree, you can get the list of all the root TreeItems and navigate
through all the items of the tree. By invoking setBackground(Color) or
setForeground(Color), you can modify the colors of single items. This is something that
you can't do with the API of JFace's TreeViewer and its label provider.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 78 of 97 Migrate your Swing application to SWT

Expand/collapse items

As in Swing, you can programmatically expand or collapse items. TreeViewer provides
several methods to expand the tree up to a specific depth, or to expand or collapse the
nodes corresponding to some specific elements in the data model. Check the API of the
following methods:

• AbstractTreeViewer.expandAll()

• AbstractTreeViewer.expandtoLevel(...)

• AbstractTreeViewer.setExpandedElements(Object[])

• AbstractTreeViewer.setExpandedState(Object, boolean)

Another way to expand or collapse an item is to get the TreeItem of its node, and then
invoke the method setExpanded(boolean) on it.

Editing

A limitation of JFace's TreeViewer is that it doesn't allow the editing of nodes, as its Swing
equivalent does. If you really need to do this, SWT provides TreeEditor, which can be
installed on top of an SWT Tree. If you use it in combination with a JFace TreeViewer and
a content provider, you will have to write some code to modify the data model once the
editing of a node is completed.

If you want an example showing how to use TreeEditor, look at the code snippets at the
dev.eclipse.org site (see Resources on page 95 for a link).

Management of the selection

SWT has no equivalent for Swing's SelectionModel. You can define whether multiple
selection is allowed or not by using one of two style constants, SWT.MULTI or SWT.SINGLE,
when constructing the tree. You can't switch from one mode to the other after the tree has
been created. You can set and get the selection programmatically in two different ways:

• SWT's Tree provides simple methods to set or get the selection. These methods work
with the TreeItems populating the tree.

• JFace's TreeViewer provides two methods, getSelection() and
setSelection(ISelection, boolean), that are inherited from StructuredViewer
and work on a higher abstraction level. The ISelection object returned or used by these
methods is in fact a StructuredSelection. This object provides an iterator or an array
containing the selected elements as provided by the content provider, and is independent
from their string representation or their representation order.

Events

An SWT Tree throws two kind of events:

• A SelectionEvent is thrown to notify the listeners that a change occurred in the
selection. To detect a change in the selection, register a SelectionListener by using
the addSelectionListener(SelectionListener) method. The listener method that
is triggered by the event and should be implemented is
SelectionListener.widgetSelected(SelectionEvent).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 79 of 97

• A TreeEvent is thrown each time a node is expanded or collapsed. You can receive this
event by registering a TreeListener on the Tree.

Migrate existing Swing code

The migration of existing Swing code for a JTree doesn't present any problem as long as
you don't need complex renderers that can't be realized with a JFace label provider.

The wrapper class SWTTree, included with the sample code provided with this tutorial,
makes the migration easier by emulating the API of Swing as outlined in Migrate your Swing
code to SWT with minimal change on page 14 . You don't have to port your original Swing
TreeModel.

To migrate existing code using the wrapper class, follow these steps:

• Search for occurrences of the Swing type JTree and replace them with the new wrapper
type SWTTree.

• Search for constructors where a tree is created and add the reference to the parent of the
tree in the arguments list.

• The Swing trees of your application are probably contained in JScrollPanes. Modify the
code so that no JScrollPane is created and the trees are added directly to their parent.

• Convert any Swing renderers into SWTCellRenderers.

Let's look at a migration example. Consider the following Swing code:

TreeModel model = ...;
JTree tree = new JTree(model);
tree.setRootVisible(false);
tree.expandRow(0);
tree.addTreeSelectionListener(new TreeSelectionListener() {
public void valueChanged(TreeSelectionEvent e) {
// do action

}
});
parent.add(new JScrollPane(tree));

After migration, the equivalent SWT code would look like this:

TreeModel model = ...;
SWTTree tree = new SWTTree(parent, model);
tree.setRootVisible(false);
tree.expandRow(0);
tree.addTreeSelectionListener(new TreeSelectionListener() {
public void valueChanged(TreeSelectionEvent e) {
// do action

}
});
parent.add(tree);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 80 of 97 Migrate your Swing application to SWT

Section 6. Complete example: Migrating a Swing dialog

Our sample dialog
In this section, we are going to apply the migration techniques and the wrapper classes
introduced in this tutorial to migrate a complete Swing panel to SWT.

The following screenshot shows the Swing panel that we are going to migrate to SWT:

This is a fairly common dialog. It allows the user to select one or more items from a list of
available items. The list on the left-hand side is a list of available items that have not been
chosen by the user yet; the list on the right-hand side is the list of the items that have been
chosen by the user. From top to bottom, the buttons between the two lists allow the user to:

• Move the selected items from the list on the left side to the list on the right side.

• Move all the items from the list on the left side to the list on the right side.

• Move the selected items from the list on the right side to the list on the left side.

• Move all the items from the list on the right side to the list on the left side.

The status of the buttons (enabled or disabled) depends on the selection and on whether or
not the lists are empty:

• The buttons to move the selected items from one list to the other are enabled only when at
least one item in the source list is selected.

• The buttons to move all the items from one list to the other are enabled only when the
source list contains at least one item.

The OK and Cancel buttons on the bottom of the panel trigger two methods (performOK()
and performCancel()) that can be overloaded.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 81 of 97

This panel is a simple but quite useful example, illustrating the typical Swing-to-SWT
migration issues we discussed earlier. The layout of the component is realized by using a
complex arrangement of invisible panels using different layout managers. The AWT layout
managers used by this panel are FlowLayout, BorderLayout and GridLayout. The
components of the dialog interact with each other through event listeners: a change in the
selection of the lists modifies the status of the buttons, and the buttons modify the content of
the lists.

The content of the lists is defined by using customized ListModels.

If you wanted to migrate such a panel to SWT without using the migration techniques
presented in this tutorial, it would be probably quickest to rewrite the whole panel from
scratch, because almost none of the existing code could be reused; the layout managers, the
events and the API of the components are different. In the following panels, we'll see how to
use our migration techniques to make that migration a lot easier.

Source code of the Swing panel
Here is the source code of the Swing panel presented on the previous panel (See the
SwingSamplePanel.java file in the j-swing2swtsrc.zip download available in Resources on
page 95 .)

The class contains a main method that allows you to test the panel without having to
integrate it in an application. To compile and run this sample, follow these steps:

1. Save the file SwingSamplePanel.java in a local directory.

2. Compile it by using the command javac SwingSamplePanel.java.

3. Launch it by using the command java -classpath . SwingSamplePanel.

import java.awt.*;
import java.awt.BorderLayout;
import java.awt.FlowLayout;
import java.awt.GridLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.*;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;

public class SwingSamplePanel extends JPanel implements ListSelectionListener {

private JList leftList, rightList;
private JButton selectButton, selectAllButton;
private JButton deselectButton, deselectAllButton;

private DefaultListModel leftListModel = new DefaultListModel();
private DefaultListModel rightListModel = new DefaultListModel();

public SwingSamplePanel() {
JPanel content = new JPanel(new BorderLayout(5, 5));
add(content);
content.add(BorderLayout.SOUTH, createButtonsPanel());
content.add(BorderLayout.CENTER, createSoshPanel());

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 82 of 97 Migrate your Swing application to SWT

initContent();
}

protected JComponent createSoshPanel() {
JPanel mainPanel = new JPanel(new BorderLayout(5, 5));

JPanel leftPanel = new JPanel(new BorderLayout(5, 5));
leftPanel.add(BorderLayout.NORTH, new JLabel("Available items:"));
leftList = new JList(leftListModel);
leftList.setPreferredSize(new Dimension(100, 150));
leftList.getSelectionModel().addListSelectionListener(this);
leftPanel.add(new JScrollPane(leftList));
mainPanel.add(BorderLayout.WEST, leftPanel);

JPanel centerPanel = new JPanel(new BorderLayout());
mainPanel.add(centerPanel);

JPanel p1 = new JPanel();
centerPanel.add(BorderLayout.SOUTH, p1);
JPanel p2 = new JPanel(new BorderLayout());
p1.add(p2);
JPanel buttonsPanel = new JPanel(new GridLayout(0, 1, 10, 10));
p2.add(BorderLayout.NORTH, buttonsPanel);

selectButton = new JButton(">");
selectButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Object[] selectedItems = leftList.getSelectedValues();
for (int i = 0; i < selectedItems.length; i++) {
rightListModel.addElement(selectedItems[i]);
leftListModel.removeElement(selectedItems[i]);
updateButtonsState();

}
}

});
buttonsPanel.add(selectButton);

selectAllButton = new JButton(">>");
selectAllButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Object[] items = leftListModel.toArray();
for (int i = 0; i < items.length; i++) {
rightListModel.addElement(items[i]);
leftListModel.removeElement(items[i]);
updateButtonsState();

}
}

});
buttonsPanel.add(selectAllButton);

deselectButton = new JButton("<");
deselectButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Object[] selectedItems = rightList.getSelectedValues();
for (int i = 0; i < selectedItems.length; i++) {
leftListModel.addElement(selectedItems[i]);
rightListModel.removeElement(selectedItems[i]);
updateButtonsState();

}
}

});
buttonsPanel.add(deselectButton);

deselectAllButton = new JButton("<<");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 83 of 97

deselectAllButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Object[] items = rightListModel.toArray();
for (int i = 0; i < items.length; i++) {
leftListModel.addElement(items[i]);
rightListModel.removeElement(items[i]);
updateButtonsState();

}
}

});
buttonsPanel.add(deselectAllButton);

JPanel rightPanel = new JPanel(new BorderLayout(5, 5));
rightPanel.add(BorderLayout.NORTH, new JLabel("Chosen items:"));
rightList = new JList(rightListModel);
rightList.setPreferredSize(new Dimension(100, 150));
rightList.getSelectionModel().addListSelectionListener(this);
rightPanel.add(new JScrollPane(rightList));
mainPanel.add(BorderLayout.EAST, rightPanel);

updateButtonsState();
return mainPanel;

}

protected JComponent createButtonsPanel() {
JPanel buttonsPanel = new JPanel(new BorderLayout());
buttonsPanel.add(BorderLayout.NORTH, new JSeparator());
JPanel subPanel = new JPanel(new FlowLayout(FlowLayout.RIGHT));
buttonsPanel.add(BorderLayout.CENTER, subPanel);

JButton okButton = new JButton("OK");
okButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
performOK();

}
});
subPanel.add(okButton);

JButton cancelButton = new JButton("Cancel");
cancelButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
performCancel();

}
});
subPanel.add(cancelButton);

return buttonsPanel;
}

protected void initContent() {
for (int i = 0; i < 10; i++) {
leftListModel.addElement("Item " + (i + 1));

}
rightListModel.addElement("Item 11");

}

protected void performOK() {
System.out.println("OK performed");

}

protected void performCancel() {
System.out.println("Cancel performed");

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 84 of 97 Migrate your Swing application to SWT

private void updateButtonsState() {
selectButton.setEnabled(!leftList.getSelectionModel().isSelectionEmpty());
selectAllButton.setEnabled(!leftListModel.isEmpty());
deselectButton.setEnabled(!rightList.getSelectionModel().isSelectionEmpty());
deselectAllButton.setEnabled(!rightListModel.isEmpty());

}

// Implementation of ListSelectionListener
public void valueChanged(ListSelectionEvent e) {
if (e.getSource() == leftList.getSelectionModel()
|| e.getSource() == rightList.getSelectionModel()) {
updateButtonsState();

}
}

public static void main(String[] args) {
JFrame frame = new JFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(new SwingSamplePanel());
frame.pack();
frame.setVisible(true);

}

}

Set up your build and run environment
In this panel, we are going to set up a Java project in Eclipse, which is able to compile and
run a standalone SWT/JFace application using the wrapper classes provided with this
tutorial. The version of Eclipse I use in this tutorial is 2.1.

1. Create a new Java project in Eclipse called test. Use the subdirectory ./src/ to the
source files.

2. Download j-swing2swtsrc.zip from Resources on page 95 , which contains the sample code
provided by this tutorial, into a local directory.

3. Import the content of the zip file in the new created Java project by using
File=>Import...=>Zip File. Then, import all the files contained in downloaded zip file into
the project directory.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 85 of 97

4. The imported classes (the Java packages swing2swt.components and
swing2swt.layout) should be compiled. You will get some compilation errors, because
the JAR files for SWT and JFace are not in the classpath yet.

5. Right-click on the Java project and open its properties. Go in the category Java Build Path
and add the following JAR files, taken from the installation directory of Eclipse:
• boot.jar from the plugin org.eclipse.core.boot.

• resources.jar from the plugin org.eclipse.core.resources.

• runtime.jar from the plugin org.eclipse.core.runtime.

• jface.jar from the plugin org.eclipse.jface.

• workbench.jar from the plugin org.eclipse.ui.workbench.

• swt.jar from the plugin org.eclipse.swt.XXX (where XXX is the name of the platform
you use); some platforms (such as GTK) provide several JAR files for SWT. Add all of
them.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 86 of 97 Migrate your Swing application to SWT

Once the JAR files are added in the classpath, the compilation errors should disappear.
The next screenshot shows what the package explorer should look like at this point:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 87 of 97

For more information on launching SWT/JFace applications outside Eclipse, read the
developerWorks article "Using the Eclipse GUI outside the Eclipse workbench" by Adrian
Van Emmenis. You can find a link in Resources on page 95 .

Migrate the Swing code to SWT
By using the wrapper classes and layout managers provided with this tutorial, you can
migrate the Swing code with a sequence of search-and-replace actions.

First, copy the original class SwingSamplePanel into a new class named
SWTSamplePanel.

Next, in the new class, remove all the import statements and replace them with these
statements:

import swing2swt.components.*;
import swing2swt.layout.*;
import java.awt.event.*;
import javax.swing.event.*;

Now, save the file and try to compile it; you'll get about 100 compilation errors, saying that
the Swing classes (JPanel, JList, JButton, etc...) cannot be located.

Next, use the automatic search-and-replace functions of your editor to successively:

• Replace all occurrences of JPanel with SWTPanel

• Replace all occurrences of JList with SWTList

• Replace all occurrences of JButton with SWTButton

• Replace all occurrences of JComponent with SWTComponent

• Replace all occurrences of JLabel with SWTLabel

• Replace all occurrences of JSeparator with SWTSeparator

Save the file and try to compile it again; the number of compilation errors should now be
reduced to about 50.

Most of the remaining errors complain that the constructor of the wrapper classes is not
defined. As you learned earlier, all the wrapper classes require the reference to the parent
component to be passed as the first argument in their constructor. This can be done in a
semi-automatic way by using the search function of your text editor. Search from the
beginning of the class for all the occurrences of the string add(. This will show you all the
places in the code where a component is added to its parent.

The lines of code found by the search function show you the parent container in which each
component is contained, and should have one of the following forms:

aContainer.add(aComponent);
aContainer.add(aConstraint, aComponent);

where aContainer is the parent container where aComponent is added. For each

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 88 of 97 Migrate your Swing application to SWT

occurrence found by the search function, notice the name of the component (aComponent)
and the name of its container (aContainer). Search in the code where the component
(aComponent) is created and add the container (aContainer) as first argument in the
constructor.

For example, the first occurrence of add(found in the source code is at line 17,
add(content) (which is equivalent to this.add(content)). The component is content
and the container is this. The component content is created at line 16: SWTPanel
content = new SWTPanel(new BorderLayout(5, 5));. The name of the container
(this) should be added as the first argument in the constructor.

Thus, the original code

SWTPanel content = new SWTPanel(new BorderLayout(5, 5));
add(content);

should be transformed into:

SWTPanel content = new SWTPanel(this, new BorderLayout(5, 5));
add(content);

Here's another example. Consider the block of code at lines 26-32:

SWTPanel leftPanel = new SWTPanel(new BorderLayout(5, 5));
leftPanel.add(BorderLayout.NORTH, new SWTLabel("Available items:"));
leftList = new SWTList(leftListModel);
leftList.setPreferredSize(new Dimension(100, 150));
leftList.getSelectionModel().addListSelectionListener(this);
leftPanel.add(new JScrollPane(leftList));
mainPanel.add(BorderLayout.WEST, leftPanel);

This code should be modified as follows:

SWTPanel leftPanel = new SWTPanel(mainPanel, new BorderLayout(5, 5));
leftPanel.add(BorderLayout.NORTH, new SWTLabel(leftPanel, "Available items:"));
leftList = new SWTList(leftPanel, leftListModel);
leftList.setPreferredSize(new Dimension(100, 150));
leftList.getSelectionModel().addListSelectionListener(this);
leftPanel.add(leftList);
mainPanel.add(BorderLayout.WEST, leftPanel);

Note that line 31 -- leftPanel.add(new JScrollPane(leftList)); -- was modified
into leftPanel.add(leftList); because an SWT list is by nature scrollable and doesn't
have to be added into a scrollpane like in Swing.

For the same reason -- because an SWT component needs a reference of its parent
container at construction time -- we have to slightly modify the signature of the methods
createSoshPanel() and createButtonsPanel() to pass the reference of the parent
container as a parameter. First, we'll modify createSoshPanel(). Here's the code before
modification:

protected SWTComponent createSoshPanel() {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 89 of 97

SWTPanel mainPanel = new SWTPanel(new BorderLayout(5, 5));
(...)

And here's the modified code:

protected SWTComponent createSoshPanel(SWTContainer parent) {
SWTPanel mainPanel = new SWTPanel(parent, new BorderLayout(5, 5));
(...)

Next, let's modify createButtonsPanel(). Here's the code before modification:

protected SWTComponent createButtonsPanel() {
SWTPanel buttonsPanel = new SWTPanel(new BorderLayout());
(...)

And here's the modified code:

protected SWTComponent createButtonsPanel(SWTContainer parent) {
SWTPanel buttonsPanel = new SWTPanel(parent, new BorderLayout());
(...)

Finally, we need to modify the constructor SWTSamplePanel, which invokes these methods.
Here's the code before modification:

public SWTSamplePanel() {
SWTPanel content = new SWTPanel(this, new BorderLayout(5, 5));
add(content);
content.add(BorderLayout.SOUTH, createButtonsPanel());
content.add(BorderLayout.CENTER, createSoshPanel());
initContent();

}

And here's the code after modification:

public SWTSamplePanel(SWTContainer parent) {
super(parent);
SWTPanel content = new SWTPanel(this, new BorderLayout(5, 5));
add(content);
content.add(BorderLayout.SOUTH, createButtonsPanel(content));
content.add(BorderLayout.CENTER, createSoshPanel(content));
initContent();

}

Now, save the file and try to compile it. The number of compilation errors should have been
reduced to about 25. Most of these errors are due to some missing import statements. Add
the following import statements at the beginning of the class:

import javax.swing.DefaultListModel;
import java.awt.Dimension;

The number of compilation errors should have been reduced to four, all of them contained in
the main() method. Let's fix these now. Replace the main() method used to test the code
with this one:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 90 of 97 Migrate your Swing application to SWT

public static void main(String[] args) {
org.eclipse.swt.widgets.Display display =

new org.eclipse.swt.widgets.Display();
org.eclipse.swt.widgets.Shell shell =

new org.eclipse.swt.widgets.Shell(display);
shell.setLayout(new BorderLayout());
new SWTSamplePanel(new SWTContainer(shell));
shell.pack();
shell.open();
while (!shell.isDisposed ()) {
if (!display.readAndDispatch ()) display.sleep ();

}
display.dispose ();

}

Source code for the migrated panel
Here is the complete source code of the panel migrated to SWT. (See the
SWTSamplePanel.java file in the j-swing2swtsrc.zip download available in Resources on
page 95 .)

import swing2swt.components.*;
import swing2swt.layout.*;
import java.awt.event.*;
import javax.swing.event.*;
import javax.swing.DefaultListModel;
import java.awt.Dimension;

public class SWTSamplePanel extends SWTPanel implements ListSelectionListener {

private SWTList leftList, rightList;
private SWTButton selectButton, selectAllButton;
private SWTButton deselectButton, deselectAllButton;

private DefaultListModel leftListModel = new DefaultListModel();
private DefaultListModel rightListModel = new DefaultListModel();

public SWTSamplePanel(SWTContainer parent) {
super(parent);
SWTPanel content = new SWTPanel(this, new BorderLayout(5, 5));
add(content);
content.add(BorderLayout.SOUTH, createButtonsPanel(content));
content.add(BorderLayout.CENTER, createSoshPanel(content));
initContent();

}

protected SWTComponent createSoshPanel(SWTContainer parent) {
SWTPanel mainPanel = new SWTPanel(parent, new BorderLayout(5, 5));

SWTPanel leftPanel = new SWTPanel(mainPanel, new BorderLayout(5, 5));
leftPanel.add(
BorderLayout.NORTH,
new SWTLabel(leftPanel, "Available items:"));

leftList = new SWTList(leftPanel, leftListModel);
leftList.setPreferredSize(new Dimension(100, 150));
leftList.getSelectionModel().addListSelectionListener(this);
leftPanel.add(leftList);
mainPanel.add(BorderLayout.WEST, leftPanel);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 91 of 97

SWTPanel centerPanel = new SWTPanel(mainPanel, new BorderLayout());
mainPanel.add(centerPanel);

SWTPanel p1 = new SWTPanel(centerPanel);
centerPanel.add(BorderLayout.SOUTH, p1);
SWTPanel p2 = new SWTPanel(p1, new BorderLayout());
p1.add(p2);
SWTPanel buttonsPanel = new SWTPanel(p2, new GridLayout(0, 1, 10, 10));
p2.add(BorderLayout.NORTH, buttonsPanel);

selectButton = new SWTButton(buttonsPanel, ">");
selectButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Object[] selectedItems = leftList.getSelectedValues();
for (int i = 0; i < selectedItems.length; i++) {
rightListModel.addElement(selectedItems[i]);
leftListModel.removeElement(selectedItems[i]);
updateButtonsState();

}
}

});
buttonsPanel.add(selectButton);

selectAllButton = new SWTButton(buttonsPanel, ">>");
selectAllButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Object[] items = leftListModel.toArray();
for (int i = 0; i < items.length; i++) {
rightListModel.addElement(items[i]);
leftListModel.removeElement(items[i]);
updateButtonsState();

}
}

});
buttonsPanel.add(selectAllButton);

deselectButton = new SWTButton(buttonsPanel, "<");
deselectButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Object[] selectedItems = rightList.getSelectedValues();
for (int i = 0; i < selectedItems.length; i++) {
leftListModel.addElement(selectedItems[i]);
rightListModel.removeElement(selectedItems[i]);
updateButtonsState();

}
}

});
buttonsPanel.add(deselectButton);

deselectAllButton = new SWTButton(buttonsPanel, "<<");
deselectAllButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Object[] items = rightListModel.toArray();
for (int i = 0; i < items.length; i++) {
leftListModel.addElement(items[i]);
rightListModel.removeElement(items[i]);
updateButtonsState();

}
}

});
buttonsPanel.add(deselectAllButton);

SWTPanel rightPanel = new SWTPanel(mainPanel, new BorderLayout(5, 5));
rightPanel.add(

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 92 of 97 Migrate your Swing application to SWT

BorderLayout.NORTH,
new SWTLabel(rightPanel, "Chosen items:"));

rightList = new SWTList(rightPanel, rightListModel);
rightList.setPreferredSize(new Dimension(100, 150));
rightList.getSelectionModel().addListSelectionListener(this);
rightPanel.add(rightList);
mainPanel.add(BorderLayout.EAST, rightPanel);

updateButtonsState();
return mainPanel;

}

protected SWTComponent createButtonsPanel(SWTContainer parent) {
SWTPanel buttonsPanel = new SWTPanel(parent, new BorderLayout());
buttonsPanel.add(BorderLayout.NORTH, new SWTSeparator(buttonsPanel));
SWTPanel subPanel =
new SWTPanel(buttonsPanel, new FlowLayout(FlowLayout.RIGHT));

buttonsPanel.add(BorderLayout.CENTER, subPanel);

SWTButton okButton = new SWTButton(subPanel, "OK");
okButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
performOK();

}
});
subPanel.add(okButton);

SWTButton cancelButton = new SWTButton(subPanel, "Cancel");
cancelButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
performCancel();

}
});
subPanel.add(cancelButton);

return buttonsPanel;
}

protected void initContent() {
for (int i = 0; i < 10; i++) {
leftListModel.addElement("Item " + (i + 1));

}
rightListModel.addElement("Item 11");

}

protected void performOK() {
System.out.println("OK performed");

}

protected void performCancel() {
System.out.println("Cancel performed");

}

private void updateButtonsState() {
selectButton.setEnabled(!leftList.getSelectionModel().isSelectionEmpty());
selectAllButton.setEnabled(!leftListModel.isEmpty());
deselectButton.setEnabled(
!rightList.getSelectionModel().isSelectionEmpty());

deselectAllButton.setEnabled(!rightListModel.isEmpty());
}

// Implementation of ListSelectionListener
public void valueChanged(ListSelectionEvent e) {
if (e.getSource() == leftList.getSelectionModel()

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 93 of 97

|| e.getSource() == rightList.getSelectionModel()) {
updateButtonsState();

}
}

public static void main(String[] args) {
org.eclipse.swt.widgets.Display display =
new org.eclipse.swt.widgets.Display();

org.eclipse.swt.widgets.Shell shell =
new org.eclipse.swt.widgets.Shell(display);

shell.setLayout(new BorderLayout());
new SWTSamplePanel(new SWTContainer(shell));
shell.pack();
shell.open();
while (!shell.isDisposed()) {
if (!display.readAndDispatch())
display.sleep();

}
display.dispose();

}
}

Migrated panel
You can now launch the migrated code:

The migrated panel has the same layout and same behavior as the original Swing panel. The
modifications that we have made in the code were purely syntactic. The original layout
managers, event listeners and data models have remained unchanged. We achieved this
migration without reengineering or even deeply understanding the original Swing code.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 94 of 97 Migrate your Swing application to SWT

Section 7. Wrap-up and resources

Summary
In this tutorial, you have learned the main differences between AWT/Swing and SWT/JFace.
You also how to simplify the migration of an existing Swing application by first porting the
AWT layout managers to SWT, then creating wrapper classes around SWT controls that
emulate the API of Swing, and finally converting the SWT events into AWT events sent to
AWT listeners. You have also seen that Swing data models can be easily reused in
SWT/JFace.

You studied in detail the equivalent SWT component for each Swing component, and saw
the differences that exist and the issues you have to expect during the migration of your
application.

The sample code used in this tutorial provided a guide for applying the migration techniques
described in the first part of the tutorial to most of the standard Swing components. By using
this sample code in your project, you should be able to migrate a Swing UI using standard
components and layout managers. I've even offered a simplified the migration of code to a
series of search-and-replace operations.

Finally, you saw a concrete example, where a Swing panel was ported to SWT by using this
method. Hopefully all this will help you port your legacy Swing and AWT code to the
higher-performing SWT toolkit.

Resources
Source code

• Download the sample code used in this tutorial -- the AWT layout managers converted to
SWT and the wrapper classes.

APIs

• Consult the Eclipse and SWT API at Eclipse.org.

• Consult the Swing API in the API documentation of the J2SE platform.

General Eclipse and SWT articles

• Visit Eclipse.org for downloads, documentation, mail archives, and articles.

• Check out the IBM WebSphere Studio Application Developer 5.1.

• For Eclipse project development plans, a FAQ, and a list of handy SWT code snippets,
check out the component development resources.

• See collection of code snippets for the code illustrating the use of TreeEditor.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 95 of 97

j-swing2swtsrc.zip
j-swing2swtsrc.zip
http://www.eclipse.org/documentation/html/plugins/org.eclipse.platform.doc.isv/doc/reference/api/index.html
http://www.eclipse.org/documentation/html/plugins/org.eclipse.platform.doc.isv/doc/reference/api/index.html
http://www.eclipse.org/documentation/html/plugins/org.eclipse.platform.doc.isv/doc/reference/api/index.html
http://www.eclipse.org/documentation/html/plugins/org.eclipse.platform.doc.isv/doc/reference/api/index.html
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://www.eclipse.org
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://www-306.ibm.com/software/awdtools/studioappdev/
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html#snippets
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html#snippets
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html#snippets
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-home/dev.html#snippets

• Read more about the GEF project.

• In "SWT: The Standard Widget Toolkit, Part 1" (Eclipse Corner, March 2001), Steve
Northover gives an introduction to the design strategies used in SWT.

• In "Plug a Swing-based development tool into Eclipse " (developerWorks, October 2002),
Terry Chan describes how to integrate a Swing application into the Eclipse platform.

• Read "Understanding Layouts in SWT" by Carolyn MacLeod and Shantha Ramachandran
(Eclipse Corner, May 2002) to get an introduction to SWT's layouts.

• In their articles "Getting your feet wet with the SWT StyledText widget" and "Into the deep
end of the SWT StyledText widget" (Eclipse Corner, September 2002), Lynne Kues and
Knut Radloff explain how to use the StyledText widget to display and edit formatted text
in SWT.

Articles on resource management and garbage collection in SWT

• In "SWT: The Standard Widget Toolkit, Part 2," (Eclipse Corner, November 2001), Steve
Northover and Carolyn MacLeod provide a list of rules to follow to manage graphical
resources when programming in SWT.

• "SWT color model," James Moody and Carolyn MacLeod (Eclipse Corner, April 2001)
gives some tip about the management of color resources in SWT.

Articles on the JFace viewers API

• In his article "Using the Eclipse GUI outside the Eclipse Workbench" (developerWorks,
January 2003), Adrian Van Emmenis demonstrates the use of JFace viewers, content
providers, and label providers with SWT tables and trees.

• In his article "Building and delivering a table editor with SWT/JFace" (Eclipse Corner, July
2003), Laurent Gauthier explains how to build an editable and sortable table, using the
TableViewer API of JFace.

• In "How to use the JFace Tree Viewer" (Eclipse Corner, May 2002), Chris Grindstaff
explains how to use the JFace TreeViewer API.

Additional resources

• Download the latest Eclipse technologies from IBM alphaWorks.

• Get the latest news on the Websphere Studio tools at the WebSphere Studio Zone.

• See the Java technology zone tutorials page for a complete listing of free Java-related
tutorials from developerWorks.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 96 of 97 Migrate your Swing application to SWT

http://www.eclipse.org/gef
http://www.eclipse.org/gef
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www-106.ibm.com/developerworks/java/library/os-swing/
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%201/article1.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/StyledText%202/article2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/swt-design-2/swt-design-2.html
http://www.eclipse.org/articles/SWT%20Color%20Model/swt-color-model.htm
http://www.eclipse.org/articles/SWT%20Color%20Model/swt-color-model.htm
http://www.eclipse.org/articles/SWT%20Color%20Model/swt-color-model.htm
http://www.eclipse.org/articles/SWT%20Color%20Model/swt-color-model.htm
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www-106.ibm.com/developerworks/java/library/os-ecgui1/
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/eclipse
http://www-106.ibm.com/developerworks/websphere/zones/studio/
http://www-106.ibm.com/developerworks/websphere/zones/studio/
http://www-106.ibm.com/developerworks/websphere/zones/studio/
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp

• Stay on top of the Eclipse platform at the developerWorks Open source projects zone.

• Find hundreds of articles about every aspect of Java programming in the developerWorks
Java technology zone.

Feedback

Please let us know whether this tutorial was helpful to you and how we could make it
better. We'd also like to hear about other tutorial topics you'd like to see covered.
Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Migrate your Swing application to SWT Page 97 of 97

http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/opensource/
http://www-136.ibm.com/developerworks/java/
http://www-136.ibm.com/developerworks/java/
http://www-136.ibm.com/developerworks/java/
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	About the author

	The history of Swing and SWT
	AWT and Swing
	SWT and JFace

	Differences between Swing and SWT
	Graphical resources and garbage collection
	The Swing component hierarchy
	The SWT component hierarchy
	Containers and layouts
	Data models and cell renderers vs. content providers and label providers
	Events

	Migrate your Swing code to SWT with minimal change
	Migrate the layout managers
	API mapping
	Trigger AWT/Swing event listeners from SWT
	Swing's models adapters: Reuse your Swing data models in SWT widgets
	Migrate Swing's cell renderers and editors

	Widgets
	Overview
	JButton, JToggleButton, JCheckBox, and JRadioButton
	JColorChooser
	JComboBox
	JDesktopPane, JInternalFrame, JLayeredPane, and JRootPane
	JEditorPane
	JFileChooser
	JLabel
	JList
	JMenu, JPopupMenu, and JMenuItem
	JOptionPane
	JPanel
	JProgressBar
	JScrollPane and JViewport
	JSeparator
	JSlider
	JSplitPane
	JTabbedPane
	JTable
	JTextField, JTextArea, and JPasswordField
	JToolBar
	JTree

	Complete example: Migrating a Swing dialog
	Our sample dialog
	Source code of the Swing panel
	Set up your build and run environment
	Migrate the Swing code to SWT
	Source code for the migrated panel
	Migrated panel

	Wrap-up and resources
	Summary
	Resources
	Feedback

