
Java sockets 101

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips 2

2. Socket basics 3

3. An undercover socket 8

4. A simple example 11

5. A multithreaded example 18

6. A pooled example 21

7. Sockets in real life 27

8. Summary 31

9. Appendix 32

Java sockets 101 Page 1



Section 1. Tutorial tips

Should I take this tutorial?
Sockets, which provide a mechanism for communication between two computers, have been
around since long before the Java language was a glimmer in James Gosling's eye. The
language simply lets you use sockets effectively without having to know the details of the
underlying operating system. Most books that focus on Java coding either fail to cover the
topic, or leave a lot to the imagination. This tutorial will tell you what you really need to know
to start using sockets effectively in your Java code. Specifically, we'll cover:

* What sockets are
* Where they fit into the structure of programs you're likely to write
* The simplest sockets implementation that could possibly work -- to help you

understand the basics
* A detailed walkthrough of two additional examples that explore sockets in multithreaded

and pooled environments
* A brief discussion of an application for sockets in the real world

If you can describe how to use the classes in the java.net package, this tutorial is probably
a little basic for you, although it might be a good refresher. If you have been working with
sockets on PCs and other platforms for years, the initial sections might bore you. But if you
are new to sockets, and simply want to know what they are and how to use them effectively
in your Java code, this tutorial is a great place to start.

Getting help
For questions about the content of this tutorial, contact the authors, Roy Miller (at
rmiller@rolemodelsoft.com ) or Adam Williams (at awilliams@rolemodelsoft.com ).

Roy Miller and Adam Williams are Software Developers at RoleModel Software, Inc. They
have worked jointly to prototype a socket-based application for the TINI Java platform from
Dallas Semiconductor. Roy and Adam are currently working on porting a COBOL financial
transaction system to the Java platform, using sockets.

Prior to joining RoleModel, Roy spent six years with Andersen Consulting (now Accenture)
developing software and managing projects. He co-authored Extreme Programming Applied:
Playing to Win (Addison-Wesley XP Series) scheduled for publication in October 2001.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 2

mailto:rmiller@rolemodelsoft.com
mailto:awilliams@rolemodelsoft.com


Section 2. Socket basics

Introduction
Most programmers, whether they're coding in the Java language or not, don't want to know
much about low-level details of how applications on different computers communicate with
each other. Programmers want to deal with higher-level abstractions that are easier to
understand. Java programmers want objects that they can interact with via an intuitive
interface, using the Java constructs with which they are familiar.

Sockets live in both worlds -- the low-level details that we'd rather avoid and the abstract
layer we'd rather deal with. This section will explore just enough of the low-level details to
make the abstract application understandable.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 3



Computer networking 101
Computers operate and communicate with one
another in a very simple way. Computer chips are
a collection of on-off switches that store and
transmit data in the form of 1s and 0s. When
computers want to share data, all they need to do
is stream a few million of these bits and bytes back
and forth, while agreeing on speed, sequence,
timing, and such. How would you like to worry
about those details every time you wanted to
communicate information between two
applications?

To avoid that, we need a set of packaged protocols
that can do the job the same way every time. That
would allow us to handle our application-level work
without having to worry about the low-level
networking details. These sets of packaged
protocols are called stacks. The most common
stack these days is TCP/IP. Most stacks (including
TCP/IP) adhere roughly to the International
Standards Organization (ISO) Open Systems
Interconnect Reference Model (OSIRM). The
OSIRM says that there are seven logical layers in
a reliable framework for computer networking (see
the diagram). Companies all over have contributed
something that implements some of the layers in
this model, from generating the electrical signals
(pulses of light, radio frequency, and so on) to
presenting the data to applications. TCP/IP maps
to two layers in the OSI model, as shown in the
diagram.

We won't go into the details of the layers too much,
but we want you to be aware of where sockets fit.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 4



Where sockets fit
Sockets reside roughly at the Session Layer of the
OSI model (see the diagram). The Session Layer
is sandwiched between the application-oriented
upper layers and the real-time data
communication lower layers. The Session Layer
provides services for managing and controlling
data flow between two computers. As part of this
layer, sockets provide an abstraction that hides the
complexities of getting the bits and bytes on the
wire for transmission. In other words, sockets allow
us to transmit data by having our application
indicate that it wants to send some bytes. Sockets
mask the nuts and bolts of getting the job done.

When you pick up your telephone, you provide
sound waves to a sensor that converts your voice
into electrically transmittable data. The phone is a
human's interface to the telecommunications
network. You aren't required to know the details of
how your voice is transported, only the party to
whom you would like to connect. In the same
sense, a socket acts as a high-level interface that
hides the complexities of transmitting 1s and 0s
across unknown channels.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 5



Exposing sockets to an
application
When you write code that uses sockets, that code
does work at the Presentation Layer. The
Presentation Layer provides a common
representation of information that the Application
Layer can use. Say you are planning to connect
your application to a legacy banking system that
understands only EBCDIC. Your application
domain objects store information in ASCII format.
In this case, you are responsible for writing code at
the Presentation Layer to convert data from
EBCDIC to ASCII, and then (for example) to
provide a domain object to your Application Layer.
Your Application Layer can then do whatever it
wants with the domain object.

The socket-handling code you write lives only at
the Presentation Layer. Your Application Layer
doesn't have to know anything about how sockets
work.

What are sockets?
Now that we know the role sockets play, the question remains: What is a socket? Bruce
Eckel describes a socket this way in his book Thinking in Java:

The socket is the software abstraction used to represent the "terminals" of a connection
between two machines. For a given connection, there's a socket on each machine, and you
can imagine a hypothetical "cable" running between the two machines with each end of the
"cable" plugged into a socket. Of course, the physical hardware and cabling between
machines is completely unknown. The whole point of the abstraction is that we don't have to
know more than is necessary.

In a nutshell, a socket on one computer that talks to a socket on another computer creates a
communication channel. A programmer can use that channel to send data between the two
machines. When you send data, each layer of the TCP/IP stack adds appropriate header
information to wrap your data. These headers help the stack get your data to its destination.
The good news is that the Java language hides all of this from you by providing the data to
your code on streams, which is why they are sometimes called streaming sockets.

Think of sockets as handsets on either side of a telephone call -- you and I talk and listen on
our handsets on a dedicated channel. The conversation doesn't end until we decide to hang
up (unless we're using cell phones). And until we hang up, our respective phone lines are
busy.

If you need to communicate between two computers without the overhead of higher-level
mechanisms like ORBs (and CORBA, RMI, IIOP, and so on), sockets are for you. The
low-level details of sockets get rather involved. Fortunately, the Java platform gives you

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 6



some simple yet powerful higher-level abstractions that make creating and using sockets
easy.

Types of sockets
Generally speaking, sockets come in two flavors in the Java language:

* TCP sockets (implemented by the Socket class, which we'll discuss later)
* UDP sockets (implemented by the DatagramSocket class)

TCP and UDP play the same role, but they do it differently. Both receive transport protocol
packets and pass along their contents to the Presentation Layer. TCP divides messages into
packets (datagrams) and reassembles them in the correct sequence at the receiving end. It
also handles requesting retransmission of missing packets. With TCP, the upper-level layers
have much less to worry about. UDP doesn't provide these assembly and retransmission
requesting features. It simply passes packets along. The upper layers have to make sure that
the message is complete and assembled in correct sequence.

In general, UDP imposes lower performance overhead on your application, but only if your
application doesn't exchange lots of data all at once and doesn't have to reassemble lots of
datagrams to complete a message. Otherwise, TCP is the simplest and probably most
efficient choice.

Because most readers are more likely to use TCP than UDP, we'll limit our discussion to the
TCP-oriented classes in the Java language.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 7



Section 3. An undercover socket

Introduction
The Java platform provides implementations of sockets in the java.net package. In this
tutorial, we'll be working with the following three classes in java.net:

* URLConnection
* Socket
* ServerSocket

There are more classes in java.net, but these are the ones you'll run across the most
often. Let's begin with URLConnection. This class provides a way to use sockets in your
Java code without having to know any of the underlying socket details.

Using sockets without even trying
The URLConnection class is the abstract superclass of all classes that create a
communications link between an application and a URL. URLConnections are most useful
for getting documents on Web servers, but can be used to connect to any resource identified
by a URL. Instances of this class can be used both to read from and to write to the resource.
For example, you could connect to a servlet and send a well-formed XML String to the
server for processing. Concrete subclasses of URLConnection (such as
HttpURLConnection) provide extra features specific to their implementation. For our
example, we're not doing anything special, so we'll make use of the default behaviors
provided by URLConnection itself.

Connecting to a URL involves several steps:

* Create the URLConnection
* Configure it using various setter methods
* Connect to the URL
* Interact with it using various getter methods

Next, we'll look at some sample code that demonstrates how to use a URLConnection to
request a document from a server.

The URLClient class
We'll begin with the structure for the URLClient class.

import java.io.*;
import java.net.*;

public class URLClient {
protected URLConnection connection;

public static void main(String[] args) {
}
public String getDocumentAt(String urlString) {
}

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 8



The first order of business is to import java.net and java.io.

We give our class one instance variable to hold a URLConnection.

Our class has a main() method that handles the logic flow of surfing for a document. Our
class also has a getDocumentAt() method that connects to the server and asks it for the
given document. We will go into the details of each of these methods next.

Surfing for a document
The main() method handles the logic flow of surfing for a document:

public static void main(String[] args) {
URLClient client = new URLClient();
String yahoo = client.getDocumentAt("http://www.yahoo.com");
System.out.println(yahoo);

}

Our main() method simply creates a new URLClient and calls getDocumentAt() with a
valid URL String. When that call returns the document, we store it in a String and then
print it out to the console. The real work, though, gets done in the getDocumentAt()
method.

Requesting a document from a server
The getDocumentAt() method handles the real work of getting a document over the Web:

public String getDocumentAt(String urlString) {
StringBuffer document = new StringBuffer();
try {

URL url = new URL(urlString);
URLConnection conn = url.openConnection();
BufferedReader reader = new BufferedReader(new InputStreamReader(conn.getInputStream()));

String line = null;
while ((line = reader.readLine()) != null)

document.append(line + "\n");
reader.close();

} catch (MalformedURLException e) {
System.out.println("Unable to connect to URL: " + urlString);

} catch (IOException e) {
System.out.println("IOException when connecting to URL: " + urlString);

}
return document.toString();

}

The getDocumentAt() method takes a String containing the URL of the document we
want to get. We start by creating a StringBuffer to hold the lines of the document. Next,
we create a new URL with the urlString we passed in. Then we create a URLConnection
and open it:

URLConnection conn = url.openConnection();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 9



Once we have a URLConnection, we get its InputStream and wrap it in an
InputStreamReader, which we then wrap in a BufferedReader so that we can read
lines of the document we're getting from the server. We'll use this wrapping technique often
when dealing with sockets in Java code, but we won't always discuss it in detail. You should
be familiar with it before we move on:

BufferedReader reader =
new BufferedReader(new InputStreamReader(conn.getInputStream()));

Having our BufferedReader makes reading the contents of our document easy. We call
readLine() on reader in a while loop:

String line = null;
while ((line = reader.readLine()) != null)

document.append(line + "\n");

The call to readLine() is going to block until in reaches a line termination character (for
example, a newline character) in the incoming bytes on the InputStream. If it doesn't get
one, it will keep waiting. It will return null only when the connection is closed. In this case,
once we get a line, we append it to the StringBuffer called document, along with a
newline character. This preserves the format of the document that was read on the server
side.

When we're done reading lines, we close the BufferedReader:

reader.close();

If the urlString supplied to a URL constructor is invalid, a MalformedURLException is
thrown. If something else goes wrong, such as when getting the InputStream on the
connection, an IOException is thrown.

Wrapping up
Beneath the covers, URLConnection uses a socket to read from the URL we specified
(which just resolves to an IP address), but we don't have to know about it and we don't care.
But there's more to the story; we'll get to that shortly.

Before we move on, let's review the steps to create and use a URLConnection:

1. Instantiate a URL with a valid URL String of the resource you're connecting to (throws
a MalformedURLException if there's a problem).

2. Open a connection on that URL.
3. Wrap the InputStream for that connection in a BufferedReader so you can read

lines.
4. Read the document using your BufferedReader.
5. Close your BufferedReader.

You can find the complete code listing for URLClient at Code listing for URLClient on page 32
.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 10



Section 4. A simple example

Background
The example we'll cover in this section illustrates how you can use Socket and
ServerSocket in your Java code. The client uses a Socket to connect to a server. The
server listens on port 3000 with a ServerSocket. The client requests the contents of a file
on the server's C: drive.

For the sake of clarity, we split the example into the client side and the server side. At the
end, we'll put it all together so you can see the entire picture.

We developed this code in IBM VisualAge for Java 3.5, which uses JDK 1.2. To create this
example for yourself, JDK 1.1.7 or greater should be fine. The client and the server will run
on a single machine, so don't worry about having a network available.

Creating the RemoteFileClient class
Here is the structure for the RemoteFileClient class:

import java.io.*;
import java.net.*;

public class RemoteFileClient {
protected String hostIp;
protected int hostPort;
protected BufferedReader socketReader;
protected PrintWriter socketWriter;

public RemoteFileClient(String aHostIp, int aHostPort) {
hostIp = aHostIp;
hostPort = aHostPort;

}
public static void main(String[] args) {
}
public void setUpConnection() {
}
public String getFile(String fileNameToGet) {
}
public void tearDownConnection() {
}

}

First we import java.net and java.io. The java.net package gives you the socket tools
you need. The java.io package gives you tools to read and write streams, which is the
only way you can communicate with TCP sockets.

We give our class instance variables to support reading from and writing to socket streams,
and to store details of the remote host to which we will connect.

The constructor for our class takes an IP address and a port number for a remote host and
assigns them to instance variables.

Our class has a main() method and three other methods. We'll go into the details of these
methods later. For now, just know that setUpConnection() will connect to the remote
server, getFile() will ask the remote server for the contents of fileNameToGet, and

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 11



tearDownConnection() will disconnect from the remote server.

Implementing main()
Here we implement the main() method, which will create the RemoteFileClient, use it to
get the contents of a remote file, and then print the result:

public static void main(String[] args) {
RemoteFileClient remoteFileClient = new RemoteFileClient("127.0.0.1", 3000);
remoteFileClient.setUpConnection();
String fileContents =

remoteFileClient.getFile("C:\\WINNT\\Temp\\RemoteFile.txt");
remoteFileClient.tearDownConnection();

System.out.println(fileContents);
}

The main() method instantiates a new RemoteFileClient (the client) with an IP address
and port number for the host. Then, we tell the client to set up a connection to the host (more
on this later). Next, we tell the client to get the contents of a specified file on the host. Finally,
we tell the client to tear down its connection to the host. We print out the contents of the file
to the console, just to prove everything worked as planned.

Setting up a connection
Here we implement the setUpConnection() method, which will set up our Socket and
give us access to its streams:

public void setUpConnection() {
try {

Socket client = new Socket(hostIp, hostPort);

socketReader = new BufferedReader(
new InputStreamReader(client.getInputStream()));

socketWriter = new PrintWriter(client.getOutputStream());

} catch (UnknownHostException e) {
System.out.println("Error setting up socket connection: unknown host at " + hostIp + ":" + hostPort);

} catch (IOException e) {
System.out.println("Error setting up socket connection: " + e);

}
}

The setUpConnection() method creates a Socket with the IP address and port number
of the host:

Socket client = new Socket(hostIp, hostPort);

We wrap the Socket's InputStream in a BufferedReader so that we can read lines
from the stream. Then, we wrap the Socket's OutputStream in a PrintWriter so that
we can send our request for a file to the server:

socketReader = new BufferedReader(new InputStreamReader(client.getInputStream()));
socketWriter = new PrintWriter(client.getOutputStream());

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 12



Remember that our client and server simply pass bytes back and forth. Both the client and
the server have to know what the other is going to be sending so that they can respond
appropriately. In this case, the server knows that we'll be sending it a valid file path.

When you instantiate a Socket, an UnknownHostException may be thrown. We don't do
anything special to handle it here, but we print some information out to the console to tell us
what went wrong. Likewise, if a general IOException is thrown when we try to get the
InputStream or OutputStream on a Socket, we print out some information to the
console. This is our general approach in this tutorial. In production code, we would be a little
more sophisticated.

Talking to the host
Here we implement the getFile() method, which will tell the server what file we want and
receive the contents from the server when it sends the contents back:

public String getFile(String fileNameToGet) {
StringBuffer fileLines = new StringBuffer();

try {
socketWriter.println(fileNameToGet);
socketWriter.flush();

String line = null;
while ((line = socketReader.readLine()) != null)

fileLines.append(line + "\n");
} catch (IOException e) {

System.out.println("Error reading from file: " + fileNameToGet);
}

return fileLines.toString();
}

A call to the getFile() method requires a valid file path String. It starts by creating the
StringBuffer called fileLines for storing each of the lines that we read from the file on
the server:

StringBuffer fileLines = new StringBuffer();

In the try{}catch{} block, we send our request to the host using the PrintWriter that
was established during connection setup:

socketWriter.println(fileNameToGet);
socketWriter.flush();

Note that we flush() the PrintWriter here instead of closing it. This forces data to be
sent to the server without closing the Socket.

Once we've written to the Socket, we are expecting some response. We have to wait for it
on the Socket's InputStream, which we do by calling readLine() on our
BufferedReader in a while loop. We append each returned line to the fileLines
StringBuffer (with a newline character to preserve the lines):

String line = null;
while ((line = socketReader.readLine()) != null)

fileLines.append(line + "\n");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 13



Tearing down a connection
Here we implement the tearDownConnection() method, which will "clean up" after we're
done using our connection:

public void tearDownConnection() {
try {

socketWriter.close();
socketReader.close();

} catch (IOException e) {
System.out.println("Error tearing down socket connection: " + e);

}
}

The tearDownConnection() method simply closes the BufferedReader and
PrintWriter we created on our Socket's InputStream and OutputStream,
respectively. Doing this closes the underlying streams that we acquired from the Socket, so
we have to catch the possible IOException.

Wrapping up the client
Our class is done. Before we move on to the server end of things, let's review the steps to
create and use a Socket:

1. Instantiate a Socket with the IP address and port of the machine you're connecting to
(throws an Exception if there's a problem).

2. Get the streams on that Socket for reading and writing.
3. Wrap the streams in instances of BufferedReader/PrintWriter, if that makes

things easier.
4. Read from and write to the Socket.
5. Close your open streams.

You can find the complete code listing for RemoteFileClient at Code listing for
RemoteFileClient on page 32.

Creating the RemoteFileServer class
Here is the structure for the RemoteFileServer class:

import java.io.*;
import java.net.*;

public class RemoteFileServer {
protected int listenPort = 3000;
public static void main(String[] args) {
}
public void acceptConnections() {
}
public void handleConnection(Socket incomingConnection) {
}

}

As with the client, we first import java.net and java.io. Next, we give our class an

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 14



instance variable to hold the port to listen to for incoming connections. By default, this is port
3000.

Our class has a main() method and two other methods. We'll go into the details of these
methods later. For now, just know that acceptConnections() will allow clients to connect
to the server, and handleConnection() interacts with the client Socket to send the
contents of the requested file to the client.

Implementing main()
Here we implement the main() method, which will create a RemoteFileServer and tell it
to accept connections:

public static void main(String[] args) {
RemoteFileServer server = new RemoteFileServer();
server.acceptConnections();

}

The main() method on the server side is even simpler than on the client side. We
instantiate a new RemoteFileServer, which will listen for incoming connection requests on
the default listen port. Then we call acceptConnections() to tell the server to listen.

Accepting connections
Here we implement the acceptConnections() method, which will set up a
ServerSocket and wait for connection requests:

public void acceptConnections() {
try {

ServerSocket server = new ServerSocket(listenPort);
Socket incomingConnection = null;
while (true) {

incomingConnection = server.accept();
handleConnection(incomingConnection);

}
} catch (BindException e) {

System.out.println("Unable to bind to port " + listenPort);
} catch (IOException e) {

System.out.println("Unable to instantiate a ServerSocket on port: " + listenPort);
}

}

The acceptConnections() method creates a ServerSocket with the port number to
listen to. We then tell the ServerSocket to start listening by calling accept() on it. The
accept() method blocks until a connection request comes in. At that point, accept()
returns a new Socket bound to a randomly assigned port on the server, which is passed to
handleConnection(). Notice that this accepting of connections is in an infinite loop. No
shutdown supported here.

Whenever you create a ServerSocket, Java code may throw an error if it can't bind to the
specified port (perhaps because something else already has control of that port). So we have
to catch the possible BindException here. And just like on the client side, we have to
catch an IOException that could be thrown when we try to accept connections on our
ServerSocket. Note that you can set a timeout on the accept() call by calling

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 15



setSoTimeout() with number of milliseconds to avoid a really long wait. Calling
setSoTimeout() will cause accept() to throw an IOException after the specified
elapsed time.

Handling connections
Here we implement the handleConnection() method, which will use streams on a
connection to receive input and write output:

public void handleConnection(Socket incomingConnection) {
try {

OutputStream outputToSocket = incomingConnection.getOutputStream();
InputStream inputFromSocket = incomingConnection.getInputStream();

BufferedReader streamReader =
new BufferedReader(new InputStreamReader(inputFromSocket));

FileReader fileReader = new FileReader(new File(streamReader.readLine()));

BufferedReader bufferedFileReader = new BufferedReader(fileReader);
PrintWriter streamWriter =

new PrintWriter(incomingConnection.getOutputStream());
String line = null;
while ((line = bufferedFileReader.readLine()) != null) {

streamWriter.println(line);
}

fileReader.close();
streamWriter.close();
streamReader.close();

} catch (Exception e) {
System.out.println("Error handling a client: " + e);

}
}

As with the client, we get the streams associated with the Socket we just made, using
getOutputStream() and getInputStream(). As on the client side, we wrap the
InputStream in a BufferedReader and the OutputStream in a PrintWriter. On the
server side, we need to add some code to read the target file and send the contents to the
client line by line. Here's the important code:

FileReader fileReader = new FileReader(new File(streamReader.readLine()));
BufferedReader bufferedFileReader = new BufferedReader(fileReader);
String line = null;
while ((line = bufferedFileReader.readLine()) != null) {

streamWriter.println(line);
}

This code deserves some detailed explanation. Let's look at it bit by bit:

FileReader fileReader = new FileReader(new File(streamReader.readLine()));

First, we make use of our BufferedReader on the Socket's InputStream. We should be
getting a valid file path, so we construct a new File using that path name. We make a new
FileReader to handle reading the file.

BufferedReader bufferedFileReader = new BufferedReader(fileReader);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 16



Here we wrap our FileReader in a BufferedReader to let us read the file line by line.

Next, we call readLine() on our BufferedReader. This call will block until bytes come in.
When we get some bytes, we put them in our local line variable, and then write them out to
the client. When we're done reading and writing, we close the open streams.

Note that we closed streamWriter and streamReader after we were done reading from
the Socket. You might ask why we didn't close streamReader immediately after reading in
the file name. The reason is that when you do that, your client won't get any data. If you
close the streamReader before you close streamWriter, you can write to the Socket all
you want but no data will make it across the channel (it's closed).

Wrapping up the server
Before we move on to another, more practical example, let's review the steps to create and
use a ServerSocket:

1. Instantiate a ServerSocket with a port on which you want it to listen for incoming
client connections (throws an Exception if there's a problem).

2. Call accept() on the ServerSocket to block while waiting for connection.
3. Get the streams on that underlying Socket for reading and writing.
4. Wrap the streams as necessary to simplify your life.
5. Read from and write to the Socket.
6. Close your open streams (and remember, never close your Reader before your Writer).

You can find the complete code listing for RemoteFileServer at Code listing for
RemoteFileServer on page 33.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 17



Section 5. A multithreaded example

Introduction
The previous example gives you the basics, but that won't take you very far. If you stopped
here, you could handle only one client at a time. The reason is that handleConnection()
is a blocking method. Only when it has completed its dealings with the current connection
can the server accept another client. Most of the time, you will want (and need) a
multithreaded server.

There aren't too many changes you need to make to RemoteFileServer to begin handling
multiple clients simultaneously. As a matter of fact, had we discussed backlogging earlier, we
would have just one method to change, although we'll need to create something new to
handle the incoming connections. We will show you here also how ServerSocket handles
lots of clients waiting (backing up) to use our server. This example illustrates an inefficient
use of threads, so be patient.

Accepting (too many?) connections
Here we implement the revised acceptConnections() method, which will create a
ServerSocket that can handle a backlog of requests, and tell it to accept connections:

public void acceptConnections() {
try {
ServerSocket server = new ServerSocket(listenPort, 5);
Socket incomingConnection = null;
while (true) {

incomingConnection = server.accept();
handleConnection(incomingConnection);

}
} catch (BindException e) {
System.out.println("Unable to bind to port " + listenPort);
} catch (IOException e) {
System.out.println("Unable to instantiate a ServerSocket on port: " + listenPort);
}

}

Our new server still needs to acceptConnections() so this code is virtually identical. The
highlighted line indicates the one significant difference. For this multithreaded version, we
now specify the maximum number of client requests that can backlog when instantiating the
ServerSocket. If we don't specify the max number of client requests, the default value of
50 is assumed.

Here's how it works. Suppose we specify a backlog of 5 and that five clients request
connections to our server. Our server will start processing the first connection, but it takes a
long time to process that connection. Since our backlog is 5, we can have up to five requests
in the queue at one time. We're processing one, so that means we can have five others
waiting. That's a total of six either waiting or being processed. If a seventh client asks for a
connection while our server is still busy accepting connection one (remember that 2-6 are
still in queue), that seventh client will be refused. We will illustrate limiting the number of
clients that can be connected simultaneously in our pooled server example.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 18



Handling connections: Part 1
Here we'll talk about the structure of the handleConnection() method, which spawns a
new Thread to handle each connection. We'll discuss this in two parts. We'll focus on the
method itself in this panel, and then examine the structure of the ConnectionHandler
helper class used by this method in the next panel.

public void handleConnection(Socket connectionToHandle) {
new Thread(new ConnectionHandler(connectionToHandle)).start();

}

This method represents the big change to our RemoteFileServer. We still call
handleConnection() after the server accepts a connection, but now we pass that
Socket to an instance of ConnectionHandler, which is Runnable. We create a new
Thread with our ConnectionHandler and start it up. The ConnectionHandler's run()
method contains the Socket reading/writing and File reading code that used to be in
handleConnection() on RemoteFileServer.

Handling connections: Part 2
Here is the structure for the ConnectionHandler class:

import java.io.*;
import java.net.*;

public class ConnectionHandler implements Runnable{
Socket socketToHandle;

public ConnectionHandler(Socket aSocketToHandle) {
socketToHandle = aSocketToHandle;

}

public void run() {
}

}

This helper class is pretty simple. As with our other classes so far, we import java.net and
java.io. The class has a single instance variable, socketToHandle, that holds the
Socket handled by the instance.

The constructor for our class takes a Socket instance and assigns it to socketToHandle.

Notice that the class implements the Runnable interface. Classes that implement this
interface must implement the run() method, which our class does. We'll go into the details
of run() later. For now, just know that it will actually process the connection using code
identical to what we saw before in our RemoteFileServer class.

Implementing run()
Here we implement the run() method, which will grab the streams on our connection, use
them to read from and write to the connection, and close them when we are done:

public void run() {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 19



try {
PrintWriter streamWriter = new PrintWriter(socketToHandle.getOutputStream());
BufferedReader streamReader =

new BufferedReader(new InputStreamReader(socketToHandle.getInputStream()));

String fileToRead = streamReader.readLine();
BufferedReader fileReader = new BufferedReader(new FileReader(fileToRead));

String line = null;
while ((line = fileReader.readLine()) != null)

streamWriter.println(line);

fileReader.close();
streamWriter.close();
streamReader.close();

} catch (Exception e) {
System.out.println("Error handling a client: " + e);

}
}

The run() method on ConnectionHandler does what handleConnection() on
RemoteFileServer did. First, we wrap the InputStream and OutputStream in a
BufferedReader and a PrintWriter, respectively (using getOutputStream() and
getInputStream() on the Socket). Then we read the target file line by line with this code:

FileReader fileReader = new FileReader(new File(streamReader.readLine()));
BufferedReader bufferedFileReader = new BufferedReader(fileReader);
String line = null;
while ((line = bufferedFileReader.readLine()) != null) {

streamWriter.println(line);
}

Remember that we should be getting a valid file path from the client, so we construct a new
File using that path name, wrap it in a FileReader to handle reading the file, and then
wrap that in a BufferedReader to let us read the file line by line. We call readLine() on
our BufferedReader in a while loop until we have no more lines to read. Remember that
the call to readLine() will block until bytes come in. When we get some bytes, we put them
in our local line variable, and then write them out to the client. When we're done reading
and writing, we close the open streams.

Wrapping up the multithreaded server
Our multithreaded server is done. Before we move on to the pooled example, let's review the
steps to create and use a multithreaded version of the server:

1. Modify acceptConnections() to instantiate a ServerSocket with a default
50-connection backlog (or whatever specific number you want, greater than 1).

2. Modify handleConnection() on the ServerSocket to spawn a new Thread with
an instance of ConnectionHandler.

3. Implement the ConnectionHandler class, borrowing code from the
handleConnection() method on RemoteFileServer.

You can find the complete code listing for MultithreadedRemoteFileServer at Code
listing for MultithreadedRemoteFileServer on page 34, and the complete code listing for
ConnectionHandler at Code listing for ConnectionHandler on page 34.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 20



Section 6. A pooled example

Introduction
The MultithreadedServer we've got now simply creates a new ConnectionHandler in
a new Thread each time a client asks for a connection. That means we have potentially a
bunch of Threads lying around. Creating a Thread isn't trivial in terms of system overhead,
either. If performance becomes an issue (and don't assume it will until it does), being more
efficient about handling our server would be a good thing. So, how do we manage the server
side more efficiently? We can maintain a pool of incoming connections that a limited number
of ConnectionHandlers will service. This design provides the following benefits:

* It limits the number of simultaneous connections allowed.
* We only have to start up ConnectionHandler Threads one time.

Fortunately, as with our multithreaded example, adding pooling to our code doesn't require
an overhaul. In fact, the client side of the application isn't affected at all. On the server side,
we create a set number of ConnectionHandlers when the server starts, place incoming
connections into a pool and let the ConnectionHandlers take care of the rest. There are
many possible tweaks to this design that we won't cover. For instance, we could refuse
clients by limiting the number of connections we allow to build up in the pool.

Note: We will not cover acceptConnections() again. This method is exactly the same as
in earlier examples. It loops forever calling accept() on a ServerSocket and passes the
connection to handleConnection().

Creating the PooledRemoteFileServer class
Here is the structure for the PooledRemoteFileServer class:

import java.io.*;
import java.net.*;
import java.util.*;

public class PooledRemoteFileServer {
protected int maxConnections;
protected int listenPort;
protected ServerSocket serverSocket;

public PooledRemoteFileServer(int aListenPort, int maxConnections) {
listenPort = aListenPort;
this.maxConnections = maxConnections;

}
public static void main(String[] args) {
}
public void setUpHandlers() {
}
public void acceptConnections() {
}
protected void handleConnection(Socket incomingConnection) {
}

}

Note the import statements that should be familiar by now. We give our class the following
instance variables to hold:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 21



* The maximum number of simultaneous active client connections our server can handle
* The port to listen to for incoming connections (we didn't assign a default value, but feel

free to do that if you want)
* The ServerSocket that will accept client connection requests

The constructor for our class takes the port to listen to and the maximum number of
connections.

Our class has a main() method and three other methods. We'll go into the details of these
methods later. For now, just know that setUpHandlers() creates a number of
PooledConnectionHandler instances equal to maxConnections and the other two
methods are like what we've seen before: acceptConnections() listens on the
ServerSocket for incoming client connections, and handleConnection actually handles
each client connection once it's established.

Implementing main()
Here we implement the revised main() method, which will create a
PooledRemoteFileServer that can handle a given number of client connections, and tell
it to accept connections:

public static void main(String[] args) {
PooledRemoteFileServer server = new PooledRemoteFileServer(3000, 3);
server.setUpHandlers();
server.acceptConnections();

}

Our main() method is straightforward. We instantiate a new PooledRemoteFileServer,
which will set up three PooledConnectionHandlers by calling setUpHandlers(). Once
the server is ready, we tell it to acceptConnections().

Setting up the connection handlers
public void setUpHandlers() {

for (int i = 0; i < maxConnections; i++) {
PooledConnectionHandler currentHandler = new PooledConnectionHandler();
new Thread(currentHandler, "Handler " + i).start();

}
}

The setUpHandlers() method creates maxConnections worth of
PooledConnectionHandlers (three) and fires them up in new Threads. Creating a
Thread with an object that implements Runnable allows us to call start() on the Thread
and expect run() to be called on the Runnable. In other words, our
PooledConnectionHandlers will be waiting to handle incoming connections, each in its
own Thread. We create only three Threads in our example, and this cannot change once
the server is running.

Handling connections
Here we implement the revised handleConnections() method, which will delegate

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 22



handling a connection to a PooledConnectionHandler:

protected void handleConnection(Socket connectionToHandle) {
PooledConnectionHandler.processRequest(connectionToHandle);
}

We now ask our PooledConnectionHandlers to process all incoming connections
processRequest() is a static method).

Here is the structure for the PooledConnectionHandler class:

import java.io.*;
import java.net.*;
import java.util.*;

public class PooledConnectionHandler implements Runnable {
protected Socket connection;
protected static List pool = new LinkedList();

public PooledConnectionHandler() {
}
public void handleConnection() {
}
public static void processRequest(Socket requestToHandle) {
}
public void run() {
}

}

This helper class is very much like ConnectionHandler, but with a twist to handle
connection pooling. The class has two single instance variables:

* connection, the Socket that is currently being handled
* A static LinkedList called pool that holds the connections that need to be handled

Filling the connection pool
Here we implement the processRequest() method on our
, which will add incoming requests to the pool and tell other objects waiting on the pool that it
now has some contents:

public static void processRequest(Socket requestToHandle) {
synchronized (pool) {

pool.add(pool.size(), requestToHandle);
pool.notifyAll();

}
}

This method requires some background on how the Java keyword synchronized works.
We will attempt a short lesson on threading.

First, some definitions:

* Atomic method. Methods (or blocks of code) that cannot be interrupted mid-execution
* Mutex lock. A single "lock" that must be obtained by a client wishing to execute an

atomic method

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 23



So, when object A wants to use synchronized method doSomething() on object B,
object A must first attempt to acquire the mutex from object B. Yes, this means that when
object A has the mutex, no other object may call any other synchronized method on object
B.

A synchronized block is a slightly different animal. You can synchronize a block on any
object, not just the object that has the block in one of its methods. In our example, our
processRequest() method contains a block synchronized on the pool object
(remember it's a LinkedList that holds the pool of connections to be handled). The reason
we do this is to ensure that nobody else can modify the connection pool at the same time we
are.

Now that we've guaranteed that we're the only ones wading in the pool, we can add the
incoming Socket to the end of our LinkedList. Once we've added the new connection,
we notify other Threads waiting to access the pool that it's now available, using this code:

pool.notifyAll();

All subclasses of Object inherit the notifyAll() method. This method, in conjunction
with the wait() method that we'll discuss in the next panel, allows one Thread to let
another Thread know that some condition has been met. That means that the second
Thread must have been waiting for that condition to be satisfied.

Getting connections from the pool
Here we implement the revised run() method on PooledConnectionHandler, which will
wait on the connection pool and handle the connection once the pool has one:

public void run() {
while (true) {

synchronized (pool) {
while (pool.isEmpty()) {

try {
pool.wait();

} catch (InterruptedException e) {
return;

}
}
connection = (Socket) pool.remove(0);

}
handleConnection();

}
}

Recall from the previous panel that a Thread is waiting to be notified that a condition on the
connection pool has been satisfied. In our example, remember that we have three
PooledConnectionHandlers waiting to use connections in the pool. Each of these
PooledConnectionHandlers is running in its own Thread and is blocked on the call to
pool.wait(). When our processRequest() method called notifyAll() on the
connection pool, all of our waiting PooledConnectionHandlers were notified that the pool
was available. Each one then continues past the call to pool.wait(), and rechecks the
while(pool.isEmpty()) loop condition. The pool will be empty for all but one handler, so
all but one handler will block again on the call to pool.wait(). The one that encounters a
non-empty pool will break out of the while(pool.isEmpty()) loop and will grab the first
connection from the pool:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 24



connection = (Socket) pool.remove(0);

Once it has a connection to use, it calls handleConnection() to handle it.

In our example, the pool probably won't ever have more than one connection in it, simply
because things execute so fast. If there were more than one connection in the pool, then the
other handlers wouldn't have to wait for new connections to be added to the pool. When they
checked the pool.isEmpty() condition, it would fail, and they would proceed to grab a
connection from the pool and handle it.

One other thing to note. How is the processRequest() method able to put connections in
the pool when the run() method has a mutex lock on the pool? The answer is that the call
to wait() on the pool releases the lock, and then grabs it again right before it returns. This
allows other code synchronized on the pool object to acquire the lock.

Handling connections: One more time
Here we implement the revised handleConnection() method, which will grab the streams
on a connection, use them, and clean them up when finished:

public void handleConnection() {
try {

PrintWriter streamWriter = new PrintWriter(connection.getOutputStream());
BufferedReader streamReader =

new BufferedReader(new InputStreamReader(connection.getInputStream()));

String fileToRead = streamReader.readLine();
BufferedReader fileReader = new BufferedReader(new FileReader(fileToRead));

String line = null;
while ((line = fileReader.readLine()) != null)

streamWriter.println(line);

fileReader.close();
streamWriter.close();
streamReader.close();

} catch (FileNotFoundException e) {
System.out.println("Could not find requested file on the server.");

} catch (IOException e) {
System.out.println("Error handling a client: " + e);

}
}

Unlike in our multithreaded server, our PooledConnectionHandler has a
handleConnection() method. The code within this method is exactly the same as the
code in the run() method on our non-pooled ConnectionHandler. First, we wrap the
OutputStream and InputStream in a PrintWriter and a BufferedReader,
respectively (using getOutputStream() and getInputStream() on the Socket). Then
we read the target file line by line, just as we did in the multithreaded example. Again, when
we get some bytes, we put them in our local line variable, and then write them out to the
client. When we're done reading and writing, we close our FileReader and the open
streams.

Wrapping up the pooled server

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 25



Our pooled server is done. Let's review the steps to create and use a pooled version of the
server:

1. Create a new kind of connection handler (we called it PooledConnectionHandler) to
handle connections in a pool.

2. Modify the server to create and use a set of PooledConnectionHandlers.

You can find the complete code listing for PooledRemoteFileServer at Code listing for
PooledRemoteFileServer on page 35, and the complete code listing for
PooledConnectionHandler at Code listing for PooledConnectionHandler on page 35.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 26



Section 7. Sockets in real life

Introduction
The examples we've talked about so far cover the mechanics of sockets in Java
programming, but how would you use them on something "real?" Such a simple use of
sockets, even with multithreading and pooling, would not be appropriate in most applications.
Instead, it would probably be smart to use sockets within other classes that model your
problem domain.

We did this recently in porting an application from a mainframe/SNA environment to a
TCP/IP environment. The application's job is to facilitate communication between a retail
outlet (such as a hardware store) and financial institutions. Our application is the middleman.
As such, it needs to communicate with the retail outlet on one side and the financial outlet on
the other. We had to handle a client talking to a server via sockets, and we had to translate
our domain objects into socket-ready stuff for transmission.

We can't cover all the detail of this application in this tutorial, but let us take you on a tour of
some of the high points. You can extrapolate from here to your own problem domain.

The client side
On the client side, the key players in our system were Socket, ClientSocketFacade, and
StreamAdapter. The UML is shown in the following diagram:

We created a ClientSocketFacade, which is Runnable and owns an instance of
. Our application can instantiate a ClientSocketFacade with a particular host IP address
and port number, and run it in a new Thread. The run() method on
ClientSocketFacade calls connect(), which lazily initializes a Socket. With Socket
instance in hand, our ClientSocketFacade calls receive() on itself, which blocks until
the server sends some data over the Socket. Whenever the server sends some data, our
ClientSocketFacade will wake up and handle the incoming data. Sending data is just as
direct. Our application can simply tell its ClientSocketFacade to send data to its server by
calling the send() method with a StreamObject.

The only piece missing from the discussion above is StreamAdapter. When an application

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 27



tells the ClientSocketFacade to send data, the Facade delegates the operation to an
instance of StreamAdapter. The ClientSocketFacade delegates receiving data to the
same instance of StreamAdapter. A StreamAdapter handles the final formatting of
messages to put on the Socket's OutputStream, and reverses the process for messages
coming in on the Socket's InputStream.

For example, perhaps your server needs to know the number of bytes in the message being
sent. StreamAdapter could handle computing and prepending the length to the message
before sending it. When the server receives it, the same StreamAdapter could handle
stripping off the length and reading the correct number of bytes for building a
StreamReadyObject.

The server side
The picture is similar on the server side:

We wrapped our ServerSocket in a ServerSocketFacade, which is Runnable and
owns an instance of a ServerSocket. Our applications can instantiate a
ServerSocketFacade with a particular server-side port to listen to and a maximum
number of client connections allowed (the default is 50). The application then runs the
Facade in a new Thread to hide the ServerSocket interaction details.

The run() method on ServerSocketFacade calls acceptConnections(), which
makes a new ServerSocket and calls accept() on it to block until a client requests a
connection. Each time that happens, our ServerSocketFacade wakes up and hands the
new Socket returned by accept() to an instance of SocketHandler by calling
handleSocket(). The SocketHandler does what it needs to do in order to handle the
new channel from client to server.

The business logic
Once we had these Socket Facades in place, it became much easier to implement the
business logic of our application. Our application used an instance of
ClientSocketFacade to send data over the Socket to the server and to get responses
back. The application was responsible for handling conversion of our domain objects into
formats understood by ClientSocketFacade and for building domain objects from

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 28



responses.

Sending messages to the server
The following diagram shows the UML interaction diagram for sending a message in our
application:

For simplicity's sake, we didn't show the piece of the interaction where
aClientSocketFacade asks its Socket instance for its OutputStream (using the
getOutputStream() method). Once we had a reference to that OutputStream, we
simply interacted with it as shown in the diagram. Notice that our ClientSocketFacade hid
the low-level details of socket interaction from our application. Our application interacted with
aClientSocketFacade, not with any of the lower-level classes that facilitate putting bytes
on Socket OutputStreams.

Receiving messages from the server
The following diagram shows the UML interaction diagram for receiving a message in our
application:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 29



Notice that our application runs aClientSocketFacade in a Thread. When
aClientSocketFacade starts up, it tells itself to receive() on its Socket instance's
InputStream. The receive() method calls read(byte[]) on the InputStream itself.
The read([]) method blocks until it receives data, and puts the bytes received on the
InputStream into a byte array. When data comes in, aClientSocketFacade uses
aStreamAdapter and aDomainAdapter to construct (ultimately) a domain object that our
application can use. Then it hands that domain object back to the application. Again, our
ClientSocketFacade hides the lower-level details from the application, simplifying the
Application Layer.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 30



Section 8. Summary

Wrapup
The Java language simplifies using sockets in your applications. The basics are really the
Socket and ServerSocket classes in the java.net package. Once you understand
what's going on behind the scenes, these classes are easy to use. Using sockets in real life
is simply a matter of using good OO design principles to preserve encapsulation within the
various layers within your application. We showed you a few classes that can help. The
structure of these classes hides the low-level details of Socket interaction from our
application -- it can just use pluggable ClientSocketFacades and
ServerSocketFacades. You still have to manage the somewhat messy byte details
somewhere (within the Facades), but you can do it once and be done with it. Better still, you
can reuse these lower-level helper classes on future projects.

Resources
* Download the source code for this article.
* " Thinking in Java, 2nd Edition " (Prentice Hall, 2000) by Bruce Eckel provides an

excellent approach for learning Java inside and out.
* Sun has a good tutorial on Sockets . Just follow the "All About Sockets" link.
* We used VisualAge for Java, version 3.5 to develop the code in this tutorial. Download

your own copy of VisualAge for Java (now in release 4) or, if you already use VAJ,
check out the VisualAge Developer Domain for a variety of technical assistance.

* Now that you're up to speed with sockets programming with Java, this article on the
Visual Age for Java Developer Domain will teach you to set up access to sockets
through the company firewall .

* Allen Holub's Java Toolbox column (on JavaWorld) provides an excellent series on Java
Threads that is well worth reading. Start the series with " A Java programmer's guide to
threading architectures ." One particularly good article, " Threads in an object-oriented
world, thread pools, implementing socket 'accept' loops, " goes into rather deep detail
about Thread pooling. We didn't go into quite so much detail in this tutorial, and we
made our PooledRemoteFileServer and PooledConnectionHandler a little
easier to follow, but the strategies Allen talks about would fit nicely. In fact, his treatment
of ServerSocket via a Java implementation of a callback mechanism that supports a
multi-purpose, configurable server is powerful.

* For technical assistance with multithreading in your Java applications, visit the
Multithreaded Java programming discussion forum on developerWorks, moderated by
Java threading expert Brian Goetz.

* Siva Visveswaran explains connection pooling in detail in "Connection pools"
(developerWorks, October 2000).

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 31

practicalsockets.zip
practicalsockets.zip
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://java.sun.com/docs/books/tutorial/networking/index.html
http://www7.software.ibm.com/vad.nsf/webdlvajava4?OpenView&Count=5&TargetFrame=webdlvajava4
http://www7.software.ibm.com/vad.nsf/webdlvajava4?OpenView&Count=5&TargetFrame=webdlvajava4
http://www7.software.ibm.com/vad.nsf/webdlvajava4?OpenView&Count=5&TargetFrame=webdlvajava4
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www.javaworld.com/columns/jw-toolbox-index.shtml
http://www.javaworld.com/columns/jw-toolbox-index.shtml
http://www.javaworld.com/columns/jw-toolbox-index.shtml
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-106.ibm.com/developerworks/java/library/j-pool/
http://www-106.ibm.com/developerworks/java/library/j-pool/


Section 9. Appendix

Code listing for URLClient
import java.io.*;
import java.net.*;

public class URLClient {
protected HttpURLConnection connection;
public String getDocumentAt(String urlString) {

StringBuffer document = new StringBuffer();
try {

URL url = new URL(urlString);
URLConnection conn = url.openConnection();
BufferedReader reader = new BufferedReader(new InputStreamReader(conn.getInputStream()));

String line = null;
while ((line = reader.readLine()) != null)

document.append(line + "\n");

reader.close();
} catch (MalformedURLException e) {

System.out.println("Unable to connect to URL: " + urlString);
} catch (IOException e) {

System.out.println("IOException when connecting to URL: " + urlString);
}

return document.toString();
}
public static void main(String[] args) {

URLClient client = new URLClient();
String yahoo = client.getDocumentAt("http://www.yahoo.com");

System.out.println(yahoo);
}

}

Code listing for RemoteFileClient
import java.io.*;
import java.net.*;

public class RemoteFileClient {
protected BufferedReader socketReader;
protected PrintWriter socketWriter;
protected String hostIp;
protected int hostPort;

public RemoteFileClient(String aHostIp, int aHostPort) {
hostIp = aHostIp;
hostPort = aHostPort;

}
public String getFile(String fileNameToGet) {

StringBuffer fileLines = new StringBuffer();

try {
socketWriter.println(fileNameToGet);
socketWriter.flush();

String line = null;
while ((line = socketReader.readLine()) != null)

fileLines.append(line + "\n");
} catch (IOException e) {

System.out.println("Error reading from file: " + fileNameToGet);
}

return fileLines.toString();
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 32



public static void main(String[] args) {
RemoteFileClient remoteFileClient = new RemoteFileClient("127.0.0.1", 3000);
remoteFileClient.setUpConnection();
String fileContents = remoteFileClient.getFile("C:\\WINNT\\Temp\\RemoteFile.txt");
remoteFileClient.tearDownConnection();

System.out.println(fileContents);
}
public void setUpConnection() {

try {
Socket client = new Socket(hostIp, hostPort);

socketReader = new BufferedReader(new InputStreamReader(client.getInputStream()));
socketWriter = new PrintWriter(client.getOutputStream());

} catch (UnknownHostException e) {
System.out.println("Error setting up socket connection: unknown host at " + hostIp + ":" + hostPort);

} catch (IOException e) {
System.out.println("Error setting up socket connection: " + e);

}
}
public void tearDownConnection() {

try {
socketWriter.close();
socketReader.close();

} catch (IOException e) {
System.out.println("Error tearing down socket connection: " + e);

}
}

}

Code listing for RemoteFileServer
import java.io.*;
import java.net.*;

public class RemoteFileServer {
int listenPort;
public RemoteFileServer(int aListenPort) {

listenPort = aListenPort;
}
public void acceptConnections() {

try {
ServerSocket server = new ServerSocket(listenPort);
Socket incomingConnection = null;
while (true) {

incomingConnection = server.accept();
handleConnection(incomingConnection);

}
} catch (BindException e) {

System.out.println("Unable to bind to port " + listenPort);
} catch (IOException e) {

System.out.println("Unable to instantiate a ServerSocket on port: " + listenPort);
}

}
public void handleConnection(Socket incomingConnection) {

try {
OutputStream outputToSocket = incomingConnection.getOutputStream();
InputStream inputFromSocket = incomingConnection.getInputStream();

BufferedReader streamReader = new BufferedReader(new InputStreamReader(inputFromSocket));

FileReader fileReader = new FileReader(new File(streamReader.readLine()));

BufferedReader bufferedFileReader = new BufferedReader(fileReader);
PrintWriter streamWriter = new PrintWriter(incomingConnection.getOutputStream());
String line = null;
while ((line = bufferedFileReader.readLine()) != null) {

streamWriter.println(line);
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 33



fileReader.close();
streamWriter.close();
streamReader.close();

} catch (Exception e) {
System.out.println("Error handling a client: " + e);

}
}
public static void main(String[] args) {

RemoteFileServer server = new RemoteFileServer(3000);
server.acceptConnections();

}
}

Code listing for MultithreadedRemoteFileServer
import java.io.*;
import java.net.*;

public class MultithreadedRemoteFileServer {
protected int listenPort;
public MultithreadedRemoteFileServer(int aListenPort) {

listenPort = aListenPort;
}
public void acceptConnections() {

try {
ServerSocket server = new ServerSocket(listenPort, 5);
Socket incomingConnection = null;
while (true) {

incomingConnection = server.accept();
handleConnection(incomingConnection);

}
} catch (BindException e) {

System.out.println("Unable to bind to port " + listenPort);
} catch (IOException e) {

System.out.println("Unable to instantiate a ServerSocket on port: " + listenPort);
}

}
public void handleConnection(Socket connectionToHandle) {

new Thread(new ConnectionHandler(connectionToHandle)).start();
}
public static void main(String[] args) {

MultithreadedRemoteFileServer server = new MultithreadedRemoteFileServer(3000);
server.acceptConnections();

}
}

Code listing for ConnectionHandler
import java.io.*;
import java.net.*;

public class ConnectionHandler implements Runnable {
protected Socket socketToHandle;
public ConnectionHandler(Socket aSocketToHandle) {

socketToHandle = aSocketToHandle;
}
public void run() {

try {
PrintWriter streamWriter = new PrintWriter(socketToHandle.getOutputStream());
BufferedReader streamReader = new BufferedReader(new InputStreamReader(socketToHandle.getInputStream()));

String fileToRead = streamReader.readLine();
BufferedReader fileReader = new BufferedReader(new FileReader(fileToRead));

String line = null;
while ((line = fileReader.readLine()) != null)

streamWriter.println(line);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 34



fileReader.close();
streamWriter.close();
streamReader.close();

} catch (Exception e) {
System.out.println("Error handling a client: " + e);

}
}

}

Code listing for PooledRemoteFileServer
import java.io.*;
import java.net.*;
import java.util.*;

public class PooledRemoteFileServer {
protected int maxConnections;
protected int listenPort;
protected ServerSocket serverSocket;
public PooledRemoteFileServer(int aListenPort, int maxConnections) {

listenPort = aListenPort;
this.maxConnections = maxConnections;

}
public void acceptConnections() {

try {
ServerSocket server = new ServerSocket(listenPort, 5);
Socket incomingConnection = null;
while (true) {

incomingConnection = server.accept();
handleConnection(incomingConnection);

}
} catch (BindException e) {

System.out.println("Unable to bind to port " + listenPort);
} catch (IOException e) {

System.out.println("Unable to instantiate a ServerSocket on port: " + listenPort);
}

}
protected void handleConnection(Socket connectionToHandle) {

PooledConnectionHandler.processRequest(connectionToHandle);
}
public static void main(String[] args) {

PooledRemoteFileServer server = new PooledRemoteFileServer(3000, 3);
server.setUpHandlers();
server.acceptConnections();

}
public void setUpHandlers() {

for (int i = 0; i < maxConnections; i++) {
PooledConnectionHandler currentHandler = new PooledConnectionHandler();
new Thread(currentHandler, "Handler " + i).start();

}
}

}

Code listing for PooledConnectionHandler
import java.io.*;
import java.net.*;
import java.util.*;

public class PooledConnectionHandler implements Runnable {
protected Socket connection;
protected static List pool = new LinkedList();
public PooledConnectionHandler() {
}
public void handleConnection() {

try {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 35



PrintWriter streamWriter = new PrintWriter(connection.getOutputStream());
BufferedReader streamReader = new BufferedReader(new InputStreamReader(connection.getInputStream()));

String fileToRead = streamReader.readLine();
BufferedReader fileReader = new BufferedReader(new FileReader(fileToRead));

String line = null;
while ((line = fileReader.readLine()) != null)

streamWriter.println(line);

fileReader.close();
streamWriter.close();
streamReader.close();

} catch (FileNotFoundException e) {
System.out.println("Could not find requested file on the server.");

} catch (IOException e) {
System.out.println("Error handling a client: " + e);

}
}
public static void processRequest(Socket requestToHandle) {

synchronized (pool) {
pool.add(pool.size(), requestToHandle);
pool.notifyAll();

}
}
public void run() {

while (true) {
synchronized (pool) {

while (pool.isEmpty()) {
try {

pool.wait();
} catch (InterruptedException e) {

return;
}

}
connection = (Socket) pool.remove(0);

}
handleConnection();

}
}

}

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 36


