
Jetspeed, Part 1: Developing portlets

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Jetspeed overview and architecture 3
3. Portlets overview ... 5
4. Standard portlets part of Jetspeed 8
5. Developing portlets -- Hello World! portlet 10
6. Jetspeed and wireless... 13
7. Portlet example ... 17
8. Feedback .. 26

Jetspeed, Part 1: Developing portlets Page 1 of 26

Section 1. About this tutorial

Who should take this tutorial?
This tutorial teaches you how to develop a portal using Jetspeed. The course is intended for
developers and technical managers who want to get an overview and understanding of portal
and portlet development using Jetspeed.

About the authors
Vivek Malhotra is a subject matter expert on wireless technologies based in the Washington
D.C. area. Vivek has several years of experience developing and implementing wireless
applications and has spoken on expert panels focusing on the wireless industry. You can
reach him at vmalhot@yahoo.com for any questions you might have about the content of this
tutorial.

Roman Vichr is senior architect at DDLabs, an e-commerce and EAI consulting company.
His latest interests include expanding databases into wireless technology, after focusing on
database management for client/server and Web applications development over the past
nine years. His background is in fiberoptics, culminating in a Ph.D. in the field from Prague's
Institute of Chemical Technology in 1992. You can reach him at rvichr@ddlabs.net.

Introduction to the tutorial
Jetspeed, based on an open source implementation, can be used to implement both
Web-based and wireless portals. This tutorial discusses Jetspeed and implementation of
portlets, which are building blocks of a portal.

Prerequisites
You should be familiar with basic Java programming and Wireless Markup Language (WML).

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 26 Jetspeed, Part 1: Developing portlets

mailto:vmalhot@yahoo.com
mailto:rvichr@us.ddlabs.net

Section 2. Jetspeed overview and architecture

What is Jetspeed?
Jetspeed is an open source project from the Apache Software Foundation that allows
developers to implement a portal. Written in Java language, Jetspeed offers a Portal API for
developing portlets, small Java applications that are building blocks of a portal. Jetspeed
makes connections to external data and content feeds to retrieve and display the data via a
portal. You can implement the portal and access it from a Web browser or a wireless device
(such as a WAP phone or Palm device). Jetspeed supports built-in services for user interface
customization, caching, persistence, and user authentication, eliminating the need implement
these services.

Jetspeed architecture model

This figure illustrates the Jetspeed architecture model. Jetspeed is built on top of Turbine, a
servlet-based framework, which is also part of the Jakarta Apache Project. Turbine handles
user authentication and page layout as well as scheduling. Jetspeed can run on a number of
servlet engines and databases. This tutorial uses Tomcat 3.2 for the servlet engine and Web
server.

Content formats supported by Jetspeed
Jetspeed supports the RSS (RDF Site Summary) and OCS (Open Content Syndication)
formats. RSS is an XML format used for syndicating Web headlines. The OCS format
describes multiple-content channels, including RSS headlines.

High-level Jetspeed features
Some of the high-level features of Jetspeed include:
• Both the RSS and OCS formats are supported

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 3 of 26

• Support for Wireless Markup Language (WML)

• A Web Application development infrastructure

• Portability across all platforms that support JDK 1.2 and Servlet 2.2

• User, group, role, and permission administration via security portlets

• Role-based security access to portlets

Installing and configuring Jetspeed
Follow the following steps to install and configure Jetspeed and get working:
• Jetspeed requires a servlet engine in order to run. This tutorial uses Tomcat, which you will

need to download, install, and configure. You can download Tomcat from the Tomcat
home page at http://jakarta.apache.org/tomcat/.

• Download, install, and configure Jetspeed. You can download Jetspeed from the Jetspeed
home page at http://jakarta.apache.org/jetspeed/.

• Build Jetspeed. Go to the directory where Jetspeed is installed. Go to the build directory
and execute "build war" at the DOS prompt.

• Copy the Jetspeed WAR file (jetspeed.war) from the \bin directory, which is under the
directory where Jetspeed is installed, to the \webapps directory, which is under the
directory where Tomcat is installed.

• Start Tomcat.

• Connect to Jetspeed. The URL to Jetspeed (on the local machine) is
http://localhost:8080/jetspeed/. Two default login accounts are created: (a) Login: turbine
and Password: turbine; (b) Login: admin and Password: jetspeed

Resources
For additional information, resources, and tool kits refer to the following sites:
• Jetspeed home page

• Turbine home page

• Tomcat home page

• Openwave SDK

• IBM Websphere Portal Server

• Java Technology Web site

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 26 Jetspeed, Part 1: Developing portlets

http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/jetspeed/
http://jakarta.apache.org/jetspeed/
http://jakarta.apache.org/jetspeed/
http://jakarta.apache.org/jetspeed/
http://jakarta.apache.org/turbine/
http://jakarta.apache.org/turbine/
http://jakarta.apache.org/turbine/
http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/
http://www.openwave.com/products/developer_products/sdk/
http://www.openwave.com/products/developer_products/sdk/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/info1/websphere/index.jsp
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/info1/websphere/index.jsp
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/info1/websphere/index.jsp
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/info1/websphere/index.jsp
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/

Section 3. Portlets overview

What are portlets?

Think of a portlet as a visibly active component displaying data within a portal page. The
figure illustrates a portlet in relation to a portal. Three portlets called reports, weather, and
contacts are displayed on a portal page called Home.

Page layout

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 5 of 26

This figure illustrates the anatomy of a page containing portlets. Within a page, portlet
content gets rendered by a PortletControl and a PortletController.

• PortletControl: The function of the PortletControl within the Portlet page handles rendering
the title and body of the Portlet.

• PortletController: The function of the PortletController is to handle multiple PortletControls
(each controlling a Portlet) to provide an entire Page of information from all the Portlets.

How portlets display content
To display content, portlets use the Element Construction Set (ECS) API. This comes
bundled with Jetspeed, which generates markup elements from Java objects. You can use a
servlet template or JSP technology to generate content as an output, which is then captured
by an ECS element that displays the content. ECS supports WML as well as HTML and
XML.

Portlet caching
Jetspeed provides developers with an advanced caching mechanism. Portlets that need to

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 26 Jetspeed, Part 1: Developing portlets

be cached are placed within the cache with relevant handle information like the classname
and some portlet configuration information like the URL, etc. If there is a need to remove the
portlet from the cache, it can be done by providing an expire() method, which determines
when the portlet needs to expire itself.

Portal Structure Markup Language (PSML)
Portlets are registered manually with Jetspeed using Portal Structured Markup Language
(PSML). PSML tells Jetspeed what portlets are available and registered with it. The
configuration file for portlets is jetspeed-config.jcfg in the WEB-INF/conf directory. These
default configuration files are called default.psml and defaultWML.psml and are in
WEB-INF/psml. Once a user is created, each user has configuration files associated with
them -- homeHTML.psml and homeWML.psml. These files are stored in
WEB-INF/psml/<username> for each user. PSML is composed of two markups -- registry
markup and site markup.

Registry markup
Registry markup describes all available portlets to the Jetspeed engine. All information about
the portlet is stored within a portlet registry.

Site markup
Site markup describes what portlets available to the Jetspeed engine can be displayed for a
given user. Information on how the portlets are organized on a screen/page and its
presentation properties are described by the site markup.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 7 of 26

Section 4. Standard portlets part of Jetspeed

What are the standard portlets?
Following are some of the standard and more commonly used portlets:
• HTML portlet

• JSP portlet

• RSS portlet

• WebPage portlet

• XSL portlet

Note that a description of the common elements used by the above portlets can be found on
the Jetspeed Web site.

HTML portlet
The HTML portlet displays HTML content. Here is an example of its use:

<portlet-entry name="HelloWorld" hidden="false" type="ref" parent="HTML" application="false">
<meta-info>

<title>Hello World</title>
<description>Example of HTML portlet</description>

</meta-info>
<url>hello.html</url>

</portlet-entry>

The url tag defines the location of the content to be displayed by the HTML portlet. Only
HTML media type is supported by the HTML portlet.

JSP portlet
The JSP portlet displays the output of a JSP page. Here is an example of its use:

<portlet-entry name="HelloWorld" hidden="false" type="ref" parent="JSP" application="false">
<meta-info>

<title>Hello World</title>
<description>Example of JSP Portlet</description>

</meta-info>
<parameter name="template" value="hello.jsp" hidden="false"/>
<media-type ref="html"/>

</portlet-entry>

The content displayed by the portlet is the output of the hello.jsp page. Note that the JSP file
needs to be located in
<tomcat_home>/<jetspeed_directory>/WEB-INF/templates/jsp/portlets.

RSS portlet

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 26 Jetspeed, Part 1: Developing portlets

http://jakarta.apache.org/jetspeed/site/portlet_config_common.html
http://jakarta.apache.org/jetspeed/site/portlet_config_common.html
http://jakarta.apache.org/jetspeed/site/portlet_config_common.html

The RSS portlet renders a RDF Site Summary format feed and presents it to the user as
HTML.

<portlet-entry name="Apacheweek" hidden="false" type="ref" parent="RSS" application="false">
<meta-info>

<title>Apacheweek</title>
</meta-info>
<url>http://www.apacheweek.com/issues/apacheweek-headlines.xml</url>

</portlet-entry>

The URL tag is the location of the RSS feed, which needs to be an RSS-formatted XML file.
WML and HTML media types are supported by the RSS portlet.

Web page portlet
The Web page portlet displays the content of a Web site. Here is an example of its use:

<portlet-entry name="JetspeedPage" hidden="false" type="ref" parent="WebPagePortlet" application="false">
<meta-info>

<title>JetspeedPage</title>
<description>Example of WebPage Portlet</description>

</meta-info>
<url>http://jakarta.apache.org/jetspeed</url>

</portlet-entry>

The URL tag defines the location of the Web page to be displayed by the portlet. HTML
media type is supported by the Web page portlet.

XSL portlet
The XSL portlet is used to display an XML-transformed document. XSLT is used to convert
the XML document into HTML, which is then displayed by the portlet.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 9 of 26

Section 5. Developing portlets -- Hello World! portlet

Steps
You will need to complete the following steps before a portlet can be made usable by
Jetspeed:

1. Implement and compile the portlet

2. Create the portlet registry fragment

3. Put the compiled portlet in the appropriate location

4. Register the portlet with the Jetspeed portlet registry

Hello World! portlet
In this section you will create a simple Hello World portlet. The following is the code for the
Hello World portlet:

package com.bluesunrise.portal.portlets;

import org.apache.jetspeed.portal.portlets.AbstractPortlet;
import org.apache.turbine.util.RunData;
import org.apache.ecs.ConcreteElement;
import org.apache.ecs.StringElement;

public class HelloWorldPortlet extends AbstractPortlet
{

public ConcreteElement getContent (RunData runData)
{

return (new StringElement ("Hello World test!"));
}

}

Every portlet that is to be part of the portal has to implement the Portlet interface
org.apache.jetspeed.portal.Portlet. Jetspeed provides a number of classes that implement
the Portlet interface with the most common functionality. The AbstractPortlet class is the
simplest of these predefined classes. The RunData object is passed to the getContent()
because it needs to be passed on to many other methods of the portal framework. To display
content, portlets use the Element Construction Set (ECS) API.

Portlet location
Once the Java code is compiled, the class has to be placed in the classpath. For this
example the classpath is
<tomcat_home>/<jetspeed_directory>/WEB-INF/classes/com/bluesunrise/portal/portlets/.

Hello World! Portlet registry fragment
A registry fragment contains the definition of a portlet. Below is the registry fragment for the
Hello World! portlet example:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 26 Jetspeed, Part 1: Developing portlets

<?xml version="1.0" encoding="UTF-8"?>
<registry>

<portlet-entry name="HelloWorld" hidden="false" type="instance" application="false">
<meta-info>

<title>HelloWorld</title>
<description>Hello World</description>

</meta-info>
<classname>com.bluesunrise.portal.portlets.HelloWorldPortlet</classname>
<media-type ref="html"/>

</portlet-entry>
</registry>

The classname tag gives the location of the HelloWorldPortlet class.

Portlet registry
After creating the registry fragment file, it needs to be deployed to Jetspeed under
/WEB-INF/conf. Any file in the /WEB-INF/conf directory that has the .xreg extension will be
included in the Jetspeed Registry. The following figure illustrates what the Jetspeed Registry
page would look like:

View Hello World! from the portal
Once the portlet has been registered with Jetspeed, you can view the output of the portlet on
the portal page. Following is an illustration of the output of the Hello World portlet from within
the portal:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 11 of 26

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 26 Jetspeed, Part 1: Developing portlets

Section 6. Jetspeed and wireless

Wireless support using Portlets
One of the features of Jetspeed is support for WAP phones. The WAP phone browser
renders WML content. In this section you will create a simple Hello World portlet to be
viewed on a WAP browser.

Hello World! portlet
The following is the code for the Hello World portlet:

package com.bluesunrise.portal.portlets;

import org.apache.ecs.ConcreteElement;
import org.apache.ecs.ElementContainer;
import org.apache.ecs.wml.Card;
import org.apache.jetspeed.capability.CapabilityMap;
import org.apache.jetspeed.capability.CapabilityMapFactory;
import org.apache.jetspeed.portal.portlets.AbstractPortlet;
import org.apache.jetspeed.util.MimeType;
import org.apache.turbine.util.RunData;

import java.io.*;

public class HelloWireless extends AbstractPortlet {

public ConcreteElement getContent (RunData runData) {

//create an ECS container for our content
ElementContainer content = new ElementContainer();

//get user's browser info from the Turbine runtime data.
CapabilityMap capMap = CapabilityMapFactory.getCapabilityMap (runData);

//WML code for wireless

Card wmlCard = new Card();
wmlCard.setCardId("_" + getPortletConfig().getName());
wmlCard.addElement(new org.apache.ecs.wml.P().addElement("Hello Wireless"));
content.addElement(wmlCard);
return content;

}
}

Again, like in the previous section, every portlet that is to be part of the portal has to
implement the Portlet interface org.apache.jetspeed.portal.Portlet. The Element Construction
Set (ECS) API displays the WML content to the WAP browser.

Portlet Location
Once the Java code is compiled, the class needs to be placed in the classpath. For this
example the classpath is
<tomcat_home>/<jetspeed_directory>/WEB-INF/classes/com/bluesunrise/portal/portlets/.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 13 of 26

Hello World! portlet registry fragment
Following is the registry fragment for the wireless Hello World! portlet example:

<?xml version="1.0" encoding="UTF-8"?>
<registry>

<portlet-entry name="HelloWireless" hidden="false" type="instance" application="false">
<meta-info>

<title>HelloWireless</title>
<description>HelloWireless</description>

</meta-info>
<classname>com.bluesunrise.portal.portlets.HelloWireless</classname>
<media-type ref="wml"/>

</portlet-entry>
</registry>

The classname tag gives the location of the HelloWorldPortlet class. Note, that the media
type is "wml".

Portlet registry
The "Customize WML" section contains all WML-type registered portlets with Jetspeed. The
figure below illustrates what the Jetspeed Registry page would look like containing the
registered Hello World portlet:

Viewing Hello World! from WAP phone

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 26 Jetspeed, Part 1: Developing portlets

Following is an illustration of the output of the Hello World portlet from within the wireless
portal:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 15 of 26

The first figure is the portal view and the second figure illustrates the output of the Hello
World! portlet.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 26 Jetspeed, Part 1: Developing portlets

Section 7. Portlet example

Example overview
In this portlet example, we will demonstrate implementing different portlets that display the
results on a WAP-enabled phone. This example consists of three portlets. The first one, the
"Hello World!" portlet, was discussed in the previous section. The second portlet
implementation illustrates content being retrieved from a .wml file. The third portlet
implementation illustrates the rendering of content based on the browser making the request,
for example HTML or WML. The third example takes advantage of the browser
characteristics. The application detects the requests and, based on that, delivers content that
the particular browser can render.

Creating the Hello World portlet
Copy and save the following code as HelloWireless.java and compile it.

package com.bluesunrise.portal.portlets;

import org.apache.ecs.ConcreteElement;
import org.apache.ecs.ElementContainer;
import org.apache.ecs.wml.Card;
import org.apache.jetspeed.capability.CapabilityMap;
import org.apache.jetspeed.capability.CapabilityMapFactory;
import org.apache.jetspeed.portal.portlets.AbstractPortlet;
import org.apache.jetspeed.util.MimeType;
import org.apache.turbine.util.RunData;

import java.io.*;

public class HelloWireless extends AbstractPortlet {

public ConcreteElement getContent (RunData runData) {

//create an ECS container for our content
ElementContainer content = new ElementContainer();

//get user's browser info from the Turbine runtime data.
CapabilityMap capMap = CapabilityMapFactory.getCapabilityMap (runData);

//WML code for wireless

Card wmlCard = new Card();
wmlCard.setCardId("_" + getPortletConfig().getName());
wmlCard.addElement(new org.apache.ecs.wml.P().addElement("Hello Wireless"));
content.addElement(wmlCard);
return content;

}
}

Once the class file is created, the class needs to be placed in the classpath. For this example
the classpath is
<tomcat_home>/<jetspeed_directory>/WEB-INF/classes/com/bluesunrise/portal/portlets/.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 17 of 26

Hello World! portlet registry fragment
Copy the following code as hellowireless.xreg and save it to the
<tomcat_home>/<jetspeed_directory>/WEB-INF/conf directory.

<?xml version="1.0" encoding="UTF-8"?>
<registry>

<portlet-entry name="HelloWireless" hidden="false" type="instance" application="false">
<meta-info>

<title>HelloWireless</title>
<description>HelloWireless</description>

</meta-info>
<classname>com.bluesunrise.portal.portlets.HelloWireless</classname>
<media-type ref="wml"/>

</portlet-entry>
</registry>

WML document
In this example a WML portlet renders the content of a WML document. Copy and save the
following code as weather.wml:

<card id="_MyWeather">
<p>
Washington DC

Chicago

Austin

</p>
</card>
<card id="dc">
<p>
Washington DC

82 F

Sunny

</p>
</card>
<card id="chicago">
<p>
Chicago

70 F

Rainy

</p>
</card>
<card id="austin">
<p>
Austin

100 F

Cloudy

</p>
</card>

Portlet registry fragment
Copy the following code as weather.xreg and save it to the
<tomcat_home>/<jetspeed_directory>/WEB-INF/conf directory.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 26 Jetspeed, Part 1: Developing portlets

<?xml version="1.0" encoding="UTF-8"?>
<registry>

<portlet-entry name="Weather" hidden="false" type="ref"
parent="WML" application="false">
<meta-info>

<title>Weather</title>
</meta-info>
<url>weather.wml</url>

</portlet-entry>
<portlet-controller-entry name="WAPPortletController" hidden="false">

<classname>org.apache.jetspeed.portal.controllers.WAPPortletController</classname>
<media-type ref="wml"/>

</portlet-controller-entry>
</registry>

Note, the parent is of type WML, indicating that a WML portlet will be rendering the content of
the specified WML file within the url tags. Make sure that the location of the wml file location
within the url tags is correct.

Creating the browser detection portlet
The following code detects the mime type of the client browser. Based on the mime type, the
browser of the appropriate content gets rendered. In the following example, either HTML or
WML content is rendered. Copy and save the following code as WMLPortlet.java and
compile it.

package com.bluesunrise.portal.portlets;

import org.apache.ecs.*;
import org.apache.ecs.html.*;

import org.apache.ecs.wml.Card;
import org.apache.jetspeed.capability.CapabilityMap;
import org.apache.jetspeed.capability.CapabilityMapFactory;
import org.apache.jetspeed.portal.portlets.AbstractPortlet;
import org.apache.jetspeed.util.MimeType;
import org.apache.turbine.util.RunData;

import java.io.*;

public class WMLPortlet extends AbstractPortlet {

//detect the MIME type
public boolean supportsType (MimeType browserMimeType) {

if (MimeType.HTML.equals(browserMimeType)) {
return true;

}
if (MimeType.WML.equals(browserMimeType)) {

return true;
}
return false;

}

public ConcreteElement getContent (RunData runData) {

//create an ECS container for our content
ElementContainer content = new ElementContainer();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 19 of 26

//get user's browser info from the Turbine runtime data.
CapabilityMap capMap = CapabilityMapFactory.getCapabilityMap (runData);

//show HTML code for the web
if (capMap.getPreferredType().equals (MimeType.HTML)) {

return (new StringElement ("Hello World from HTML Browser!"));
}
//show WML code for wireless
else if (capMap.getPreferredType().equals (MimeType.WML)) {

Card wmlCard = new Card();
wmlCard.setCardId("_" + getPortletConfig().getName()); // To match Jetspeed generated href
wmlCard.addElement(new org.apache.ecs.wml.P().addElement("Hello World from WML Browser"));
content.addElement(wmlCard);
return content;

}

return content;
}

}

Once the class file is created, the class needs to be placed in the classpath. For this example
the classpath is
<tomcat_home>/<jetspeed_directory>/WEB-INF/classes/com/bluesunrise/portal/portlets/.

Browser Detection Portlet Registry Fragment
Copy the following code as browserdetection.xreg and save it to the
<tomcat_home>/<jetspeed_directory>/WEB-INF/conf directory.

<?xml version="1.0" encoding="UTF-8"?>
<registry>

<portlet-entry name="BrowserDetection" hidden="false"
type="instance" application="false">
<meta-info>

<title>BrowserDetection</title>
<description>Browser Detection</description>

</meta-info>
<classname>com.bluesunrise.portal.portlets.WMLPortlet</classname>
<media-type ref="html"/>
<media-type ref="wml"/>

</portlet-entry>
</registry>

Note, that the HTML and WML media types are specified.

Portlets registry
Once all the portlet registry files are created, stop and start Tomcat and connect to the
Jetspeed portal. Click on the "Customize WML" link. This section should contain the three
portlets created. Select the portlets and click on the add button. The figure below illustrates
what the Jetspeed Registry page would look like containing the registered portlets:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 26 Jetspeed, Part 1: Developing portlets

View example from a WAP phone
Following is an illustration of the output of the portlets from within the wireless portal:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 21 of 26

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 26 Jetspeed, Part 1: Developing portlets

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 23 of 26

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 26 Jetspeed, Part 1: Developing portlets

The first figure is the portal view and the second, third, and fourth figures illustrate the output
of each link.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Jetspeed, Part 1: Developing portlets Page 25 of 26

Section 8. Feedback

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 26 Jetspeed, Part 1: Developing portlets

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Who should take this tutorial?
	About the authors
	Introduction to the tutorial
	Prerequisites

	Jetspeed overview and architecture
	What is Jetspeed?
	Jetspeed architecture model
	Content formats supported by Jetspeed
	High-level Jetspeed features
	Installing and configuring Jetspeed
	Resources

	Portlets overview
	What are portlets?
	Page layout
	How portlets display content
	Portlet caching
	Portal Structure Markup Language (PSML)
	Registry markup
	Site markup

	Standard portlets part of Jetspeed
	What are the standard portlets?
	HTML portlet
	JSP portlet
	RSS portlet
	Web page portlet
	XSL portlet

	Developing portlets -- Hello World! portlet
	Steps
	Hello World! portlet
	Portlet location
	Hello World! Portlet registry fragment
	Portlet registry
	View Hello World! from the portal

	Jetspeed and wireless
	Wireless support using Portlets
	Hello World! portlet
	Portlet Location
	Hello World! portlet registry fragment
	Portlet registry
	Viewing Hello World! from WAP phone

	Portlet example
	Example overview
	Creating the Hello World portlet
	Hello World! portlet registry fragment
	WML document
	Portlet registry fragment
	Creating the browser detection portlet
	Browser Detection Portlet Registry Fragment
	Portlets registry
	View example from a WAP phone

	Feedback
	Feedback

