
Introducing the Java Message Service

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips 2

2. Introduction 3

3. JMS overview and architecture 7

4. Point-to-point interfaces 14

5. Point-to-point programming 17

6. Pub/sub interfaces 22

7. Pub/sub programming 24

8. Summary 25

9. Appendix 27

Introducing the Java Message Service Page 1



Section 1. Tutorial tips

Should I take this tutorial?
This tutorial provides an overview of the Java Message Service (JMS) and offers the basics
for developing programs that use it. JMS was developed by Sun Microsystems to provide a
way for Java programs to access an enterprise messaging system, also known as message
oriented middleware (MOM). MOM provides a mechanism for integrating applications in a
loosely coupled, flexible manner by providing asynchronous delivery of data between
applications in an indirect way through an intermediary.

Before taking this tutorial you should be familiar with Java programming and object-oriented
programming concepts.

To write the programs described in this tutorial, you need an editing environment. This can
be as basic as an operating system editor. In a development context, many people use an
integrated development environment (IDE) because it possesses debuggers and other
features designed specifically for writing and testing code.

To compile the programs, you'll need the Java compiler (javac.exe). You will also need the
JMS classes in the package javax.jms and the Java Naming and Directory Interface
(JNDI) classes in the package javax.naming. You can download these from Sun: JMS and
JNDI .

To execute and test the programs, you will need access to a vendor implementation of JMS.
Most Java 2 Enterprise Edition (J2EE) vendors provide an implementation of JMS. See your
vendor documentation for setting up the JMS runtime and executing programs.

Getting help
For technical questions about the content of this tutorial, contact the author, Willy Farrell, at
willyf@us.ibm.com .

Willy Farrell is lead e-business architect for IBM Developer Relations in Austin, Texas,
providing education, enablement, and consulting to IBM Business Partners. He has been
programming computers for a living since 1980, and began using the Java language in 1996.
Willy joined IBM in 1998. He holds certifications as a Java Programmer, a WebSphere
Solution Developer, a VisualAge for Java Solution Developer, an MQSeries Solutions Expert,
and an XML Developer, among others.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 2

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jndi/index.html#download
mailto:willyf@us.ibm.com


Section 2. Introduction

Enterprise messaging systems
The Java Message Service was developed by Sun Microsystems to provide a means for
Java programs to access enterprise messaging systems. Before we discuss JMS, let's take a
look at enterprise messaging systems.

Enterprise messaging systems, often known as message oriented middleware (MOM),
provide a mechanism for integrating applications in a loosely coupled, flexible manner. They
provide asynchronous delivery of data between applications on a store and forward basis;
that is, the applications do not communicate directly with each other, but instead
communicate with the MOM, which acts as an intermediary.

The MOM provides assured delivery of messages (or at least makes its best effort) and
relieves application programmers from knowing the details of remote procedure calls (RPC)
and networking/communications protocols.

Messaging flexibility
As shown in the figure below, Application A communicates with Application B by sending a
message through the MOM's application programming interface (API).

The MOM routes the message to Application B, which may exist on a completely different
computer; the MOM handles the network communications. If the network connection is not
available, the MOM will store the message until the connection becomes available, and then
forward it to Application B.

Another aspect of flexibility is that Application B may not even be executing when Application
A sends its message. The MOM will hold the message until Application B begins execution
and attempts to retrieve its messages. This also prevents Application A from blocking while it
waits for Application B to receive the message.

This asynchronous communication requires applications to be designed somewhat differently
than most are designed today, but it can be an extremely useful method for
time-independent or parallel processing.

Loose coupling
The real power of enterprise messaging systems lies in the loose coupling of the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 3



applications. In the diagram on the previous panel, Application A sends its messages
indicating a particular destination, for example "order processing." Today, Application B
provides order processing capabilities.

But, in the future, we can replace Application B with a different order-processing program,
and Application A will be none the wiser. It will continue to send its messages to "order
processing" and the messages will continue to be processed.

Likewise, we could replace Application A, and as long as the replacement continued to send
messages for "order processing," the order-processing program would not need to know
there is a new application sending orders.

Publish and subscribe
Originally, enterprise messaging systems were developed to implement a point-to-point
model (PTP) in which each message produced by an application is received by one other
application. In recent years, a new model has emerged, called publish and subscribe (or
pub/sub).

Pub/sub replaces the single destination in the PTP model with a content hierarchy, known as
topics. Sending applications publish their messages, indicating that the message represents
information about a topic in the hierarchy.

Applications wishing to receive those messages subscribe to that topic. Subscribing to a
topic in the hierarchy which contains subtopics allows the subscriber to receive all messages
published to the topic and its subtopics.

This figure illustrates the publish and subscribe model.

Multiple applications may both subscribe and publish messages to a topic, and the
applications remain anonymous to each other. The MOM acts as a broker, routing the
published messages for a topic to all subscribers for that topic.

What is JMS?

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 4



The Java Message Service specification 1.0.2 states that:

JMS is a set of interfaces and associated semantics that define how a JMS client accesses
the facilities of an enterprise messaging product.

Prior to JMS, each MOM vendor provided application access to their product through a
proprietary API, often available in multiple languages, including the Java language. JMS
provides a standard, portable way for Java programs to send and receive messages through
a MOM product. Programs written with JMS will be able to run on any MOM that implements
the JMS standard.

The key to JMS portability is the fact that the JMS API is provided by Sun as a set of
interfaces. Products that want to provide JMS functionality do so by supplying a provider that
implements these interfaces.

As a developer, you build a JMS application by defining a set of messages and a set of client
applications that exchange those messages.

JMS objectives
To better understand JMS, it helps to know the objectives set by the authors of the JMS
specification.

There are many enterprise messaging products on the market today, and several of the
companies that produce these products were involved in the development of JMS.

These existing systems vary in capability and functionality. The authors knew that JMS would
be too complicated and unwieldy if it incorporated all of the features of all existing systems.
Likewise, they believed that they could not limit themselves to only the features that all of the
systems had in common.

The authors believed that it was important that JMS include all of the functionality required to
implement "sophisticated enterprise applications."

The objectives of JMS, as stated in the specification, are to:
* Define a common set of messaging concepts and facilities.
* Minimize the concepts a programmer must learn to use enterprise messaging.
* Maximize the portability of messaging applications.
* Minimize the work needed to implement a provider.
* Provide client interfaces for both point-to-point and pub/sub domains. "Domains" is the

JMS term for the messaging models discussed earlier. (Note: A provider need not
implement both domains.)

What JMS does not provide
The following features, common in MOM products, are not addressed by the JMS
specification. While acknowledged by the JMS authors as important for the development of
robust messaging applications, these features are considered JMS provider-specific.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 5

http://java.sun.com/products/jms/vendors.html
http://java.sun.com/products/jms/vendors.html
http://java.sun.com/products/jms/vendors.html


JMS providers are free to implement these features in any manner they please, if at all:
* Load balancing and fault tolerance
* Error and advisory system messages and notification
* Administration
* Security
* Wire protocol
* Message type repository

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 6



Section 3. JMS overview and architecture

Applications
A JMS application is comprised of the following elements:
* JMS clients. Java programs that send and receive messages using the JMS API.
* Non-JMS clients. It is important to realize that legacy programs will often be part of an

overall JMS application and their inclusion must be anticipated in planning.
* Messages. The format and content of messages to be exchanged by JMS and

non-JMS clients is integral to the design of a JMS application.
* JMS provider. As was stated previously, JMS defines a set of interfaces for which a

provider must supply concrete implementations specific to its MOM product.
* Administered objects. An administrator of a messaging system provider creates

objects that are isolated from the proprietary technologies of the provider.

Administered objects
Providers of MOM products differ significantly in the mechanisms and techniques they use to
implement messaging. To keep JMS clients portable, objects that implement the JMS
interfaces have to be isolated from the proprietary technologies of a provider.

The mechanism for doing this is administered objects. These objects, which implement JMS
interfaces, are created by an administrator of the provider's messaging system and are
placed in the JNDI namespace.

The objects are then retrieved by JMS programs and accessed through the JMS interfaces
that they implement. The JMS provider must supply a tool that allows creation of
administered objects and their placement in the JNDI namespace.

There are two types of administered objects:
* ConnectionFactory: Used to create a connection to the provider's underlying

messaging system.
* Destination: Used by the JMS client to specify the destination of messages being

sent or the source of messages being received.

While the administered objects themselves are instances of classes specific to a provider's
implementation, they are retrieved using a portable mechanism (JNDI) and accessed through
portable interfaces (JMS). The JMS program only needs to know the JNDI name and the
JMS interface type of the administered object; no provider-specific knowledge is required.

Interfaces
JMS defines a set of high-level interfaces that encapsulate various messaging concepts. In
turn, these interfaces are further defined and customized for the two messaging domains --
PTP and pub/sub.

The high-level interfaces are:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 7



* ConnectionFactory: An administered object that creates a Connection.
* Connection: An active connection to a provider.
* Destination: An administered object that encapsulates the identity of a message

destination, such as where messages are sent to or received from.
* Session: A single-threaded context for sending and receiving messages. For reasons

of simplicity and because Sessions control transactions, concurrent access by multiple
threads is restricted. Multiple Sessions can be used for multithreaded applications.

* MessageProducer: Used for sending messages.
* MessageConsumer: Used for receiving messages.

Interfaces (continued)
The following table identifies the domain-specific interfaces inherited from each high-level
interface.

High-level interface PTP domain Pub/sub domain
ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver,
QueueBrowser

TopicSubscriber

Developing a JMS program
A typical JMS program goes through the following steps to begin producing and consuming
messages.
1. Look up a ConnectionFactory through JNDI.
2. Look up one or more Destinations through JNDI.
3. Use the ConnectionFactory to create a Connection.
4. Use the Connection to create one or more Sessions.
5. Use a Session and a Destination to create the required MessageProducers and

MessageConsumers.
6. Start the Connection.

At this point, messages can begin to flow and the application can receive, process, and send
messages, as required. In later sections, we'll develop JMS programs and you'll get to see
this setup in detail.

Messages
At the heart of a messaging system are, of course, messages. JMS provides several
message types for different types of content, but all messages derive from the Message

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 8



interface.

A Message is divided into three constituent parts:
* The header is a standard set of fields that are used by both clients and providers to

identify and route messages.
* Properties provide a facility for adding optional header fields to a message. If your

application needs to categorize or classify a message in a way not provided by the
standard header fields, you can add a property to the message to accomplish that
categorization or classification. set<Type>Property(...) and
Property(...) methods are provided to set and get properties of a variety of Java
types, including Object. JMS defines a standard set of properties that are optional for
providers to supply.

* The body of the message contains the content to be delivered to a receiving
application. Each message interface is specialized for the type of content it supports.

Header fields
The following list gives the name of each header field of Message, its corresponding Java
type, and a description of the field.

* JMSMessageID -- type string
Uniquely identifies each message that is sent by a provider. This field is set by the
provider during the send process; clients cannot determine the JMSMessageID for a
message until after it has been sent.

* JMSDestination -- type Destination
The Destination to which the message was sent; set by the provider during the send
process.

* JMSDeliveryMode -- type int
Contains the value DeliveryMode.PERSISTENT or
DeliveryMode.NON_PERSISTENT. A persistent message is delivered "once and only
once"; a non-persistent message is delivered "at most once." Be aware that "at most
once" includes not being delivered at all. A non-persistent message may be lost by a
provider during application or system failure. Extra care will be taken to assure that a
persistent message is not affected by failures. There is often considerable overhead in
sending persistent messages, and the trade-offs between reliability and performance
must be carefully considered when deciding the delivery mode of a message.

* JMSTimestamp -- type long
The time that the message was delivered to a provider to be sent; set by the provider
during the send process.

* JMSExpiration -- type long
The time when a message should expire. This value is calculated during the send
process as the sum of the time-to-live value of the sending method and the current
time. Expired messages should not be delivered by the provider. A value of 0 indicates
that the message will not expire.

* JMSPriority -- type int

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 9



The priority of the message; set by the provider during the send process. A priority of 0
is the lowest priority; a priority of 9 is the highest priority.

* JMSCorrelationID -- type string
Typically used to link a response message with a request message; set by the JMS
program sending the message. A JMS program responding to a message from another
JMS program would copy the JMSMessageID of the message it is responding to into
this field, so that the requesting program could correlate the response to the particular
request that it made.

* JMSReplyTo -- type Destination
Used by a requesting program to indicate where a reply message should be sent; set by
the JMS program sending the message.

* JMSType -- type string
Can be used by a JMS program to indicate the type of the message. Some providers
maintain a repository of message types and will use this field to reference the type
definition in the repository; in this case, the JMS program should not use this field.

* JMSRedelivered -- type boolean
Indicates that the message was delivered earlier to the JMS program, but that the
program did not acknowledge its receipt; set by the provider during receive processing.

Standard properties
The following list gives the name of each standard property of Message, its corresponding
Java type, and a description of the property. Support for standard properties by a provider is
optional. JMS reserves the "JMSX" property name for these and future JMS-defined
properties.

* JMSXUserID -- type string
Identity of the user sending the message.

* JMSXApplID -- type string
Identity of the application sending the message.

* JMSXDeliveryCount -- type int
Number of times delivery of the message has been attempted.

* JMSXGroupID -- type string
Identity of the message group to which this message belongs.

* JMSXGroupSeq -- type int
Sequence number of this message within the message group.

* JMSXProducerTXID -- type string
Identity of the transaction within which this message was produced.

* JMSXConsumerTXID -- type string

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 10



Identity of the transaction within which this message was consumed.

* JMSXRcvTimestamp -- type long
The time JMS delivered the message to the consumer.

* JMSXState -- type int
Used by providers that maintain a message warehouse of messages; generally not of
interest to JMS producers or consumers.

* JMSX_<vendor_name>
Reserved for provider-specific properties.

Message body
There are five forms of message body, and each form is defined by an interface that extends
Message. These interfaces are:
* StreamMessage: Contains a stream of Java primitive values that are filled and read

sequentially using standard stream operations.
* MapMessage: Contains a set of name-value pairs; the names are of type string and

the values are Java primitives.
* TextMessage: Contains a String.
* ObjectMessage: Contains a Serializable Java object; JDK 1.2 collection classes

can be used.
* BytesMessage: Contains a stream of uninterpreted bytes; allows encoding a body to

match an existing message format.

Each provider supplies classes specific to its product that implement these interfaces. It is
important to note that the JMS specification mandates that providers must be prepared to
accept and handle a Message object that is not an instance of one of its own Message
classes.

While these "alien" objects may not be handled by a provider as efficiently as one of the
provider's own implementations, they must be handled to ensure interoperability of all JMS
providers.

Transactions
A JMS transaction groups a set of produced messages and a set of consumed messages
into an atomic unit of work. If an error occurs during a transaction, the production and
consumption of messages that occurred before the error can be "undone."

Session objects control transactions and a Session may be denoted as transacted when it
is created. A transacted Session always has a current transaction, that is, there is no
begin(); commit() and rollback() end one transaction and automatically begin
another.

Distributed transactions may be supported by the Java Transaction API (JTA) XAResource

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 11



API, though this is optional for providers.

Acknowledgement
Acknowledgement is the mechanism whereby a provider is informed that a message has
been successfully received.

If the Session receiving the message is transacted, acknowledgement is handled
automatically. If the Session is not transacted, then the type of acknowledgement is
determined when the Session is created.

There are three types of acknowledgement:
* Session.DUPS_OK_ACKNOWLEDGE: Lazy acknowledgement of message delivery;

reduces overhead by minimizing work done to prevent duplicates; should only be used if
duplicate messages are expected and can be handled.

* Session.AUTO_ACKNOWLEDGE: Message delivery is automatically acknowledged upon
completion of the method that receives the message.

* Session.CLIENT_ACKNOWLEDGE: Message delivery is explicitly acknowledged by
calling the acknowledge() method on the Message.

Message selection
JMS provides a mechanism, called a message selector, for a JMS program to filter and
categorize the messages it receives.

The message selector is a String that contains an expression whose syntax is based on a
subset of SQL92. The message selector is evaluated when an attempt is made to receive a
message, and only messages that match the selection criteria of the selector are made
available to the program.

Selection is based on matches to header fields and properties; body values cannot be used
for selection. The syntax for message selectors is provided in detail in the JMS specification.

JMS and XML
The authors of JMS included the TextMessage message type on the presumption that
String messages will be used extensively.

Their reasoning is that XML will be a popular, if not the most popular, means of representing
the content of messages. A portable transport mechanism (JMS) coupled with a portable
data representation (XML) is proving to be a powerful tool in enterprise application
integration (EAI) and other areas of data exchange.

JMS and J2EE

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 12



J2EE version 1.2 requires compliant application servers to have the JMS API present, but
does not mandate the presence of a JMS provider.

J2EE version 1.3 will require application servers to supply a JMS provider.

Another important development in JMS capabilities is the message-driven bean of the EJB
2.0 specification , which will add asynchronous notification abilities to Enterprise JavaBeans
containers. A message-driven bean, which will implement the MessageListener interface
(see MessageListener on page 16), will be invoked by the EJB container on the arrival of a
message at a destination designated at deployment time. The message-driven bean will
contain the business logic to process the message, including, if needed, the invoking of other
enterprise beans.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 13



Section 4. Point-to-point interfaces

Introduction
In this section, we'll look at each of the important JMS interfaces for point-to-point
programming and some of their methods.

In the next section (Point-to-point programming on page 17), we'll look at some sample
code that performs point-to-point message processing.

QueueConnectionFactory
QueueConnectionFactory is an administered object that is retrieved from JNDI to create
a connection to a provider. It contains a createQueueConnection() method which
returns a QueueConnection object.

QueueConnection
QueueConnection encapsulates an active connection to a provider. Some of its methods
are:
* createQueueSession(boolean, int): Returns a QueueSession object. The

boolean parameter indicates whether the QueueSession is transacted or not; the int
indicates the acknowledgement mode (see Acknowledgement on page 12 ).

* start() (inherited from Connection): Activates the delivery of messages from the
provider.

* stop() (inherited from Connection): Temporarily stops delivery of messages;
delivery can be restarted with start().

* close() (inherited from Connection): Closes the connection to the provider and
releases all resources held in its behalf.

QueueSession
QueueSession is the single-threaded context for sending and receiving PTP messages.
Some of its methods are:
* createSender(Queue): Returns a QueueSender object to send messages to the

specified Queue.
* createReceiver(Queue): Returns a QueueReceiver object to receive messages

from the specified Queue.
* createBrowser(Queue): Returns a QueueBrowser object to browse messages on

the specified Queue.
* commit() (inherited from Session): Commits all consumed or produced messages for

the current transaction.
* rollback() (inherited from Session): Rolls back all consumed or produced

messages for the current transaction.
* create<MessageType>Message(...) (inherited from Session): A variety of

methods that return a <MessageType>Message, for example, MapMessage,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 14



TextMessage, and so on.

Queue
Queue encapsulates a point-to-point destination. It is an administered object that is
retrieved from JNDI.

QueueSender
QueueSender is used to send point-to-point messages. Some of its methods are:
* send(Message): Sends the indicated Message.
* setDeliveryMode(int) (inherited from MessageProducer): Sets the delivery

mode for subsequent messages sent; valid values are DeliveryMode.PERSISTENT
and DeliveryMode.NON_PERSISTENT.

* setPriority(int) (inherited from MessageProducer): Sets the priority for
subsequent messages sent; valid values are 0 through 9.

* setTimeToLive(long) (inherited from MessageProducer): Sets the duration before
expiration, in milliseconds, of subsequent messages sent.

QueueReceiver
QueueReceiver is used to receive point-to-point messages. Some of its methods are:
* receive() (inherited from MessageConsumer): Returns the next message that

arrives; this method blocks until a message is available.
* receive(long) (inherited from MessageConsumer): Receives the next message that

arrives within long milliseconds; this method returns null if no message arrives within
the time limit.

* receiveNoWait (inherited from MessageConsumer): Receives the next message if
one is immediately available; this method returns null if no message is available.

* setMessageListener(MessageListener) (inherited from MessageConsumer):
Sets the MessageListener; the MessageListener object receives messages as
they arrive, that is, asynchronously (see MessageListener on page 16).

QueueBrowser
When using QueueReceiver to receive messages, the messages are removed from the
queue when they are received. QueueBrowser is used to look at messages on a queue
without removing them. The method for doing that is getEnumeration(), which returns a
java.util.Enumeration that can be used to scan the messages in the queue; changes
to the queue (arriving and expiring of messages) may or may not be visible.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 15



MessageListener
MessageListener is an interface with a single method -- onMessage(Message) -- that
provides asynchronous receipt and processing of messages.

This interface should be implemented by a client class and an instance of that class passed
to the QueueReceiver object with the setMessageListener(MessageListener)
method. As a message arrives on a queue, it is passed to the object by calling the
onMessage(Message) method.

MessageListener objects are used in both the PTP and pub/sub domains.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 16



Section 5. Point-to-point programming

Introduction
In this section, we'll walk through two programs that do point-to-point messaging --
QSender.java and QReceiver.java.

We'll look at the code in small sections at a time and describe what each section does. You
can see the complete listings in the Appendix: Code listing for QSender.java on page 27and
Code listing for QReceiver.java on page 27.

QSender: Prompt for JNDI names
All of the sample programs are command-line programs, using System.in for input and
System.out for output.

The QSender class has two methods: main(String[]) and send(). The
main(String[]) method merely instantiates a QSender and calls its send() method.

The first section of the send() method prompts for the JNDI names of the administered
objects that will be used to send messages.

import java.io.*;
import javax.jms.*;
import javax.naming.*;

public class QSender {

public static void main(String[] args) {

new QSender().send();
}

public void send() {

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

try {
//Prompt for JNDI names
System.out.println("Enter QueueConnectionFactory name:");
String factoryName = reader.readLine();
System.out.println("Enter Queue name:");
String queueName = reader.readLine();
. . .

QSender: Look up administered objects
The next section of the send() method looks up the administered objects in JNDI, using the
names input earlier.

JNDI is accessed by instantiating an InitialContext object; the administered objects are
retrieved by calling the lookup(String) method, passing in the name of the object to be
retrieved. Note that the lookup(String) method returns Object, so a typecast must be
performed on the returned object.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 17



. . .
//Look up administered objects
InitialContext initContext = new InitialContext();
QueueConnectionFactory factory =

(QueueConnectionFactory) initContext.lookup(factoryName);
Queue queue = (Queue) initContext.lookup(queueName);
initContext.close();
. . .

QSender: Create JMS objects
Now, we create the JMS objects we need to send messages. Note that we don't directly
instantiate these objects using new. All of the objects are created by calling a method on
another object.

First, we use the QueueConnectionFactory to create a QueueConnection. We then
use that QueueConnection to create a QueueSession.

The QueueSession is not transacted (false) and will use automatic acknowledgement
Session.AUTO_ACKNOWLEDGE).

Finally, we create the QueueSender to send messages to the Queue we retrieved from
JNDI.

. . .
//Create JMS objects
QueueConnection connection = factory.createQueueConnection();
QueueSession session =

connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
QueueSender sender = session.createSender(queue);
. . .

QSender: Send messages
Now we're ready to send messages. In this section, we enter a loop where we prompt for the
text of a message to send. If the user types quit, the loop exits.

Otherwise, we build a TextMessage from the entered text and use the QueueSender to
send the message, then return to the top of the loop.

. . .
//Send messages
String messageText = null;
while (true) {

System.out.println("Enter message to send or 'quit':");
messageText = reader.readLine();
if ("quit".equals(messageText))

break;
TextMessage message = session.createTextMessage(messageText);
sender.send(message);

}
. . .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 18



QSender: Exit
Once the loop exits, we close the QueueConnection. Closing the QueueConnection
automatically closes the QueueSession and QueueSender.

. . .
//Exit
System.out.println("Exiting...");
reader.close();
connection.close();
System.out.println("Goodbye!");

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
}

}

QReceiver: Prompt for JNDI names and look up
administered objects
The QReceiver class, like the QSender class, has a main(String[]) method that simply
instantiates a QReceiver and calls its primary method, receive().

The code for prompting for JNDI names and doing the lookup of administered objects is
identical to that in QSender.

There are two differences in this class, however:
* The boolean stop instance variable is used to indicate that the program should exit.
* QReceiver implements the MessageListener interface in order to receive messages

asynchronously.

import java.io.*;
import javax.jms.*;
import javax.naming.*;

public class QReceiver implements MessageListener {

private boolean stop = false;

public static void main(String[] args) {

new QReceiver().receive();
}

public void receive() {

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

try {
//Prompt for JNDI names
System.out.println("Enter QueueConnectionFactory name:");
String factoryName = reader.readLine();
System.out.println("Enter Queue name:");
String queueName = reader.readLine();
reader.close();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 19



//Look up administered objects
InitialContext initContext = new InitialContext();
QueueConnectionFactory factory =

(QueueConnectionFactory) initContext.lookup(factoryName);
Queue queue = (Queue) initContext.lookup(queueName);
initContext.close();
. . .

QReceiver: Create JMS objects
The QueueConnection and QueueSession are created as they are in QSender and then
a QueueReceiver is created.

Next, setMessageListener() is called, passing in this -- the local instance of
QReceiver, which you will recall implements the MessageListener interface.

Finally, the QueueConnection is started to allow messages to be received.

. . .
//Create JMS objects
QueueConnection connection = factory.createQueueConnection();
QueueSession session =

connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
QueueReceiver receiver = session.createReceiver(queue);
receiver.setMessageListener(this);
connection.start();
. . .

QReceiver: Wait for stop and exit
Next, the program goes into a loop that will exit when the stop variable becomes true. In the
loop, the thread sleeps for one second. Once the loop has exited, the QueueConnection is
closed and the program terminates.

. . .
//Wait for stop
while (!stop) {

Thread.sleep(1000);
}

//Exit
System.out.println("Exiting...");
connection.close();
System.out.println("Goodbye!");

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
}
. . .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 20



QReceiver: onMessage(Message) method
This is the onMessage(Message) method of the QReceiver class. The presence of this
method is required because QReceiver implements the MessageListener interface.

When a message is received, this method is called with the Message passed as the
parameter.

In our implementation, we get the text content of the message and print it to System.out.
We then check to see if the message equals stop, and if it does, the stop variable is set to
true; this allows the loop in the receive() method to terminate.

. . .
public void onMessage(Message message) {

try {
String msgText = ((TextMessage) message).getText();
System.out.println(msgText);
if ("stop".equals(msgText))

stop = true;
} catch (JMSException e) {

e.printStackTrace();
stop = true;

}
}

}

Running the programs
As indicated in the Tutorial tips on page 2 , you will need the javax.naming and
javax.jms packages to compile these programs.

Before you run these programs, you'll need to use the administration tool supplied by your
JMS provider to create the QueueConnectionFactory and Queue administered objects
and place them in the JNDI namespace.

You also need to make sure that the provider's JMS implementation classes are on your
classpath.

You can then run both of these programs at the same time, supplying the same JNDI names
for the QueueConnectionFactory and Queue, and send messages from the QSender to
the QReceiver.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 21



Section 6. Pub/sub interfaces

Introduction
Now let's look at the pub/sub interfaces. As we go through them, notice how they are very
much like the PTP interfaces, except for the names and a few other differences.

TopicConnectionFactory
TopicConnectionFactory is an administered object that is retrieved from JNDI in order to
create a connection to a provider. It contains a createTopicConnection() method which
returns a TopicConnection object.

TopicConnection
TopicConnection encapsulates an active connection to a provider. Some of its methods
are:
* createTopicSession(boolean, int): Returns a TopicSession object. The

boolean parameter indicates whether the TopicSession is transacted; the int
indicates the acknowledgement mode (see Acknowledgement on page 12 ).

* start() (inherited from Connection): Activates the delivery of messages from the
provider.

* stop() (inherited from Connection): Temporarily stops delivery of messages;
delivery can be restarted with start().

* close() (inherited from Connection): Closes the connection to the provider and
releases all resources held in its behalf.

TopicSession
TopicSession is the single-threaded context for sending and receiving pub/sub messages.
Some of its methods are:
* createPublisher(Topic): Returns a TopicPublisher object to send messages

to the specified Topic.
* createSubscriber(Topic): Returns a TopicSubscriber object to receive

messages from the specified Topic. This subscriber is non-durable ; that is, the
subscription will only last for the lifetime of the object and will only receive messages
when it is active.

* createDurableSubscriber(Topic, String): Returns a TopicSubscriber
object to receive messages from the specified Topic, giving the String name to the
subscriber. Messages for a durable subscriber will be retained by JMS if the object is
not active and will be delivered to subsequent subscriber objects that are created with
the same name.

* unsubscribe(String): Ends the subscription with the String name.
* commit() (inherited from Session): Commits all consumed or produced messages for

the current transaction.
* rollback() (inherited from Session): Rolls back all consumed or produced

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 22



messages for the current transaction.
* create<MessageType>Message(...) (inherited from Session): A variety of

methods that return a <MessageType>Message, such as MapMessage,
TextMessage, and so on.

Topic
Topic encapsulates a pub/sub destination. It is an administered object that is retrieved from
JNDI.

TopicPublisher
TopicPublisher is used to send pub/sub messages. Some of its methods are:
* publish(Message): Publishes the indicated Message.
* setDeliveryMode(int) (inherited from MessageProducer): Sets the delivery

mode for subsequent messages sent; valid values are DeliveryMode.PERSISTENT
and DeliveryMode.NON_PERSISTENT.

* setPriority(int) (inherited from MessageProducer): Sets the priority for
subsequent messages sent; valid values are 0 through 9.

* setTimeToLive(long) (inherited from MessageProducer): Sets the duration before
expiration, in milliseconds, of subsequent messages sent.

TopicSubscriber
TopicSubscriber is used to receive point-to-point messages. Some of its methods are:
* receive() (inherited from MessageConsumer): Returns the next message that

arrives; this method blocks until a message is available.
* receive(long) (inherited from MessageConsumer): Receives the next message that

arrives within long milliseconds; this method returns null if no message arrives within
the time limit.

* receiveNoWait (inherited from MessageConsumer): Receives the next message if
one is immediately available; this method returns null if no message is available.

* setMessageListener(MessageListener) (inherited from MessageConsumer):
Sets the MessageListener; the MessageListener object receives messages as
they arrive, that is, asynchronously (see MessageListener on page 16 ).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 23



Section 7. Pub/sub programming

The same, but different
Two pub/sub programs are available in the Appendix -- Code listing for TPublisher.java on
page 28and Code listing for TSubscriber.java on page 29. We won't go through them
step-by-step as we did the PTP programs because, other than the types of JMS interfaces
used, they are identical to QSender.java and QReceiver.java.

You'll need to set up TopicConnectionFactory and Topic administered objects before
you run these programs.

You'll see the difference between these and the PTP programs once you run them. If you run
multiple instances of QReceiver using the same QueueConnectionFactory and Queue,
you'll see that as you send messages from QSender that only one of the QReceiver
instances receives each message sent.

If you run multiple instances of TSubscriber, you'll see that all messages sent from
TPublisher are received by all instances of TSubscriber.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 24



Section 8. Summary

Wrapup
This tutorial has provided an introduction and overview of the Java Message Service and its
functionality and capabilities. It has also demonstrated basic programming techniques for
creating JMS programs and provided sample code to illustrate those programs.

We did not look at every interface and class in the JMS API, nor did we look at every method
on those interfaces we did examine. The Resources on page 25provides some pointers to
materials to help you do that.

The goal here is to get you started with JMS and give you some basic working programs to
learn from. Once you have the sample programs up and running, experiment by modifying
them to use message selection, durable subscriptions, and some of the other capabilities of
JMS that we touched on here but did not demonstrate in the sample programs.

Resources
* The Java Message Service specification, version 1.0.2 is the best source of information

for understanding the finer details of JMS.
* The JMS API documentation is essential for JMS programming.
* You'll need to download the javax.jms package and javax.naming package to complete

this tutorial.
* For enterprise development, you'll need the Java 2 Enterprise Edition. J2EE version 1.2

requires compliant application servers to have the JMS API present, but does not
mandate the presence of a JMS provider; J2EE version 1.3 will require application
servers to supply a JMS provider.

* Message-driven beans, part of the EJB 2.0 specification , add asynchronous notification
abilities to Enterprise JavaBeans containers.

* developerWorks contributor Todd Sundsted discusses how JMS combines with XML to
improve enterprise application interoperability . He also demonstrates how these two
technologies work together to route messages based on their content .

* "Java Message Service" (O'Reilly and Associates, 2000), by Richard Monson-Haefel
and David Chappell, is an excellent O'Reilly book on the subject.

* " Writing Java Message Service programs using MQSeries and VisualAge for Java,
Enterprise Edition ," also by Willy Farrell, describes how to obtain, install, and use IBM
tools to write JMS programs.

* Ryan Cox and Greg Wadley wrote a comprehensive two-part series on using JMS with
WebSphere and Visual Age for Java. Part 1 provides a thorough discussion of the
players and also command bean that allows you to easily integrate JMS services into
your own applications. Part 2 provides a sample Web application that shows how to use
the command bean to develop a publish/subscribe scenario running under WebSphere
Application Server.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 25

http://java.sun.com/products/jms/javadoc-102a/index.html
http://java.sun.com/products/jms/javadoc-102a/index.html
http://java.sun.com/products/jms/javadoc-102a/index.html
http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jndi/index.html#download
http://www-106.ibm.com/developerworks/java/library/heterogeneous/index.html
http://www-106.ibm.com/developerworks/java/library/heterogeneous/index.html
http://www-106.ibm.com/developerworks/java/library/heterogeneous/index.html
http://www-106.ibm.com/developerworks/java/library/heterogeneous/index.html
http://www-106.ibm.com/developerworks/java/library/j-jms/index.html
http://www-106.ibm.com/developerworks/java/library/j-jms/index.html
http://www-106.ibm.com/developerworks/java/library/j-jms/index.html
http://www-106.ibm.com/developerworks/java/library/j-jms/index.html
http://www-106.ibm.com/developerworks/java/library/j-jms/index.html
http://www-106.ibm.com/developerworks/java/library/j-jms/index.html
http://www.oreilly.com/catalog/javmesser/
http://www.oreilly.com/catalog/javmesser/
http://www.oreilly.com/catalog/javmesser/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.developer.ibm.com/library/articles/programmer/farrell1.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7.software.ibm.com/vad.nsf/data/document4371?OpenDocument&BCT=66&Footer=1&p=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7.software.ibm.com/vad.nsf/data/document4371?OpenDocument&BCT=66&Footer=1&p=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7.software.ibm.com/vad.nsf/data/document4380?OpenDocument&p=1&BCT=1&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7.software.ibm.com/vad.nsf/data/document4380?OpenDocument&p=1&BCT=1&Footer=1&origin=j


Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it
better. We'd also like to hear about other tutorial topics you'd like to see covered.
Thanks!

For questions about the content of this tutorial, contact the author, Willy Farrell, at
willyf@us.ibm.com .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 26

mailto:willyf@us.ibm.com


Section 9. Appendix

Code listing for QSender.java
import java.io.*;
import javax.jms.*;
import javax.naming.*;

public class QSender {

public static void main(String[] args) {

new QSender().send();
}

public void send() {

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

try {
//Prompt for JNDI names
System.out.println("Enter QueueConnectionFactory name:");
String factoryName = reader.readLine();
System.out.println("Enter Queue name:");
String queueName = reader.readLine();

//Look up administered objects
InitialContext initContext = new InitialContext();
QueueConnectionFactory factory =

(QueueConnectionFactory) initContext.lookup(factoryName);
Queue queue = (Queue) initContext.lookup(queueName);
initContext.close();

//Create JMS objects
QueueConnection connection = factory.createQueueConnection();
QueueSession session =

connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
QueueSender sender = session.createSender(queue);

//Send messages
String messageText = null;
while (true) {

System.out.println("Enter message to send or 'quit':");
messageText = reader.readLine();
if ("quit".equals(messageText))

break;
TextMessage message = session.createTextMessage(messageText);
sender.send(message);

}

//Exit
System.out.println("Exiting...");
reader.close();
connection.close();
System.out.println("Goodbye!");

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
}

}

Code listing for QReceiver.java
import java.io.*;
import javax.jms.*;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 27



import javax.naming.*;

public class QReceiver implements MessageListener {

private boolean stop = false;

public static void main(String[] args) {

new QReceiver().receive();
}

public void receive() {

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

try {
//Prompt for JNDI names
System.out.println("Enter QueueConnectionFactory name:");
String factoryName = reader.readLine();
System.out.println("Enter Queue name:");
String queueName = reader.readLine();
reader.close();

//Look up administered objects
InitialContext initContext = new InitialContext();
QueueConnectionFactory factory =

(QueueConnectionFactory) initContext.lookup(factoryName);
Queue queue = (Queue) initContext.lookup(queueName);
initContext.close();

//Create JMS objects
QueueConnection connection = factory.createQueueConnection();
QueueSession session =

connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
QueueReceiver receiver = session.createReceiver(queue);
receiver.setMessageListener(this);
connection.start();

//Wait for stop
while (!stop) {

Thread.sleep(1000);
}

//Exit
System.out.println("Exiting...");
connection.close();
System.out.println("Goodbye!");

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
}

public void onMessage(Message message) {

try {
String msgText = ((TextMessage) message).getText();
System.out.println(msgText);
if ("stop".equals(msgText))

stop = true;
} catch (JMSException e) {

e.printStackTrace();
stop = true;

}
}

}

Code listing for TPublisher.java

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 28



import java.io.*;
import javax.jms.*;
import javax.naming.*;

public class TPublisher {

public static void main(String[] args) {

new TPublisher().publish();
}

public void publish() {

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

try {
//Prompt for JNDI names
System.out.println("Enter TopicConnectionFactory name:");
String factoryName = reader.readLine();
System.out.println("Enter Topic name:");
String topicName = reader.readLine();

//Look up administered objects
InitialContext initContext = new InitialContext();
TopicConnectionFactory factory =

(TopicConnectionFactory) initContext.lookup(factoryName);
Topic topic = (Topic) initContext.lookup(topicName);
initContext.close();

//Create JMS objects
TopicConnection connection = factory.createTopicConnection();
TopicSession session =

connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
TopicPublisher publisher = session.createPublisher(topic);

//Send messages
String messageText = null;
while (true) {

System.out.println("Enter message to send or 'quit':");
messageText = reader.readLine();
if ("quit".equals(messageText))

break;
TextMessage message = session.createTextMessage(messageText);
publisher.publish(message);

}

//Exit
System.out.println("Exiting...");
reader.close();
connection.close();
System.out.println("Goodbye!");

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
}

}

Code listing for TSubscriber.java
import java.io.*;
import javax.jms.*;
import javax.naming.*;

public class TSubscriber implements MessageListener {

private boolean stop = false;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 29



public static void main(String[] args) {

new TSubscriber().subscribe();
}

public void subscribe() {

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

try {
//Prompt for JNDI names
System.out.println("Enter TopicConnectionFactory name:");
String factoryName = reader.readLine();
System.out.println("Enter Topic name:");
String topicName = reader.readLine();
reader.close();

//Look up administered objects
InitialContext initContext = new InitialContext();
TopicConnectionFactory factory =

(TopicConnectionFactory) initContext.lookup(factoryName);
Topic topic = (Topic) initContext.lookup(topicName);
initContext.close();

//Create JMS objects
TopicConnection connection = factory.createTopicConnection();
TopicSession session =

connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
TopicSubscriber subscriber = session.createSubscriber(topic);
subscriber.setMessageListener(this);
connection.start();

//Wait for stop
while (!stop) {

Thread.sleep(1000);
}

//Exit
System.out.println("Exiting...");
connection.close();
System.out.println("Goodbye!");

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
}

public void onMessage(Message message) {

try {
String msgText = ((TextMessage) message).getText();
System.out.println(msgText);
if ("stop".equals(msgText))

stop = true;
} catch (JMSException e) {

e.printStackTrace();
stop = true;

}
}

}

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 30



convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing the Java Message Service Page 31


