
Java 3D joy ride

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2

2. Life from a Java 3D point of view.................................... 3

3. Scene graph nuts and bolts .. 8

4. Let's make some shapes.. 10

5. Transform your life (or at least your geometry) 13

6. Lighting and material properties 16

7. Texture mapping ... 20

8. Behaviors and interpolators .. 23

9. Java 3D wrapup .. 26

10. Appendix: The source.. 28

Java 3D joy ride Page 1 of 40

Section 1. About this tutorial

Should I take this tutorial?
This tutorial is intended for Java programmers who do not have any 3D programming
experience. We'll start with some basic 3D concepts, and explore how to build a scene graph
-- the fundamental object used to describe the scene we want to render. Then we'll get to
some more powerful features of Java 3D. The emphasis will be on using some of the Java
3D utility classes to jump-start your programming.

Getting help
The Java 3D API is not typically included with your JDK. You can download the Java 3D API
for Windows and Solaris platforms from the Sun Java 3D Web site. Links to other versions
(AIX, HP-UX, IRIX, and Linux) are also located on this site, as well as many tutorial and
learning resources.

Another useful Web site is the Java 3D Community site. It includes an extremely useful FAQ,
which covers a lot of common problems that many Java 3D programmers may encounter.

For technical questions about the content of this tutorial, contact the author, Suzy Deffeyes at
suzyq@us.ibm.com. Suzy Deffeyes is a 3D software engineer at IBM in Austin, Texas. She
is the developer responsible for the original release of Java 3D for AIX, and represents IBM
on the Java expert group for 3D Media Utilities. She is currently a member of IBM's Linux
Technology Center. Her past projects included OpenGL API design and development, Direct
3D driver development, and C++ scene graph technologies. She also did the AIX ports for
Quake and Quake 2, and ensured that they were thoroughly tested.

A word about the samples
All of the images except the Quake screenshot in this tutorial were generated using Java 3D,
and captured using the NCSA Java 3D Portfolio (see Resources on page 26 .) Additionally,
most of the images are VRML files that were loaded using the VRML loader from the Web3D
Consortium. The Quake2 image was captured with Quake2 for AIX, using a GXT6000P
graphics adapter. (Quake 2 uses OpenGL instead of Java 3D, but the basic 3D concepts are
the same.)

The code samples all borrow from the Java 3D SDK samples. In most of the samples, the
"meat" is in the createSceneGraph() method.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 2 of 40

http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://www.j3d.org
http://www.j3d.org
http://www.j3d.org
http://www.j3d.org
mailto:suzyq@us.ibm.com
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www.jcp.org/jsr/detail/148.jsp
http://www.jcp.org/jsr/detail/148.jsp
http://www.jcp.org/jsr/detail/148.jsp
http://www.web3d.org
http://www.web3d.org

Section 2. Life from a Java 3D point of view

Philosophy
The design of the Java 3D API is a significant departure from previous popular 3D graphics
APIs, like OpenGL and Direct3D, which were low-level procedural APIs that were closely tied
to the design of 3D hardware. Java 3D is a powerful, object-oriented API that provides a lot
of functionality beyond what we think of as a "3D graphics API." Java programmers will likely
find the Java 3D programming environment to be familiar and comfortable. Java 3D does a
lot to manage your graphics data for you, allowing you to concentrate on other parts of your
programming.

With Java 3D, you first set up all your graphics objects (also called geometry objects) in a
scene graph, which is a hierarchical model containing all the information about the objects in
your scene and how they will be rendered. Then, you hand the scene graph over to Java 3D
for rendering. You don't have to write any code to handle displaying your data -- Java 3D
does that for you. You get to program at a higher level with the many built-in power tools.

The need for speed
3D programmers are pretty fussy about performance, and with good reason -- their
applications tend to be very performance sensitive. 3D application users notice very quickly if
a spinning CAD model isn't spinning smoothly, or if they can't interactively grab an object and
move it.

Thankfully, Java 3D can take advantage of any 3D acceleration that your graphics adapter
provides. Java 3D ultimately generates OpenGL calls in a JNI layer that can be accelerated
by your graphics card. OpenGL accelerated adapters are common in newer workstations, so
your Java 3D programs should be hardware accelerated.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 3 of 40

So what's the Point?
3D graphics will add a whole new dimension to your life: the dimension of z. In a
three-dimensional (x,y,z) coordinate, the Z component specifies distance from the viewer.
Java 3D uses z values to remove non-visible surfaces of distant obscured objects. The z
values of the red torus in the image below are small because it is close to the viewer. It will
obscure portions of the blue torus when the Z values of both tori are compared during
rendering.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 4 of 40

A 3D object contains a collection of coordinates rendered together (see The Primitive class
on page 10). You can render them as points, lines, and polygons. A game programmer might
want to use points to simulate a spray of bullets as a monster charges toward a player. A
CAD designer might want to render using lines in order to see more detail about the very
precise object she is designing. And after most of a car object has been designed, the
designer can render it using filled polygons instead of wire-frame. While filled polygons will
look more realistic, the image doesn't allow the designer to easily work with the nitty-gritty
data describing the surface of the object.

In this tutorial, we'll stick to drawing polygons, because that's where most of the fun is.

Moving things around
After we have created the objects we want to display, we can move and scale them by using
3D transformations, in essence animating the objects. For example, when you're playing
Quake, the bad guy charges toward you when the game manipulates his 3D transformation.
The location, direction, and orientation of your view (before you are fragged!) is called the
viewpoint. As you sneak around looking for more ammo, a transformation changes your
viewpoint.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 5 of 40

Transformations are specified as matrices in the powerful Transform3D class.
Transform3D has many helper functions for specifying common transformations, such as
translations, rotations, and scaling.

Lighting and other effects
In addition to specifying what objects appear in our scene, we can also control how they
appear by specifying lighting effects (see The Light class on page 16 for more details on
lighting). You can specify the type of lighting effect, like a spotlight, and the color of the light.
You can also apply fog effects to your scene and set up automated behaviors of your
objects.

Texture mapping (commonly referred to as wallpapering) is used to provide more realism to a
scene. For instance, you can apply a wood grain image on an object's surface to simulate an
oak table top.

Geometry objects don't have to be opaque; they can be transparent or translucent. The lava

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 6 of 40

lamp in the image below uses both transparency and lighting effects, and the pottery is using
texture mapping.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 7 of 40

Section 3. Scene graph nuts and bolts

The scene graph tree
A Java 3D scene graph is a tree with two parts, or branches: content and view. The view
branch contains all the gory details of the complex Java 3D viewing model, and it defines the
viewpoint. The good news is that for most simple applications we can use the universe utility
classes, specifically the aptly-named SimpleUniverse, to handle most of the complexity of
view management.

The content branch describes what you see in your scene. It contains all your graphics
objects (spheres, boxes, or more complicated geometry objects), the transformations that
move them around, lights, behaviors, group nodes, and fog. We will focus most of our effort
on the content branch.

Group nodes
Group objects make up the interior nodes of the content branch of the scene graph. You can
use Group nodes to organize your scene graph into related pieces. Each Group node
contains a number of children that will be rendered when the node is processed. Switch
nodes and TransformGroup nodes are specialized Group nodes that allow you to exert
futher control over your scene graph.

Switch nodes limit which children are visited during rendering, giving you control over which
portions of your scene graph are rendered. Using our Quake example, you could group all
the different weapons under one Switch node, allowing you to render only the current
weapon being used.

TransformGroup nodes apply a 3D transformation -- such as translation, scaling, or
rotation -- to their children during processing, allowing you to move, rotate, or scale entire
portions of your scene graph.

Capability bits
Java 3D will optimize the rendering of your scene graph by precalculating values where
possible. If you want to change certain aspects of the scene during rendering, you must
indicate what data you will want to change later by using capability bits. For example,
animating an object requires changing the transformation that affects the object. To do this,
you would enable the ALLOW_TRANSFORM_WRITE bit in your TransformGroup like this:

suzySpin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

You can make any changes you like to scene graph data before you attach it to the universe.
Any changes after Java 3D starts rendering, however, are allowed only on objects with the
proper capability bits set.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 8 of 40

UglyCube example
Take a look at UglyCube.java on page 28 , the
source for this example. But let me warn you, it's
really boring.

UglyCube just displays a cube. It's chopped down
from the HelloUniverse sample that ships with
the Java 3D SDK. You create a Canvas3D to draw
on, and create a SimpleUniverse to handle all
the view management for you. The top of the
content branch is always a BranchGroup. We add
the cube as a child, and hand over the
BranchGroup for rendering.

After you have added the BranchGroup to the
SimpleUniverse, Java 3D will take over
rendering in a continuous loop. We'll add different
types of nodes, such as lights and behaviors, later.

Here are the important lines from the example:

Canvas3D c = new Canvas3D(
SimpleUniverse.getPreferredConfiguration());

setLayout(new BorderLayout());
add("Center", canvas);
BranchGroup scene = new BranchGroup();
scene.addChild(new ColorCube(0.4));
SimpleUniverse u = new SimpleUniverse(c);
u.getViewingPlatform().setNominalViewingTransform();
u.addBranchGraph(scene);

See, I told you it was boring.

Scene graph key points
* SimpleUniverse creates the view branch of the scene graph.
* Group nodes give hierarchical structure onto your scene graph.
* Capability bits allow access to data in your scene graph nodes.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 9 of 40

Section 4. Let's make some shapes

The Primitive class
Primitive is an abstract class for geometry objects that can be used as simple building
blocks in your scene graph. Java 3D includes several useful concrete subclasses of
Primitive -- Sphere, Box, Cone, and Cylinder -- that allow you to create basic objects
easily without having to specify a lot of data. For example, when using the Sphere class, you
simply specify a radius, and all the vertex data is generated for you.

We'll use Primitives exclusively in this tutorial so you don't get bogged down with the
details of having to specify all the graphics data.

The Shape3D class
If you are not using one of the Primitive classes, you'll have to use the Shape3D class to
specify all of the vertex data. You can specify data as triangles, quadrilaterals, lines, and
points. A geometric representation of a sphere would be defined as a polygonal mesh,
typically using strips of connected triangles or quads.

The image below should give you an idea of how strips are joined to make a mesh. The
strips are different colors to make them stand out. In this Shape3D object, each strip of
triangles shares common vertices with the adjacent triangle strip, which makes a mesh
surface when it is rendered.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 10 of 40

Per-vertex data
At a minimum, every vertex must have a location value (coordinate). In addition to location
values, you can specify other items for each vertex, such as a color value, normal vector,
and texture coordinates. Normal vectors are used for lighting effects, and texture coordinates
are used when applying textures to the surface via texture mapping. Additionally, each vertex
could also have an alpha, or transparency, value specified with its color.

Fortunately, vertex normals and texture coordinates are generated for you when using the
Primitive classes. We will explore vertex normals and texture coordinates, which are the
most common per-vertex attributes.

Appearance objects
While you can can specify a great deal of data with each vertex, many of your graphics
effects are applied using the Appearance object. This object describes the overall attributes
of an object's surface. Each Shape3D and Primitive object will have its own Appearance
object, and each Appearance object contains several attribute objects. For example, an
Appearance object can contain both a ColoringAttributes object and a
RenderingAttributes object.

As you can see, with all the various types of graphics data, Java 3D applications can get
complicated in a hurry. For simplicity's sake, we will look only at the Texture and
Material attribute classes.

Pop quiz
Let's test your knowledge so far with this quick quiz. The Primitive base class is used for:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 11 of 40

1. High-level geometry objects generated by Java 3D
2. Defining spheres, cones, cylinders, and boxes
3. Specifying prehistoric cave drawings
4. Both 1 and 2

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 12 of 40

Section 5. Transform your life (or at least your geometry)

The Transform3D class
Transformations allow you to move, rotate, or resize geometry objects in your scene and can
be used to affect how the scene is viewed. You will use Transform3D objects regularly
when doing Java 3D programming. A Transform3D object represents a transformation
matrix. Transform3D objects are commonly used by the TransformGroup class. We
aren't going to go through the dozens of methods in Transform3D -- just some of the helper
functions -- and thankfully (for me anyway) we won't be getting into linear algebra.

Move me, zoom me, spin me
Let's begin by looking at some of the helper functions in the Transform3D class:

* setTranslation(Vector3f trans): Translates (moves) an object. Replaces the
translate values of this transform with the x, y, and z values in the trans argument.

* setScale(double scale): Sets the scale of this transform. Use this function to
resize an object.

* rotX(double angle): Sets the rotational component to a counterclockwise rotation
around the X axis. Note that calling rotX() wipes out non-rotational components of
your matrix. The methods rotY() and rotZ() are also useful. Angles are specified in
radians, so use Math.toRadians(degrees) to convert from degrees if necessary.

The OrbitBehavior class
The OrbitBehavior class allows you to easily move the view around using the mouse. It
will translate, rotate, and zoom your scene as the user moves. The following code snippet
adds the OrbitBehavior to your ViewingPlatform. No other code is needed. (We will
go over bounding spheres and behaviors later.)

ViewingPlatform viewingPlatform = universe.getViewingPlatform();
orbit = new OrbitBehavior(canvas);
BoundingSphere bounds =

new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);
orbit.setSchedulingBounds(bounds);
viewingPlatform.setViewPlatformBehavior(orbit);

Note that the OrbitBehavior is manipulating the view side of the scene graph using the
SimpleUniverse object. Also notice that most of the Java 3D SDK samples throw in an
OrbitBehavior, and you should do the same in your programs too -- it will help to be able
to move things around and look at them. We will spend the rest of the tutorial back on the
content side of the scene graph.

Lost in 3D space

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 13 of 40

As you build up your scene graph hierarchy, you will use a lot of TransformGroup nodes.
The geometry objects that you want to draw will be located at leaves in the graph. The path
of nodes connecting the root of your scene graph to a geometry leaf will generally have
several TransformGroup nodes in it. All of the transformations between the root and a
geometry object are applied to that shape, in order, and the ordering of the transformations
will affect the final location of your geometry object.

Keep each logical operation you want to do in a seperate Transform3D object (for example,
keep the rotation in one object and a translate in another). Transformations are combined as
Java 3D walks down the scene graph during a rendering traversal.

Transformations are not necessarily commutative -- a rotation followed by a translation will
have a different result than a translation followed by a rotation. The image below illustrates
some transformations on several Cone primitives from two different viewpoints (the cylinders
represent axes). We'll review the code that generated this image and the scene graph
construction of each of these cones in the next panel.

TransformOrder code
Here is a simplified chunk of the
TransformOrder.java example. (See

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 14 of 40

TransformOrder.java on page 29 .) There are two
TransformGroup nodes and a Cone, one
attached under the other. The only difference is the
order in which they are attached, and the Cone
color. The objRotate TransformGroup is
above the objTranslate in the red cone,
whereas the yellow cone has the translate on top
and the rotate under it. This means there is a
different ordering in the path between the root
node and the cone. Here is code for creating the
cones and their transformations.

void rotateOnTop(){
topNode.addChild(objRotate);
objRotate.addChild(objTranslate);
objTranslate.addChild(redCone);

}
void translateOnTop(){

topNode.addChild(objTranslate);
objTranslate.addChild(objRotate);
objRotate.addChild(yellowCone);

}
void noTransform(){

topNode.addChild(purpleCone);
}

Transformation key points
* Transformations can be used to specify the location of geometric objects in the scene.
* Use an OrbitBehavior with your SimpleUniverse.
* Use Transform3D helper functions.
* For simplicity, keep each logical operation you want to do in a different Transform3D

object.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 15 of 40

Section 6. Lighting and material properties

The Light class
Lights are used to illuminate the geometry objects in your scene. There are several different
light types, which are all subclasses of the abstract Light class. All lights have a color
value, an on/off bit, and a bounding object that describes what areas of the scene it
illuminates.

In the real world, the objects around you are lit by several different light sources. The sunlight
coming in the window and the overhead light in the room will both illuminate everything in the
room. Both lights will affect the color and appearance of objects in the room. In Java 3D you
can simulate realistic lighting effects by using multiple light sources.

Light types
An AmbientLight is everywhere in the scene. It does not originate from a particular point,
and it does not point in a particular direction.

A PointLight radiates from a specified location in all directions, and diminishes with
distance. An example of a point light is a desk lamp with no lampshade. A SpotLight is a
type of point light that restricts the light to a cone shape. An example of a spot light is a
flashlight.

A DirectionalLight shines in a particular direction but doesn't emanate from any
particular location. All light rays of a directional light travel in parallel. While technically the
sun is a point light source, sunlight can be more accurately imitated using a
DirectionalLight.

The teapot in the image has ambient light (you can see that the back side is illuminated
slightly), and directional light shining on the front. Both lights affect the final color of each
triangle on the surface of the teapot.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 16 of 40

Lights in the scene graph
All Light nodes are leaf nodes in the scene graph. When you create them, you need to
specify a Bounds object; we will be using BoundingSphere. The light will affect only those
geometry objects that are inside the volume defined by the light's BoundingSphere, so we'll
need to make sure the BoundingSphere is large. After we create the light, we'll attach it to
the scene graph at the top BranchGroup. Lights, behaviors, and textures are all added at
the top of a scene graph.

Material properties
Material properties describe how an object reflects light. If your object (Primitive or
Shape3D) does not have a Material object in its Appearance object, it will not be
illuminated even though you have a light source specified. You must create a Material
object, enable lighting in the Material object, and add it to the Appearance object. The
Material object is one of several different attribute sets that are held in the Appearance
object.

To better understand how material properties affect an object's appearance, think about a
shiny ruby gemstone object and a red carpet. While they are both red, they will reflect light
differently -- the ruby will have a bright highlight where the light bounces off it, and the carpet
will appear to scatter the light. To specify this difference in appearance to Java 3D you'd give
the ruby a high shininess value in the Material object and the carpet a very low
shininess value.

The image below illustrates a number of spheres with different material properties.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 17 of 40

Surface normals
A surface normal is a vector that is perpendicular to the surface at the vertex, representing
the orientation of the surface at that vertex. The surface normal affects how light is reflected
from a surface when calculating lighting effects. The surface normals and position of the
viewer determine where the shiny highlight, or specular reflection, is located on a sphere.

Fortunately, the Primitive classes will generate surface normals for you, so we won't
discuss normals further in this tutorial.

Calculating lighting effects
Java 3D uses the surface normal to calculate lighting effects. Because the effect is
calculated for each vertex, objects with many vertices will look more realistic.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 18 of 40

The number of vertices in the Sphere object in the image above is controlled by the
divisions parameter of the Sphere object. The coarse sphere uses a value of 9. The
smooth sphere uses a value of 30 and thus looks smoother.

Lighting and material key points
* Light location and color, material properties, and surface normals all affect the final

color of your lit objects.

* The Appearance class contains a Material object, which holds the lighting state for
your geometry. Remember to enable lighting in your Material object.

* The Material class defines how your geometry reflects light. It includes ambient,
diffuse, and specular colors, and shininess.

* Ambient, point, and directional lights provide different lighting effects. Always throw in
an ambient light just to make sure you have some light in your scene.

* Normal values determine a surface's plane orientation and are generated for you when
using the Primitive classes.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 19 of 40

Section 7. Texture mapping

Texture mapping
Texture mapping increases realism in your scene
by adding additional visual detail to the surfaces of
your objects.

Suppose you want to have a stone wall in your
scene. You could define geometry for each stone,
and geometry for each piece of mortar, and render
all the objects to simulate the stone wall. That
would be a lot of work. An alternative is to use
texture mapping. In this case, you would use a
single rectangle object to represent the whole wall,
and paste an image of a stone wall onto the
rectangle (such as the stone.jpg image that ships
with Java 3D).

To use texture mapping, you need to specify the
image, where to paste it on the object, and what to
do when the image doesn't fit quite right, such as
when applying a rectangular bitmap to a
non-rectangular polygon. We'll work through these
tasks in the remainder of this section.

The technology advances in texture mapping
hardware in recent years have been fast and
furious, resulting in a subject of considerable
complexity, which is beyond the scope of this
tutorial. If you're interested in the more advanced
details of texture mapping, I recommend taking the
Texturing tutorial on Sun's Java 3D web site (see
Resources on page 26).

Loading a texture
Like lighting, texture mapping affects the entire geometry object. We will be using the
Appearance class again to specify the texture mapping effect.

Java 3D has simplified the process of loading texture images. The TextureLoader class is
in the Java 3D utility classes:

TextureLoader texLoader = new TextureLoader(url,imageobserver)
appearance.setTexture(texLoader.getTexture());

Always set the width and height of your texture image to a power of 2 for a realistic look.
Other values will cause TextureLoader to squish the texture.

If the image file has only RGB values, and no alpha value, then use:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 20 of 40

TextureLoader texLoader = new TextureLoader(url,new String("RGB"), imageobserver)

Pasting on the image
Now that we have a texture map loaded, we need to specify how to paste it on our object.
We do this by using texture coordinates for each vertex. Texture coordinates define which
chunk of the texture image is used for each polygon of your object. A useful analogy is to
think about how you would place wrapping paper on a present.

Fortunately, the Primitive classes will generate texture coordinates for you -- just as they
generate normals for calculating lighting.

If you are not using the Primitive classes, you need to define texture coordinates yourself.
To do this, you specify values between 0.0 and 1.0 in both the x and y direction. Using our
stone wall example, we would need to assign texture coordinates for each of the corners of
the wall. Assuming we want to use the whole image of the stone on our wall, we would need
to assign one for each of the four corners: (0,0), (1,0), (1,1) and (0,1). This would
stretch the whole stone image across the one rectangle that makes up the wall.

Shrinking and stretching a texture
Texture mapping gets complicated when you need to apply a rectangular texture to a
non-rectangular region. Shrinking and stretching a texture as it is pasted on an object is
called filtering.

Texture mapping will look more realistic if you provide several different sized representations
(minimaps) of your texture for Java 3D to use when filtering.

There are several different ways to filter your texture. You choose the type you want based
on your graphics card's performance and the look you want. You'll need to do some
experimenting to determine what looks best.

Texture mapping example
Take a look at Wallpaper.java on page 32 , which uses texture-mappedPrimitives.
Remember that the Primitive classes will generate the texture coordinates that define
where the image is pasted on the object. Our example uses the TextureLoader utility to
read in a jpeg image as well as to generate the filtered images used in mip-mapping. Note
how the texture is squeezed into the poles of the sphere, and the tip of the cone. In each
cone/sphere pair a different texture filter is used. You can notice filtering differences on the
border between white and red stripes.

To have the texture loader generate prefiltered images for you, specify GENERATE_MIPMAP
when constructing a TextureLoader. You specify your mipmap filtering function in your
Texture object (stored in the Appearance object.)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 21 of 40

Texture mapping key points
* Texture mapping is the process of gluing an image onto a geometry object. The image

orientation and placement on the geometry object is controlled using texture coordinate
data for each vertex.

* Use the TextureLoader utility to read in the image file, and specify the
TextureLoader.GENERATE_MIPMAP flag in the constructor.

* Let the Primitive classes generate texture coordinates for you, instead of specifying
them yourself. Use the Primitive.GENERATE_TEXTURE_COORDS when constructing
a Primitive.

* Texture mapping is a complex subject. Try not to get buried in all the different options.
Use the defaults when you're starting out.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 22 of 40

Section 8. Behaviors and interpolators

The Behavior class
Behaviors allow you to animate scene elements and interact with the scene graph. The
Behavior class provides a mechanism for your code to modify the scene graph. A
Behavior is placed in the scene graph and is triggered by a stimulus, such as a mouse
movement.

Like lights, behaviors have bounds and capability bits, and must be attached to the scene
graph. So if your behavior doesn't work, make sure the bounds are large enough, that the
behavior is enabled, and that you have attached it in the scene graph.

Interpolators provide an easy way to add some simple animations to your scene graph.
Interpolators can be fun to play around with, and we will be using them in our examples. But
first we'll look at some of the basics of Behavior handling.

Wakeup call
You specify the conditions that will trigger your behavior with a WakeupCriterion.
Examples of wakeup criteria include a key press, mouse event, timer, and elapsed number of
frames. You specify the criteria when you initially create the behavior and each time you
handle a behavior message. OrbitBehavior is an example of a Behavior that wakes up
on mouse events.

Using WakeupOnElapsedTime, you can change a TranformGroup's Transform3D to
animate a portion of your scene graph.

The processStimulus() method
When the wakeup event occurs, the behavior's processStimulus() method is called. You
can do just about anything in the processStimulus() method -- you can add or delete
objects from the scene, change transformations, change an object's appearance, detect
when two objects collide with each other, or whatever else you need to do.

Keep in mind that anything you want to change in your scene graph will need to have its
related capability bit set. For example, to change a TransformGroup node in the
processStimulus() method, you will need to set the
TransformGroup.ALLOW_TRANSFORM_WRITE bit.

Interpolators
Interpolators are built-in goodies that can help you add simple animations to your scene
graph. They smoothly transition, or interpolate, between a range of values that you define.

The GearBox sample that ships with the Java 3D SDK uses several rotation interpolators to
animate these gears shown in the image below.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 23 of 40

Each gear is hooked up to a RotationInterpolator that gets triggered repeatedly after a
certain amount of elapsed time. The RotationInterpolator applies a rotation to the
TransformGroup that contains the gear geometry object, causing the gear to rotate.

It's all in the timing
The Alpha object generates a value between 0.0 and 1.0 as a function of time. (Note that
the Alpha object is not related to a vertex's alpha value, which specifies its transparency.)

Interpolators use the Alpha object to drive their changes to the scene graph. The value of an
Alpha object can change over time, depending on how you program it. Our gears spin
continuously at a constant speed. Each time the RotationInterpolator gets triggered
by the Alpha object, it uses the generated alpha value to compute the new rotation (that is,
to make the gears rotate.) You create a simple Alpha that will indefinitely loop at a constant
speed using the following code:

Alpha(int loopCount, long speed)

There are plenty of options for changing the behavior of the Alpha object. You can have it
accelerate, stop for a period of time, and then slowly go back down.

Rotation example
SupermanInterp.java on page 34 creates aSphere and then applies a map texture to it. (The
earth looks a little fuzzy because the map used for the texture did not have a lot of detail.) I
set up a TransformGroup in a RotationInterpolator, and then attach the textured
Sphere below the TransformGroup. As the Interpolator changes the
TransformGroup, the earth spins. Because Interpolators change values in the scene

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 24 of 40

graph after the rendering loop starts, we must set one of the capability bits:

spinGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE)

In this example I've configured the Alpha object to accelerate the spin clockwise, and then
reverse it to spin counterclockwise.

Color interpolator
For ColorInterp.java on page 37 , I've added code to attach a color interpolator to the spinning
globe. Instead of affecting a TransformGroup, it affects the diffuse color in a Material
object. Because the Material object will be changing after the render loop starts, I set its
capability bit.

material.setCapability(Material.ALLOW_COMPONENT_WRITE);
Alpha colorAlpha = new Alpha(-1, 2000);
Color3f endColor = new Color3f(1.0f,1.0f,1.0f);
Color3f startColor = new Color3f(0.0f,0.0f,0.0f);
ColorInterpolator colorInterp =

new ColorInterpolator(colorAlpha, mat,startColor,endColor);
colorInterp.setSchedulingBounds(bounds);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 25 of 40

Section 9. Java 3D wrapup

Summary
That completes our introduction to Java 3D. We covered a lot of ground in a very short time,
so let's review the high points:

* Java 3D allows you to develop 3D graphics applications that have a high degree of
visual realism. You build up a scene graph that describes everything you want to
render, including geometry objects and visual effects.

* The built-in set of Primitive classes allow you to quickly build up a scene graph full of
geometry objects without worrying about some of the more complicated details like
texture coordinates and surface normals.

* You describe lighting of your scene with the Light classes and the Material.

* You can provide additional realism using texture mapping.

* Interpolators are a type of Behavior that allow you to add animations to your scene.

The fun of graphics programming in general and Java 3D in particular is hard to convey with
words. It's the hands-on experimentation that will hook you and keep you up late at night. I
recommend that you download the example code in Resources on page 26 and try out
different techniques to see what works and how. Use different lighting and play around with
textures. Just have fun!

Resources
* Download the source code samples used in this tutorial (java3dsource.zip).

* Visit Sun's Java 3D Web site, which includes lots of good information, including some
excellent tutorials.

* The Java 3D community site offers comprehensive resources and includes a great FAQ
that addresses common problems you may encounter as you get up to speed with this
complex API.

* NCSA Portfolio is a collection of utility objects to use with your Java 3D programs. It
comes with full documentation for the objects in the library and example source code
that shows how to use the objects.

* Visit the Web3D Consortium Web site for details on VRML.

* Java 3D for AIX, now included in the IBM Java Developer Kit for AIX, is a scene graph
API for 3D graphics that extends the core Java API and allows you to easily incorporate
high-quality, scalable, platform-independent, three-dimensional graphics into
Java-based applications and applets.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 26 of 40

java3dsource.zip
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D/collateral
http://www.j3d.org
http://www.j3d.org
http://www.j3d.org
http://www.j3d.org
http://www.ncsa.uiuc.edu/~srp/Java3D/portfolio
http://www.ncsa.uiuc.edu/~srp/Java3D/portfolio
http://www.web3d.org
http://www.web3d.org
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://alphaworks.ibm.com/aw.nsf/376583DBD044EE5988256ACD00318D15/8EE5D632D5F4A49688256A2600607725?opendocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://alphaworks.ibm.com/aw.nsf/376583DBD044EE5988256ACD00318D15/8EE5D632D5F4A49688256A2600607725?opendocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://alphaworks.ibm.com/aw.nsf/376583DBD044EE5988256ACD00318D15/8EE5D632D5F4A49688256A2600607725?opendocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://alphaworks.ibm.com/aw.nsf/376583DBD044EE5988256ACD00318D15/8EE5D632D5F4A49688256A2600607725?opendocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j

* IBM research has several ongoing and very interesting projects in the world of graphics
and visualization.

* If you're interested in expanding your graphics programming universe beyond Java 3D,
visit the OpenGL home page for information on this robust library.

Feedback
We welcome your feedback on this tutorial, and look forward to hearing from you.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 27 of 40

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/compsci/graphics/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/compsci/graphics/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/compsci/graphics/index.html&origin=j
http://www.opengl.org
http://www.opengl.org
http://www.opengl.org

Section 10. Appendix: The source

UglyCube.java
/*
*
* Copyright (c) 1996-2001 Sun Microsystems, Inc. All Rights Reserved.
*
* Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
* modify and redistribute this software in source and binary code form,
* provided that i) this copyright notice and license appear on all copies of
* the software; and ii) Licensee does not utilize the software in a manner
* which is disparaging to Sun.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
* NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
* LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
* LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
* INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
* OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* This software is not designed or intended for use in on-line control of
* aircraft, air traffic, aircraft navigation or aircraft communications; or in
* the design, construction, operation or maintenance of any nuclear
* facility. Licensee represents and warrants that it will not use or
* redistribute the Software for such purposes.
*/
import java.applet.Applet;
import java.awt.BorderLayout;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.universe.*;
import javax.media.j3d.*;
import javax.vecmath.*;
//Bare minimum really boring cube.
// Shows bare bones Universe creation
public class UglyCube extends Applet {

private SimpleUniverse universe ;
public UglyCube() {

}
public void init() {
//canvas to draw on, ask SimpleUniverse what config to use
Canvas3D canvas = new Canvas3D(

SimpleUniverse.getPreferredConfiguration());
setLayout(new BorderLayout());
add("Center", canvas);
//create top of our scene graph
BranchGroup scene = new BranchGroup();
//attach the cube to it
scene.addChild(new ColorCube(0.4));
//create universe, and attach our geometry to it.
SimpleUniverse u = new SimpleUniverse(canvas);
u.getViewingPlatform().setNominalViewingTransform();
//rendering starts after BranchGroup is attached.

u.addBranchGraph(scene);
}
// The following allows UglyCube to be run as an application
// as well as an applet

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 28 of 40

public static void main(String[] args) {
new MainFrame(new UglyCube(), 256, 256);

}
}

TransformOrder.java
/*
*
* Copyright (c) 1996-2001 Sun Microsystems, Inc. All Rights Reserved.
*
* Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
* modify and redistribute this software in source and binary code form,
* provided that i) this copyright notice and license appear on all copies of
* the software; and ii) Licensee does not utilize the software in a manner
* which is disparaging to Sun.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
* NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
* LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
* LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
* INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
* OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* This software is not designed or intended for use in on-line control of
* aircraft, air traffic, aircraft navigation or aircraft communications; or in
* the design, construction, operation or maintenance of any nuclear
* facility. Licensee represents and warrants that it will not use or
* redistribute the Software for such purposes.
*/
import java.applet.Applet;
import java.awt.BorderLayout;
import java.awt.event.*;
import java.awt.*;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.universe.*;
import javax.media.j3d.*;
import javax.vecmath.*;
import com.sun.j3d.utils.behaviors.vp.*;
/**

Generates a scene graph with the cylinders that
make up the axis, and 3 cones.
Add one Cone with rotate before translate, and
another that has translate before rotate.
For reference, throw in a cone without translate
or rotate

*/
public class TransformOrder extends Applet {

public static final int X =1;
public static final int Y =2;
public static final int Z =3;
public static final int ROTATE_TOP =4;
public static final int TRANSLATE_TOP =5;
public static final int NO_TRANSFORM =6;
private SimpleUniverse universe ;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 29 of 40

private BranchGroup scene;
private Canvas3D canvas;
private BoundingSphere bounds =

new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 1000.0);
private Appearance red = new Appearance();
private Appearance yellow = new Appearance();
private Appearance purple = new Appearance();
Transform3D rotate = new Transform3D();
Transform3D translate = new Transform3D();
public void setupView() {

/** Add some view related things to view branch side
of scene graph */
// add mouse interaction to the ViewingPlatform
OrbitBehavior orbit = new OrbitBehavior(canvas,

OrbitBehavior.REVERSE_ALL|OrbitBehavior.STOP_ZOOM);
orbit.setSchedulingBounds(bounds);
ViewingPlatform viewingPlatform = universe.getViewingPlatform();
// This will move the ViewPlatform back a bit so the
// objects in the scene can be viewed.
viewingPlatform.setNominalViewingTransform();
viewingPlatform.setViewPlatformBehavior(orbit);
}

//construct each branch of the graph, changing the order children added
// since Group node can only have one parent, have to construct
// new translate and rotate group nodes for each branch.
Group rotateOnTop(){

Group root=new Group();
TransformGroup objRotate = new TransformGroup(rotate);
TransformGroup objTranslate = new TransformGroup(translate);
Cone redCone=

new Cone(.3f, 0.7f, Primitive.GENERATE_NORMALS, red);
root.addChild(objRotate);
objRotate.addChild(objTranslate);
objTranslate.addChild(redCone); //tack on red cone
return root;

}
Group translateOnTop(){

Group root=new Group();
TransformGroup objRotate = new TransformGroup(rotate);
TransformGroup objTranslate = new TransformGroup(translate);
Cone yellowCone=

new Cone(.3f, 0.7f, Primitive.GENERATE_NORMALS, yellow);
root.addChild(objTranslate);
objTranslate.addChild(objRotate);
objRotate.addChild(yellowCone); //tack on yellow cone
return root;

}
Group noTransform(){

Cone purpleCone=
new Cone(.3f, 0.7f, Primitive.GENERATE_NORMALS, purple);

return purpleCone;
}
/** Represent an axis using cylinder Primitive. Cylinder is

aligned with Y axis, so we have to rotate it when
creating X and Z axis

*/
public TransformGroup createAxis(int type) {

//appearance and lightingProps are used in
//lighting. Each axis a different color
Appearance appearance = new Appearance();
Material lightingProps = new Material();
Transform3D t = new Transform3D();
switch (type) {

case Z:
t.rotX(Math.toRadians(90.0));

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 30 of 40

lightingProps.setAmbientColor(1.0f,0.0f,0.0f);
break;
case Y:

// no rotation needed, cylinder aligned with Y already
lightingProps.setAmbientColor(0.0f,1.0f,0.0f);

break;
case X:

t.rotZ(Math.toRadians(90.0));
lightingProps.setAmbientColor(0.0f,0.0f,1.0f);

break;
default:
break;

}
appearance.setMaterial(lightingProps);
TransformGroup objTrans = new TransformGroup(t);
objTrans.addChild(new Cylinder(.03f,2.5f,Primitive.GENERATE_NORMALS,appearance));
return objTrans;

}
/** Create X, Y , and Z axis, and 3 cones. Throws in

some quick lighting to help viewing the scene
*/
public BranchGroup createSceneGraph() {

// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();
//45 degree rotation around the X axis
rotate.rotX(Math.toRadians(45.0));
//translation up the Y axis
translate.setTranslation(new Vector3f(0.0f,2.0f,1.0f)); //SCD 0.0f));
//Material objects are related to lighting, we'll cover
//that later
Material redProps = new Material();
redProps.setAmbientColor(1.0f,0.0f,0.0f); //red cone
red.setMaterial(redProps);
Material yellowProps = new Material();
yellowProps.setAmbientColor(1.0f,1.0f,0.0f); //yellow cone
yellow.setMaterial(yellowProps);
Material purpleProps = new Material();
purpleProps.setAmbientColor(0.8f,0.0f,0.8f); //purple cone
purple.setMaterial(purpleProps);
// Create a x,y,z axis, and then 3 cone branches
objRoot.addChild(createAxis(X));
objRoot.addChild(createAxis(Y));
objRoot.addChild(createAxis(Z));
objRoot.addChild(noTransform()); //purple cone
objRoot.addChild(rotateOnTop()); //red cone
objRoot.addChild(translateOnTop()); //yellow cone
//throw in some light so we aren't stumbling
//around in the dark
Color3f lightColor = new Color3f(.3f,.3f,.3f);
AmbientLight ambientLight= new AmbientLight(lightColor);
ambientLight.setInfluencingBounds(bounds);
objRoot.addChild(ambientLight);
DirectionalLight directionalLight = new DirectionalLight();
directionalLight.setColor(lightColor);
directionalLight.setInfluencingBounds(bounds);
objRoot.addChild(directionalLight);
return objRoot;

}
public TransformOrder() {
}
public void init() {

BranchGroup scene = createSceneGraph();
setLayout(new BorderLayout());
GraphicsConfiguration config =

SimpleUniverse.getPreferredConfiguration();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 31 of 40

canvas = new Canvas3D(config);
add("Center", canvas);
// Create a simple scene and attach it to the virtual universe
universe = new SimpleUniverse(canvas);
setupView();
universe.addBranchGraph(scene);

}
public void destroy() {

universe.removeAllLocales();
}
//
// The following allows TransformOrder to be run as an application
// as well as an applet
//
public static void main(String[] args) {

new MainFrame(new TransformOrder(), 256, 256);
}

}

Wallpaper.java
/*
*
* Copyright (c) 1996-2001 Sun Microsystems, Inc. All Rights Reserved.
*
* Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
* modify and redistribute this software in source and binary code form,
* provided that i) this copyright notice and license appear on all copies of
* the software; and ii) Licensee does not utilize the software in a manner
* which is disparaging to Sun.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
* NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
* LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
* LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
* INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
* OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* This software is not designed or intended for use in on-line control of
* aircraft, air traffic, aircraft navigation or aircraft communications; or in
* the design, construction, operation or maintenance of any nuclear
* facility. Licensee represents and warrants that it will not use or
* redistribute the Software for such purposes.
*/
import java.applet.Applet;
import java.awt.BorderLayout;
import java.awt.event.*;
import java.awt.*;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.image.*;
import javax.media.j3d.*;
import javax.vecmath.*;
import com.sun.j3d.utils.behaviors.vp.*;
/**

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 32 of 40

Simple Texture Mapping example
*/
public class Wallpaper extends Applet {

private SimpleUniverse universe ;
private BranchGroup scene;
private Canvas3D canvas;
private BoundingSphere bounds =

new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 1000.0);
private static java.net.URL texImage = null;
public Group createGeometry(int filter, float y, java.net.URL texImage) {

/**
Create some Texture mapped objects
*/
Appearance appearance = new Appearance();
TextureLoader tex = new TextureLoader(texImage, TextureLoader.GENERATE_MIPMAP , this);
Texture texture = tex.getTexture();
texture.setMinFilter(filter) ;
appearance.setTexture(texture);
TextureAttributes texAttr = new TextureAttributes();
texAttr.setTextureMode(TextureAttributes.MODULATE);
appearance.setTextureAttributes(texAttr);
Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
// Set up the material properties
appearance.setMaterial(new Material(white, black, white, black, 1.0f));
//use to build tree hierarchy
Group topNode = new Group();
Transform3D translate = new Transform3D();
translate.setTranslation(new Vector3f(.5f,y,-0.5f));
TransformGroup gimmeSpace = new TransformGroup(translate);
Cone cone = new Cone(.4f,0.8f,Primitive.GENERATE_NORMALS|Primitive.GENERATE_TEXTURE_COORDS,appearance);
gimmeSpace.addChild(cone);
topNode.addChild(gimmeSpace); //cone at bottom
translate = new Transform3D();
translate.setTranslation(new Vector3f(-0.5f,y,-0.5f));
gimmeSpace = new TransformGroup(translate);
Sphere sphere = new Sphere(.4f,Primitive.GENERATE_NORMALS|Primitive.GENERATE_TEXTURE_COORDS,appearance);
gimmeSpace.addChild(sphere);
topNode.addChild(gimmeSpace); //cone at bottom
return topNode;

}
public void setupView() {

/** Add some view related things to view branch side
of scene graph */
// add mouse interaction to the ViewingPlatform
OrbitBehavior orbit = new OrbitBehavior(canvas,

OrbitBehavior.REVERSE_ALL|OrbitBehavior.STOP_ZOOM);
orbit.setSchedulingBounds(bounds);
ViewingPlatform viewingPlatform = universe.getViewingPlatform();
// This will move the ViewPlatform back a bit so the
// objects in the scene can be viewed.
viewingPlatform.setNominalViewingTransform();
viewingPlatform.setViewPlatformBehavior(orbit);
}

public BranchGroup createSceneGraph() {
// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();
// Create a simple Shape3D node; add it to the scene graph.
// Set up the texture map
// the path to the image
objRoot.addChild(createGeometry(Texture.BASE_LEVEL_POINT,1.0f,texImage));
objRoot.addChild(createGeometry(Texture.MULTI_LEVEL_POINT,0.0f,texImage));
objRoot.addChild(createGeometry(Texture.MULTI_LEVEL_LINEAR,-1.0f,texImage));
//throw in some light so we aren't stumbling
//around in the dark

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 33 of 40

Color3f lightColor = new Color3f(.5f,.5f,.5f);
AmbientLight ambientLight= new AmbientLight(lightColor);
ambientLight.setInfluencingBounds(bounds);
objRoot.addChild(ambientLight);
DirectionalLight directionalLight = new DirectionalLight();
directionalLight.setColor(lightColor);
directionalLight.setInfluencingBounds(bounds);
objRoot.addChild(directionalLight);
return objRoot;

}
public Wallpaper() {
}
public void init() {

BranchGroup scene = createSceneGraph();
setLayout(new BorderLayout());
GraphicsConfiguration config =

SimpleUniverse.getPreferredConfiguration();
canvas = new Canvas3D(config);
add("Center", canvas);
// Create a simple scene and attach it to the virtual universe
universe = new SimpleUniverse(canvas);
setupView();
universe.addBranchGraph(scene);

}
public void destroy() {

universe.removeAllLocales();
}
//
// The following allows Wallpaper to be run as an application
// as well as an applet
//
public static void main(String[] args) {

try{
if (args.length == 0) {
texImage = new java.net.URL("file:./images/speedchase.jpg");

} else {
texImage = new java.net.URL(args[0]);
}

}
catch (java.net.MalformedURLException ex) {

System.out.println(ex.getMessage());
System.exit(1);

}
new MainFrame(new Wallpaper(), 256, 256);

}
}

SupermanInterp.java
/*
*
* Copyright (c) 1996-2001 Sun Microsystems, Inc. All Rights Reserved.
*
* Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
* modify and redistribute this software in source and binary code form,
* provided that i) this copyright notice and license appear on all copies of
* the software; and ii) Licensee does not utilize the software in a manner
* which is disparaging to Sun.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 34 of 40

* NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
* LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
* LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
* INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
* OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* This software is not designed or intended for use in on-line control of
* aircraft, air traffic, aircraft navigation or aircraft communications; or in
* the design, construction, operation or maintenance of any nuclear
* facility. Licensee represents and warrants that it will not use or
* redistribute the Software for such purposes.
*/
import java.applet.Applet;
import java.awt.BorderLayout;
import java.awt.event.*;
import java.awt.*;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.image.*;
import javax.media.j3d.*;
import javax.vecmath.*;
import com.sun.j3d.utils.behaviors.vp.*;
/**

Rotation Interpolator example
Very similar to texture mapping example, but
attaches an Interpolator above geometry that
keeps the world spinning. Play with Alpha timing,
you can have it slowly ease to a halt by using
some of the other parameters that aren't in this
simple example. It will also reverse direction.

*/
public class SupermanInterp extends Applet {

private SimpleUniverse universe ;
private BranchGroup scene;
private Canvas3D canvas;
private BoundingSphere bounds =

new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 1000.0);
public Primitive createGeometry(int filter, java.net.URL texImage, Appearance appearance) {

/**
Create Sphere and texture it
*/
TextureLoader tex =

new TextureLoader(texImage, TextureLoader.GENERATE_MIPMAP , this);
Texture texture = tex.getTexture();
texture.setMinFilter(filter) ;
appearance.setTexture(texture);
TextureAttributes texAttr = new TextureAttributes();
texAttr.setTextureMode(TextureAttributes.MODULATE);
appearance.setTextureAttributes(texAttr);
Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
// Set up the material properties
appearance.setMaterial(new Material(white, black, white, black, 1.0f));
Sphere sphere =

new Sphere(.4f,Primitive.GENERATE_NORMALS|
Primitive.GENERATE_TEXTURE_COORDS,appearance);

return sphere;
}
public void setupView() {

/** Add some view related things to view branch side

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 35 of 40

of scene graph */
// add mouse interaction to the ViewingPlatform
OrbitBehavior orbit = new OrbitBehavior(canvas,

OrbitBehavior.REVERSE_ALL|OrbitBehavior.STOP_ZOOM);
orbit.setSchedulingBounds(bounds);
ViewingPlatform viewingPlatform = universe.getViewingPlatform();
// This will move the ViewPlatform back a bit so the
// objects in the scene can be viewed.
viewingPlatform.setNominalViewingTransform();
viewingPlatform.setViewPlatformBehavior(orbit);
}

public BranchGroup createSceneGraph() {
// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();
// Create a simple Shape3D node; add it to the scene graph.
// Set up the texture map
java.net.URL texImage = null;
// the path to the image
try {

texImage = new java.net.URL("file:../images/earth.jpg");
}
catch (java.net.MalformedURLException ex) {

System.out.println(ex.getMessage());
System.exit(1);

}
Appearance app= new Appearance();
Primitive geo = createGeometry(Texture.MULTI_LEVEL_LINEAR,texImage,app);
//spinGroup will be hooked into the interpolator
TransformGroup spinGroup = new TransformGroup();
spinGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
spinGroup.addChild(geo);
// Create a new Behavior object that will perform the
// desired operation on the specified transform and add
// it into the scene graph.
//OLD: straight constant spin
// Alpha rotationAlpha = new Alpha(-1, 4000);
//NEW: accelerate one direction, stop, rotate opposite direction
Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE |

Alpha.DECREASING_ENABLE,
0, 0,
5000, 2500, 200,
5000, 2500, 200);

RotationInterpolator rotator =
new RotationInterpolator(rotationAlpha, spinGroup);

rotator.setSchedulingBounds(bounds);
//throw in some light so we aren't stumbling
//around in the dark
Color3f lightColor = new Color3f(.5f,.5f,.5f);
AmbientLight ambientLight= new AmbientLight(lightColor);
ambientLight.setInfluencingBounds(bounds);
DirectionalLight directionalLight = new DirectionalLight();
directionalLight.setColor(lightColor);
directionalLight.setInfluencingBounds(bounds);
objRoot.addChild(rotator); //behavior gets attached at the top
objRoot.addChild(spinGroup); //TransformGroup and sphere
objRoot.addChild(directionalLight);
objRoot.addChild(ambientLight);
return objRoot;

}
public SupermanInterp() {
}
public void init() {

BranchGroup scene = createSceneGraph();
setLayout(new BorderLayout());
GraphicsConfiguration config =

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 36 of 40

SimpleUniverse.getPreferredConfiguration();
canvas = new Canvas3D(config);
add("Center", canvas);
// Create a simple scene and attach it to the virtual universe
universe = new SimpleUniverse(canvas);
setupView();
universe.addBranchGraph(scene);

}
public void destroy() {

universe.removeAllLocales();
}
//
// The following allows SupermanInterp to be run as an application
// as well as an applet
//
public static void main(String[] args) {

new MainFrame(new SupermanInterp(), 256, 256);
}

}

ColorInterp.java
/*
*
* Copyright (c) 1996-2001 Sun Microsystems, Inc. All Rights Reserved.
*
* Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
* modify and redistribute this software in source and binary code form,
* provided that i) this copyright notice and license appear on all copies of
* the software; and ii) Licensee does not utilize the software in a manner
* which is disparaging to Sun.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
* NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
* LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
* LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
* INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
* OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* This software is not designed or intended for use in on-line control of
* aircraft, air traffic, aircraft navigation or aircraft communications; or in
* the design, construction, operation or maintenance of any nuclear
* facility. Licensee represents and warrants that it will not use or
* redistribute the Software for such purposes.
*/
import java.applet.Applet;
import java.awt.BorderLayout;
import java.awt.event.*;
import java.awt.*;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.image.*;
import javax.media.j3d.*;
import javax.vecmath.*;
import com.sun.j3d.utils.behaviors.vp.*;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 37 of 40

/**
Color Interpolator example
Very similar to texture mapping example,
will interpolate the color values of the
earth.

*/
public class ColorInterp extends Applet {

private SimpleUniverse universe ;
private BranchGroup scene;
private Canvas3D canvas;
private BoundingSphere bounds =

new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 1000.0);
public Primitive createGeometry(int filter, java.net.URL texImage, Appearance appearance) {

/**
Create Sphere and texture it
*/
TextureLoader tex =

new TextureLoader(texImage, TextureLoader.GENERATE_MIPMAP , this);
Texture texture = tex.getTexture();
texture.setMinFilter(filter) ;
appearance.setTexture(texture);
TextureAttributes texAttr = new TextureAttributes();
texAttr.setTextureMode(TextureAttributes.MODULATE);
appearance.setTextureAttributes(texAttr);
Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
Color3f gray = new Color3f(0.3f, 0.3f, 0.3f);
Color3f ltgray = new Color3f(0.6f, 0.6f, 0.6f);
// Set up the material properties
appearance.setMaterial(new Material(white, black, ltgray, ltgray, 32.0f));
Sphere sphere =

new Sphere(.4f,Primitive.GENERATE_NORMALS|
Primitive.GENERATE_TEXTURE_COORDS,appearance);

return sphere;
}
public void setupView() {

/** Add some view related things to view branch side
of scene graph */
// add mouse interaction to the ViewingPlatform
OrbitBehavior orbit = new OrbitBehavior(canvas,

OrbitBehavior.REVERSE_ALL|OrbitBehavior.STOP_ZOOM);
orbit.setSchedulingBounds(bounds);
ViewingPlatform viewingPlatform = universe.getViewingPlatform();
// This will move the ViewPlatform back a bit so the
// objects in the scene can be viewed.
viewingPlatform.setNominalViewingTransform();
viewingPlatform.setViewPlatformBehavior(orbit);
}

public BranchGroup createSceneGraph() {
// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();
// Create a simple Shape3D node; add it to the scene graph.
// Set up the texture map
java.net.URL texImage = null;
// the path to the image
try {

texImage = new java.net.URL("file:../images/earth.jpg");
}
catch (java.net.MalformedURLException ex) {

System.out.println(ex.getMessage());
System.exit(1);

}
Appearance app= new Appearance();
Primitive geo = createGeometry(Texture.MULTI_LEVEL_LINEAR,texImage,app);
//spinGroup will be hooked into the interpolator

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 38 of 40

TransformGroup spinGroup = new TransformGroup();
spinGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
spinGroup.addChild(geo);
// Create a new Behavior object that will perform the
// desired operation on the specified transform and add
// it into the scene graph.
Alpha rotationAlpha = new Alpha(-1, 4000);
RotationInterpolator rotator =

new RotationInterpolator(rotationAlpha, spinGroup);
rotator.setSchedulingBounds(bounds);
//we'll need the Material to Interpolate the diffuse color
//set capability bit to allow interpolator to change at render time
Material mat = app.getMaterial();
mat.setCapability(Material.ALLOW_COMPONENT_WRITE);
Alpha colorAlpha = new Alpha(-1, 2000);
//We interpolate from black to white, looping indefinitely
Color3f endColor = new Color3f(1.0f,1.0f,1.0f);
Color3f startColor = new Color3f(0.0f,0.0f,0.0f);
ColorInterpolator colorInterp =

new ColorInterpolator(colorAlpha, mat,startColor,endColor);
colorInterp.setSchedulingBounds(bounds);
//throw in some light so we aren't stumbling
//around in the dark
Color3f lightColor = new Color3f(.5f,.5f,.5f);
AmbientLight ambientLight= new AmbientLight(lightColor);
ambientLight.setInfluencingBounds(bounds);
DirectionalLight directionalLight = new DirectionalLight();
directionalLight.setColor(lightColor);
directionalLight.setInfluencingBounds(bounds);
objRoot.addChild(rotator); //behavior gets attached at the top
objRoot.addChild(colorInterp); //behavior gets attached at the top
objRoot.addChild(spinGroup); //TransformGroup and sphere
objRoot.addChild(directionalLight);
objRoot.addChild(ambientLight);
return objRoot;

}
public ColorInterp() {
}
public void init() {

BranchGroup scene = createSceneGraph();
setLayout(new BorderLayout());
GraphicsConfiguration config =

SimpleUniverse.getPreferredConfiguration();
canvas = new Canvas3D(config);
add("Center", canvas);
// Create a simple scene and attach it to the virtual universe
universe = new SimpleUniverse(canvas);
setupView();
universe.addBranchGraph(scene);

}
public void destroy() {

universe.removeAllLocales();
}
//
// The following allows ColorInterp to be run as an application
// as well as an applet
//
public static void main(String[] args) {

new MainFrame(new ColorInterp(), 256, 256);
}

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 39 of 40

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java 3D joy ride Page 40 of 40

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Should I take this tutorial?
	Getting help
	A word about the samples

	Life from a Java 3D point of view
	Philosophy
	The need for speed
	So what's the Point?
	Moving things around
	Lighting and other effects

	Scene graph nuts and bolts
	The scene graph tree
	Group nodes
	Capability bits
	UglyCube example
	Scene graph key points

	Let's make some shapes
	The Primitive class
	The Shape3D class
	Per-vertex data
	Appearance objects
	Pop quiz

	Transform your life (or at least your geometry)
	The Transform3D class
	Move me, zoom me, spin me
	The OrbitBehavior class
	Lost in 3D space
	TransformOrder code
	Transformation key points

	Lighting and material properties
	The Light class
	Light types
	Lights in the scene graph
	Material properties
	Surface normals
	Calculating lighting effects
	Lighting and material key points

	Texture mapping
	Texture mapping
	Loading a texture
	Pasting on the image
	Shrinking and stretching a texture
	Texture mapping example
	Texture mapping key points

	Behaviors and interpolators
	The Behavior class
	Wakeup call
	The processStimulus() method
	Interpolators
	It's all in the timing
	Rotation example
	Color interpolator

	Java 3D wrapup
	Summary
	Resources
	Feedback

	Appendix: The source
	UglyCube.java
	TransformOrder.java
	Wallpaper.java
	SupermanInterp.java
	ColorInterp.java

