Java 3D joy ride

Presented by developerWorks, your source for great tutorials

I bm com devel oper Wr ks

Table of Contents

If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial...........ccoo e 2

2. Life from a Java 3D point Of VIEW.......covvvvieeiii i, 3

3. Scenegraphnutsand bolts ..o, 8

4. Let's make SOme Shapes.......ooviiiii i 10
5. Transform your life (or at least your geometry) ................... 13
6. Lighting and material properties ..........cccoevviiiiiiiiiiiiinnnnn. 16
7. TeXtUre MapPPINg ..ot 20
8. Behaviors and interpolators .........ccooevviiii i 23
9. JAVA 3D WIAPUD « ettt ettt et et e e 26
10. AppendiX: TN SOUICE. .. .viiiiii ettt eeeeeeaes 28

Java 3D joy ride Page 1 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 1. About this tutorial

Should | take this tutorial?

This tutorial is intended for Java programmers who do not have any 3D programming
experience. We'll start with some basic 3D concepts, and explore how to build a scene graph
-- the fundamental object used to describe the scene we want to render. Then we'll get to
some more powerful features of Java 3D. The emphasis will be on using some of the Java
3D utility classes to jump-start your programming.

Getting help

The Java 3D API is not typically included with your JDK. You can download the Java 3D API
for Windows and Solaris platforms from the Sun Java 3D Web site. Links to other versions
(AIX, HP-UX, IRIX, and Linux) are also located on this site, as well as many tutorial and
learning resources.

Another useful Web site is the Java 3D Community site. It includes an extremely useful FAQ,
which covers a lot of common problems that many Java 3D programmers may encounter.

For technical questions about the content of this tutorial, contact the author, Suzy Deffeyes at
suzyg@us.ibm.com. Suzy Deffeyes is a 3D software engineer at IBM in Austin, Texas. She
is the developer responsible for the original release of Java 3D for AlX, and represents IBM
on the Java expert group for 3D Media Utilities. She is currently a member of IBM's Linux
Technology Center. Her past projects included OpenGL API design and development, Direct
3D driver development, and C++ scene graph technologies. She also did the AIX ports for
Quake and Quake 2, and ensured that they were thoroughly tested.

A word about the samples

All of the images except the Quake screenshot in this tutorial were generated using Java 3D,
and captured using the NCSA Java 3D Portfolio (see Resources on page 26 .) Additionally,
most of the images are VRML files that were loaded using the VRML loader from the Web3D
Consortium. The Quake2 image was captured with Quake2 for AlIX, using a GXT6000P
graphics adapter. (Quake 2 uses OpenGL instead of Java 3D, but the basic 3D concepts are
the same.)

The code samples all borrow from the Java 3D SDK samples. In most of the samples, the
"meat” is in the cr eat eSceneG aph() method.

Java 3D joy ride Page 2 of 40


http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://www.j3d.org
http://www.j3d.org
http://www.j3d.org
http://www.j3d.org
mailto:suzyq@us.ibm.com
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www.jcp.org/jsr/detail/148.jsp
http://www.jcp.org/jsr/detail/148.jsp
http://www.jcp.org/jsr/detail/148.jsp
http://www.web3d.org
http://www.web3d.org

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 2. Life from a Java 3D point of view

Philosophy

The design of the Java 3D API is a significant departure from previous popular 3D graphics
APIs, like OpenGL and Direct3D, which were low-level procedural APIs that were closely tied
to the design of 3D hardware. Java 3D is a powerful, object-oriented API that provides a lot
of functionality beyond what we think of as a "3D graphics APL." Java programmers will likely
find the Java 3D programming environment to be familiar and comfortable. Java 3D does a
lot to manage your graphics data for you, allowing you to concentrate on other parts of your
programming.

With Java 3D, you first set up all your graphics objects (also called geometry objects) in a
scene graph, which is a hierarchical model containing all the information about the objects in
your scene and how they will be rendered. Then, you hand the scene graph over to Java 3D
for rendering. You don't have to write any code to handle displaying your data -- Java 3D
does that for you. You get to program at a higher level with the many built-in power tools.

The need for speed

3D programmers are pretty fussy about performance, and with good reason -- their
applications tend to be very performance sensitive. 3D application users notice very quickly if
a spinning CAD model isn't spinning smoothly, or if they can't interactively grab an object and
move it.

Thankfully, Java 3D can take advantage of any 3D acceleration that your graphics adapter
provides. Java 3D ultimately generates OpenGL calls in a JNI layer that can be accelerated
by your graphics card. OpenGL accelerated adapters are common in newer workstations, so
your Java 3D programs should be hardware accelerated.

Java 3D joy ride Page 3 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

So what's the Point?

3D graphics will add a whole new dimension to your life: the dimension of z. In a
three-dimensional ( x, y, z) coordinate, the Z component specifies distance from the viewer.
Java 3D uses z values to remove non-visible surfaces of distant obscured objects. The z
values of the red torus in the image below are small because it is close to the viewer. It will
obscure portions of the blue torus when the Z values of both tori are compared during
rendering.

Java 3D joy ride Page 4 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

A 3D object contains a collection of coordinates rendered together (see The Primitive class
on page 10 ). You can render them as points, lines, and polygons. A game programmer might
want to use points to simulate a spray of bullets as a monster charges toward a player. A
CAD designer might want to render using lines in order to see more detail about the very
precise object she is designing. And after most of a car object has been designed, the
designer can render it using filled polygons instead of wire-frame. While filled polygons will
look more realistic, the image doesn't allow the designer to easily work with the nitty-gritty
data describing the surface of the object.

In this tutorial, we'll stick to drawing polygons, because that's where most of the fun is.

Moving things around

After we have created the objects we want to display, we can move and scale them by using
3D transformations, in essence animating the objects. For example, when you're playing
Quake, the bad guy charges toward you when the game manipulates his 3D transformation.
The location, direction, and orientation of your view (before you are fragged!) is called the
viewpoint. As you sneak around looking for more ammo, a transformation changes your
viewpoint.

Java 3D joy ride Page 5 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Transformations are specified as matrices in the powerful Tr ansf or n8D class.
Tr ansf or 8D has many helper functions for specifying common transformations, such as
translations, rotations, and scaling.

Lighting and other effects

In addition to specifying what objects appear in our scene, we can also control how they
appear by specifying lighting effects (see The Light class on page 16 for more details on
lighting). You can specify the type of lighting effect, like a spotlight, and the color of the light.
You can also apply fog effects to your scene and set up automated behaviors of your
objects.

Texture mapping (commonly referred to as wallpapering) is used to provide more realism to a

scene. For instance, you can apply a wood grain image on an object's surface to simulate an
oak table top.

Geometry objects don't have to be opaque; they can be transparent or translucent. The lava

Java 3D joy ride Page 6 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

lamp in the image below uses both transparency and lighting effects, and the pottery is using
texture mapping.

Java 3D joy ride Page 7 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 3. Scene graph nuts and bolts

The scene graph tree

A Java 3D scene graph is a tree with two parts, or branches: content and view. The view
branch contains all the gory details of the complex Java 3D viewing model, and it defines the
viewpoint. The good news is that for most simple applications we can use the universe utility
classes, specifically the aptly-named Si npl eUni ver se, to handle most of the complexity of
view management.

The content branch describes what you see in your scene. It contains all your graphics
objects (spheres, boxes, or more complicated geometry objects), the transformations that
move them around, lights, behaviors, group nodes, and fog. We will focus most of our effort
on the content branch.

Group nodes

G oup objects make up the interior nodes of the content branch of the scene graph. You can
use G oup nodes to organize your scene graph into related pieces. Each Gr oup node
contains a number of children that will be rendered when the node is processed. Swi t ch
nodes and Tr ansf or MG oup nodes are specialized G oup nodes that allow you to exert
futher control over your scene graph.

Swi t ch nodes limit which children are visited during rendering, giving you control over which
portions of your scene graph are rendered. Using our Quake example, you could group all
the different weapons under one Swi t ch node, allowing you to render only the current
weapon being used.

Tr ansf or m& oup nodes apply a 3D transformation -- such as translation, scaling, or
rotation -- to their children during processing, allowing you to move, rotate, or scale entire
portions of your scene graph.

Capalbility bits

Java 3D will optimize the rendering of your scene graph by precalculating values where
possible. If you want to change certain aspects of the scene during rendering, you must
indicate what data you will want to change later by using capability bits. For example,
animating an object requires changing the transformation that affects the object. To do this,
you would enable the ALLOW TRANSFORM WRI TE bit in your Tr ansf or nla oup like this:

suzySpi n. set Capabi | it y(Transf or m& oup. ALLOW TRANSFORM WRI TE) ;

You can make any changes you like to scene graph data before you attach it to the universe.
Any changes after Java 3D starts rendering, however, are allowed only on objects with the
proper capability bits set.

Java 3D joy ride Page 8 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

UglyCube example

Take a look at UglyCube.java on page 28 , the
source for this example. But let me warn you, it's
really boring.

Ugl yCube just displays a cube. It's chopped down
from the Hel | oUni ver se sample that ships with
the Java 3D SDK. You create a Canvas3Dto draw
on, and create a Si npl eUni ver se to handle all
the view management for you. The top of the
content branch is always a Br anchG oup. We add
the cube as a child, and hand over the

Br anchGr oup for rendering.

After you have added the Br anchGr oup to the

Si mpl eUni ver se, Java 3D will take over
rendering in a continuous loop. We'll add different
types of nodes, such as lights and behaviors, later.

Here are the important lines from the example:

Canvas3D ¢ = new Canvas3D(
Si npl eUni ver se. get PreferredConfiguration());
set Layout (new Bor der Layout ());
add("Center", canvas);
BranchGr oup scene = new BranchG oup();
scene. addChi | d(new Col or Cube(0. 4));
Si npl eUni verse u = new Si npl eUni verse(c);
u. get Vi ewi ngPl at f or () . set Noni nal Vi ewi ngTr ansform);
u. addBr anchGraph(scene) ;

See, | told you it was boring.

Scene graph key points

* Si npl eUni ver se creates the view branch of the scene graph.
* Gr oup nodes give hierarchical structure onto your scene graph.
* Capability bits allow access to data in your scene graph nodes.

Java 3D joy ride Page 9 of 40



Presented by developerWorks, your source for great tutorials i bm coml devel oper Wr ks

Section 4. Let's make some shapes

The Primitive class

Primtive is an abstract class for geometry objects that can be used as simple building
blocks in your scene graph. Java 3D includes several useful concrete subclasses of
Prinmtive -- Sphere, Box, Cone, and Cyl i nder -- that allow you to create basic objects
easily without having to specify a lot of data. For example, when using the Spher e class, you
simply specify a radius, and all the vertex data is generated for you.

We'll use Pri mi ti ves exclusively in this tutorial so you don't get bogged down with the
details of having to specify all the graphics data.

The Shape3D class

If you are not using one of the Pri m ti ve classes, you'll have to use the Shape3D class to
specify all of the vertex data. You can specify data as triangles, quadrilaterals, lines, and
points. A geometric representation of a sphere would be defined as a polygonal mesh,
typically using strips of connected triangles or quads.

The image below should give you an idea of how strips are joined to make a mesh. The
strips are different colors to make them stand out. In this Shape3D object, each strip of
triangles shares common vertices with the adjacent triangle strip, which makes a mesh
surface when it is rendered.

Java 3D joy ride Page 10 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Per-vertex data

At a minimum, every vertex must have a location value (coordinate). In addition to location
values, you can specify other items for each vertex, such as a color value, normal vector,
and texture coordinates. Normal vectors are used for lighting effects, and texture coordinates
are used when applying textures to the surface via texture mapping. Additionally, each vertex
could also have an alpha, or transparency, value specified with its color.

Fortunately, vertex normals and texture coordinates are generated for you when using the
Primtive classes. We will explore vertex normals and texture coordinates, which are the
most common per-vertex attributes.

Appearance objects

While you can can specify a great deal of data with each vertex, many of your graphics
effects are applied using the Appear ance object. This object describes the overall attributes
of an object's surface. Each Shape3Dand Pri m ti ve object will have its own Appear ance
object, and each Appear ance object contains several attribute objects. For example, an
Appear ance object can contain both a Col ori ngAttri but es object and a

Renderi ngAttri but es object.

As you can see, with all the various types of graphics data, Java 3D applications can get
complicated in a hurry. For simplicity's sake, we will look only at the Text ur e and
Mat eri al attribute classes.

Pop quiz
Let's test your knowledge so far with this quick quiz. The Pri mi t i ve base class is used for:

Java 3D joy ride Page 11 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

High-level geometry objects generated by Java 3D
Defining spheres, cones, cylinders, and boxes
Specifying prehistoric cave drawings

Both 1 and 2

el N

Java 3D joy ride Page 12 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 5. Transform your life (or at least your geometry)

The Transform3D class

Transformations allow you to move, rotate, or resize geometry objects in your scene and can
be used to affect how the scene is viewed. You will use Tr ansf or n8D objects regularly
when doing Java 3D programming. A Tr ansf or n8D object represents a transformation
matrix. Tr ansf or n8D objects are commonly used by the Tr ansf or m& oup class. We
aren't going to go through the dozens of methods in Tr ansf or 8D -- just some of the helper
functions -- and thankfully (for me anyway) we won't be getting into linear algebra.

Move me, zoom me, spin me

Let's begin by looking at some of the helper functions in the Tr ansf or nBD class:

* set Transl ati on(Vect or 3f trans): Translates (moves) an object. Replaces the
translate values of this transform with the x, y, and z values in the t r ans argument.

* set Scal e(doubl e scal e) : Sets the scale of this transform. Use this function to
resize an object.

* rot X(doubl e angl e) : Sets the rotational component to a counterclockwise rotation
around the X axis. Note that calling r ot X() wipes out non-rotational components of
your matrix. The methods r ot Y() and r ot Z() are also useful. Angles are specified in
radians, so use Mat h. t oRadi ans(degr ees) to convert from degrees if necessary.

The OrbitBehavior class

The O bi t Behavi or class allows you to easily move the view around using the mouse. It
will translate, rotate, and zoom your scene as the user moves. The following code snippet
adds the Or bi t Behavi or to your Vi ewi ngPl at f or m No other code is needed. (We will
go over bounding spheres and behaviors later.)

Vi ewi ngPl at f orm vi ewi ngPl at form = uni ver se. get Vi ewi ngPl at form() ;
orbit = new O bitBehavior(canvas);
Boundi ngSpher e bounds =
new Boundi ngSpher e(new Poi nt 3d(0.0, 0.0, 0.0), 100.0);
or bi t. set Schedul i ngBounds( bounds) ;
vi ewi ngPl at f orm set Vi ewP| at f or nrBehavi or (orbit);

Note that the O bi t Behavi or is manipulating the view side of the scene graph using the
Si npl eUni ver se object. Also notice that most of the Java 3D SDK samples throw in an
O bi t Behavi or, and you should do the same in your programs too -- it will help to be able
to move things around and look at them. We will spend the rest of the tutorial back on the
content side of the scene graph.

Lost in 3D space

Java 3D joy ride Page 13 of 40



Presented by developerWorks, your source for great tutorials i bm coml devel oper Wr ks

As you build up your scene graph hierarchy, you will use a lot of Tr ansf or na oup nodes.
The geometry objects that you want to draw will be located at leaves in the graph. The path
of nodes connecting the root of your scene graph to a geometry leaf will generally have
several Tr ansf or nGr oup nodes in it. All of the transformations between the root and a
geometry object are applied to that shape, in order, and the ordering of the transformations
will affect the final location of your geometry object.

Keep each logical operation you want to do in a seperate Tr ansf or nBD object (for example,
keep the rotation in one object and a translate in another). Transformations are combined as
Java 3D walks down the scene graph during a rendering traversal.

Transformations are not necessarily commutative -- a rotation followed by a translation will
have a different result than a translation followed by a rotation. The image below illustrates
some transformations on several Cone primitives from two different viewpoints (the cylinders
represent axes). We'll review the code that generated this image and the scene graph
construction of each of these cones in the next panel.

TransformOrder code

Here is a simplified chunk of the
TransformOrder.java example. (See

Java 3D joy ride Page 14 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

TransformOrder.java on page 29 .) There are two
Tr ansf or m& oup nodes and a Cone, one
attached under the other. The only difference is the
order in which they are attached, and the Cone
color. The obj Rot at e Transf or nlr oup is
above the obj Tr ansl at e in the red cone,
whereas the yellow cone has the translate on top
and the rotate under it. This means there is a
different ordering in the path between the root
node and the cone. Here is code for creating the
cones and their transformations.

voi d rotateOnTop(){
t opNode. addChi | d( obj Rot at e) ;
obj Rot at e. addChi | d( obj Transl at e) ;
obj Transl at e. addChi | d(r edCone) ;

voi d transl ateOnTop(){
t opNode. addChi | d( obj Transl at e) ;
obj Transl at e. addChi | d( obj Rot at e) ;
obj Rot at e. addChi | d(yel | owCone) ;

voi d noTransform(){
t opNode. addChi | d( pur pl eCone) ;
}

Transformation key points

Transformations can be used to specify the location of geometric objects in the scene.
Use an Or bi t Behavi or with your Si npl eUni ver se.

Use Tr ansf or nBD helper functions.

For simplicity, keep each logical operation you want to do in a different Tr ansf or n8D
object.

* X X *

Java 3D joy ride Page 15 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 6. Lighting and material properties

The Light class

Lights are used to illuminate the geometry objects in your scene. There are several different
light types, which are all subclasses of the abstract Li ght class. All lights have a color
value, an on/off bit, and a bounding object that describes what areas of the scene it
illuminates.

In the real world, the objects around you are lit by several different light sources. The sunlight
coming in the window and the overhead light in the room will both illuminate everything in the
room. Both lights will affect the color and appearance of objects in the room. In Java 3D you
can simulate realistic lighting effects by using multiple light sources.

Light types

An Anbi ent Li ght is everywhere in the scene. It does not originate from a particular point,
and it does not point in a particular direction.

A Poi nt Li ght radiates from a specified location in all directions, and diminishes with
distance. An example of a point light is a desk lamp with no lampshade. A Spot Li ght isa
type of point light that restricts the light to a cone shape. An example of a spot light is a
flashlight.

A Directional Li ght shines in a particular direction but doesn't emanate from any
particular location. All light rays of a directional light travel in parallel. While technically the
sun is a point light source, sunlight can be more accurately imitated using a

Di rectional Li ght.

The teapot in the image has ambient light (you can see that the back side is illuminated

slightly), and directional light shining on the front. Both lights affect the final color of each
triangle on the surface of the teapot.

Java 3D joy ride Page 16 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Lights in the scene graph

All Li ght nodes are leaf nodes in the scene graph. When you create them, you need to
specify a Bounds object; we will be using Boundi ngSpher e. The light will affect only those
geometry objects that are inside the volume defined by the light's Boundi ngSpher e, so we'll
need to make sure the Boundi ngSpher e is large. After we create the light, we'll attach it to
the scene graph at the top Br anchG oup. Lights, behaviors, and textures are all added at
the top of a scene graph.

Material properties

Material properties describe how an object reflects light. If your object (Prinmiti ve or
Shape3D) does not have a Mat er i al object in its Appear ance object, it will not be
illuminated even though you have a light source specified. You must create a Mat er i al
object, enable lighting in the Mat eri al object, and add it to the Appear ance object. The
Mat eri al object is one of several different attribute sets that are held in the Appear ance
object.

To better understand how material properties affect an object's appearance, think about a
shiny ruby gemstone object and a red carpet. While they are both red, they will reflect light
differently -- the ruby will have a bright highlight where the light bounces off it, and the carpet
will appear to scatter the light. To specify this difference in appearance to Java 3D you'd give
the ruby a high shi ni ness value in the Mat eri al object and the carpet a very low

shi ni ness value.

The image below illustrates a number of spheres with different material properties.

Java 3D joy ride Page 17 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Surface normals

A surface normal is a vector that is perpendicular to the surface at the vertex, representing
the orientation of the surface at that vertex. The surface normal affects how light is reflected
from a surface when calculating lighting effects. The surface normals and position of the
viewer determine where the shiny highlight, or specular reflection, is located on a sphere.

Fortunately, the Pri i t i ve classes will generate surface normals for you, so we won't
discuss normals further in this tutorial.

Calculating lighting effects

Java 3D uses the surface normal to calculate lighting effects. Because the effect is
calculated for each vertex, objects with many vertices will look more realistic.

Java 3D joy ride Page 18 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

The number of vertices in the Spher e object in the image above is controlled by the
di vi si ons parameter of the Spher e object. The coarse sphere uses a value of 9. The
smooth sphere uses a value of 30 and thus looks smoother.

Lighting and material key points

* Light location and color, material properties, and surface normals all affect the final
color of your lit objects.

* The Appear ance class contains a Mat er i al object, which holds the lighting state for
your geometry. Remember to enable lighting in your Mat eri al object.

* The Mat eri al class defines how your geometry reflects light. It includes ambient,
diffuse, and specular colors, and shininess.

* Ambient, point, and directional lights provide different lighting effects. Always throw in
an ambient light just to make sure you have some light in your scene.

* Normal values determine a surface's plane orientation and are generated for you when
using the Prim ti ve classes.

Java 3D joy ride Page 19 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 7. Texture mapping

Texture mapping

Texture mapping increases realism in your scene
by adding additional visual detail to the surfaces of
your objects.

Suppose you want to have a stone wall in your
scene. You could define geometry for each stone,
and geometry for each piece of mortar, and render
all the objects to simulate the stone wall. That
would be a lot of work. An alternative is to use
texture mapping. In this case, you would use a
single rectangle object to represent the whole wall,
and paste an image of a stone wall onto the
rectangle (such as the stone.jpg image that ships
with Java 3D).

To use texture mapping, you need to specify the
image, where to paste it on the object, and what to
do when the image doesn't fit quite right, such as
when applying a rectangular bitmap to a
non-rectangular polygon. We'll work through these
tasks in the remainder of this section.

The technology advances in texture mapping
hardware in recent years have been fast and
furious, resulting in a subject of considerable
complexity, which is beyond the scope of this
tutorial. If you're interested in the more advanced
details of texture mapping, | recommend taking the
Texturing tutorial on Sun's Java 3D web site (see
Resources on page 26 ).

Loading a texture

Like lighting, texture mapping affects the entire geometry object. We will be using the
Appear ance class again to specify the texture mapping effect.

Java 3D has simplified the process of loading texture images. The Text ur eLoader class is
in the Java 3D utility classes:

Text ureLoader texLoader = new TexturelLoader (url,imgeobserver)
appear ance. set Text ure(t exLoader . get Texture());

Always set the width and height of your texture image to a power of 2 for a realistic look.
Other values will cause Text ur eLoader to squish the texture.

If the image file has only RGB values, and no alpha value, then use:

Java 3D joy ride Page 20 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

TextureLoader texLoader = new TexturelLoader (url,new String("RG"), imageobserver)

Pasting on the image

Now that we have a texture map loaded, we need to specify how to paste it on our object.
We do this by using texture coordinates for each vertex. Texture coordinates define which
chunk of the texture image is used for each polygon of your object. A useful analogy is to
think about how you would place wrapping paper on a present.

Fortunately, the Pri i ti ve classes will generate texture coordinates for you -- just as they
generate normals for calculating lighting.

If you are not using the Pri m ti ve classes, you need to define texture coordinates yourself.
To do this, you specify values between 0. 0 and 1. 0 in both the x and y direction. Using our
stone wall example, we would need to assign texture coordinates for each of the corners of
the wall. Assuming we want to use the whole image of the stone on our wall, we would need
to assign one for each of the four corners: (0, 0),(1,0),(1, 1) and (0, 1). This would
stretch the whole stone image across the one rectangle that makes up the wall.

Shrinking and stretching a texture

Texture mapping gets complicated when you need to apply a rectangular texture to a
non-rectangular region. Shrinking and stretching a texture as it is pasted on an object is
called filtering.

Texture mapping will look more realistic if you provide several different sized representations
(minimaps) of your texture for Java 3D to use when filtering.

There are several different ways to filter your texture. You choose the type you want based
on your graphics card's performance and the look you want. You'll need to do some
experimenting to determine what looks best.

Texture mapping example

Take a look at Wallpaper.java on page 32 , which uses texture-mappedPri m ti ves.
Remember that the Pri m t i ve classes will generate the texture coordinates that define
where the image is pasted on the object. Our example uses the Text ur eLoader utility to
read in a jpeg image as well as to generate the filtered images used in mip-mapping. Note
how the texture is squeezed into the poles of the sphere, and the tip of the cone. In each
cone/sphere pair a different texture filter is used. You can notice filtering differences on the
border between white and red stripes.

To have the texture loader generate prefiltered images for you, specify GENERATE_M PNVAP

when constructing a Text ur eLoader . You specify your mipmap filtering function in your
Text ur e object (stored in the Appear ance object.)

Java 3D joy ride Page 21 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Texture mapping key points

* Texture mapping is the process of gluing an image onto a geometry object. The image
orientation and placement on the geometry object is controlled using texture coordinate
data for each vertex.

* Use the Text ur eLoader utility to read in the image file, and specify the
Text ur eLoader . GENERATE_M PMAP flag in the constructor.

* Letthe Primtive classes generate texture coordinates for you, instead of specifying
them yourself. Use the Pri ni ti ve. GENERATE TEXTURE_COORDS when constructing
aPrimtive.

* Texture mapping is a complex subject. Try not to get buried in all the different options.
Use the defaults when you're starting out.

Java 3D joy ride Page 22 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 8. Behaviors and interpolators

The Behavior class

Behaviors allow you to animate scene elements and interact with the scene graph. The
Behavi or class provides a mechanism for your code to modify the scene graph. A
Behavi or is placed in the scene graph and is triggered by a stimulus, such as a mouse
movement.

Like lights, behaviors have bounds and capability bits, and must be attached to the scene
graph. So if your behavior doesn't work, make sure the bounds are large enough, that the
behavior is enabled, and that you have attached it in the scene graph.

Interpolators provide an easy way to add some simple animations to your scene graph.
Interpolators can be fun to play around with, and we will be using them in our examples. But
first we'll look at some of the basics of Behavi or handling.

Wakeup call

You specify the conditions that will trigger your behavior with a WakeupCri t eri on.
Examples of wakeup criteria include a key press, mouse event, timer, and elapsed number of
frames. You specify the criteria when you initially create the behavior and each time you
handle a behavior message. Or bi t Behavi or is an example of a Behavi or that wakes up
on mouse events.

Using WakeupOnEl apsedTi e, you can change a Tr anf or ntx oup's Tr ansf or n8Dto
animate a portion of your scene graph.

The processStimulus() method

When the wakeup event occurs, the behavior's pr ocessSti mul us() method is called. You
can do just about anything in the pr ocessSti nmul us() method -- you can add or delete
objects from the scene, change transformations, change an object's appearance, detect
when two objects collide with each other, or whatever else you need to do.

Keep in mind that anything you want to change in your scene graph will need to have its
related capability bit set. For example, to change a Tr ansf or nar oup node in the
processSti nul us() method, you will need to set the

Transf or mGr oup. ALLOW TRANSFORM WRI TE bit.

Interpolators

Interpolators are built-in goodies that can help you add simple animations to your scene
graph. They smoothly transition, or interpolate, between a range of values that you define.

The GearBox sample that ships with the Java 3D SDK uses several rotation interpolators to
animate these gears shown in the image below.

Java 3D joy ride Page 23 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Each gear is hooked up to a Rot at i onl nt er pol at or that gets triggered repeatedly after a
certain amount of elapsed time. The Rot ati onl nt er pol at or applies a rotation to the
Tr ansf or m& oup that contains the gear geometry object, causing the gear to rotate.

It's all in the timing

The Al pha object generates a value between 0.0 and 1.0 as a function of time. (Note that
the Al pha object is not related to a vertex's alpha value, which specifies its transparency.)

Interpolators use the Al pha object to drive their changes to the scene graph. The value of an
Al pha object can change over time, depending on how you program it. Our gears spin
continuously at a constant speed. Each time the Rot at i onl nt er pol at or gets triggered
by the Al pha object, it uses the generated alpha value to compute the new rotation (that is,
to make the gears rotate.) You create a simple Al pha that will indefinitely loop at a constant
speed using the following code:

Al pha(int | oopCount, |ong speed)

There are plenty of options for changing the behavior of the Al pha object. You can have it
accelerate, stop for a period of time, and then slowly go back down.

Rotation example

Supermaninterp.java on page 34 creates aSpher e and then applies a map texture to it. (The
earth looks a little fuzzy because the map used for the texture did not have a lot of detail.) |
setup a Transf or m& oup in a Rot ati onl nt er pol at or, and then attach the textured
Spher e below the Tr ansf or nar oup. As the | nt er pol at or changes the

Tr ansf or m& oup, the earth spins. Because | nt er pol at or s change values in the scene

Java 3D joy ride Page 24 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

graph after the rendering loop starts, we must set one of the capability bits:

spi nG oup. set Capabi | i t y(Transf or nGr oup. ALLOW TRANSFORM V\RI TE)

In this example I've configured the Al pha object to accelerate the spin clockwise, and then
reverse it to spin counterclockwise.

Color interpolator

For ColorInterp.java on page 37, I've added code to attach a color interpolator to the spinning
globe. Instead of affecting a Tr ansf or m& oup, it affects the diffuse color in a Mat eri al
object. Because the Mat eri al object will be changing after the render loop starts, | set its
capability bit.

mat eri al . set Capabi | ity(Material. ALLON COWPONENT _WRI TE) ;
Al pha col or Al pha = new Al pha(-1, 2000);
Col or 3f endCol or = new Col or 3f (1. Of, 1. Of , 1. Of ) ;
Col or 3f startCol or = new Col or 3f (0. 0f, 0. 0f , 0. Of ) ;
Col orlnterpolator colorinterp =
new Col or | nt er pol at or (col or Al pha, mat, start Col or, endCol or);
col orl nt er p. set Schedul i ngBounds( bounds) ;

Java 3D joy ride Page 25 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 9. Java 3D wrapup

Summary

That completes our introduction to Java 3D. We covered a lot of ground in a very short time,
so let's review the high points:

*

Java 3D allows you to develop 3D graphics applications that have a high degree of
visual realism. You build up a scene graph that describes everything you want to
render, including geometry objects and visual effects.

The built-in set of Pri mi t i ve classes allow you to quickly build up a scene graph full of
geometry objects without worrying about some of the more complicated details like
texture coordinates and surface normals.

You describe lighting of your scene with the Li ght classes and the Mat eri al .
You can provide additional realism using texture mapping.

Interpolators are a type of Behavi or that allow you to add animations to your scene.

The fun of graphics programming in general and Java 3D in particular is hard to convey with
words. It's the hands-on experimentation that will hook you and keep you up late at night. |
recommend that you download the example code in Resources on page 26 and try out
different techniques to see what works and how. Use different lighting and play around with
textures. Just have fun!

Resources

*

Download the source code samples used in this tutorial (java3dsource.zip).

Visit Sun's Java 3D Web site, which includes lots of good information, including some
excellent tutorials.

The Java 3D community site offers comprehensive resources and includes a great FAQ
that addresses common problems you may encounter as you get up to speed with this
complex API.

NCSA Portfolio is a collection of utility objects to use with your Java 3D programs. It
comes with full documentation for the objects in the library and example source code
that shows how to use the objects.

Visit the Web3D Consortium Web site for details on VRML.

Java 3D for AIX, now included in the IBM Java Developer Kit for AlX, is a scene graph
API for 3D graphics that extends the core Java API and allows you to easily incorporate
high-quality, scalable, platform-independent, three-dimensional graphics into
Java-based applications and applets.

Java 3D joy ride Page 26 of 40


java3dsource.zip
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D/collateral
http://www.j3d.org
http://www.j3d.org
http://www.j3d.org
http://www.j3d.org
http://www.ncsa.uiuc.edu/~srp/Java3D/portfolio
http://www.ncsa.uiuc.edu/~srp/Java3D/portfolio
http://www.web3d.org
http://www.web3d.org
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://alphaworks.ibm.com/aw.nsf/376583DBD044EE5988256ACD00318D15/8EE5D632D5F4A49688256A2600607725?opendocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://alphaworks.ibm.com/aw.nsf/376583DBD044EE5988256ACD00318D15/8EE5D632D5F4A49688256A2600607725?opendocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://alphaworks.ibm.com/aw.nsf/376583DBD044EE5988256ACD00318D15/8EE5D632D5F4A49688256A2600607725?opendocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://alphaworks.ibm.com/aw.nsf/376583DBD044EE5988256ACD00318D15/8EE5D632D5F4A49688256A2600607725?opendocument&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developerworks/java/jdk/aix/index.html&origin=j

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

* IBM research has several ongoing and very interesting projects in the world of graphics
and visualization.

* If you're interested in expanding your graphics programming universe beyond Java 3D,
visit the OpenGL home page for information on this robust library.

Feedback

We welcome your feedback on this tutorial, and look forward to hearing from you.

Java 3D joy ride Page 27 of 40


http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/compsci/graphics/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/compsci/graphics/index.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/compsci/graphics/index.html&origin=j
http://www.opengl.org
http://www.opengl.org
http://www.opengl.org

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 10. Appendix: The source

UglyCube.java

/

L I R S R T N N I S T I T

*

*/

Copyright (c) 1996-2001 Sun Mcrosystens, Inc. Al Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
nodi fy and redistribute this software in source and binary code form
provided that i) this copyright notice and |license appear on all copies of
the software; and ii) Licensee does not utilize the software in a nanner
which is disparaging to Sun

This software is provided "AS IS," without a warranty of any kind. ALL
EXPRESS OR | MPLI ED CONDI TI ONS, REPRESENTATI ONS AND WARRANTI ES, | NCLUDI NG ANY
| MPLI ED WARRANTY OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPCSE OR
NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND I TS LI CENSORS SHALL NOT BE

LI ABLE FOR ANY DAMAGES SUFFERED BY LI CENSEE AS A RESULT OF USI NG MODI FYI NG
OR DI STRI BUTI NG THE SOFTWARE OR I TS DERI VATI VES. I N NO EVENT WLL SUN OR I TS
LI CENSORS BE LI ABLE FOR ANY LOST REVENUE, PROFI T OR DATA, OR FOR DI RECT,

I NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DANMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LI ABILITY, ARI SING QUT OF THE USE OF
OR I NABI LI TY TO USE SOFTWARE, EVEN I F SUN HAS BEEN ADVI SED OF THE
POSSI Bl LI TY OF SUCH DAMAGES.

This software is not designed or intended for use in on-line control of
aircraft, air traffic, aircraft navigation or aircraft communications; or in
the design, construction, operation or maintenance of any nucl ear

facility. Licensee represents and warrants that it will not use or
redistribute the Software for such purposes.

i mport j ava. appl et. Appl et;
i mport java.aw . BorderLayout;

i mport comsun.j3d.utils.applet.MinFraneg;
i mport comsun.j3d.utils.geonetry.*;

i mport comsun.j3d.utils.universe.*;

i mport javax. media.j 3d.*;

i mport javax.vecmath. *;

//Bare minimumreally boring cube.

/1

Shows bare bones Uni verse creation

public class Ugl yCube extends Applet {

private SinpleUniverse universe
public Ugl yCube() {
}

public void init() {
/'l canvas to draw on, ask SinpleUniverse what config to use
Canvas3D canvas = new Canvas3D(
Si mpl eUni ver se. get Pref erredConfiguration());
set Layout (new Bor der Layout ());
add("Center", canvas);
//create top of our scene graph
BranchG oup scene = new BranchG oup();
/lattach the cube to it
scene. addChi | d( new Col or Cube(0. 4));
//create universe, and attach our geonetry to it.
Si npl eUni verse u = new Si npl eUni ver se(canvas);
u. get Vi ewi ngPl at forn() . set Noni nal Vi ewi ngTr ansforn();
/lrendering starts after BranchGroup is attached.
u. addBr anchGraph(scene) ;

/1 The followi ng allows UglyCube to be run as an application
/1 as well as an appl et

Java 3D joy ride Page 28 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

public static void nmain(String[] args) {
new Mai nFranme(new Ugl yCube(), 256, 256);

}
}

TransformOrder.java
/

L R I B R R I N R B R R S

*

*/

Copyright (c) 1996-2001 Sun Mcrosystens, Inc. Al Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
nmodi fy and redistribute this software in source and binary code form
provided that i) this copyright notice and |license appear on all copies of
the software; and ii) Licensee does not utilize the software in a manner
whi ch is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL
EXPRESS OR | MPLI ED CONDI TI ONS, REPRESENTATI ONS AND WARRANTI ES, | NCLUDI NG ANY
| MPLI ED WARRANTY OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPCSE OR
NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND | TS LI CENSORS SHALL NOT BE

LI ABLE FOR ANY DAMAGES SUFFERED BY LI CENSEE AS A RESULT OF USI NG MODI FYI NG
OR DI STRI BUTI NG THE SOFTWARE OR | TS DERI VATI VES. I N NO EVENT WLL SUN OR I TS
LI CENSORS BE LI ABLE FOR ANY LOST REVENUE, PROFI T OR DATA, OR FOR DI RECT,

| NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LI ABILITY, ARI SING QUT OF THE USE OF
OR I NABI LI TY TO USE SOFTWARE, EVEN | F SUN HAS BEEN ADVI SED OF THE

POSSI BI LI TY OF SUCH DAMAGES.

This software is not designed or intended for use in on-line control of
aircraft, air traffic, aircraft navigation or aircraft communications; or in
t he design, construction, operation or nmaintenance of any nucl ear

facility. Licensee represents and warrants that it will not use or
redistribute the Software for such purposes.

i mport java. appl et. Appl et;
i mport j ava. awt. Border Layout ;

i mport java.awt.event.*;

i mport java.awt.*;

i mport java.awt. G aphi csConfiguration;

i mport com sun.j3d.utils.appl et. Mi nFrane;
i mport comsun.j3d.utils.geonetry.*;

i mport comsun.j3d.utils.universe.*;

i mport javax.media.j 3d.*;

i mport javax.vecmat h. *;

i mport comsun.j3d.utils.behaviors.vp.*;

/**

*/

Cenerates a scene graph with the cylinders that
make up the axis, and 3 cones.

Add one Cone with rotate before translate, and
anot her that has transl ate before rotate.

For reference, throwin a cone without translate
or rotate

public class TransfornOrder extends Applet {

public static final int X =1;
public static final int Y =2;
public static final int Z =3;
public static final int ROTATE TOP =4,
public static final int TRANSLATE TOP =5;
public static final int NO TRANSFORM =6;

private SinpleUniverse universe ;

Java 3D joy ride Page 29 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

private BranchG oup scene;
private Canvas3D canvas;
privat e Boundi ngSphere bounds =
new Boundi ngSpher e(new Poi nt 3d(0.0, 0.0, 0.0), 1000.0);
private Appearance red = new Appearance();
private Appearance yell ow = new Appearance();
private Appearance purple = new Appearance();
TransfornBD rotate = new TransfornBD();
TransfornBD transl ate = new Transforn8D();
public void setupView) {
/** Add sone viewrelated things to view branch side
of scene graph */
/1 add nmouse interaction to the View ngPlatform
O bit Behavi or orbit = new O bitBehavi or (canvas,
O bi t Behavi or. REVERSE_ALL| O bi t Behavi or. STOP_ZOOW ;
orbit. set Schedul i ngBounds( bounds) ;
Vi ewi ngPl at f orm vi ewi ngPl at form = uni ver se. get Vi ewi ngPl at form() ;
/1 This will nmove the ViewPlatformback a bit so the
/1 objects in the scene can be vi ewed.
vi ewi ngPl at f or m set Nom nal Vi ewi ngTransf orn();
vi ewi ngPl at f orm set Vi ewP| at f or nrBehavi or (orbit);

/'l construct each branch of the graph, changing the order children added
/1l since Goup node can only have one parent, have to construct
/'l new translate and rotate group nodes for each branch.
G oup rotateOnTop(){

Group root=new G oup();

Transf or m& oup obj Rotate = new TransfornmG oup(rotate);

Transf ornaroup obj Transl ate = new Transfor naroup(transl ate);

Cone redCone=

new Cone(.3f, 0.7f, Prinitive. GENERATE NORVALS, red);

r oot . addChi | d( obj Rot at e) ;

obj Rot at e. addChi | d( obj Transl at e) ;

obj Transl at e. addChi | d(redCone); //tack on red cone

return root;

Group transl ateOnTop() {
G oup root=new G oup();
Transf or naroup obj Rotate = new TransfornG oup(rotate);
Transf or m& oup obj Transl ate = new Transfor m& oup(transl ate);
Cone yel | owCone=

new Cone(.3f, 0.7f, Primtive. GENERATE _NORMALS, vyell ow);

r oot . addChi | d( obj Transl at e);
obj Transl at e. addChi | d( obj Rot at e) ;
obj Rot at e. addChi | d(yel | owCone); //tack on yell ow cone
return root;

G oup noTransform){
Cone pur pl eCone=
new Cone(.3f, 0.7f, Primtive. GENERATE _NORMALS, purple);
return purpl eCone;

}

/** Represent an axis using cylinder Primtive. Cylinder is
aligned with Y axis, so we have to rotate it when
creating X and Z axi s

*/

public Transfornroup createAxis(int type) {

/ I appearance and |ightingProps are used in
/1lighting. Each axis a different color
Appear ance appearance = new Appear ance();
Material |ightingProps = new Material();
TransfornBD t = new TransfornBD();
switch (type) {

case Z:

t.rot X(Mat h. t oRadi ans(90.0));

Java 3D joy ride Page 30 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

I'i ghtingProps. set Anbi ent Col or (1. Of , 0. Of , 0. Of ) ;
br eak;
case Y:
/1 no rotation needed, cylinder aligned with Y already
I'i ghtingProps. set Anbi ent Col or (0. Of , 1. Of , 0. Of ) ;
br eak;
case X
t.rotZ(Mat h.toRadi ans(90.0));
I'i ghtingProps. set Anbi ent Col or (0. Of , 0. Of , 1. Of ) ;
br eak;
def aul t:
br eak;
}
appear ance. set Materi al (1 i ghtingProps);
Transf ormG oup obj Trans = new Transf or m& oup(t);
obj Trans. addChi | d( new Cyl i nder (.03f, 2. 5f, Prim tive. GENERATE _NORMALS, appear anct
return obj Trans;

/** Create X, Y, and Z axis, and 3 cones. Throws in
some quick lighting to help view ng the scene
*/
public BranchG oup createSceneG aph() {
/1l Create the root of the branch graph
BranchG oup obj Root = new BranchG oup();
/145 degree rotation around the X axis
rotate.rot X(Mat h. t oRadi ans(45.0));
/ltranslation up the Y axis
transl ate. set Transl ati on(new Vect or 3f (0. 0f, 2. 0f, 1. 0f)); //SCD 0.0f));
/I Material objects are related to lighting, we'll cover
/lthat |ater
Mat erial redProps = new Material ();
redPr ops. set Anbi ent Col or (1. 0f, 0. 0f,0.0f); //red cone
red. set Materi al (redProps);
Materi al yell owProps = new Material ();
yel | owPr ops. set Anbi ent Col or (1. 0f , 1. 0Of , 0. 0f); //yel |l ow cone
yel | ow. set Mat eri al (yel | owPr ops) ;
Mat eri al purpl eProps = new Material ();
pur pl eProps. set Anbi ent Col or (0. 8f, 0. 0f, 0.8f); //purple cone
purpl e. set Mat eri al (purpl eProps);
/'l Create a x,y,z axis, and then 3 cone branches
obj Root . addChi | d(cr eat eAxi s(X));
obj Root . addChi | d( cr eat eAxi s(Y));
obj Root . addChi | d(creat eAxi s(Z2));
obj Root . addChi | d(noTransform()); /I purple cone
obj Root . addChi | d( r ot at eOnTop() ) ; /lred cone
obj Root . addChi | d(t ransl at eOnTop()); /lyell ow cone
//throw in sone light so we aren't stunbling
/laround in the dark
Col or 3f lightColor = new Col or3f (. 3f,.3f,.3f);
Anbi ent Li ght anbi ent Li ght = new Anbi ent Li ght (1i ght Col or);
anbi ent Li ght . set | nfl uenci ngBounds( bounds) ;
obj Root . addChi | d( ambi ent Li ght ) ;
Directional Li ght directional Light = new Directional Light();
di rectional Li ght. set Col or (1ightCol or);
di rectional Li ght. setl nfl uenci ngBounds(bounds) ;
obj Root . addChi | d(di recti onal Li ght);
return obj Root;

}
public TransfornOrder() {

}
public void init() {
BranchG oup scene = creat eSceneG aph();
set Layout (new Border Layout ());
G aphi csConfiguration config =
Si mpl eUni ver se. get Pref erredConfi guration();

Java 3D joy ride Page 31 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

canvas = new Canvas3D(config);

add("Center", canvas);

/1l Create a sinple scene and attach it to the virtual universe
uni verse = new Si npl eUni ver se(canvas);

set upVi ew) ;

uni ver se. addBr anchGr aph(scene);

public void destroy() {
uni verse. renoveAl | Local es();
}

/1
/1 The following allows Transforntrder to be run as an application
/1 as well as an appl et
11
public static void main(String[] args)
new Mai nFranme(new TransfornOrder (), 256, 256);
}

Wallpaper.java

/

L R I B R R I N R I I I

*

*/

Copyright (c) 1996-2001 Sun Mcrosystens, Inc. Al Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
nmodi fy and redistribute this software in source and binary code form
provided that i) this copyright notice and |license appear on all copies of
the software; and ii) Licensee does not utilize the software in a manner
whi ch is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL
EXPRESS OR | MPLI ED CONDI TI ONS, REPRESENTATI ONS AND WARRANTI ES, | NCLUDI NG ANY
| MPLI ED WARRANTY OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPCSE OR
NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND | TS LI CENSORS SHALL NOT BE

LI ABLE FOR ANY DAMAGES SUFFERED BY LI CENSEE AS A RESULT OF USI NG MODI FYI NG
OR DI STRI BUTI NG THE SOFTWARE OR | TS DERI VATI VES. I N NO EVENT WLL SUN OR I TS
LI CENSORS BE LI ABLE FOR ANY LOST REVENUE, PROFI T OR DATA, OR FOR DI RECT,

| NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LI ABILITY, ARI SING QUT OF THE USE OF
OR I NABI LI TY TO USE SOFTWARE, EVEN | F SUN HAS BEEN ADVI SED OF THE

POSSI BI LI TY OF SUCH DAMAGES.

This software is not designed or intended for use in on-line control of
aircraft, air traffic, aircraft navigation or aircraft communications; or in
t he design, construction, operation or nmaintenance of any nucl ear

facility. Licensee represents and warrants that it will not use or
redistribute the Software for such purposes.

i mport java. appl et. Appl et;
i mport java. awt. Bor der Layout ;

i mport java.awt.event.*;

i mport java.awt.*;

i mport java.awt. G aphi csConfiguration;

i mport com sun.j3d.utils.appl et. Mi nFrane;
i mport comsun.j3d.utils.geonetry.*;

i mport comsun.j3d.utils.universe.*;

i mport comsun.j3d.utils.inmge.*;

i mport j avax. medi a.j 3d. *;

i mport javax.vecmath. *;

i mport comsun.j3d.utils.behaviors.vp.*;

/**

Java 3D joy ride Page 32 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Si mpl e Texture Mappi ng exanpl e
*/
public class Wl |l paper extends Applet {

private SinpleUniverse universe ;

private BranchG oup scene;

private Canvas3D canvas;

privat e Boundi ngSphere bounds =

new Boundi ngSpher e(new Poi nt 3d(0.0, 0.0, 0.0), 1000.0);

private static java.net.URL texlnmage = null;

public G oup createCeonetry(int filter, float y, java.net.URL texlmge) {
/**
Create sone Texture mapped objects
*/
Appear ance appearance = new Appear ance();
TextureLoader tex = new TexturelLoader (texl mage, TexturelLoader. GENERATE M PMAP |,
Texture texture = tex.getTexture();
texture.setMnFilter(filter) ;
appear ance. set Texture(texture);
TextureAttributes texAttr = new TextureAttributes();
texAttr. set Text ureMode( Text ureAttri but es. MODULATE) ;
appear ance. set TextureAttri butes(texAttr);
Col or 3f bl ack = new Col or3f (0. 0f, 0.0f, 0.0f);
Col or3f white = new Col or3f(1.0f, 1.0f, 1.0f);
/1l Set up the material properties
appear ance. set Materi al (new Material (white, black, white, black, 1.0f));
//use to build tree hierarchy
Group topNode = new G oup();
TransfornBD transl ate = new Transforn8D() ;
transl ate. set Transl ati on(new Vector 3f(.5f,y,-0.5f));
Tr ansf or m& oup gi mreSpace = new Tr ansf or nia oup(transl ate);
Cone cone = new Cone(.4f,0.8f,Primtive. GENERATE NORMALS| Prim tive. GENERATE TI
gi mreSpace. addChi | d( cone) ;
t opNode. addChi | d( gi nmeSpace); //cone at bottom
transl ate = new TransfornBD();
transl ate. set Transl ati on(new Vector 3f(-0.5f,y,-0.5f));
gi mreSpace = new Transfor nta oup(transl ate);
Sphere sphere = new Sphere(.4f, Primtive. GENERATE NORMALS| Prim tive. GENERATE TI
gi mreSpace. addChi | d( sphere);
t opNode. addChi | d( gi nmeSpace); //cone at bottom
return topNode;

}
public void setupView) {
/** Add sone viewrelated things to view branch side
of scene graph */
/1 add nmouse interaction to the View ngPlatform
O bit Behavi or orbit = new O bitBehavi or (canvas,
O bi t Behavi or. REVERSE_ALL| O bi t Behavi or. STOP_ZOOW ;
orbit. set Schedul i ngBounds( bounds) ;
Vi ewi ngPl at f orm vi ewi ngPl at form = uni ver se. get Vi ewi ngPl at form() ;
/1 This will nmove the ViewPlatformback a bit so the
/1 objects in the scene can be vi ewed.
vi ewi ngPl at f or m set Nom nal Vi ewi ngTransf orn() ;
vi ewi ngPl at f orm set Vi ewP| at f or nrBehavi or (orbit);

}
public BranchG oup createSceneG aph() {
/1l Create the root of the branch graph
BranchGroup obj Root = new BranchG oup();
/]l Create a sinple Shape3D node; add it to the scene graph.
/1l Set up the texture map
/1l the path to the inmage
obj Root . addChi | d(creat eGeonetry( Texture. BASE LEVEL PO NT, 1. Of , t exl mage) ) ;
obj Root . addChi | d(creat eGeonetry( Texture. MULTI _LEVEL_PQ NT, 0. Of , t exl mage) ) ;
obj Root . addChi | d(creat eGeonetry( Texture. MULTI _LEVEL LI NEAR, -1.0f,texlmage));
//throw in some light so we aren't stunbling
/laround in the dark

Java 3D joy ride Page 33 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Col or 3f lightColor = new Col or3f(.5f,.5f,.5f);

Anbi ent Li ght anbi ent Li ght = new Anbi ent Li ght (1i ght Col or);
anbi ent Li ght . set | nfl uenci ngBounds( bounds) ;

obj Root . addChi | d( ambi ent Li ght ) ;

Directional Li ght directional Light = new Directional Light();
di rectional Li ght. set Col or (1ightCol or);

di rectional Li ght. setl nfl uenci ngBounds(bounds) ;

obj Root . addChi | d(di recti onal Li ght);

return obj Root;

i)ubl i c vallpaper() {

public void init() {
BranchG oup scene = creat eSceneG aph();
set Layout (new Border Layout ());
G aphi csConfiguration config =
Si mpl eUni ver se. get Pref erredConfi guration();
canvas = new Canvas3D(config);
add("Center", canvas);
/'l Create a sinple scene and attach it to the virtual universe
uni verse = new Si npl eUni ver se(canvas);
set upVi ew() ;
uni ver se. addBr anchGr aph(scene);
}
public void destroy() {
uni verse. renoveAl | Local es();
}

I
/1 The followi ng all ows Wal | paper to be run as an application
/1 as well as an appl et
/1
public static void main(String[] args) {
try{
if (args.length == 0)
texl mage = new java.net.URL("file:./inmges/speedchase.pg");
} else {
texl mage = new java.net.URL(args[0]);

}

catch (java. net. Mal fornedURLException ex) {
System out . printl n(ex. get Message());
Systemexit(1l);

new Mai nFranme(new Wl | paper (), 256, 256);

Supermaninterp.java
/
Copyright (c) 1996-2001 Sun Mcrosystens, Inc. Al Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
nmodi fy and redistribute this software in source and binary code form
provided that i) this copyright notice and |license appear on all copies of
the software; and ii) Licensee does not utilize the software in a manner
whi ch is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL
EXPRESS OR | MPLI ED CONDI TI ONS, REPRESENTATI ONS AND WARRANTI ES, | NCLUDI NG ANY
| MPLI ED WARRANTY OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPCSE OR

L I S I I T

Java 3D joy ride Page 34 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

* NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND I TS LI CENSORS SHALL NOT BE

* LI ABLE FOR ANY DAMAGES SUFFERED BY LI CENSEE AS A RESULT OF USI NG MODI FYI NG
* OR DI STRI BUTI NG THE SOFTWARE OR | TS DERI VATI VES. I N NO EVENT WLL SUN ORI TS
* LI CENSORS BE LI ABLE FOR ANY LOST REVENUE, PROFI T OR DATA, OR FOR DI RECT,

* | NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DAMAGES, HOWEVER

* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, AR SING QUT OF THE USE OF
* OR INABILITY TO USE SOFTWARE, EVEN I F SUN HAS BEEN ADVI SED OF THE

* POSSI BILITY OF SUCH DAVAGES.

*

*

*

*

*

This software is not designed or intended for use in on-line control of
aircraft, air traffic, aircraft navigation or aircraft conmunications; or in
t he design, construction, operation or maintenance of any nucl ear
facility. Licensee represents and warrants that it will not use or
* redistribute the Software for such purposes.
*/
i mport j ava. appl et. Appl et ;
i mport java.awt. BorderLayout;
i mport java.awt.event.*;
i mport java.awt.*;
i mport java. awt. G aphi csConfi gurati on;
i mport comsun.j3d.utils.applet.MinFraneg;
i mport comsun.j3d.utils.geonetry.*;
i mport comsun.j3d.utils.universe.*;
i mport comsun.j3d.utils.imge.*;
i mport javax.media.j 3d.*;
i mport javax.vecmat h. *;
i mport comsun.j3d.utils.behaviors.vp.*;
/**
Rot ati on | nterpol ator exanpl e
Very simlar to texture nmappi ng exanpl e, but
attaches an I nterpol ator above geonetry that
keeps the world spinning. Play with Al pha tining,
you can have it slowly ease to a halt by using
sonme of the other paraneters that aren't in this
sinmple exanple. It will also reverse direction.
*/
public class Supernanlnterp extends Applet {
private SinpleUniverse universe ;
private BranchG oup scene;
private Canvas3D canvas;
privat e Boundi ngSphere bounds =
new Boundi ngSpher e(new Poi nt 3d(0.0, 0.0, 0.0), 1000.0);
public Prinmtive createGeonetry(int filter, java.net.URL texlnage, Appearance apj
/**
Create Sphere and texture it
*/
TextureLoader tex =
new Text ur eLoader (t exl mage, TexturelLoader. GENERATE M PMAP , this);
Texture texture = tex.getTexture();
texture.setMnFilter(filter) ;
appear ance. set Texture(texture);
TextureAttributes texAttr = new TextureAttributes();
texAttr. set Text ureMode( Text ureAttri but es. MODULATE) ;
appear ance. set TextureAttri butes(texAttr);
Col or 3f black = new Col or3f(0.0f, 0.0f, 0.0f);
Col or 3f white = new Col or3f(1.0f, 1.0f, 1.0f);
/1 Set up the material properties
appear ance. set Materi al (new Material (white, black, white, black, 1.0f));
Sphere sphere =
new Sphere(.4f, Prinmtive. GENERATE _NORNALS|
Prinmtive. GENERATE TEXTURE COORDS, appear ance) ;
return sphere;

}
public void setupView) {
/** Add sone viewrelated things to view branch side

Java 3D joy ride Page 35 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

of scene graph */
/1l add nouse interaction to the View ngPlatform
O bitBehavi or orbit = new O bitBehavi or (canvas,
O bi t Behavi or. REVERSE_ALL| O bi t Behavi or. STOP_Z0OOM ;
or bi t. set Schedul i ngBounds( bounds) ;
Vi ewi ngPl at f orm vi ewi ngPl at f orm = uni ver se. get Vi ewi ngPl at f orm() ;
/1 This will nove the ViewPlatformback a bit so the
/1l objects in the scene can be viewed.
vi ewi ngPl at f or m set Nomi nal Vi ewi ngTransforn();
vi ewi ngPl at f orm set Vi ewP| at f or nrBehavi or (orbit);

}
public BranchG oup createSceneG aph() {
/1l Create the root of the branch graph
BranchG oup obj Root = new BranchG oup();
/1l Create a sinple Shape3D node; add it to the scene graph.
/1 Set up the texture map
java.net.URL texlmge = null;
/1l the path to the inmage

try {
texl mage = new java.net.URL("file:../imges/earth.jpg");

catch (java. net. Mal fornedURLException ex) {
System out. println(ex.get Message());
Systemexit(1l);
}
Appear ance app= new Appear ance();
Prinmtive geo = createGeonetry( Texture. MIULTI LEVEL_ LI NEAR, t ex| nage, app) ;
/1spinGoup will be hooked into the interpolator
Transf or & oup spi nG oup = new Transf or nG oup();
spi nGr oup. set Capabi | i t y(Transf or m& oup. ALLOW TRANSFORM VRl TE) ;
spi nG oup. addChi | d( geo) ;
/1l Create a new Behavior object that will performthe
/1 desired operation on the specified transform and add
/1 it into the scene graph.
/1 OLD: straight constant spin
/1 Al pha rotationAl pha = new Al pha(-1, 4000);
/I NEW accelerate one direction, stop, rotate opposite direction
Al pha rotationAl pha = new Al pha(-1, Al pha. | NCREASI NG ENABLE |
Al pha. DECREASI NG_ENABLE,
0, O,
5000, 2500, 200,
5000, 2500, 200);
Rot ati onl nterpol ator rotator =
new Rot ati onl nterpol at or (rotati onAl pha, spinG oup);
r ot at or. set Schedul i ngBounds( bounds) ;
//throw in some light so we aren't stunbling
/laround in the dark
Col or 3f 1ightColor = new Col or 3f (.5f,.5f,.5f);
Anbi ent Li ght anbi ent Li ght = new Anbi ent Li ght (1i ght Col or);
anbi ent Li ght . set | nfl uenci ngBounds( bounds) ;
Directional Li ght directional Light = new Directional Light();
di rectional Li ght. set Col or (1ightCol or);
di rectional Li ght. setl nfl uenci ngBounds(bounds) ;
obj Root . addChil d(rotator); //behavior gets attached at the top
obj Root . addChi | d(spi nG oup); //Transfornaoup and sphere
obj Root . addChi | d(di recti onal Li ght);
obj Root . addChi | d( anbi ent Li ght) ;
return obj Root;

}
public Supermaninterp() {
public void init() {
BranchG oup scene = createSceneG aph();

set Layout (new Bor der Layout ());
Graphi csConfiguration config =

Java 3D joy ride Page 36 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Si mpl eUni ver se. get Pref erredConfi guration();
canvas = new Canvas3D(config);
add("Center", canvas);
/'l Create a sinple scene and attach it to the virtual universe
uni verse = new Si npl eUni ver se(canvas);
set upVi ew() ;
uni ver se. addBr anchGr aph(scene);

}
public void destroy() {

uni verse. renoveAl | Local es();
}

I
/1 The followi ng all ows Supernaninterp to be run as an application
/1 as well as an appl et
/1
public static void main(String[] args)
new Mai nFrane(new Super nanl nterp(), 256, 256);
}

Colorinterp.java

/

L I S R T R R S R I T

*

*/

Copyright (c) 1996-2001 Sun Mcrosystens, Inc. Al Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
nmodi fy and redistribute this software in source and binary code form
provided that i) this copyright notice and |license appear on all copies of
the software; and ii) Licensee does not utilize the software in a nanner
which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL
EXPRESS OR | MPLI ED CONDI TI ONS, REPRESENTATI ONS AND WARRANTI ES, | NCLUDI NG ANY
| MPLI ED WARRANTY OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPCSE OR
NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND | TS LI CENSCRS SHALL NOT BE

LI ABLE FOR ANY DAMAGES SUFFERED BY LI CENSEE AS A RESULT OF USI NG MODI FYI NG
OR DI STRI BUTI NG THE SOFTWARE OR | TS DERI VATI VES. I N NO EVENT WLL SUN OR I TS
LI CENSORS BE LI ABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DI RECT,

| NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LI ABILITY, ARI SING QUT OF THE USE OF
OR I NABI LI TY TO USE SOFTWARE, EVEN | F SUN HAS BEEN ADVI SED OF THE

POSSI Bl LI TY OF SUCH DAMAGES.

This software is not designed or intended for use in on-line control of
aircraft, air traffic, aircraft navigation or aircraft conmunications; or in
t he design, construction, operation or maintenance of any nucl ear

facility. Licensee represents and warrants that it will not use or
redistribute the Software for such purposes.

i mport j ava. appl et. Appl et ;
i mport java.awt. BorderLayout;

i mport java.awt.event.*;

i mport java.awt.*;

i mport java. awt. Graphi csConfi gurati on;

i mport comsun.j3d.utils.applet.MinFraneg;
i mport comsun.j3d.utils.geonetry.*;

i mport comsun.j3d.utils.universe.*;

i mport comsun.j3d.utils.imge.*;

i mport javax.media.j 3d.*;

i mport javax.vecmat h. *;

i mport comsun.j3d.utils.behaviors.vp.*;

Java 3D joy ride Page 37 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

/**

Col or Interpol ator exanple
Very sinmilar to texture mappi ng exanpl e,
will interpolate the color values of the
eart h.
*/
public class Colorinterp extends Applet {
private SinpleUniverse universe ;
private BranchG oup scene;
private Canvas3D canvas;
privat e Boundi ngSphere bounds =
new Boundi ngSpher e(new Poi nt 3d(0.0, 0.0, 0.0), 1000.0);
public Prinmtive createGeonetry(int filter, java.net.URL texlnage, Appearance apj
/**
Create Sphere and texture it
*/
TextureLoader tex =
new Text ureLoader (t exl mage, TexturelLoader. GENERATE M PMAP , this);
Texture texture = tex.getTexture();
texture.setMnFilter(filter) ;
appear ance. set Texture(texture);
TextureAttributes texAttr = new TextureAttributes();
texAttr. set Text ureMode( Text ureAttri but es. MODULATE) ;
appear ance. set TextureAttri butes(texAttr);
Col or 3f bl ack new Col or 3f (0. 0f, 0.0f, 0.0f);
Col or 3f white new Col or 3f (1. 0f, 1.0f, 1.0f);
Col or 3f gray = new Col or 3f (0. 3f, 0.3f, 0.3f);
Col or3f Itgray = new Col or 3f (0. 6f, 0.6f, 0.6f);
/1 Set up the material properties
appear ance. set Materi al (new Material (white, black, ltgray, ltgray, 32.0f));
Sphere sphere =
new Sphere(.4f, Prinmitive. GENERATE _NORNALS|
Primtive. GENERATE TEXTURE COORDS, appear ance) ;

return sphere;

}
public void setupView) {
/** Add sone viewrelated things to view branch side
of scene graph */
/1 add nmouse interaction to the View ngPlatform
O bit Behavi or orbit = new O bitBehavi or (canvas,
O bi t Behavi or. REVERSE_ALL| O bi t Behavi or. STOP_ZOOM ;
orbit. set Schedul i ngBounds( bounds) ;
Vi ewi ngPl at f orm vi ewi ngPl at form = uni ver se. get Vi ewi ngPl at form() ;
/1 This will nmove the ViewPlatformback a bit so the
/1 objects in the scene can be vi ewed.
vi ewi ngPl at f or m set Nom nal Vi ewi ngTransf orn();
vi ewi ngPl at f orm set Vi ewP| at f or nrBehavi or (orbit);

}
public BranchG oup createSceneG aph() {
/'l Create the root of the branch graph
BranchGroup obj Root = new BranchG oup();
/]l Create a sinple Shape3D node; add it to the scene graph.
/1l Set up the texture map
java.net.URL texlmge = null;
/1 the path to the inmage

try {
texl mage = new java.net.URL("file:../inmges/earth.jpg");

catch (java. net. Mal fornedURLException ex) {
System out . printl n(ex. get Message());
Systemexit(1l);
}
Appear ance app= nhew Appear ance();
Primtive geo = createGeonetry( Texture. MIULTI LEVEL_LI NEAR t ex| mage, app) ;
/1 spinGoup will be hooked into the interpolator

Java 3D joy ride Page 38 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Transf or nmaroup spi nG oup = new Transf or nG oup();
spi nGr oup. set Capabi | i t y(Transf or m& oup. ALLOW TRANSFORM VRl TE) ;
spi nGr oup. addChi | d( geo) ;
/1l Create a new Behavior object that will performthe
/1 desired operation on the specified transform and add
/1 it into the scene graph.
Al pha rotationAl pha = new Al pha(-1, 4000);
Rot ati onl nterpol ator rotator =
new Rot ationl nterpol ator(rotationAl pha, spinG oup);
rot at or. set Schedul i ngBounds( bounds) ;
//we'll need the Material to Interpolate the diffuse color
//set capability bit to allow interpolator to change at render tinme
Material nmat = app.getMaterial ();
mat . set Capability(Material . ALLON COPONENT_WRI TE) ;
Al pha col or Al pha = new Al pha(-1, 2000);
/IWe interpolate fromblack to white, | ooping indefinitely
Col or 3f endCol or = new Col or 3f (1. Of, 1. Of , 1. Of ) ;
Col or 3f startCol or = new Col or 3f (0. Of , 0. Of , 0. Of ) ;
Col orlnterpolator colorinterp =
new Col or | nt er pol at or (col or Al pha, mat, start Col or, endCol or);
col orl nt er p. set Schedul i ngBounds( bounds) ;
//throw in some light so we aren't stunbling
[/around in the dark
Col or 3f 1ightColor = new Col or 3f (. 5f,.5f,.5f);
Anbi ent Li ght anbi ent Li ght = new Anbi ent Li ght (1i ght Col or);
anbi ent Li ght . set | nf| uenci ngBounds( bounds) ;
Directional Li ght directional Light = new Directional Light();
di rectional Li ght. set Col or (1ightCol or);
di rectional Li ght. setl nfl uenci ngBounds(bounds) ;
obj Root . addChil d(rotator); //behavior gets attached at the top
obj Root . addChi I d(col orinterp); //behavior gets attached at the top
obj Root . addChi | d(spi nGroup); //TransformG oup and sphere
obj Root . addChi | d(di recti onal Li ght);
obj Root . addChi | d( ambi ent Li ght ) ;
return obj Root;

public Colorlnterp() {
}

public void init() {
BranchG oup scene = creat eSceneG aph();
set Layout (new Border Layout ());
G aphi csConfiguration config =
Si mpl eUni ver se. get Pref erredConfi guration();
canvas = new Canvas3D(config);
add("Center", canvas);
/'l Create a sinple scene and attach it to the virtual universe
uni verse = new Si npl eUni ver se(canvas);
set upVi ew() ;
uni ver se. addBr anchGr aph(scene);

}
public void destroy() {

uni verse. renoveAl | Local es();
}

I
/1 The following allows Colorinterp to be run as an application
/1 as well as an appl et
/1
public static void main(String[] args) {
new Mai nFranme(new Col orlnterp(), 256, 256);
}

Java 3D joy ride Page 39 of 40



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Java 3D joy ride Page 40 of 40


http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Should I take this tutorial?
	Getting help
	A word about the samples

	Life from a Java 3D point of view
	Philosophy
	The need for speed
	So what's the Point?
	Moving things around
	Lighting and other effects

	Scene graph nuts and bolts
	The scene graph tree
	Group nodes
	Capability bits 
	UglyCube example
	Scene graph key points

	Let's make some shapes
	The Primitive class
	The Shape3D class
	Per-vertex data
	Appearance objects
	Pop quiz

	Transform your life (or at least your geometry)
	The Transform3D class
	Move me, zoom me, spin me
	The OrbitBehavior class
	Lost in 3D space
	TransformOrder code
	Transformation key points

	Lighting and material properties 
	The Light class
	Light types
	Lights in the scene graph
	Material properties
	Surface normals
	Calculating lighting effects
	Lighting and material key points

	Texture mapping
	Texture mapping
	Loading a texture
	Pasting on the image
	Shrinking and stretching a texture
	Texture mapping example
	Texture mapping key points

	Behaviors and interpolators
	The Behavior class
	Wakeup call
	The processStimulus() method
	Interpolators
	It's all in the timing
	Rotation example
	Color interpolator

	Java 3D wrapup
	Summary
	Resources
	Feedback

	Appendix: The source
	UglyCube.java
	TransformOrder.java
	Wallpaper.java
	SupermanInterp.java
	ColorInterp.java


