
Introduction to Java threads

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Thread basics... 3
3. A thread's life.. 8
4. Threads everywhere ... 13
5. Sharing access to data .. 16
6. Synchronization details.. 22
7. Additional thread API details ... 26
8. Wrapup and resources .. 28

Introduction to Java threads Page 1 of 30

Section 1. About this tutorial

What is this tutorial about?
This tutorial explores the basics of threads -- what they are, why they are useful, and how to
get started writing simple programs that use them.

We will also explore the basic building blocks of more sophisticated threading applications --
how to exchange data between threads, how to control threads, and how threads can
communicate with each other.

Should I take this tutorial?
This tutorial is for Java programmers who have a good working knowledge of the Java
language, but who have limited experience with multithreading or concurrency.

At the completion of this tutorial, you should be able to write simple programs that use
threads. You should also be able to read and understand programs that use threads in
straightforward ways.

About the author
Brian Goetz is a regular columnist on the developerWorks Java technology zone and has
been a professional software developer for the past 15 years. He is a Principal Consultant at
Quiotix, a software development and consulting firm located in Los Altos, California.

See Brian's published and upcoming articles in popular industry publications.

Contact Brian at brian@quiotix.com.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 30 Introduction to Java threads

http://www.quiotix.com
http://www.quiotix.com/~brian/pubs.html
http://www.quiotix.com/~brian/pubs.html
http://www.quiotix.com/~brian/pubs.html
http://www.quiotix.com/~brian/pubs.html
mailto:brian@quiotix.com

Section 2. Thread basics

What are threads?
Nearly every operating system supports the concept of processes -- independently running
programs that are isolated from each other to some degree.

Threading is a facility to allow multiple activities to coexist within a single process. Most
modern operating systems support threads, and the concept of threads has been around in
various forms for many years. Java is the first mainstream programming language to
explicitly include threading within the language itself, rather than treating threading as a
facility of the underlying operating system.

Threads are sometimes referred to as lightweight processes. Like processes, threads are
independent, concurrent paths of execution through a program, and each thread has its own
stack, its own program counter, and its own local variables. However, threads within a
process are less insulated from each other than separate processes are. They share
memory, file handles, and other per-process state.

A process can support multiple threads, which appear to execute simultaneously and
asynchronously to each other. Multiple threads within a process share the same memory
address space, which means they have access to the same variables and objects, and they
allocate objects from the same heap. While this makes it easy for threads to share
information with each other, you must take care to ensure that they do not interfere with other
threads in the same process.

The Java thread facility and API is deceptively simple. However, writing complex programs
that use threading effectively is not quite as simple. Because multiple threads coexist in the
same memory space and share the same variables, you must take care to ensure that your
threads don't interfere with each other.

Every Java program uses threads
Every Java program has at least one thread -- the main thread. When a Java program starts,
the JVM creates the main thread and calls the program's main() method within that thread.

The JVM also creates other threads that are mostly invisible to you -- for example, threads
associated with garbage collection, object finalization, and other JVM housekeeping tasks.
Other facilities create threads too, such as the AWT (Abstract Windowing Toolkit) or Swing
UI toolkits, servlet containers, application servers, and RMI (Remote Method Invocation).

Why use threads?
There are many reasons to use threads in your Java programs. If you use Swing, servlets,
RMI, or Enterprise JavaBeans (EJB) technology, you may already be using threads without
realizing it.

Some of the reasons for using threads are that they can help to:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 3 of 30

• Make the UI more responsive

• Take advantage of multiprocessor systems

• Simplify modeling

• Perform asynchronous or background processing

More responsive UI
Event-driven UI toolkits, such as AWT and Swing, have an event thread that processes UI
events such as keystrokes and mouse clicks.

AWT and Swing programs attach event listeners to UI objects. These listeners are notified
when a specific event occurs, such as a button being clicked. Event listeners are called from
within the AWT event thread.

If an event listener were to perform a lengthy task, such as checking spelling in a large
document, the event thread would be busy running the spelling checker, and thus would not
be able to process additional UI events until the event listener completed. This would make
the program appear to freeze, which is disconcerting to the user.

To avoid stalling the UI, the event listener should hand off long tasks to another thread so
that the AWT thread can continue processing UI events (including requests to cancel the
long-running task being performed) while the task is in progress.

Take advantage of multiprocessor systems
Multiprocessor (MP) systems are much more common than they used to be. Once they were
found only in large data centers and scientific computing facilities. Now many low-end server
systems -- and even some desktop systems -- have multiple processors.

Modern operating systems, including Linux, Solaris, and Windows NT/2000, can take
advantage of multiple processors and schedule threads to execute on any available
processor.

The basic unit of scheduling is generally the thread; if a program has only one active thread,
it can only run on one processor at a time. If a program has multiple active threads, then
multiple threads may be scheduled at once. In a well-designed program, using multiple
threads can improve program throughput and performance.

Simplicity of modeling
In some cases, using threads can make your programs simpler to write and maintain.
Consider a simulation application, where you simulate the interaction between multiple
entities. Giving each entity its own thread can greatly simplify many simulation and modeling
applications.

Another example where it is convenient to use separate threads to simplify a program is
when an application has multiple independent event-driven components. for example, an
application might have a component that counts down the number of seconds since some

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 30 Introduction to Java threads

event and updates a display on the screen. Rather than having a main loop check the time
periodically and update the display, it is much simpler -- and less error-prone -- to have a
thread that does nothing but sleep until a certain amount of time has elapsed and then
update the on-screen counter. This way the main thread doesn't need to worry about the
timer at all.

Asynchronous or background processing
Server applications get their input from remote sources, such as sockets. When you read
from a socket, if there is no data currently available, the call to
SocketInputStream.read() will block until data is available.

If a single-threaded program were to read from the socket, and the entity on the other end of
the socket were never to send any data, the program would simply wait forever, and no other
processing would get done. On the other hand, the program could poll the socket to see if
data was available, but this is often undesirable for performance reasons.

If, instead, you created a thread to read from the socket, the main thread could perform other
tasks while the other thread waited for input from the socket. You can even create multiple
threads so you can read from multiple sockets at once. In this way, you are notified quickly
when data is available (because the waiting thread is awakened) without having to poll
frequently to check if data is available. The code to wait on a socket using threads is also
much simpler and less error-prone than polling would be.

Simple, but sometimes risky
While the Java thread facility is very easy to use, there are several risks you should try to
avoid when you create multithreaded programs.

When multiple threads access the same data item, such as a static field, an instance field of
a globally accessible object, or a shared collection, you need to make sure that they
coordinate their access to the data so that both see a consistent view of the data and neither
steps on the other's changes. The Java language provides two keywords for this purpose:
synchronized and volatile. We will explore the use and meaning of these keywords
later in this tutorial.

When accessing variables from more than one thread, you must ensure that the access is
properly synchronized. For simple variables, it may be enough to declare the variable
volatile, but in most situations, you will need to use synchronization.

If you are going to use synchronization to protect access to shared variables, you must make
sure to use it everywhere in your program where the variable is accessed.

Don't overdo it
While threads can greatly simplify many types of applications, overuse of threads can be
hazardous to your program's performance and its maintainability. Threads consume
resources. Therefore, there is a limit on how many threads you can create without degrading

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 5 of 30

performance.

In particular, using multiple threads will not make a CPU-bound program run any faster on a
single-processor system.

Example: Using a thread for timing and a thread to do
work
The following example uses two threads, one for timing and one to do actual work. The main
thread calculates prime numbers using a very straightforward algorithm.

Before it starts, it creates and starts a timer thread, which will sleep for ten seconds, and then
set a flag that the main thread will check. After ten seconds, the main thread will stop. Note
that the shared flag is declared volatile.

/**
* CalculatePrimes -- calculate as many primes as we can in ten seconds
*/

public class CalculatePrimes extends Thread {

public static final int MAX_PRIMES = 1000000;
public static final int TEN_SECONDS = 10000;

public volatile boolean finished = false;

public void run() {
int[] primes = new int[MAX_PRIMES];
int count = 0;

for (int i=2; count<MAX_PRIMES; i++) {

// Check to see if the timer has expired
if (finished) {

break;
}

boolean prime = true;
for (int j=0; j<count; j++) {

if (i % primes[j] == 0) {
prime = false;
break;

}
}

if (prime) {
primes[count++] = i;
System.out.println("Found prime: " + i);

}
}

}

public static void main(String[] args) {
CalculatePrimes calculator = new CalculatePrimes();
calculator.start();
try {

Thread.sleep(TEN_SECONDS);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 30 Introduction to Java threads

}
catch (InterruptedException e) {

// fall through
}

calculator.finished = true;
}

}

Summary
The Java language includes a powerful threading facility built into the language. You can use
the threading facility to:

• Increase the responsiveness of GUI applications

• Take advantage of multiprocessor systems

• Simplify program logic when there are multiple independent entities

• Perform blocking I/O without blocking the entire program

When you use multiple threads, you must be careful to follow the rules for sharing data
between threads, which we'll cover in Sharing access to data on page 16 . All these rules boil
down to one basic principle: Don't forget to synchronize.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 7 of 30

Section 3. A thread's life

Creating threads
There are several ways to create a thread in a Java program. Every Java program contains
at least one thread: the main thread. Additional threads are created through the Thread
constructor or by instantiating classes that extend the Thread class.

Java threads can create other threads by instantiating a Thread object directly or an object
that extends Thread. In the example in Thread basics on page 3 , in which we calculated as
many primes as we could in ten seconds, we created a thread by instantiating an object of
type CalculatePrimes, which extends Thread.

When we talk about threads in Java programs, there are two related entities we may be
referring to: the actual thread that is doing the work or the Thread object that represents the
thread. The running thread is generally created by the operating system; the Thread object
is created by the Java VM as a means of controlling the associated thread.

Creating threads and starting threads are not the same
A thread doesn't actually begin to execute until another thread calls the start() method on
the Thread object for the new thread. The Thread object exists before its thread actually
starts, and it continues to exist after its thread exits. This allows you to control or obtain
information about a thread you've created, even if the thread hasn't started yet or has already
completed.

It's generally a bad idea to start() threads from within a constructor. Doing so could
expose partially constructed objects to the new thread. If an object owns a thread, then it
should provide a start() or init() method that will start the thread, rather than starting it
from the constructor. (See Resources on page 28 for links to articles that provide a more
detailed explanation of this concept.)

Ending threads
A thread will end in one of three ways:

• The thread comes to the end of its run() method.

• The thread throws an Exception or Error that is not caught.

• Another thread calls one of the deprecated stop() methods. Deprecated means they still
exist, but you shouldn't use them in new code and should strive to eliminate them in
existing code.

When all the threads within a Java program complete, the program exits.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 30 Introduction to Java threads

Joining with threads
The Thread API contains a method for waiting for another thread to complete: the join()
method. When you call Thread.join(), the calling thread will block until the target thread
completes.

Thread.join() is generally used by programs that use threads to partition large problems
into smaller ones, giving each thread a piece of the problem. The example at the end of this
section creates ten threads, starts them, then uses Thread.join() to wait for them all to
complete.

Scheduling
Except when using Thread.join() and Object.wait(), the timing of thread scheduling
and execution is nondeterministic. If two threads are running at the same time and neither is
waiting, you must assume that between any two instructions, other threads may be running
and modifying program variables. If your thread will be accessing data that may be visible to
other threads, such as data referenced directly or indirectly from static fields (global
variables), you must use synchronization to ensure data consistency.

In the simple example below, we'll create and start two threads, each of which prints two
lines to System.out:

public class TwoThreads {

public static class Thread1 extends Thread {
public void run() {

System.out.println("A");
System.out.println("B");

}
}

public static class Thread2 extends Thread {
public void run() {

System.out.println("1");
System.out.println("2");

}
}

public static void main(String[] args) {
new Thread1().start();
new Thread2().start();

}
}

We have no idea in what order the lines will execute, except that "1" will be printed before "2"
and "A" before "B." The output could be any one of the following:

• 1 2 A B

• 1 A 2 B

• 1 A B 2

• A 1 2 B

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 9 of 30

• A 1 B 2

• A B 1 2

Not only may the results vary from machine to machine, but running the same program
multiple times on the same machine may produce different results. Never assume one thread
will do something before another thread does, unless you've used synchronization to force a
specific ordering of execution.

Sleeping
The Thread API includes a sleep() method, which will cause the current thread to go into a
wait state until the specified amount of time has elapsed or until the thread is interrupted by
another thread calling Thread.interrupt() on the current thread's Thread object. When
the specified time elapses, the thread again becomes runnable and goes back onto the
scheduler's queue of runnable threads.

If a thread is interrupted by a call to Thread.interrupt(), the sleeping thread will throw
an InterruptedException so that the thread will know that it was awakened by an
interrupt and won't have to check to see if the timer expired.

The Thread.yield() method is like Thread.sleep(), but instead of sleeping, it simply
pauses the current thread momentarily so that other threads can run. In most
implementations, threads with lower priority will not run when a thread of higher priority calls
Thread.yield().

The CalculatePrimes example used a background thread to calculate primes, then slept
for ten seconds. When the timer expired, it set a flag to indicate that the ten seconds had
expired.

Daemon threads
We mentioned that a Java program exits when all of its threads have completed, but this is
not exactly correct. What about the hidden system threads, such as the garbage collection
thread and others created by the JVM? We have no way of stopping these. If those threads
are running, how does any Java program ever exit?

These system threads are called daemon threads. A Java program actually exits when all its
non-daemon threads have completed.

Any thread can become a daemon thread. You can indicate a thread is a daemon thread by
calling the Thread.setDaemon() method. You might want to use daemon threads for
background threads that you create in your programs, such as timer threads or other
deferred event threads, which are only useful while there are other non-daemon threads
running.

Example: Partitioning a large task with multiple threads
In this example, TenThreads shows a program that creates ten threads, each of which do

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 30 Introduction to Java threads

some work. It waits for them all to finish, then gathers the results.

/**
* Creates ten threads to search for the maximum value of a large matrix.
* Each thread searches one portion of the matrix.
*/
public class TenThreads {

private static class WorkerThread extends Thread {
int max = Integer.MIN_VALUE;
int[] ourArray;

public WorkerThread(int[] ourArray) {
this.ourArray = ourArray;

}

// Find the maximum value in our particular piece of the array
public void run() {

for (int i = 0; i < ourArray.length; i++)
max = Math.max(max, ourArray[i]);

}

public int getMax() {
return max;

}
}

public static void main(String[] args) {
WorkerThread[] threads = new WorkerThread[10];
int[][] bigMatrix = getBigHairyMatrix();
int max = Integer.MIN_VALUE;

// Give each thread a slice of the matrix to work with
for (int i=0; i < 10; i++) {

threads[i] = new WorkerThread(bigMatrix[i]);
threads[i].start();

}

// Wait for each thread to finish
try {

for (int i=0; i < 10; i++) {
threads[i].join();
max = Math.max(max, threads[i].getMax());

}
}
catch (InterruptedException e) {

// fall through
}

System.out.println("Maximum value was " + max);
}

}

Summary
Like programs, threads have a life cycle: they start, they execute, and they complete. One
program, or process, may contain multiple threads, which appear to execute independently
of each other.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 11 of 30

A thread is created by instantiating a Thread object, or an object that extends Thread, but
the thread doesn't start to execute until the start() method is called on the new Thread
object. Threads end when they come to the end of their run() method or throw an
unhandled exception.

The sleep() method can be used to wait for a certain amount of time; the join() method
can be used to wait until another thread completes.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 30 Introduction to Java threads

Section 4. Threads everywhere

Who creates threads?
Even if you never explicitly create a new thread, you may find yourself working with threads
anyway. Threads are introduced into our programs from a variety of sources.

There are a number of facilities and tools that create threads for you, and you should
understand how threads interact and how to prevent threads from getting in the way of each
other if you're going to use these facilities.

AWT and Swing
Any program that uses AWT or Swing must deal with threads. The AWT toolkit creates a
single thread for handling UI events, and any event listeners called by AWT events execute
in the AWT event thread.

Not only do you have to worry about synchronizing access to data items shared between
event listeners and other threads, but you have to find a way for long-running tasks triggered
by event listeners -- such as checking spelling in a large document or searching a file system
for a file -- to run in a background thread so the UI doesn't freeze while the task is running
(which would also prevent the user from canceling the operation). A good example of a
framework for doing this is the SwingWorker class (see Resources on page 28).

The AWT event thread is not a daemon thread; this is why System.exit() is often used to
end AWT and Swing apps.

Using TimerTask
The TimerTask facility was introduced to the Java language in JDK 1.3. This convenient
facility allows you to execute a task at a later time (that is, for example, run a task once ten
seconds from now), or to execute a task periodically (that is, run a task every ten seconds).

Implementing the Timer class is quite straightforward: it creates a timer thread and builds a
queue of waiting events sorted by execution time.

The TimerTask thread is marked as a daemon thread so it doesn't prevent the program
from exiting.

Because timer events execute in the timer thread, you must make sure that access to any
data items used from within a timer task is properly synchronized.

In the CalculatePrimes example, instead of having the main thread sleep, we could have
used a TimerTask as follows:

public static void main(String[] args) {
Timer timer = new Timer();

final CalculatePrimes calculator = new CalculatePrimes();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 13 of 30

calculator.start();

timer.schedule(
new TimerTask() {

public void run()
{

calculator.finished = true;
}

}, TEN_SECONDS);
}

Servlets and JavaServer Pages technology
Servlet containers create multiple threads in which servlet requests are executed. As the
servlet writer, you have no idea (nor should you) in what thread your request will be
executed; the same servlet could be active in multiple threads at once if multiple requests for
the same URL come in at the same time.

When writing servlets or JavaServer Pages (JSP) files, you must assume at all times that the
same servlet or JSP file may be executing concurrently in multiple threads. Any shared data
accessed by a servlet or JSP file must be appropriately synchronized; this includes fields of
the servlet object itself.

Implementing an RMI object
The RMI facility allows you to invoke operations on objects running in other JVMs. When you
call a remote method, the RMI stub, created by the RMI compiler, packages up the method
parameters and sends them over the network to the remote system, which unpacks them
and calls the remote method.

Suppose you create an RMI object and register it in the RMI registry or a Java Naming and
Directory Interface (JNDI) namespace. When a remote client invokes one of its methods, in
what thread does that method execute?

The common way to implement an RMI object is to extend UnicastRemoteObject. When
a UnicastRemoteObject is constructed, the infrastructure for dispatching remote method
calls is initialized. This includes a socket listener to receive remote invocation requests, and
one or more threads to execute remote requests.

So when you receive a request to execute an RMI method, these methods will execute in an
RMI-managed thread.

Summary
Threads enter Java programs through several mechanisms. In addition to creating threads
explicitly with the Thread constructors, threads are created by a variety of other
mechanisms:

• AWT and Swing

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 30 Introduction to Java threads

• RMI

• The java.util.TimerTask facility

• Servlets and JSP technology

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 15 of 30

Section 5. Sharing access to data

Sharing variables
For multiple threads to be useful in a program, they have to have some way to communicate
or share their results with each other.

The simplest way for threads to share their results is to use shared variables. They should
also use synchronization to ensure that values are propagated correctly from one thread to
another and to prevent threads from seeing inconsistent intermediate results while another
thread is updating several related data items.

The example that calculated prime numbers in Thread basics on page 3 used a shared
boolean variable to indicate that the specified time period had elapsed. This illustrates the
simplest form of sharing data between threads: polling a shared variable to see if another
thread has finished performing a certain task.

All threads live in the same memory space
As we discussed earlier, threads have a lot in common with processes, except that they
share the same process context, including memory, with other threads in the same process.
This is a tremendous convenience, but also a significant responsibility. Threads can easily
exchange data among themselves simply by accessing shared variables (static or instance
fields), but threads must also ensure that they access shared variables in a controlled
manner, lest they step on each other's changes.

Any reachable variable is accessible to any thread, just as it is accessible to the main thread.
The prime numbers example used a public instance field, called finished, to indicate that
the specified time had elapsed. One thread wrote to this field when the timer expired; the
other read from this field periodically to check if it should stop. Note that this field was
declared volatile, which is important to the proper functioning of this program. We'll see
why later in this section.

Synchronization for controlled access
The Java language provides two keywords for ensuring that data can be shared between
threads in a controlled manner: synchronized and volatile.

Synchronized has two important meanings: it ensures that only one thread executes a
protected section of code at one time (mutual exclusion or mutex), and it ensures that data
changed by one thread is visible to other threads (visibility of changes).

Without synchronization, it is easy for data to be left in an inconsistent state. For example, if
one thread is updating two related values (say, the position and velocity of a particle), and
another thread is reading those two values, it is possible that the second thread could be
scheduled to run after the first thread has written one value but not the other, thus seeing
one old and one new value. Synchronization allows us to define blocks of code that must run
atomically, in which they appear to execute in an all-or-nothing manner, as far as other
threads can tell.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 30 Introduction to Java threads

The atomic execution or mutual exclusion aspect of synchronization is similar to the concept
of critical sections in other operating environments.

Ensuring visibility of changes to shared data
Synchronization allows us to ensure that threads see consistent views of memory.

Processors can use caches to speed up access to memory (or compilers may store values in
registers for faster access). On some multiprocessor architectures, if a memory location is
modified in the cache on one processor, it is not necessarily visible to other processors until
the writer's cache is flushed and the reader's cache is invalidated.

This means that on such systems, it is possible for two threads executing on two different
processors to see two different values for the same variable! This sounds scary, but it is
normal. It just means that you have to follow some rules when accessing data used or
modified by other threads.

Volatile is simpler than synchronization and is suitable only for controlling access to single
instances of primitive variables -- integers, booleans, and so on. When a variable is declared
volatile, any write to that variable will go directly to main memory, bypassing the cache,
while any read of that variable will come directly from main memory, bypassing the cache.
This means that all threads see the same value for a volatile variable at all times.

Without proper synchronization, it is possible for threads to see stale values of variables or
experience other forms of data corruption.

Atomic code blocks protected by locks
Volatile is useful for ensuring that each thread sees the most recent value for a variable,
but sometimes we need to protect access to larger sections of code, such as sections that
involve updating multiple variables.

Synchronization uses the concepts of monitors, or locks, to coordinate access to particular
blocks of code.

Every Java object has an associated lock. Java locks can be held by no more than one
thread at a time. When a thread enters a synchronized block of code, the thread blocks
and waits until the lock is available, acquires the lock when it becomes available, and then
executes the block of code. It releases the lock when control exits the protected block of
code, either by reaching the end of the block or when an exception is thrown that is not
caught within the synchronized block.

In this way, only one thread can execute a block protected by a given monitor at one time.
The block can be considered atomic because, from the perspective of other threads, it
appears to either have executed entirely or not at all.

A simple synchronization example

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 17 of 30

Using synchronized blocks allows you to perform a group of related updates as a set
without worrying about other threads interrupting or seeing the intermediate results of a
computation. The following example code will either print "1 0" or "0 1." In the absence of
synchronization, it could also print "1 1" (or even "0 0," believe it or not).

public class SyncExample {
private static lockObject = new Object();
private static class Thread1 extends Thread {
public void run() {
synchronized (lockObject) {
x = y = 0;
System.out.println(x);

}
}

}

private static class Thread2 extends Thread {
public void run() {
synchronized (lockObject) {
x = y = 1;
System.out.println(y);

}
}

}

public static void main(String[] args) {
new Thread1().run();
new Thread2().run();

}
}

You must use synchronization in both threads for this program to work properly.

Java locking
Java locking incorporates a form of mutual exclusion. Only one thread may hold a lock at one
time. Locks are used to protect blocks of code or entire methods, but it is important to
remember that it is the identity of the lock that protects a block of code, not the block itself.
One lock may protect many blocks of code or methods.

Conversely, just because a block of code is protected by a lock does not mean that two
threads cannot execute that block at once. It only means that two threads cannot execute
that block at once if they are waiting on the same lock.

In the following example, the two threads are free to execute the synchronized block in
setLastAccess() simultaneously because each thread has a different value for thingie.
Therefore, the synchronized block is protected by different locks in the two executing
threads.

public class SyncExample {
public static class Thingie {

private Date lastAccess;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 30 Introduction to Java threads

public synchronized void setLastAccess(Date date) {
this.date = date;

}
}

public static class MyThread extends Thread {
private Thingie thingie;

public MyThread(Thingie thingie) {
this.thingie = thingie;

}

public void run() {
thingie.setLastAccess(new Date());

}
}

public static void main() {
Thingie thingie1 = new Thingie(),
thingie2 = new Thingie();

new MyThread(thingie1).start();
new MyThread(thingie2).start();

}
}

Synchronized methods
The simplest way to create a synchronized block is to declare a method as
synchronized. This means that before entering the method body, the caller must acquire a
lock:

public class Point {
public synchronized void setXY(int x, int y) {
this.x = x;
this.y = y;

}
}

For ordinary synchronized methods, this lock will be the object on which the method is
being invoked. For static synchronized methods, this lock will be the monitor associated
with the Class object in which the method is declared.

Just because setXY() is declared as synchronized doesn't mean that two different
threads can't still execute setXY() at the same time, as long as they are invoking setXY()
on different Point instances. Only one thread can execute setXY(), or any other
synchronized method of Point, on a single Point instance at one time.

Synchronized blocks
The syntax for synchronized blocks is a little more complicated than for synchronized
methods because you also need to explicitly specify what lock is being protected by the
block. The following version of Point is equivalent to the version shown in the previous

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 19 of 30

panel:

public class Point {
public void setXY(int x, int y) {
synchronized (this) {
this.x = x;
this.y = y;

}
}

}

It is common, but not required, to use the this reference as the lock. This means that the
block will use the same lock as synchronized methods in that class.

Because synchronization prevents multiple threads from executing a block at once, it has
performance implications, even on uniprocessor systems. It is a good practice to use
synchronization around the smallest possible block of code that needs to be protected.

Access to local (stack-based) variables never need to be protected, because they are only
accessible from the owning thread.

Most classes are not synchronized
Because synchronization carries a small performance penalty, most general-purpose
classes, like the Collection classes in java.util, do not use synchronization internally.
This means that classes like HashMap cannot be used from multiple threads without
additional synchronization.

You can use the Collections classes in a multithreaded application by using synchronization
every time you access a method in a shared collection. For any given collection, you must
synchronize on the same lock each time. A common choice of lock would be the collection
object itself.

The example class SimpleCache in the next panel shows how you can use a HashMap to
provide caching in a thread-safe way. Generally, however, proper synchronization doesn't
just mean synchronizing every method.

The Collections class provides us with a set of convenience wrappers for the List, Map,
and Set interfaces. You can wrap a Map with Collections.synchronizedMap and it will
ensure that all access to that map is properly synchronized.

If the documentation for a class does not say that it is thread-safe, then you must assume
that it is not.

Example: A simple thread-safe cache
As shown in the following code sample, SimpleCache.java uses a HashMap to provide a
simple cache for an object loader. The load() method knows how to load an object by its
key. After an object is loaded once, it is stored in the cache so subsequent accesses will
retrieve it from the cache instead of loading it all over each time. Each access to the shared

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 30 Introduction to Java threads

cache is protected by a synchronized block. Because it is properly synchronized, multiple
threads can call the getObject and clearCache methods simultaneously without risk of
data corruption.

public class SimpleCache {
private final Map cache = new HashMap();

public Object load(String objectName) {
// load the object somehow

}

public void clearCache() {
synchronized (cache) {
cache.clear();

}
}

public Object getObject(String objectName) {
synchronized (cache) {
Object o = cache.get(objectName);
if (o == null) {
o = load(objectName);
cache.put(objectName, o);

}
}

return o;
}

}

Summary
Because the timing of thread execution is nondeterministic, we need to be careful to control a
thread's access to shared data. Otherwise, multiple concurrent threads could step on each
other's changes and result in corrupted data, or changes to shared data might not be made
visible to other threads on a timely basis.

By using synchronization to protect access to shared variables, we can ensure that threads
interact with program variables in predictable ways.

Every Java object can act as a lock, and synchronized blocks can ensure that only one
thread executes synchronized code protected by a given lock at one time.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 21 of 30

Section 6. Synchronization details

Mutual exclusion
In Sharing access to data on page 16 , we discussed the characteristics of synchronized
blocks and described them as implementing a classic mutex (that is, mutual exclusion or
critical section), in which only one thread can execute a block protected by a given lock at
one time.

Mutual exclusion is an important part of what synchronization does, but synchronization also
has several other characteristics important to achieve correct results on multiprocessor
systems.

Visibility
In addition to mutual exclusion, synchronization, like volatile, enforces certain visibility
constraints. When an object acquires a lock, it first invalidates its cache, so that it is
guaranteed to load variables directly from main memory.

Similarly, before an object releases a lock, it flushes its cache, forcing any changes made to
appear in main memory.

In this way, two threads that synchronize on the same lock are guaranteed to see the same
values in variables modified inside a synchronized block.

When do you have to synchronize?
To maintain proper visibility across threads, you have to use synchronized (or volatile)
to ensure that changes made by one thread are visible by another whenever a non-final
variable is shared among several threads.

The basic rule for synchronizing for visibility is that you must synchronize whenever you are:

• Reading a variable that may have been last written by another thread

• Writing a variable that may be read next by another thread

Synchronization for consistency
In addition to synchronizing for visibility, you must also synchronize to ensure that
consistency is maintained from an application perspective. When modifying multiple related
values, you want other threads to see that set of changes atomically -- either all of the
changes or none of them. This applies to related data items (such as the position and
velocity of a particle) and metadata items (such as the data values contained in a linked list
and the chain of entries in the list itself).

Consider the following example, which implements a simple (but not thread-safe) stack of
integers:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 30 Introduction to Java threads

public class UnsafeStack {
public int top = 0;
public int[] values = new int[1000];

public void push(int n) {
values[top++] = n;

}

public int pop() {
return values[--top];

}
}

What happens if more than one thread tries to use this class at the same time? It could be a
disaster. Because there's no synchronization, multiple threads could execute push() and
pop() at the same time. What if one thread calls push() and another thread calls push()
right between the time top is incremented and it is used as an index into values? Then
both threads would store their new value in the same location! This is just one of many forms
of data corruption that can occur when multiple threads rely on a known relationship between
data values, but don't ensure that only one thread is manipulating those values at a given
time.

In this case, the cure is simple: synchronize both push() and pop(), and you'll prevent one
thread from stepping on another.

Note that using volatile would not have been enough -- you need to use synchronized
to ensure that the relationship between top and values remains consistent.

Incrementing a shared counter
In general, if you're protecting a single primitive variable, such as an integer, you can
sometimes get away with just using volatile. However, if new values of the variable are
derived from previous values, you will have to use synchronization. Why? Consider this
class:

public class Counter {
private int counter = 0;

public int get() { return counter; }
public void set(int n) { counter = n; }
public void increment() {
set(get() + 1);

}
}

What happens when we want to increment the counter? Look at the code for increment().
It is clear, but it is not thread-safe. What happens if two threads try to execute increment()
at the same time? The counter might be incremented by 1 or by 2. Surprisingly, marking
counter as volatile won't help, nor will making both get() and set() synchronized.

Imagine that the counter is zero and two threads execute the increment code at exactly the
same time. Both threads call Counter.get() and see that the counter is zero. Now both

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 23 of 30

add one to this and then call Counter.set(). If our timing is unlucky, neither will see the
other's update, even if counter is volatile or get() and set() are synchronized.
Now, even though we've incremented the counter twice, the resulting value may only be one
instead of two.

For increment to work properly, not only do get() and set() have to be synchronized,
but increment() needs to be synchronized, too! Otherwise, a thread calling
increment() could interrupt another thread calling increment(). If you're unlucky, the
end result would be that the counter is incremented once instead of twice. Synchronizing
increment() prevents this from happening, because the entire increment operation is
atomic.

The same is true when you are iterating through the elements of a Vector. Even though the
methods of Vector are synchronized, the contents of Vector could still change while you
are iterating. If you want to ensure that the contents of Vector don't change while you're
iterating through it, you have to wrap the entire block with synchronization on it.

Immutability and final fields
Many Java classes, including String, Integer, and BigDecimal, are immutable: once
constructed, their state never changes. A class would be immutable if all of its fields were
declared final. (In practice, many immutable classes have non-final fields to cache
previously computed method results, like String.hashCode(), but this is invisible to the
caller.)

Immutable classes make concurrent programming substantially simpler. Because their fields
do not change, you do not need to worry about propagating changes in state from one thread
to another. Once the object is properly constructed, it can be considered constant.

Similarly, final fields are also more thread-friendly. Because final fields cannot change their
value once initialized, you do not need to synchronize access when sharing final fields
across threads.

When you don't need to synchronize
There are a few cases where you do not have to synchronize to propagate data from one
thread to another, because the JVM is implicitly performing the synchronization for you.
These cases include:

• When data is initialized by a static initializer (an initializer on a static field or in a static{}
block)

• When accessing final fields

• When an object is created before a thread is created

• When an object is already visible to a thread that it is then joined with

Deadlock
Whenever you have multiple processes contending for exclusive access to multiple locks,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 30 Introduction to Java threads

there is the possibility of deadlock. A set of processes or threads is said to be deadlocked
when each is waiting for an action that only one of the others can perform.

The most common form of deadlock is when Thread 1 holds a lock on Object A and is
waiting for the lock on Object B, and Thread 2 holds the lock on Object B and is waiting for
the lock on Object A. Neither thread will ever acquire the second lock or relinquish the first
lock. They will simply wait forever.

To avoid deadlock, you should ensure that when you acquire multiple locks, you always
acquire the locks in the same order in all threads.

Performance considerations
There has been a lot written -- much of it wrong -- on the performance costs of
synchronization. It is true that synchronization, especially contended synchronization, has
performance implications, but these may not be as large as is widely suspected.

Many people have gotten themselves in trouble by using fancy but ineffective tricks to try to
avoid having to synchronize. One classic example is the double-checked locking pattern (see
Resources on page 28 for several articles on what's wrong with it). This harmless-looking
construct purported to avoid synchronization on a common code path, but was subtly broken,
and all attempts to fix it were also broken.

When writing concurrent code, don't worry so much about performance until you've actually
seen evidence of performance problems. Bottlenecks appear in the places we often least
suspect. Speculatively optimizing one code path that may not even turn out to be a
performance problem -- at the cost of program correctness -- is a false economy.

Guidelines for synchronization
There are a few simple guidelines you can follow when writing synchronized blocks that
will go a long way toward helping you to avoid the risks of deadlock and performance
hazards:

• Keep blocks short. Synchronized blocks should be short -- as short as possible while
still protecting the integrity of related data operations. Move thread-invariant preprocessing
and postprocessing out of synchronized blocks.

• Don't block. Don't ever call a method that might block, such as InputStream.read(),
inside a synchronized block or method.

• Don't invoke methods on other objects while holding a lock. This may sound extreme,
but it eliminates the most common source of deadlock.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 25 of 30

Section 7. Additional thread API details

wait(), notify(), and notifyAll() methods
In addition to using polling, which can consume substantial CPU resources and has
imprecise timing characteristics, the Object class includes several methods for threads to
signal events from one thread to another.

The Object class defines the methods wait(), notify(), and notifyAll(). To
execute any of these methods, you must be holding the lock for the associated object.

Wait() causes the calling thread to sleep until it is interrupted with Thread.interrupt(),
the specified timeout elapses, or another thread wakes it up with notify() or
notifyAll().

When notify() is invoked on an object, if there are any threads waiting on that object via
wait(), then one thread will be awakened. When notifyAll() is invoked on an object, all
threads waiting on that object will be awakened.

These methods are the building blocks of more sophisticated locking, queuing, and
concurrency code. However, the use of notify() and notifyAll() is complicated. In
particular, using notify() instead of notifyAll() is risky. Use notifyAll() unless you
really know what you're doing.

Rather than use wait() and notify() to write your own schedulers, thread pools, queues,
and locks, you should use the util.concurrent package (see Resources on page 28), a
widely used open source toolkit full of useful concurrency utilities. JDK 1.5 will include the
java.util.concurrent package; many of its classes are derived from
util.concurrent.

Thread priorities
The Thread API allows you to associate an execution priority with each thread. However,
how these are mapped to the underlying operating system scheduler is
implementation-dependent. In some implementations, multiple -- or even all -- priorities may
be mapped to the same underlying operating system priority.

Many people are tempted to tinker with thread priorities when they encounter a problem like
deadlock, starvation, or other undesired scheduling characteristics. More often than not,
however, this just moves the problem somewhere else. Most programs should simply avoid
changing thread priority.

Thread groups
The ThreadGroup class was originally intended to be useful in structuring collections of
threads into groups. However, it turns out that ThreadGroup is not all that useful. You are
better off simply using the equivalent methods in Thread.

ThreadGroup does offer one useful feature not (yet) present in Thread: the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 30 Introduction to Java threads

uncaughtException() method. When a thread within a thread group exits because it
threw an uncaught exception, the ThreadGroup.uncaughtException() method is
called. This gives you an opportunity to shut down the system, write a message to a log file,
or restart a failed service.

SwingUtilities
Although it is not part of the Thread API, the SwingUtilities class deserves a brief
mention.

As mentioned earlier, Swing applications have a single UI thread (sometimes called the
event thread) in which all UI activity must occur. Sometimes another thread may want to
update the appearance of something on the screen or fire an event on a Swing object.

The SwingUtilities.invokeLater() method allows you to pass a Runnable object to
it, and the specified Runnable will be executed in the event thread. Its cousin,
invokeAndWait(), will invoke Runnable in the event thread, but invokeAndWait() will
block until Runnable is finished executing.

void showHelloThereDialog() throws Exception {
Runnable showModalDialog = new Runnable() {

public void run() {
JOptionPane.showMessageDialog(myMainFrame, "Hello There");

}
};
SwingUtilities.invokeLater(showModalDialog);

}

For AWT applications, java.awt.EventQueue also provides invokeLater() and
invokeAndWait().

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 27 of 30

Section 8. Wrapup and resources

Summary
Every Java program uses threads, whether you know it or not. If you are using either of the
Java UI toolkits (AWT or Swing), Java Servlets, RMI, or JavaServer Pages or Enterprise
JavaBeans technologies, you may be using threads without realizing it.

There are a number of situations where you might want to explicitly use threads to improve
the performance, responsiveness, or organization of your programs. These include:

• Making the user interface more responsive when performing long tasks

• Exploiting multiprocessor systems to handle multiple tasks in parallel

• Simplifying modeling of simulations or agent-based systems

• Performing asynchronous or background processing

While the thread API is simple, writing thread-safe programs is not. When variables are
shared across threads, you must take great care to ensure that you have properly
synchronized both read and write access to them. When writing a variable that may next be
read by another thread, or reading a variable that may have been written by another thread,
you must use synchronization to ensure that changes to data are visible across threads.

When using synchronization to protect shared variables, you must ensure that not only are
you using synchronization, but the reader and writer are synchronizing on the same monitor.
Furthermore, if you rely on an object's state remaining the same across multiple operations,
or rely on multiple variables staying consistent with each other (or consistent with their own
past values), you must use synchronization to enforce this. But simply synchronizing every
method in a class does not make it thread safe -- it just makes it more prone to deadlock.

Resources
Downloads

• Explore Doug Lea's util.concurrent package
(http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html), which
contains a wealth of useful classes for building efficient concurrent applications.

Articles and tutorials

• "Synchronization and the Java Memory Model" (http://gee.cs.oswego.edu/dl/cpj/jmm.html)
is an excerpt from Doug Lea's book that focuses on the actual meaning of
synchronized.

• In his article "Writing multithreading Java applications" (developerWorks, February 2001,
http://www-106.ibm.com/developerworks/library/j-thread.html), Alex Roetter outlines issues
involved in Java multithreading and offers solutions to common problems.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 30 Introduction to Java threads

http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/cpj/jmm.html
http://gee.cs.oswego.edu/dl/cpj/jmm.html
http://gee.cs.oswego.edu/dl/cpj/jmm.html
http://gee.cs.oswego.edu/dl/cpj/jmm.html
http://gee.cs.oswego.edu/dl/cpj/jmm.html
http://gee.cs.oswego.edu/dl/cpj/jmm.html
http://gee.cs.oswego.edu/dl/cpj/jmm.html
http://www-106.ibm.com/developerworks/java/library/j-thread.html
http://www-106.ibm.com/developerworks/java/library/j-thread.html
http://www-106.ibm.com/developerworks/java/library/j-thread.html
http://www-106.ibm.com/developerworks/java/library/j-thread.html
http://www-106.ibm.com/developerworks/java/library/j-thread.html

• "Threading lightly, Part 1: Synchronization is not the enemy" by Brian Goetz
(developerWorks, July 2001, http://www-106.ibm.com/developerworks/library/j-threads1/)
explores how to manage the performance of concurrent applications.

• "Achieve strong performance with threads" by Jeff Friesen (JavaWorld, May 2002,
http://www.javaworld.com/javaworld/jw-05-2002/jw-0503-java101.html) is a four-part
tutorial on using threads.

• "Double-checked locking: Clever, but broken " (JavaWorld, February 2001,
http://www.javaworld.com/jw-02-2001/jw-0209-double.html), explores the Java Memory
Model in detail and the surprising consequences of failing to synchronize in certain
situations.

• Thread safety is tricky stuff. "Java theory and practice: Safe construction techniques"
(developerWorks, June 2002,
http://www-106.ibm.com/developerworks/library/j-jtp0618.html) offers some tips for safely
constructing objects.

• In "Threads and Swing"
(http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html), the Sun folks explore
the rules of safe Swinging and introduce the useful SwingWorker class.

Recommended books

• Doug Lea's Concurrent Programming in Java, Second Edition (Addison-Wesley, 1999,
http://www.amazon.com/exec/obidos/ASIN/0201310090/none0b69) is a masterful book on
the subtle issues surrounding multithreaded programming in Java applications.

• Paul Hyde's Java Thread Programming
(http://www.amazon.com/exec/obidos/ASIN/0672315858/none0b69) is a nice tutorial and
reference for many real-world multithreading issues.

• Allen Holub's book Taming Java Threads
(http://www.amazon.com/exec/obidos/ASIN/1893115100/none0b69) is an enjoyable
introduction to the challenges of Java thread programming.

Additional resources

• The util.concurrent package is being formalized under Java Community Process
JSR 166 (http://www.jcp.org/jsr/detail/166.jsp) for inclusion in the 1.5 release of the JDK.

• The Foxtrot project (http://foxtrot.sourceforge.net/) is an alternative -- and possibly simpler
-- approach to threading in Swing applications.

• You'll find hundreds of articles about every aspect of Java programming in the
developerWorks Java technology zone (http://www-106.ibm.com/developerworks/java/).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to Java threads Page 29 of 30

http://www-106.ibm.com/developerworks/java/library/j-threads1/
http://www-106.ibm.com/developerworks/java/library/j-threads1/
http://www-106.ibm.com/developerworks/java/library/j-threads1/
http://www-106.ibm.com/developerworks/java/library/j-threads1/
http://www-106.ibm.com/developerworks/java/library/j-threads1/
http://www-106.ibm.com/developerworks/java/library/j-threads1/
http://www-106.ibm.com/developerworks/java/library/j-threads1/
http://www-106.ibm.com/developerworks/java/library/j-threads1/
http://www-106.ibm.com/developerworks/java/library/j-threads1/
http://www-106.ibm.com/developerworks/java/library/j-threads1/
http://www.javaworld.com/javaworld/jw-05-2002/jw-0503-java101.html
http://www.javaworld.com/javaworld/jw-05-2002/jw-0503-java101.html
http://www.javaworld.com/javaworld/jw-05-2002/jw-0503-java101.html
http://www.javaworld.com/javaworld/jw-05-2002/jw-0503-java101.html
http://www.javaworld.com/javaworld/jw-05-2002/jw-0503-java101.html
http://www.javaworld.com/javaworld/jw-05-2002/jw-0503-java101.html
http://www.javaworld.com/jw-02-2001/jw-0209-double.html
http://www.javaworld.com/jw-02-2001/jw-0209-double.html
http://www.javaworld.com/jw-02-2001/jw-0209-double.html
http://www.javaworld.com/jw-02-2001/jw-0209-double.html
http://www.javaworld.com/jw-02-2001/jw-0209-double.html
http://www.javaworld.com/jw-02-2001/jw-0209-double.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0618.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0618.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0618.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0618.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0618.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0618.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0618.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0618.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://www.amazon.com/exec/obidos/ASIN/0201310090/none0b69
http://www.amazon.com/exec/obidos/ASIN/0201310090/none0b69
http://www.amazon.com/exec/obidos/ASIN/0201310090/none0b69
http://www.amazon.com/exec/obidos/ASIN/0201310090/none0b69
http://www.amazon.com/exec/obidos/ASIN/0201310090/none0b69
http://www.amazon.com/exec/obidos/ASIN/0201310090/none0b69
http://www.amazon.com/exec/obidos/ASIN/0672315858/none0b69
http://www.amazon.com/exec/obidos/ASIN/0672315858/none0b69
http://www.amazon.com/exec/obidos/ASIN/0672315858/none0b69
http://www.amazon.com/exec/obidos/ASIN/1893115100/none0b69
http://www.amazon.com/exec/obidos/ASIN/1893115100/none0b69
http://www.amazon.com/exec/obidos/ASIN/1893115100/none0b69
http://www.jcp.org/jsr/detail/166.jsp
http://www.jcp.org/jsr/detail/166.jsp
http://foxtrot.sourceforge.net/
http://foxtrot.sourceforge.net/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/

• See the developerWorks Java technology tutorials page
(http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/)
for a complete listing of free tutorials from developerWorks.

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 30 Introduction to Java threads

http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	About the author

	Thread basics
	What are threads?
	Every Java program uses threads
	Why use threads?
	More responsive UI
	Take advantage of multiprocessor systems
	Simplicity of modeling
	Asynchronous or background processing
	Simple, but sometimes risky
	Don't overdo it
	Example: Using a thread for timing and a thread to do work
	Summary

	A thread's life
	Creating threads
	Creating threads and starting threads are not the same
	Ending threads
	Joining with threads
	Scheduling
	Sleeping
	Daemon threads
	Example: Partitioning a large task with multiple threads
	Summary

	Threads everywhere
	Who creates threads?
	AWT and Swing
	Using TimerTask
	Servlets and JavaServer Pages technology
	Implementing an RMI object
	Summary

	Sharing access to data
	Sharing variables
	All threads live in the same memory space
	Synchronization for controlled access
	Ensuring visibility of changes to shared data
	Atomic code blocks protected by locks
	A simple synchronization example
	Java locking
	Synchronized methods
	Synchronized blocks
	Most classes are not synchronized
	Example: A simple thread-safe cache
	Summary

	Synchronization details
	Mutual exclusion
	Visibility
	When do you have to synchronize?
	Synchronization for consistency
	Incrementing a shared counter
	Immutability and final fields
	When you don't need to synchronize
	Deadlock
	Performance considerations
	Guidelines for synchronization

	Additional thread API details
	wait(), notify(), and notifyAll() methods
	Thread priorities
	Thread groups
	SwingUtilities

	Wrapup and resources
	Summary
	Resources
	Feedback

