
IBM Home Products Consulting Industries News About IBM Search

IBM : developerWorks : Java™ overview : Library - papers

Acquire multiple locks in a fixed, global order to avoid deadlock

Peter Haggar
Senior Software Engineer, IBM
September 2000

Editor's note: The following article is an excerpt from the book "Practical Java" published by Addison-Wesley. You can order this
book from Borders.com. Read our interview with author Peter Haggar.

Deadlock occurs when two or more threads are blocked while waiting for each other. For example, the first thread is blocked on
the second thread, waiting for a resource that the second thread holds. The second thread does not release this resource until it
acquires a resource held by the first thread. Because the first thread cannot release its resource until it acquires one from the
second thread, and the second thread cannot release its resource until it acquires one from the first thread, the threads are
deadlocked.

Deadlock is one of the most difficult problems to handle in multithreaded code. Finding and fixing it is arduous and time
consuming because it can occur in the least expected places. For example, consider the following code that locks multiple
objects.
public int sumArrays(int[] a1, int[] a2)
{
 int value = 0;
 int size = a1.length;
 if (size == a2.length) {
 synchronized(a1) { //1
 synchronized(a2) { //2
 for (int i=0; i<size; i++)
 value += a1[i] + a2[i];
 }
 }
 }
 return value;
}

This code properly locks the two array objects before they are accessed in a summation operation. It is short, simple, and
properly written for the task it performs, but unfortunately it potentially has a problem. The problem is that it creates a potential
deadlock situation unless additional care is taken in how this method is invoked on the same objects from different threads. To
see the potential deadlock, consider the following sequence of events:

Two array objects are created, ArrayA and ArrayB.1.

Thread 1 invokes the sumArrays method with the following invocation:
sumArrays(ArrayA, ArrayB);

2.

Thread 2 invokes the sumArrays method with the following invocation:
sumArrays(ArrayB, ArrayA);

3.

Thread 1 begins executing the sumArrays method and acquires the lock for parameter a1 at //1, which for this
invocation is the lock for the ArrayA object.

4.

Thread 1 is then preempted before acquiring the lock for ArrayB at //2.5.

Thread 2 begins executing the sumArrays method and acquires the lock for parameter a1 at //1, which for this
invocation is the lock for the ArrayB object.

6.

Thread 2 then attempts to acquire the lock for parameter a2 at //2, which is the lock for the ArrayA object. Thread 27.

developerWorks : Java technology : Features / Library - Papers

http://www-4.ibm.com/software/developer/library/praxis/pr52.html (1 of 3) [9/5/2000 3:17:03 PM]

http://www.ibm.com/shop1/
http://www.ibm.com/support/
http://www.ibm.com/download/
http://www.ibm.com/home/
http://www.ibm.com/products/
http://www.ibm.com/services/
http://www.ibm.com/solutions/
http://www.ibm.com/news/
http://www.ibm.com/ibm/
http://dw-webserver.almaden.ibm.com/redirectdWPS.htm
http://www.ibm.com/
http://www.ibm.com/developer/
http://www.ibm.com/developer/java/
http://www2.software.ibm.com/developer/papers.nsf/java-papers-bytopic
http://www-4.ibm.com/cgi-bin/software/developer/click.cgi?url=cseng.aw.com/bookdetail.qry?ISBN=0-201-61646-7&ptype=0
http://www-4.ibm.com/cgi-bin/software/developer/click.cgi?url=search.borders.com/fcgi-bin/db2www/search/search.d2w/Details%3F%26mediaType=Book%26prodID=51354538
http://www-4.ibm.com/software/developer/features/feat-haggar-interview.html

blocks because this lock is currently held by Thread 1.

Thread 1 begins executing and attempts to acquire the lock for parameter a2 at //2, which is the lock for the ArrayB
object. Thread 1 blocks because this lock is currently held by Thread 2.

8.

Both threads are now deadlocked.9.

One way to avoid this problem is for code to acquire locks in a fixed, global order. In this example, if thread 1 and thread 2 call
the sumArrays method with the parameters in the same order, the deadlock will not occur. This technique, however, requires
programmers of multithreaded code to be careful in how they invoke methods that lock objects passed as parameters.
Application of such a technique might seem unreasonable until you encounter this type of deadlock and have to debug it.

Alternatively, you can have the lock ordering embedded within the object. This allows code to query the object it is about to
acquire a lock for to determine the proper locking order. As long as all objects to be locked support the lock ordering notion and
code that acquires locks adheres to this strategy, you avoid these potential deadlock situations.

The disadvantage of embedded lock ordering in objects is the extra memory and runtime costs associated with its
implementation. In addition, applying this technique in the previous example requires a wrapper object on the arrays to contain
the lock ordering information. For example, consider the previous modified code with an implementation of the lock ordering
technique:
class ArrayWithLockOrder
{
 private static long num_locks = 0;
 private long lock_order;
 private int[] arr;

 public ArrayWithLockOrder(int[] a)
 {
 arr = a;
 synchronized(ArrayWithLockOrder.class) {
 num_locks++; //Increment the number of locks.
 lock_order = num_locks; //Set the unique lock_order for
 } //this object instance.
 }
 public long lockOrder()
 {
 return lock_order;
 }
 public int[] array()
 {
 return arr;
 }
}

class SomeClass implements Runnable
{
 public int sumArrays(ArrayWithLockOrder a1,
 ArrayWithLockOrder a2)
 {
 int value = 0;
 ArrayWithLockOrder first = a1; //Keep a local copy of array
 ArrayWithLockOrder last = a2; //references.
 int size = a1.array().length;
 if (size == a2.array().length)
 {
 if (a1.lockOrder() > a2.lockOrder()) //Determine and set the
 { //lock order of the
 first = a2; //objects.
 last = a1;
 }
 synchronized(first) { //Lock the objects in correct order.
 synchronized(last) {
 int[] arr1 == a1.array();
 int[] arr2 == a2.array();
 for (int i=0; i<size; i++)
 value += arr1[i] + arr2[i];
 }
 }
 }
 return value;

developerWorks : Java technology : Features / Library - Papers

http://www-4.ibm.com/software/developer/library/praxis/pr52.html (2 of 3) [9/5/2000 3:17:03 PM]

 }
 public void run() {
 //...
 }
}

The ArrayWithLockOrder class is provided as a wrapper to the arrays used in the first example. This class increments the
static num_locks variable each time a new object of the class is created. A separate lock_order instance variable is set
to the current value of the num_locks static variable. This ensures that each object of this class has a unique value for the
lock_order variable. The lock_order instance variable serves as the indicator for the order that this object should be locked
in relation to other objects of this class.

Note that the manipulation of the static num_locks variable is done from within a synchronized statement. This is required
because each instance of an object shares its static variables. Therefore, if two threads create an object of the
ArrayWithLockOrder class concurrently, the static num_locks variable could be corrupted if the code manipulating it is
not synchronized. Synchronizing this code ensures that each object of the ArrayWithLockOrder class has a unique value for
its lock_order variable.

The sumArrays method is also updated to include code to determine the correct lock ordering. Before locks are requested,
each object is queried for its lock order. Lower numbers are locked first. This code ensures that regardless of the order in which
objects are passed to this method, they are always locked in the same order.

The static num_locks field and lock_order field are both implemented as a long. The long data type is implemented as
a 64-bit signed two’s complement integer. This means that the num_locks and lock_order values will roll over after
9,223,372,036,854,775,807 objects are created. It is unlikely that you will reach this limit, but it is possible under the right
circumstances.

Implementing embedded lock ordering requires some extra work, memory, and execution time. However, you might find it worth
the cost if these types of dead-lock situations are possible in your code. If you cannot afford the extra memory and execution
overhead or the likelihood exists of rolling over the num_locks or lock_order fields, you should carefully establish a
predefined order for locking objects.

About the author
Peter Haggar is a Senior Software Engineer with IBM. He currently works on emerging Java and Internet technology and is the
project lead for IBM's real-time Java reference implementation. He has a broad range of programming experience having worked
on development tools, class libraries, and operating systems. He is also a frequent technical speaker on Java and other
technologies at numerous industry conferences. He received a B.S. in Computer Science from Clarkson University in New York
in 1987. He can be reached at haggar@us.ibm.com.

What do you think of this article?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

Privacy Legal Contact

developerWorks : Java technology : Features / Library - Papers

http://www-4.ibm.com/software/developer/library/praxis/pr52.html (3 of 3) [9/5/2000 3:17:03 PM]

mailto:haggar@us.ibm.com
http://www.ibm.com/privacy/
http://www.ibm.com/legal/
http://www.ibm.com/contact/

	ibm.com
	developerWorks : Java technology : Features / Library - Papers

	BCKBBENFMBHIDAJDIAMOINECDHIBNDJP:
	form1:
	x:
	f1: Acquire multiple locks in a fixed, global order to avoid deadlock
	f2: Java
	f3: http://www.ibm.com/developer/beta-feedback-thankyou.html
	f4: Off
	f5:

	f6:

