Using JSF technology for XForms
applications

Presented by developerWorks, your source for great tutorials

i bm cont devel oper Wr ks

Table of contents

If you're viewing this document online, you can click any of the topics below to link directly to that
section.

1. About this tULOFIAl........oeeeeiei e 2
2. A sample XFOorms appliCation..........ccuuuiirieiieiiiiiieeeeeiiie e 5
3. The JSF architeCtureoooouvuiiii e 29
4. How does a JSF component tree WOrk?.........coeevevieeviiieeeeiiieeeeiin, 42
5. Model beans and events iN JSF ..o 66
6. XForms-JSF integration Strategycovvevveeiiiiieeeeeiiiie e eeennes 80
7. XForms-JSF tag library.........ccooiiiiii e, 118
8. Designing the XForms-JSF shopping cart...........ccccoeeveviiieviiiieeeennn. 148
9. Implementing the XForms-JSF shopping cart......c..ccccceevevvevneeennnn. 161
10. Wrap-uUp @nd FESOUICESccuuuieeeriiieeeeiiieeeeiineesesi e s eateeeeesaeeeernnas 200

Using JSF technology for XForms applications Page 1 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Section 1. About this tutorial

What is this tutorial about?

This tutorial explains and demonstrates the use of JavaServer Faces (JSF)
technology to develop XForms applications. The JSF APl (JSR-127) allows
enterprise Java developers to build user interfaces for their server-side
applications. XForms (a W3C recommendation) is an XML application that
provides a framework for designing XML-based data entry forms.

This tutorial covers XForms authoring requirements in a server-side Java
application. It provides the inside-out picture of the JSF technology and shows
how XForms authoring requirements fit into the JSF architecture. It also lists the
tasks required if developers are going to use JSF technology for XForms
authoring and demonstrates the development of a JSF tag library capable of
authoring XForms markup.

We will also develop a sample application (XForms-JSF shopping cart) so you
can see the concepts put to work in a real-world application.

JSF technology provides the API for authoring user interfaces, and XForms
defines the markup that needs to be produced. Therefore, it is natural to expect
that many Java application developers will need to author XForms markup
using the JSF API. That's why we have chosen XForms as our sample
application in this tutorial. However, the concepts presented are applicable to all
types of JSF applications, so we've provided sample code to help answer your
JSF technology questions.

Should | take this tutorial?

To take this tutorial, you should be a Java programmer with some knowledge of
JavaBeans and the JavaServer Pages (JSP) technologies. This knowledge is
necessary to understand most of the coding details and examples. You also
need to be familiar with XML.

This tutorial will help you:

° Understand the JSF architecture

° Know how the JSF framework internally works

° Know what is happening inside a JSF application

° Comprehend the different phases of a JSF application
° Develop your own JSF tag library

This tutorial is not for readers who simply want to use the existing JSF core and
HTML tag libraries. If you'd like to learn more about the existing JSF tag

Page 2 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

libraries, there are some excellent resources available on developerWorks, as
detailed in Resources on page200 .

Tutorial topics

This tutorial is divided into the following sections:

o

Section 1 is the introduction and overview.

Section 2 covers the XForms authoring requirements in server-side Java
applications. To cover the authoring requirements, we'll use a shopping cart
application scenario, and present the flow of data and user interactions in an
XForms application. then we provide a list of requirements to fulfill if you are
to use XForms in a server-side Java application.

Section 3 offers a high-level view of the JSF architecture. This section lists
the components required to build a JSF application. It covers many of the
core JSF technology concepts without going into the low-level details of
each concept.

Section 4 provides low-level details of JSF technology concepts.

Section 5 discusses the two important components you will build in almost
all your JSF applications: model beans and event handlers. This section
demonstrates the development of model beans to hold application data and
event handlers to handle JSF events. By the end of Section 5, you should
have enough knowledge about JSF technology to start building your own
JSF tag libraries.

Section 6 demonstrates how you can use JSF technology to fulfill the
server-side requirements of XForms applications. This section will also
present the strategy for XForms-JSF technology integration and
demonstrate this strategy by developing three XForms-JSF components.

Section 7 walks you through the development of many more XForms-JSF
components using the concepts we learned in Section 6. At the end of this
section, we will demonstrate how to build Java Archive (JAR) files to
distribute your own tag libraries.

Finally, in sections 8 and 9, you'll put your JSF and XForms technology
knowledge to the test by building a comprehensive real-world application.

Code samples and installation requirements

Using JSF technology for XForms applications Page 3 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

To run the sample applications, you will need the following:

° J2SE V1.4.2

° J2EE V1.4.0 Update 1
° An application server
° An XForms browser

| tested the sample applications using J2SE V1.4.2, J2EE V1.4 (Update 1), Sun
Java System Application Server Platform Edition V8, and Forms Player V1.0
(XForms browser) on Microsoft Windows 2000 Professional Edition Service
Pack 2. You should be able to use any J2EE 1.4-compliant application server.

The sample applications are available in the source code download for this
tutorial. This download contains three zip files: section6.zip, section7.zip, and
section9.zip (see Resources on page 200). These files contain code for the
sample applications developed in their respective sections. The steps to try the
sample applications in an individual zip file are discussed in their relevant
sections.

About the author

Faheem Khan is an independent software consultant specializing in enterprise
application integration (EAI) and B2B solutions. You can reach him at
fkhan872@yahoo.com.

Page 4 of 201 Using JSF technology for XForms applications

mailto:fkhan872@yahoo.com

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Section 2. A sample XForms application

How is XForms different from HTML forms?

Almost every Web application contains forms to interact with its users and
gather information. For this purpose, Web applications use HTML forms.

XForms is an advanced XML-based version of HTML forms. The World Wide
Web Consortium (W3C) has prepared the official specification of XForms, which
is currently a W3C recommendation. (See Resources on page 200 for the official
XForms information.)

XForms is based on years of experience using HTML forms. You can say that
XForms is the next-generation Web forms.

The major advantages of using XForms instead of traditional HTML forms:

¢ XForms separate the design of the user interface from the application data,
which means the same application data can be gathered from Web-site
users who are using different Uls. This feature lets us develop the Ul
independent of the data model. In HTML forms, there is no concept of this
feature. Our sample shopping cart application will demonstrate this feature.

¢ XForms browsers wrap data in the form of XML structures. XML data flows
from the browser to the server and back. For example, if a user enters data
in an XForms input box, the text entered in the input box will be wrapped in
an XML tag and sent to the server. In HTML, data is sent to the server in
name value pairs. Data is then structured as soon as it is generated on the
client end. It is easier to manage structured data on the server side.

° These days, major database vendors support XML interfaces. Therefore,
you can map XML data from an XForms browser directly into your database
design.

¢ XForms uses XML Schema Definition to validate user data on the client side.
On the other hand, data entered in HTML forms is validated on the server
side or by implementing client-side scripts. XForms has almost entirely
eliminated the need for server-side processing or client-side scripting for
data validation.

We are not going to discuss the basic details of XForms syntax and format in
this tutorial. For that information, refer to Resources on page200).

In this section, we will explain how a typical XForms-based application works.
The details of this section will help you recognize the server-side processing
requirements of a typical application.

We have chosen the shopping cart as our sample application because they are

Using JSF technology for XForms applications Page 5 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

inherently form-rich and session-based applications. Therefore, while
discussing a shopping cart, we will have a good opportunity to demonstrate
XForms features in a session-based application.

While you go through the details of the shopping cart, you will get a clear idea
about the XML authoring and processing requirements of a typical XForms
application. The last topic of this section will summarize and list the server-side
processing requirements of an XForms application. Later, when we implement
the same concepts using the JSF framework, we will demonstrate how to use
JSF technology to fulfill these requirements.

Features of the sample XForms-based shopping cart

Now let's discuss our fictitious shopping cart application. The shopping cart will
have the following features:

° The startup page presents a catalog, which consists of categories and
products. We call this startup page the catalog view.

° The application allows you to browse through the catalog. Each category in
the catalog can have products and further subcategories. You can browse
through the structure of categories to reach the product of choice.

° If the user clicks a product, a new page opens. This page shows the details
of the product selected. Product details include its name, price, description,
features, and optional features. We call this page the product-specification
view. The product-specification view also contains an Add to cart button,
which the user can click to place this product in the shopping cart. It also
contains a Back to catalog view button to go back to the catalog view.

° Optional features will be displayed as check boxes.

° When the user clicks the Add to cart button, a new page will open. This page
will show the cart status (that is, the list of products already in the cart). We
call this the cart view.

° There are also Edit and Remove buttons associated with each individual
product in the cart view.

° If the user clicks Remove, the product will be removed from the cart.

° If the user clicks the Edit button associated with some product in the cart
view, another page will appear. This page allows the user to select or
deselect optional product features. We call this page the edit product view.

° The cart view also contains a Buy button, which will confirm the order with all

Page 6 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

the products in the cart.

Views of the shopping cart

Our shopping cart will include the following views:

° Catalog view

° Product-specification view
° Cartview

° Edit product view

The catalog view shows a list of categories and products:

a Xforms-J5F shopping cart >> Catalog Yiew - Microsoft Internet Explorer

File Edit “iew Favortes Toolz: Help |
= Back = = - @ ot | @Search (3] Favorites @Media QE | %v = E e
Address @ http: #flocalhozt B0E0/S hoppingCart/ catalogview faces jzessionid=4E 327B 7 3C0 3B E37A3A] j
Catalog | Computer
sub-Categories
. Hardware
. wolbware
Products
o Cotnputer Table
whow cart |
(&] Done | BB Localintranet 7

Note the following points from the catalog view screenshot shown above:

° The screenshot has three boxes: an ancestors box, a subcategories box,
and a products box, along with a Show Cart button.

Using JSF technology for XForms applications Page 7 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

o

The ancestors box shows the list of ancestors of the category shown in the
catalog view. Each ancestor in the list is shown as a button. The list of
ancestors starts with the top-level ancestor in the catalog and ends at the
category displayed in the catalog view. You might be wondering why we are
using buttons instead of anchors. Actually, XForms V1.0 (W3C
recommendation) does not have an element to render anchors. But the
XForms V1.0 specification says we can use styles to render buttons as
anchors. Most of the XForms browsers available have problems displaying
anchors, so the screenshot shows buttons instead of anchors.

In the screenshot, the ancestors box contains two categories: Catalog and
Computer. The Catalog category is the top-level category in our sample
catalog, and the Computer category is its immediate child. The catalog view
shown above is showing the ancestors, subcategories, and products of the
Computer category, so we can say that the Computer category is the
currently selected category. While browsing through the catalog, the user
can click any category to browse deeper into the catalog. The user can then
come back to the parent category by clicking it in the ancestor box.

o

The subcategories box shows a list of all the subcategories in the selected
category. Each subcategory is rendered as a clickable button to view its
details. For example, in the screenshot above, the Computer category
contains Hardware and Software subcategories.

o

The products box shows the entire list of products in the currently open
category. In the above screenshot, the Computer category contains only one
product: Computer Table.

o

The Show cart button is a handy way to display the cart view anytime while
browsing through the catalog.

If the user clicks on any of the categories shown on the catalog view, a new
catalog view will appear, showing the subcategories and products in the
requested category.

If the user clicks on a product, the details of that product will appear on the
product-specification view, as shown in the following screenshot:

Page 8 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

’axfmms-J‘SF shopping cart >> Product-Specification Yiew - Microsoft Internet Explorer 0] 3
Fle Edi View Favoites Tooks Help |-
GBack » = -) (2] 4| QSearch [EiFavoites TMedia (B | - S & - 5] 2
Addrezs [ﬂﬂ http: #flocalhiost 8080/5 hoppingCart/catalogiew faces ﬂ
X-Cart Product Detail B

Froduct_ID h_1

Product Mame: Intel Pentinumd

Product Descrption: Intel P4 series processor.

Product Price: 410

Product Features

Processing Speed High Processing Speed Upte 3 GHZ

Bus Speed Main Board Bus Speed upte 500 MHZ

Optional Features:

® rcproM - Price(35§)

1 CD-Whitet —-------- Price(45%)

M Combo-RW ------—-- Price(65%)

I Floppy_Drive -----—-- Price(10§)

Addto cart
Back to catalog view | | |

€1 Done [EElediiea

The product-specification view renders the specifications, price, description, and
default, as well as optional features of a product. The product-specification view

allows the user to select from optional features of the product.

The product-specification view contains an Add to cart button, which will add the

product to the cart and display the status of the cart in the cart view. The

catalog view button in the screenshot above is a convenient method to go back

to the catalog view.

The cart view is shown in the following screenshot:

Using JSF technology for XForms applications Page 9 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

; Xforms-J5F shopping cart >> Cart Yiew - Microzoft Internet Explorer

File Edit “iew Favortes Toolz Help |
= Back - = - @ il | @Search (3] Favarites @Media £ | %v = E r

Addresz @j hittp: / flocalhost: 808045 hoppingCart/productyiew faces j

H-Cart View
» Intel Pentimumd | Edit| Eemewe |[410.0

o Computer Table | Edit| Eemeowe |80.0

s Widnows-3F Edit|| Eemowe |[100.0

s Total Cart Price |590.0

Buy

Back to catalog view

fe.
|@ Dioke I_I_I_ = Local intramet i

The cart view shows a list of all products in the cart. This view will show the Edit
and Remove buttons with each product in the cart view. If the user clicks
Remove, the product associated with the button will be removed from the cart

and the cart view will be updated.

Clicking edit will take the user to the edit product view:

Page 10 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

5 Xflorms-JSF shopping cart >> Edit Product View - Microsoft Internet E xplores

File Edt ‘iew Favoiles Tool: Help

$GBack » = - @) () A} | Qoewch [5Favortes EhMeda (F | 5 b [0 - 5] iFolders
Address [&] hitp: localhost8080/ShappinaCant/canView faces j
X-Cart Product Detail =
|Produ:t_]D |h_1
!Produét_Name: |Hel_PenIinum4
|Product_Descﬁption‘. |Im:el P4 series processor.
|Prc:- duct_Price: |41 0
|Pru duct Features
|Pml:|:=ssi.ng Speed |H.|gh Processing Speed Upto 3 GHZ
|Bus Speed |Ma1n Board Bus Speed upto 500 MHZ
E)pt:iunal Features:
P 7 cD-ROM --ceeev Price(358)
¥ CD-Writer ---=----- Price(45%)
[T Combo-RW -----nn-- Price(65§)
™ Floppy_Drive --------- Price(10§)
save edited product |
Back to cart view | =
|&] Done 1| BE Locd intranet 7

The edit product view is similar to the product-specification view. Differences
between the product-specification view and edit product view:

° In the edit product view, the optional features that were selected while
adding the product to the cart will appear selected.

° The edit product view has a Save edited product button, instead of Add to
Cart.

° If the user clicks Save edited product, the changes in the optional features
against the edited product will be saved in the cart and the cart view will be
updated.

The following diagram shows the interactions between different views of our
shopping cart application:

Using JSF technology for XForms applications Page 11 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Product Customer
Specification Info
View

Map the numbers (associated with arrows in the figure shown above) with the
following points:

1. Clicking a category in the catalog view

2. Clicking a product in the catalog view

3. Clicking the Show cart button in the catalog view

4. Clicking the Back to catalog view button in the product-specification view
5. Clicking the Add to cart button in the product-specification view

6. Clicking the Remove button of a particular product in the cart view

7. Clicking the Edit button of a particular product in the cart view

8. Clicking the Back to cart view button in the edit product view; in this case, his
changes in the edit product view will be lost

9. Clicking the Save edited product button in the edit product view
10.Clicking the Back to catalog view button in the cart view

11.Clicking the Buy button in the cart view

Page 12 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

XML structures for the shopping cart

Because XForms works on the idea of XML, our XForms-based shopping cart
will need XML structures. We are going to design the product XML structure,
which wraps the details of an individual product; and the category XML
structure, which wraps the details of a category in the catalog.

To see the details of these XML structures, look at the following XML, which
shows the specification of a product:

<product id="h_1" nane="Intel _Penti numd" catld="1.1">
<description>Intel P4 series processor.</description>
<pri ce>410</price>
<f eat ures>
<f eat ure>
<name>20 GB HD</ nane>
<description> A Hard Drive of 20 G ga
Byt e</ descri pti on>
</feature>
</features>
<optional - f eat ures>
<feature>
<nane>CD- ROWK/ nanme>
<price>35</price>
<descri pti on>optional feature</description>
</feature>

</ optional -features>
</ pr oduct >

Notice the following points from the XML structure shown above:

o

The root element in the XML structure listed above is pr oduct , which wraps
the details of a product like its ID, name, category (to which this product
belongs), description, price, features, and optional features.

The ID is an attribute of the pr oduct element. Similarly, the product name
and ID of the category to which the product belongs (cat | d) are also
attributes of the product element.

A product has two types of features: fixed (or standard) features and optional
features (which cost extra).

The f eat ur es element wraps all the fixed features for a product. Each
feature is wrapped inside a f eat ur e element, which in turn wraps the name
and description of the feature. For example, in the XML shown above, the
string "20 GB HD" represents the name of a fixed feature for the product
"Intel Pentium4." The description of the feature is "A Hard Drive of 20 Giga
Byte."

Using JSF technology for XForms applications Page 13 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

° The opti onal - f eat ur es element wraps all the optional features for a
product. Individual optional features are represented by f eat ur e child
elements of the opt i onal - f eat ur es element. Each f eat ur e element
wraps the name, price, and description of the optional feature.

A cat egor y element represents an individual category shown in the catalog
view. A cat egor y element wraps products and subcategories. All the top-level
cat egor y elements reside inside the root cat egor i es element. For example,
have a look at the following XML:

<cat egori es>
<category id="1" nanme="Conputer">
<category id="1.1" name="Hardware" catld="1">
<descri pti on>Har dwar e products for PC. </description>
<product id="h_1" nane="Intel _Penti numd" catld="1.1">

</ pr oduct >

<!-- other products and subcategories -->
</ cat egory>
<l-- other subcategories -->
</ cat egory>
<l-- other categories -->

</ cat egori es>
Notice the following points from the XML structure shown above:

° Acat egori es tag wraps all the categories in the catalog.
° The information of a particular category is wrapped in a cat egor y element.

° The name, ID, and ID of the parent category (to which this category belongs)
are attributes of the category element.

° The subcategories in a category are wrapped in the cat egor y children of
the cat egor y element.

° The products in a category are wrapped in pr oduct children of the
cat egory element. We have already discussed the structure of the
pr oduct element.

Next, we'll explain the product specification page of the shopping cart. We have
chosen to explain that page before explaining the other pages of the shopping
cart because this will help you understand some important XForms tags and the
subsequent discussion on how the shopping cart works.

Using XForms

Page 14 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Now we will explain the use of XForms elements in an HTML file by taking the
markup that generates the product specification view. The XML markup that
generates the product-specification view is shown here:

<?xm version="1.0" encodi ng="i so-8859-1"7?>
<htm xm ns: xhtm ="http://ww. w3. org/ 1999/ xht m "
xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ms" >
<head>
<title>Xfornms-JSF shopping cart</title>
<xforns: nodel xm ns: xforns="http://ww.w3. org/ 2002/ xf or ns"
i d="nmyModel " >
<xf orns: submi ssion action="/XCart/faces/ product Vi ew. j sp"
nmet hod="post" id="subnit"/>
<xforns:instance>
<dat a>
<acti on- perf or mned></ acti on- per f or mred>
<sel ect edFeat ur es></ sel ect edFeat ur es>
</ dat a>
</ xforns:instance>
</ xf or ns: nodel >
</ head>
<body>
<h3> X-Cart Product Detail </h3>
<tabl e w dth="100% >

<tr>
<t abl e col span="3" border="1" wi dt h="70% >
<!-- product details in tabular form->
</tabl e>
</tr>
</ tabl e>

<xforns: sel ect ref="options" appearance="full"
xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ns" >
<xforms: | abel >Opti onal Features: </xformns:|abel >
<xforms:itenp
<xforms: | abel >CD-ROM - - - --- - Price(35%) </xforns:|abel >
<xf or ns: val ue>CD- ROWK/ xf or ms: val ue>
</xforns:itenp
<l-- other xforns:iteminstances-->
</ xf ornms: sel ect >
<xforms: submt subm ssion="submt"
xm ns: xforms="http://ww. wW3. or g/ 2002/ xf or ns"
xm ns:ev="http://ww. w3. org/ 2001/ xm - event s" >
<xforns:action ev:event="DOWActivate">
<xf orns: setval ue
ref ="acti on-performed">_i di</ xfor ns: set val ue>
</ xformns: acti on>
<xforms: | abel >Add to cart</xforns: | abel >
</ xforns: subm t>
<xforms: submt subm ssi on="submit'
xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ns"
xm ns: ev="http://ww. w3. org/ 2001/ xm - event s" >
<xforns: action ev: event="DOVActivate">
<xforns: setval ue
ref ="acti on- perfornmed">i d2</ xf or ns: set val ue>
</ xforns: acti on>
<xforns: | abel >Back to catal og vi ew</xforms:| abel >
</ xforns: submt>
</ body>
</htm >

Using JSF technology for XForms applications Page 15 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

This XML markup is actually an HTML page, which contains some XForms
elements. You can easily identify the following components of this
product-specification markup:

° The header that contains an XForms element named xf or ns: nodel
° The xf orns: sel ect element in the body of the HTML page

° The two xf or ms: subm t elements, which are included in the body of the
HTML page

Now let's see each component of the product-specification page one by one.
The next section explains the XForms nodel element.

The model element

Look at the xf or ns: nodel element:

<xforns: nodel xm ns: xforns="http://ww.w3. org/ 2002/ xf or ns"
i d="nmyModel " >
<xf orns: submi ssion action="/XCart/faces/ product Vi ew. j sp"
nmet hod="post" id="subnit"/>
<xforns:instance>
<dat a>
<acti on- perf or med></ acti on- perf or mred>
<sel ect edFeat ur es></ sel ect edFeat ur es>
</ dat a>
</ xforns:instance>
</ xf or ns: nodel >

The nodel element of XForms behaves like the f or mtag of HTML. The nodel
element:

° Wraps the structure of application-specific XML data. In our case, the
application-specific data structure is the dat a element. The
application-specific XML data is the XML structure that will be used for data
interchange between the client and server. And this application-specific XML
structure always comes in the i nst ance element of the XForms nodel
element.

° Provides the submission logic of data, which involves various bits of
information, such as the method of submission (for instance, post, get,
etc.), the URL used for the submission (that is, the address of the server),
what data to submit (that is, the r ef attribute), etc.

First, let's see how an xf or ns: nodel element wraps the structure of
application-specific XML data.

Look at the xf or ns: i nst ance el enent :

Page 16 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

<xforms:instance>
<dat a>
<acti on- per f or med></ acti on- per f or ned>
<sel ect edFeat ur es></ sel ect edFeat ur es>
</ dat a>
</ xforns:instance>

Notice the following points:

° There should be just one child of the i nst ance element. For example, the
i nst ance element shown above has just one child named dat a, which
wraps the complete application-specific data.

° The application-specific XML structure in the i nst ance element wraps the
user's data. For example, if the sel ect edFeat ur es child of the data
element is associated with some user interaction element (such as a
selection list), the sel ect edFeat ur es element will wrap the user's
selection during data transfer from the client browser to the server. Later,
you'll see how to associate user interaction components with different
elements in application-specific XML.

Here's how the xf or ms: nodel specifies how to submit (or send) user data to
the server. Have a look at the xf or ns: subm ssi on element:

<xf or ms: nodel >

<xf orns: subm ssion acti on="/XCart/faces/ product Vi ew. j sp"
nmet hod="post" id="subnmt"/>

</ xt or ms: nodel >
Notice the following points:

° An XForms subm ssi on element is used.
° This element has three attributes: acti on, net hod, and i d.

° The act i on attribute specifies the URL for submitting data (the HTTP
address of a Web server).

° The et hod attribute contains information about the way data will be sent
back to the URL mentioned in the act i on attribute. For example, if the
nmet hod is specified as "POST," data will be sent back to the server using
the HTTP POST method.

° The string specified in the i d attribute value works as an identifier for the
subm ssi on element. There can be more than one subni ssi on child of a
nodel element. Each subm ssi on element will be identified using its i d
attribute value.

In The submit element on page 20, you'll learn how to associate a user interface

Using JSF technology for XForms applications Page 17 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

button with a subm ssi on element.

The select element

We have said that the i nst ance element defines the structure of
application-specific XML data. We have seen the structure of XML data, but
where does the data come from?

Naturally, it's the user's data, so it has to come from the user. Some user
interface XForms elements (such as a selection list) will fetch the user's data
and wrap it inside some application-specific child of the xf or ns: i nst ance
element before sending the user's data to the server.

To understand how this works, look at the sel ect element inside the body of
the product specification markup:

<xforns: sel ect ref="opti ons" appearance="full"
xm ns: xforms="http://ww. w3. or g/ 2002/ xf or n8" nodel =" nyModel " >
<xforns: | abel >Opti onal Features:
<br/ ></ xforns: | abel >
<xforms:itenp
<xforms: | abel >CD-ROM - -------- Price(35%)

</xforns: | abel >
<xf or ms: val ue>CD- ROWK/ xf or ns: val ue>
</xforns:itenmpr
<l-- other xfornms:iteminstances-->
</ xf orns: sel ect >

The output of the above XForms markup is shown in the following screenshot:

Optional Features:
 CcproM - Price(35§)
O CD-Writer -------=- Price(455)

T o P Price(65F)
™ Floppy_Drive --------- Rl

Let's see the behavior of the sel ect element shown above, then we'll see how
it will map the user's data to specific elements or attributes of the
application-specific XML data.

The following points depict the behavior of the sel ect element:

° The behavior of the sel ect element is similar to the <i nput
t ype="checkbox" > tag of HTML.

Page 18 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

° The sel ect element provides a list of options (a selection list) to the user,
who can select one or more options from it.

° Thel abel child of the sel ect element is used to display a common label
for all the options in the selection list. We have used "Optional Features,"
which appears as the label for the selection list in the screenshot.

° The it emchild of the sel ect element represents one option from the list of
options in the selection list.

° Thel abel child of the sel ect element wraps the label for the option.

° The val ue child of the sel ect element wraps a string value, which will be
copied into the application-specific XML if the user selects this option.

Now we'll map a user interface element (such as the sel ect element
discussed above) to application-specific XML data. Take a look at the following
XML:

<ht
xm ns: xhtm ="http://ww. w3. or g/ 1999/ xht m "
xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ns" >
<head>
<xforms: nodel xm ns: xforns="http://ww.w3. org/ 2002/ xf or ns"
i d="rmyModel ">
<xf orms: subm ssi on acti on="/XCart/faces/product Vi ew. j sp"
nmet hod="post" id="submt"/>
<xforns:instance>
<dat a>
<acti on- per f or mred></ acti on- per f or med>
<sel ect edFeat ur es></ sel ect edFeat ur es>
</ dat a>
</ xforms:instance>
</ xf or ms: nodel >
</ head>
<body>

<xforns:sel ect ref="options" appearance="full"
xm ns: xforms="http://ww. w3. or g/ 2002/ xf or ms" nodel =" myModel " >
<xforns: | abel >Opti onal Features:

</ xformns: | abel >
<xforms:itenp
<xforns: | abel >CO-ROM - -------- Price(35%)

</ xforns: | abel >
<xf or ms: val ue>CD- ROWK/ xf or ns: val ue>
</xforns:itenpr
<xforms:itenp
<xforms: | abel >CD-Witer ---------
Price(45$)
</xforns: | abel >
<xforns: val ue>CD- Wit er </ xforns: val ue>
</xforns:itenpr
<xforms:itenp
<xforms: | abel >Conbo-RW ---------
Pri ce(65$)
</ xf orns: | abel >
<xf orms: val ue>Conbo- RW&/ xf or ms: val ue>
</xforns:itemr

Using JSF technology for XForms applications Page 19 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<xforms:itenr
<xforns: | abel >Fl oppy_Drive -------
Pri ce(10$)
</ xf or ns: | abel >
<xf orns: val ue>Fl oppy_Dri ve</ xf or ms: val ue>
</ xforms:itenr
</ xforms: sel ect >

</ body>
</htm >

Because a single HTML document can contain a number of xf or ns: nodel
elements, we have to identify which nodel a particular sel ect element refers
to. The nodel attribute of the sel ect element is used to establish an
association between the sel ect and nodel elements. The nodel attribute
value of the sel ect element matches the i d attribute value of the nodel
element. The nodel attribute of the sel ect element in our
product-specification page indicates that the sel ect element is associated with
the nodel whose i d attribute has the value "myModel.”

In addition to specifying which nodel element wraps the application-specific
XML data associated with a particular sel ect element, the sel ect element
also needs to specify which element or attribute of the application-specific XML
wraps the user's choices. The r ef attribute value of the sel ect element
establishes this association. Notice from the sel ect element shown above that
its r ef attribute value is "selectedFeatures.” This is actually an XPath query,
which specifies that the sel ect edFeat ur es element within the
application-specific XML data wraps the user's choice.

Let's use an example to elaborate on these ideas. If the user selects the first
and third option from the list, the application-specific XML will look like the
following code:

<dat a>

<acti on- perf or mred></ acti on- per f or red>

<sel ect edFeat ur es>Conbo- RW CD- ROW/ sel ect edFeat ur es>
</ dat a>

The above XML wraps the value of the first and third elements (specified in the
val ue elements of their respective items). The content of the val ue elements
is concatenated together with a space between them in the application-specific
XML.

The submit element

Let's discuss the xf or ns: submi t element that immediately follows the
xforns: sel ect element in the product-specification page:

<xforms: submt subm ssion="submt">
<xforms: action ev:event="DOVActi vate">
<xforms: set val ue

Page 20 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

ref ="action-perforned">_idil</xforns: setval ue>
</ xforns:acti on>
<xforms: | abel >Add to cart</xforns:| abel >

</ xforms: subm t >

This markup will generate the following view, which resembles a button:

Add to cart

We explained the purpose of the xf or ns: subm ssi on element while
discussing the XForms nodel element, but when will this submission be
initiated? To initiate the submission process, XForms provides the submi t
element, whose graphical view resembles a button.

The subm t element:

° Behaves like the <i nput type="subm t">tagin HTML.

° Renders a button with a label on it that is specified in the label child of the
submi t element.

° s used to submit data (wrapped in an XML structure) to the URL mentioned
in the act i on attribute of the subm ssi on element.

Can include different types of submissions in the same nodel element. For
each type of submission, there will be one subm ssi on element in the
nodel . Therefore, we need some mechanism in the submi t element to
specify which submission this submit button will invoke. Notice the

subni ssi on attribute in the subm t element in the markup shown above.
The value of the subm ssi on attribute identifies the XForms subm ssi on
element (a child of the nodel element), which should be invoked by clicking
a button.

When the user clicks the button, an xf or ns- subm t event is fired that initiates
the XForms subm ssi on element defined in the XForms nodel element. The
XForms subm ssi on element will send the user's data wrapped in
application-specific XML to the URL mentioned in the act i on attribute of the
XForms subm ssi on element using the method specified in the et hod
attribute.

We have provided detailed information about the xf or ms: nodel ,

xforns: sel ect, and xf or ms: subm t elements. This information applies to
the different Ul elements of XForms. Later, we will introduce many more Ul
elements (like XForms i nput , sel ect, and sel ect 1). These Ul elements use
the same concept of associating the user's data with application-specific XML.

Using JSF technology for XForms applications Page 21 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

User interaction and flow of data in our shopping cart
application

Now we will discuss the sequence of events that occurs when a user accesses
the shopping cart. In particular, we will focus on the XML data interchange that
will take place between the shopping cart application and client.

For now, we won't worry about how the application performs all authoring tasks.
We are only concerned with what it authors. Later, we'll demonstrate how the
application uses JSF technology to fulfill the authoring tasks.

Look at the following figure, which shows the sequence of events that occurs
when a user visits our shopping cart (different events are marked as numbers in
the figure):

Weh Sever

(1) (5) (2) (12) (15) (1) | |Fhepping Caxt Application
OO

®HOOE O ©®®®

W

ZForms
Browser

e o om mm omw o m mm mw mm o mm mm omm
B o m m m m m m m m w m m m——

The events of the figure are explained below:

1. Suppose that a user requests the following URL:

www. aFi cti ousShoppi ngCart.com

2. On receipt of this request, the shopping cart application loads the XML
structure from the database that contains the catalog data.

3. The shopping cart application gets the information for products and
categories from the XML structure, and generates the following markup that
renders the catalog view to the user:

<ht m
xm ns: xhtm ="http://ww. w3. or g/ 1999/ xht m "

Page 22 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ns" >
<head>

<xf or ms: nodel >
<xforms: subni ssi on action="/nyXCart/faces/ catal ogVi ew. j sp"
met hod="post" id="subnmit" />
<xforns:instance>
<dat a>
<acti on- perf or mned></ acti on- per f or red>

<sel ect edFeat ur es>Conbo- RW CD- ROW/ sel ect edFeat ur es>
</ dat a>

</ xforns:instance>
</ xf or ms: nodel >
</ head>
<body>
<tabl e wi dth="100% >
<tr>
<t abl e border="1" w dt h="100% >
<tr>
<t d>Cat al og</t d>
</[tr>
</t abl e>
<tabl e border="1" wi dt h="100% >Sub- Cat egori es
<tr>
<t d>
<xforns: submt subm ssion="submt" >
<xf orns: | abel >Conput er </ xf or ns: | abel >
<xforms:action ev:event="DOVActivate">
<xforns: setval ue ref="acti on-perforned">
_idi@a
</ xf orns: set val ue>
</ xforns:acti on>
</ xforns: submt>
</td>
</[tr>
<!-- remmining catal og data markup in sane pattern -->
</t abl e>
</[tr>
</t abl e>
</ body>
</htm >

The above markup will render a list of categories and products (catalog

view) in the form of buttons as shown in Views of the shopping cart on page
1.

4. The shopping cart application sends back the above markup to the XForms
browser.

5. Now suppose the user clicks a product with ID five. The browser will send
the request to the Web server with following XML structure:

<dat a>

<action-perfornmed>_i d1@</ acti on- perf or ned>

<sel ect edFeat ur es>Conbo- RW CD- ROWK/ sel ect edFeat ur es>
</ dat a>

The data wrapped in the act i on- per f or med element has two parts
separated by an "@" symbol. The prefix of "@" (_i d1) indicates the ID of
the server-side Java component (that authored the markup for the catalog

Using JSF technology for XForms applications Page 23 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

view). The postfix of "@" (5) represents the ID of the selected product.

6. On receipt of the request, the shopping cart application parses the XML
structure in the request and extracts the product's ID from it.

7. The shopping cart application then extracts the product's XML structure
against the ID retrieved in step 6 from the XML structure extracted from the
database in step 2. The product XML structure contains the details of the
product.

8. Inresponse, the shopping cart application generates the following markup
and sends it to the XForms browser:

<?xm version="1.0" encodi ng="i so-8859-1"7?>
<htm xm ns: xhtm ="http://ww. w3. org/ 1999/ xht m "
xm ns: xfornms="http://ww. w3. or g/ 2002/ xf or ns" >
<head>
<title>JSF_n_Xforms shopping cart</title>
<xforns: model xm ns: xforns="http://wwm. w3. org/ 2002/ xf or ns"
i d="nmyModel ">
<xf orns: subm ssion acti on="/XCart/faces/ product Vi ew. j sp"
nmet hod="post" id="submit"/>
<xforms:instance>
<dat a>
<acti on- perfor med></ acti on- perf or ned>
<sel ect edFeat ur es></ sel ect edFeat ur es>
</ dat a>
</ xforms:instance>
</ xf or ms: nodel >
</ head>
<body>
<h3> X-Cart Product Detail </h3>
<tabl e w dt h="100% >
<tr>
<t abl e col span="3" border="1" wi dth="70% >
<tr>
<t d>Pr oduct | D</td>
<td>h_1</td>
</tr>
<!-- other product details -->
</tabl e>
</[tr>
</tabl e>
<xforms: sel ect ref="options" appearance="full"
xm ns: xforms="http://ww. w3. or g/ 2002/ xf or ns" >
<xforns: | abel >Opti onal Features: </xforns:|abel >
<xforns:itenp
<xforms: | abel >CD-ROM - -------- Price(35%)
</ xformns: | abel >
<xf or ms: val ue>CD- ROWK/ xf or ns: val ue>
</xforns:itenmr
<xforms:itenp
<xforms: | abel >
CD-Witer --------- Price(45%)
</ xforns: | abel >
<xforns: val ue>CD- Wit er </ xf or ns: val ue>
</ xforms:itenr
<!-- other xforns:iteminstances-->
</ xforns: sel ect >

Page 24 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

<xfornms:subnit subm ssion="submit"
xm ns: xforms="http://ww. w3. or g/ 2002/ xf or ns"
xm ns: ev="http://ww. w3. org/ 2001/ xm - event s" >
<xforns: action ev: event ="DOMActi vate">
<xforns: setval ue ref="acti on- perfornmed">
_idl
</ xforns: set val ue>
</ xforms: acti on>
<xforns: | abel >Add to Cart</xforns:| abel >
</ xforns: submt>
<xforns: submt subm ssion="submt"
xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ns"
xm ns: ev="http://ww. w3. org/ 2001/ xm - event s" >
<xfornms:action ev:event="DOVActivate">
<xforns: setval ue ref="acti on-perfornmed">
_id2
</ xforns: set val ue>
</ xforns: acti on>
<xforms: | abel >Back To Catal og Vi ew</xforns: | abel >
</ xforms: submt>
</ body>
</htm >

The graphical view of the above markup is already shown in Views of the
shopping cart on page 7.

9. Now suppose that the user selects first and second optional features of the
product shown on the product-specification view, and clicks the Add to cart
button. On clicking Add to cart, the browser wraps the values corresponding
to the selected features ("CD-ROM" and "CD-Writer") and the ID of the
button clicked ("_id2") in the request, then forwards the request to the
shopping cart application. The XML structure that carries the user's data to
the shopping cart application:

<dat a>
<action- performed>_i d2</ acti on- per f or med>
<opti ons>CD- ROM CD- Wi t er </ opti ons>

</ dat a>

Notice from this XML that the act i on- per f or ned tag wraps the "ID" of the
button, and the opt i ons tag contains all the features the user selected.

10.The shopping cart application receives the request, parses the incoming
XML structure, extracts data about the selected features, and saves the data
in server-side objects.

11.The shopping cart application will respond with the following markup, which
renders the cart view on the user's browser:

<htm xm ns: xhtm ="http://ww. w3. org/ 1999/ xhtm "

xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ms" >
<head>

<title>JSF_n_Xfornms shopping cart >> Cart View
</title>

<xf or ns: nodel >

<xforns: submni ssion action="/nyXCart/faces/cartView jsp"
met hod="post" id="subnit"/>

Using JSF technology for XForms applications Page 25 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<xforms:instance>
<nmodel XM.>
<acti on- per f or med></ acti on- per f or ned>
</ nmodel XM_>
</ xforns:instance>
</ xf or ns: nodel >
</ head>
<body>
<t abl e border="1">
<ol type="1"><tr>
<td>Intel _Pentinumi</td>
<td><xforns:submt subm ssion="submt" >
<xforns: | abel >Edi t </ xf orms: | abel >
<xfornms:action ev:event="DOVActivate">
<xforns: setval ue ref="acti on-perfornmed">
_idi@@dit
</ xforns: set val ue>
</ xforns: acti on>
</ xfornms: subm t></td>
<td><xforns:submt subm ssion="submt" >
<xformns: | abel >Renpve</ xf or ns: | abel >
<xforms:action ev:event="DOVActivate">
<xforns: setval ue ref="acti on-perfornmed">
_1d1@@ enove
</ xf orns: set val ue>
</ xforms: acti on>
</ xfornms:subm t></td>
</tr>
</t abl e>
<xforms: submt subm ssion="submt">
<xforns: | abel >Renpve</ xf or ns: | abel >
<xforns: action ev: event ="DOMActi vate">
<xforms: setval ue ref="acti on-perforned">
_id2
</ xforns: set val ue>
</ xforns: acti on>
</ xforns: submt>
</ body>
</ htm >

The graphical view of the above markup is shown in Views of the shopping
cart on page 7.

12.Recall from Views of the shopping cart on page 7 that each product in the
cart will have a set of edit and Remove buttons. If the user clicks the Edit
button, the XForms browser forwards the following XML:

<dat a>

<action-performed>_i dl@@dit </ action-perforned>
</ dat a>

The data wrapped in the act i on- per f or med tag consists of three parts
separated by an "@" symbol. The prefix of the first "@" (_i d1) symbol (from
the left) indicates the ID of the server-side Java component. The postfix of
"@" (0) represents the ID of the selected product. The last string (edi t
identifies the button clicked.

13.The shopping cart application parses the XML structure, extracts the "ID" of

Page 26 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

the product for editing, and generates the markup for the edit product view.
The markup generated for the edit product view is similar to the markup
shown in step 8.

14.The shopping cart application sends the markup for the edit product page to
the user's browser.

15.1f the user clicks Remove, the XForms browser forwards the following XML
to the shopping cart application:

<dat a>
<action-perfornmed>_i d1@@ enove</ acti on- perf or med>
</ dat a>

16.0n receipt of the request, the shopping cart application parses the XML
structure, extracts the "ID" of the product, removes the product from the cart,
and updates the cart view.

17.The shopping cart application responds with the updated cart view.

18.When the Buy button in the cart view is clicked, the browser forwards the
following XML to the shopping cart application:

<dat a>
<action- perfornmed>_i d2</ acti on- per f or red>
</ dat a>

19.0n receipt of the XML above, the shopping cart application parses the XML
structure, extracts the ID of the button from XML, then removes the product
from the cart and updates the cart view.

In this section, we mostly we discussed the XML structures, but we did not
mention who generates these markups and how. XForms-JSF integration
strategy on page 80 andXForms-JSF tag library on page 118 will address these
issues. They will show how we can use the JSF architecture to generate the
different shopping cart views discussed here. We will explain the server-side
responsibilities for generating these markups while demonstrating the whole
XForms-JSF shopping cart application.

Server-side processing requirements of an XForms
application

We have already discussed the details of XML formats and data interchange in
our shopping cart. Keeping in mind the XML flow of data we described, you'll
see how our shopping cart application will have the following responsibilities on
the server side:

° Render XForms markup

Using JSF technology for XForms applications Page 27 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Most importantly, our Shopping cart application will have to render XForms
markup, so that the XForms browser can properly display XForms
components.

° Author the XML formats

Our shopping cart application will have to author XML formats that will be
used to track the user interactions on the client side. It is the
application-specific XML wrapped inside the XForms nodel element.

° Parse the XML request

In an XForms application, user data is sent to the server wrapped in an XML
structure. Therefore, our shopping cart application will have to parse the
XML request to extract user data from the request.

° User interaction with the XForms components

In addition to all the above, our shopping cart application will have to
implement a mechanism to track the user's interactions with XForms
components on the client side. For example, if a user clicks an XForms
button, the server-side application needs to know which button was clicked.

° Talk to a database

The XForms shopping cart application will have to interact with some data
source to get application-specific data. For the sake of simplicity, our sample
shopping cart implementation in Implementing the XForms-JSF shopping
cart on page 161 will get the application data from an XML file.

In the next three sections, we will explain the JSF architecture to demonstrate
how to use JSF technology to fulfill the server-side authoring and processing
requirements stated above.

Page 28 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Section 3. The JSF architecture

Components of a JSF application

In the previous section, we saw how an XForms application works. Our ultimate
goal in this tutorial is to explain and demonstrate the use of JSF technology to
fulfill the server-side authoring and processing requirements of an XForms
application. But before we can do that, we have to dig deep inside JSF
technology and see what's there.

First, we'll provide a high-level view of JSF technology to acquaint you with all
the components of a JSF application. You will learn how it works, what a JSF
tag library is, and how an application uses the JSF tag library.

Because this section is designed as a high-level view, we will not go into the
details of individual concepts. Subsequent sections will explore further details of
the concepts discussed here.

Let's start our discussion by dividing a JSF application into different types of
modules. If you are developing a JSF application, you will find that it is roughly
divided into the following four types of modules:

° Java classes that belong to the JSF framework
° The JSF tag library
¢ JSPs that author the Ul of your application by using JSF tags

° JavaBeans that comprise the business logic and application data of the JSF
application

The first item is the basic framework that enables the other three types of
modules to work properly. There are various Java classes that form the JSF
framework. You'll explore these classes further in How does a JSF component
tree work? on page 42, which explains the purpose and methods in each class.

The second item (the JSF tag library) allows the JSF applications to run as
JSPs. The concept of tag libraries is part of the extensibility framework of JSP
technology and is not new with JSF technology. The JSF tag libraries are just
like normal JSP tag libraries; the only difference is that tags in a JSF library
work according to the JSF framework.

The last two items in the list (JSPs and JavaBeans) are application-specific
modules, which means you will develop them once for each JSF application.

In this tutorial, we'll demonstrate the use of the JSF framework. While doing so,
we will develop two tag libraries and several JSPs, as well as many JavaBeans.

We will use the terms "tag library-specific" and "application-specific" often. Tag
library-specific means that something applies to the entire tag library, no matter
which application this tag library is used in. Application- specific means that
something is specific to the application and may not be applicable if the same

Using JSF technology for XForms applications Page 29 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

tag library is used in another JSF application.

JSF tags and JSF components

The JSF tag library is a collection of reusable components required to develop a
JSF application. When you develop a JSF application, you will use these
components in your application without changing them.

To understand a JSF tag library, we need to know how the JSF tags and JSF
components work. A JSF tag is what you will write inside a JSP page. A JSF
component is the back-end class that wraps the functionality of a JSF tag.

Each JSF tag has a tag handler class. This tag handler class basically
associates the JSF tag with a JSF component. We will discuss the tag handler
class in detail in The UIComponentTag class on page43 .

JSF tags are declared in a tag library descriptor (TLD) file. This TLD file
specifies the tag handler class associated with a particular JSF tag. It also
declares the attributes that a JSF tag can have. We will discuss TLD files in
detail in Associating JSF tags with tag classes on page45 .

For example, look at the following JSF tag:

<j sf: sel ect ManyCheckbox/ >

In a JSP page, this tag provides the user with an option to select from a list of
given choices, just like check boxes in HTML. The behavior of the
sel ect ManyCheckbox tag is shown in the following points.

° The JSF tag above renders the following HTML markup:

<t abl e border="0">

<tr><t d><i nput type="checkbox" nane="_i d0"
val ue="Red" >Red</td></tr>
</t abl e>

The JSF component will generate the response markup for the JSF tag by a
process called rendering or encoding. The rendering process is basically
done in the encode methods of the JSF component class (the back-end
class). In The UIComponentBase class on page 55, we will discuss the JSF
component class in detail.

° The HTML markup above provides the user with an option to select choices
from a list of given choices. Suppose the user selects some options and
submits it to the Web server in the form of a JSF request. When the request
reaches the server side, the JSF component class associated with the JSF
tag parses the request and detects the options selected by the user. The
JSF component class contains a method named decode() , which parses
all incoming JSF requests. The parsing of JSF requests is technically known

Page 30 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

as the decoding process. We will describe the decoding process in The
decoding process on pagese6 .

° The options retrieved from the JSF request (during the decoding process)
need to be saved somewhere. Normally, a JSF application uses server-side
Java objects for this purpose. These server-side Java objects are called
model beans, which are basically Java classes used to manage
application-specific data. The JSF component class contains a method
named updat eModel (), which stores the options in the model bean. We
will discuss the model beans in detail in Model bean wrappers for
application's business logic and data on page 33. We'll discuss the
updat eModel () method in Updating model beans on page63 .

You will include the j sf: sel ect ManyCheckbox tag in a JSP page and
configure your application in such a way that a corresponding JSF component
class will become associated with the tag. The JSF component class will
provide the behavior stated in the above points.

Whenever you develop a tag library, make sure that your component classes
provide the required behavior. Later, when an application developer uses your
tag library in a JSF application, your JSF components will provide the required
functionality to the application.

As we will see later, an application developer can associate JSF tags with
different JSF components while developing a JSF application. This process
enables the application developer to decide more easily what functionality
should be included in an application.

The JSF framework simply enables the use of JSF tags and components in a
JSF application so that reusable JSF components can be simply plugged into
any JSF application, thereby providing their functionality on its own.

We would like to mention that the JSF technology reference implementation
from Sun Microsystems comes with a tag library you can use in your
applications. You can also develop your own JSF tag libraries. XForms-JSF
integration strategy on page 80 andXForms-JSF tag library on page 118
demonstrate the development of a custom JSF tag library.

Using JSF tags in JSPs

Now we will look at how to use JSF tags in a JSP page.

You will use JSPs in a JSF application the way you use JSPs in any server-side
Java application. You will put your JSF tags in a JSP page and pass model
beans to JSF components.

For example, look at the following JSP code:

Using JSF technology for XForms applications Page 31 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<htm >
<U@taglib uri="http://java.sun.com jsf/core" prefix="f" %
<U@taglib uri="http://java.sun.comjsf/htm" prefix="h" %
<head>
<title>Sanpl e Page</title>
</ head>
<body>
<f:view>
<h: f or m f or nName="nyFor ni' >
<h: sel ect ManyCheckbox
val ue="{product Dat a. sel ect edOpti onal Feature}" >
<f:selectltens
val ue="{pr oduct Dat a. opti onal Features}"/>
</ h: sel ect ManyCheckbox>
<h: conmandButton | abel =" Subnmit" >
<f:actionLi stener type="jsf.DenpActionListener"/>
</ h: conmandBut t on>
</ h: form
</f:view
</ body>
</htm >

Notice the following points:

° We have used the t agl i b directives of JSP technology to include the JSF
tag library. The uri attribute of the t agl i b directive specifies the location of
the tag library. In the code above, we have included two tag libraries. One is
the core JSF tag library (htt p: / /] ava. sun. cont j sf/ cor e), and the
other is the JSF HTML tag library (htt p: //j ava. sun. coni j sf/ htm).
These two libraries come with the reference implementation.

° The prefi x attribute of the t agl i b directive specifies a short prefix to
access a particular tag from the tag library in the JSP page. The prefix is
defined once and used in the JSP page at many places.

° All the JSF tags are wrapped inside the f : vi ewtag. The component class
associated with the f : vi ewtag is the Ul Vi ewRoot class. Because the
f: vi ewtag wraps all the JSF tags in a JSP page, the Ul Vi ewRoot class
will be the parent of all the JSF components in a JSP page. We can also say
that a Ul Vi ewRoot object will always be the root of all JISF component
classes in a JSP page.

° The JSPs consist of JSF and non-JSF tags. Each of the JSF tags in a JSP
page wraps its own behavior. In the above markup, we used the JSF tags
like f:view h: form h: sel ect ManyCheckbox, f: sel ectltens, and
h: commandBut t on. We also used HTML tags like head, ti t| e, and body.

The JSF framework provides a separation between the behavior and
presentation of a component. If we develop a non-JSF application using JSPs,
we write a tag's behavior and presentation on the same page. The JSF
framework has separated both things by providing presentation on the JSP
page and by encapsulating the behavior of the tag inside the JSF component
class, enhancing reusability of components.

Page 32 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Model bean wrappers for application's business logic
and data

Model beans are application-specific Java classes that wrap the business logic
of a JSF application. The purpose of model beans is to provide
application-specific data to JSF components.

The JSF components use the data provided by model beans and update the
model beans with fresh data coming from the user.

For example, look at the following use of the sel ect ManyCheckbox tag from
our shopping cart application:

<j sf: sel ect ManyCheckbox
val ue="{product Dat a. sel ect edOpt i onal Feat ures}" >
<f:selectltens val ue="{productDat a. opti onal Features}"/>
</j sf:sel ect ManyCheckbox>

The value of the "value" attribute refers to a model bean and its property. The
value attribute of the sel ect ManyCheckBox tag above has a string value
"{productData.selectedOptionalFeatures}.” This string specifies a model bean
and its property. In this case, pr oduct Dat a is an application-specific model
bean and sel ect edOpt i onal Feat ur es is one of its properties that stores
the options selected by the user.

Similarly, you can check the value of the value attribute of the f : sel ect 1t ens
child of the sel ect ManyCheckbox element. pr oduct Dat a is the same model
bean whose opt i onal Feat ur es property contains the list of all the options
available for the user.

Recall Views of the shopping cart on page 7, in which we provided a screenshot
for the product-specification view. That screenshot contains optional features;
the JSF component class against the sel ect ManyCheckbox tag will interact
with the model bean and access the optional features from model beans
property mentioned in the "value" attribute above. We will discuss the
interaction of a JSF component with model beans in Associating model beans
with JSF components on page67 .

Before we detail the concepts introduced in the above section, you should
understand the JSF framework, which is explained in the next section.

The JSF framework

To explain how the JSF framework operates, we have to discuss the following
classes, which play an important role in the JSF framework:

Using JSF technology for XForms applications Page 33 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

° The FacesSer vl et class
° TheLifecycl e class
° The FacesCont ext class

The FacesSer vl et class initiates the JSF framework. As you know, any class
that wants to become a servlet has to implement the Servlet interface. The
FacesSer vl et class implements the Servlet interface to become a servlet.

The JSF framework revolves around request-response life cycles. We call this
request-response life cycle the JSF processing life cycle. The Li f ecycl e class
manages the complete JSF processing life cycle.

A JSF request goes through six phases, which we'll introduce in Life-cycle
processing phases of a JSF application on page 77. TheLi f ecycl e class
executes each phase of the JSF framework.

The FacesCont ext class wraps all the information about a JSF request. We
will discuss the FacesCont ext class in detail in The FacesContext class on
page36 .

How to make FacesServilet handle your requests

When a server-side Java application receives a request from a browser, it
needs to invoke a servlet. If the request is for a JSF application, the
FacesSer vl et should be the servlet to handle the incoming request.

To instantiate the FacesSer vl et class, you need to tell your servlet container
to use FacesSer vl et to process JSF requests. For this purpose, you need to
make the following entries in your web.xml file:

<servl et>
<servl et - nane>Faces Servl et </ servl et -nane>

<servl et -cl ass>j avax. f aces. webapp. FacesSer vl et </ servl et - cl ass>
<l oad- on-startup>1</| oad-on-startup>
</ servl et>
<servl et - mappi ng>
<servl et - name>Faces Servl et </servl et -name>
<url-pattern>*. faces</url-pattern>
</ servl et - mappi ng>

Note the following points in the markup above:

° The servlet element wraps three types of information in three different
elements: servlet name, servlet class, and load on startup.

° The servl et - nane element specifies the servlet name, which the JSF
framework will use to access the servlet. The name of the servlet is "Faces
Servlet."

Page 34 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

° The servl et - cl ass element wraps the fully qualified name of the servlet
class. Above, the ser vl et - cl ass element contains
j avax. f aces. webapp. FacesSer vl et .

° The content of the | oad- on- st art up element indicates whether the
servlet should be loaded when an application starts.

° The servl et - mappi ng element contains ser vl et - nane and
url - patt er n child elements.

° The servl et - nane element wraps the name of the servlet that should be
loaded on finding a specific pattern in the request URL.

° Theurl - pattern element wraps the pattern string, which, if found in the
request URL, will result in the invocation of the servlet specified by the
servl et - mappi ng element.

The ser vl et - mappi ng element above tells the servlet container that
whenever the string ".faces" comes in the URL, the

j avax. f aces. webapp. FacesSer vl et class should handle the request. For
example, look at the following:

http://1 ocal host: 8080/ XCart/index. faces

When the container sees the ".faces" string in the URL, it loads the
FacesSer vl et as described above.

Now, let's see how the FacesSer vl et will handle a JSF request.

Methods in the FacesServlet class

Like all servlets, the FacesSer vl et implementstheinit () and service()
methods.

After selecting the FacesSer vl et , the servlet container calls the i ni t ()
method of the FacesSer vl et class to instantiate the servlet. The i ni t ()
method must complete successfully before the servlet can receive any
requests.

The i ni t () method of the FacesSer vl et class creates an instance of the

Li fecycl e object. The Li f ecycl e object is common across all JSF sessions.
This instance of the Li f ecycl e class will be used to execute different phases
of the JSF processing life cycle. We will discuss the Li f ecycl e class in detalil
in the next section.

Whenever the container receives a JSF request, it will call the ser vi ce()

Using JSF technology for XForms applications Page 35 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

method of the FacesSer vl et class, passing the request along with the
method call. The ser vi ce() method does the following:

1. It uses appropriate factory classes to instantiate a FacesCont ext object.
We'll discuss the FacesCont ext class in detail in The FacesContext class
on page36 .

2. It then populates the FacesCont ext object with request data.

3. Next, it calls the execut e() method of the Li f ecycl e class, passing the
FacesCont ext object along with the method call. The call for the
execut e() method starts the JSF processing life cycle. We will discuss the
Li f ecycl e class in detail in the next section.

4. After the execut e() method call, it calls the r ender () method of the
Li f ecycl e class, passing the FacesCont ext object along with the
method call. The r ender () method generates the response markup against
the requested JSP page.

Now, let's see how the Li f ecycl e class manages the JSF request life cycle.

The Lifecycle class

The Li f ecycl e class executes and manages the JSF request processing life
cycle for a JSF request.

The Li f ecycl e class contains two important methods: execut e() and
render () . We said that the ser vi ce() method of the FacesSer vl et class
calls the execut e() and r ender () methods and passes it the

FacesCont ext object.

The execut e() and render () methods are of special importance because all
JSF request processing is accomplished by these two methods.

Now let's see the FacesCont ext class.

The FacesContext class

All the information regarding a JSF request and response resides inside a
context named FacesCont ext . The object of FacesCont ext was instantiated
by the ser vi ce() method of FacesSer vl et after receiving a request from
the client.

Page 36 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

The FacesCont ext class contains the methods you can use to fetch
information regarding the application context. For example, when any
component requires application-specific information, it calls the

get Appl i cati on() method of the FacesCont ext class. We will use the
get Vi ewRoot () method to get the root JSF component of a JSP page.

We will use many methods of the FacesCont ext class extensively throughout
this tutorial. You will learn more about the FacesCont ext class as we
proceed.

In the next section, we will explain the sequence of events that occurs when a
user requests a JSF application.

The URL processing life cycle in a JSF application

We will explain the URL processing life cycle for a JSF application in two
scenarios.

The first scenario (Scenario 1) will discuss the sequence of events that occurs
when a user makes a request for a JSF page by entering the URL in the
address bar of a browser. This scenario takes place when a user requests the
first page of a JSF application.

The second scenario (Scenario Il) will discuss the sequence of events that
occurs when a user makes a request by interacting with a JSF component
(such as a button or hyperlink) rendered in response to the first request. This
scenario normally takes place when a user visits subsequent pages of a JSF
application.

In the following sequence of events, we will only discuss the high-level details.
For example, we will say that the JSF framework calls the decode() method,
but we will not go into the implementation detail of it.

Scenario |

Using JSF technology for XForms applications Page 37 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

K‘Weh Server)
JSP Container
2 JSF Framework 4
1 ISP pages
3 7 4
XForms =
Browser
B 5
JSF Components and Tag
Classes
6.1 6.2
5 - _4

..

The events of the figure:

1. Suppose the user requests the following URL.:

www. aFi cti ti ousShoppi ngCart.com

2. When the Web server receives this request, it invokes the FacesSer vl et
class. The Web server calls the i ni t () method of the FacesSer vl et
class to load the servlet. Then it calls the ser vi ce() method (by passing its
request and response details) of the FacesSer vl et object. The
servi ce() method creates an instance of the FacesCont ext object and
calls the execut e() and render () methods of the Li f ecycl e class one
by one, passing the FacesCont ext object along with each method call.

3. The execut e() method checks whether the root of the JSF component (the
Ul Vi ewRoot object) exists. Because it is the first request for the page, the
root does not exist. So, it creates a new Ul Vi ewRoot object and stores it in
the FacesCont ext object.

4. The render () method dispatches the JSF request to the JSP container
that executes the JSP page.

5. The JSP container goes through the JSP page. When it comes across any
JSF tag (such as the f : vi ewtag), it invokes its tag handler class (as we
said, each JSF tag has a tag handler class associated with it).

6. The tag handler class does two important functions:

1. It adds the JSF component associated with the tag to the root component
(Ul Vi ewRoot). As a result, all the components will be added in a tree
(hereafter referred to as a component tree), where the Ul Vi ewRoot
object sits as the root of the component tree.

Page 38 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

2. It calls the encode methods of the JSF component to render its markup.

7. Next, the JSF framework saves the view in the session.

8. Finally, it sends the generated markup back to the user.

Scenario Il

’/—Weh Server N
JSF Framework
2
1 e 3050 7
XForms |——p o Yio
Browser |g
12

JSF Components and Tag
Classes

1. Suppose the user clicks some button in response to the first request. The
following URL will be generated:

www. aFi ctiti ousShoppi ngCart. con®i d1=Submit

2. The Web server receives the request and initializes the FacesSer vi et
class (refer to step 2 in Scenario | for the initialization of FacesSer vl et).

3. The JSF framework checks whether the root of the component tree exists.
This time, it finds the Ul Vi ewRoot object and sets the Ul Vi ewRoot
component in the FacesCont ext object as the root of the component tree.
Recall from step 6 of Scenario | that we have already added all components
into the component tree.

4. Next, the JSF framework iterates through the JSF component tree and calls
the decode() method of each JSF component. The decode() method
parses the request and extracts the user data from the request to be stored

Using JSF technology for XForms applications Page 39 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

in model beans. It also detects which events occurred on the client side
(such as which button was clicked), and fires appropriate action events.

5. The JSF framework checks for the events fired during the decoding. If any
action event is added during decoding, the JSF framework calls the
appropriate application-specific event handler classes.

6. After decoding and processing the event, the JSF framework calls the
val i dat e() method of each JSF component in the component tree. The
val i dat e() method validates the format of the user's data, and compares
the old and new value of the component. If the two values differ, it fires a
value-change event.

7. Atthe end of the validation, the JSF framework checks for unhandled
events. If any event is added during validation, the JSF framework calls the
appropriate application-specific event handler.

8. After validation and event processing, the JSF framework calls the
updat eModel () method for each component in the tree one by one. As a
result, the new values, which the decode() method parsed in step 4 above,
will be stored in the appropriate model beans.

9. The updat eMbdel () method call can generate more events. After the
updat eModel () call, the JSF framework checks for unhandled events in
the FacesCont ext class. If an event is added during the update, the JSF
framework executes the event handler class associated with the component.

10.At this point, we may need to invoke a new JSP page, depending on some
navigation rules. (We'll explain navigation rules in detail in Navigation
process on page 75.) The JSF framework will check whether we need to
invoke a new JSP page.

11.1f we don't need to invoke a new JSP page, the JSF framework simply calls
the encode methods of all components in the component tree.

12.Finally, the JSF framework sends the generated markup back to the user.

If a new JSP page needs to be invoked in step 10, Scenario | will be repeated
starting from step 4.

In the next section, we will explain some special handling required when an
XForms-JSF application is requested by the user.

The URL processing life cycle in an XForms-JSF
application

Page 40 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Scenario | for an XForms-JSF application is the same as for a JSF application.
The difference between processing XForms-JSF and JSF requests will be
explored in Scenario Il.

Recall step 9 of User interaction and flow of data in our shopping cart
application on page 22, where we explained that when the user clicks an
XForms button, a request is made with application-specific XML in the body of
the request.

When the user clicks a button, the following XML is sent to the server in the
body of the request:

<dat a>
<action- performed>_i d1</acti on- perf or med>
</ dat a>

The act i on- per f or med tag wraps the ID of the button clicked by the user.
This ID tells the button component that the user clicked the button. The special
handling we need for XForms-JSF applications is to process XML. We will
explain the act i on- per f or med tag and this ID concept in detail in
Implementing the xforms-jsf:model component on page83 .

We have discussed only the high-level view of the JSF framework. We did not

go into the details of individual concept. In the next section, we'll explore further
details of concepts discussed here.

Using JSF technology for XForms applications Page 41 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Section 4. How does a JSF component tree work?

The JSF component tree

We introduced the idea of the JSF component tree in The JSF architecture on
page 29. Now we'll explain and demonstrate how the tree works.

First, we'll present a JSP page and graphically show the tree of components in
the JSP page. We'll then discuss how JSF tags and components are associated
with each other, and how they work together. Finally, we'll discuss the methods
of JSF component classes.

Look at the following JSP page:

<htm >

<U@taglib uri="http://java.sun.comjsf/htm" prefix="h" %
<U@taglib uri="http://java.sun.com jsf/core" prefix="f" %
<head>

<title>JSF Denps</title>
</ head>
<body>

<f:view>

<h: sel ect OneRadi o i d="col orsList"
val ue="#{dat aSt or e. sel ect edCol or}">
<f:selectltens id="col ors" val ue="#{dataStore.colors}"/>
</ h: sel ect OneRadi 0>
<h: sel ect ManyCheckbox i d="productsLi st"
val ue="#{dat aSt or e. sel ect edPr oduct s}" >
<f:selectltens id="products"
val ue="#{dat aSt or e. products}"/>
</ h: sel ect ManyCheckbox>
<h: commandButton | abel ="Add to cart" id="cartView >
<f:actionListener type="cart.DenoActionListener"/>
</ h: conmandBut t on>
<h: commandButt on | abel ="Back to product view' id="prodView'>
<f:actionLi stener type="cart.DenpActionLi stener"/>
</ h: conmandBut t on>
</f:view
</ body>
</htm >

When the request for this JSF page is made, the JSF framework constructs a
tree of all the components on the page. Now let's see how this tree is
constructed.

When the first request for a JSF page (see Scenario | in The URL processing
life cycle in a JSF application on page 37) is made by a user, the JSF
framework does the following steps to construct the component tree:

1. The JSF framework first creates the Ul Vi ewRoot object, which corresponds
to the f : vi ewtag and forms the default root of the component tree.

2. Then it goes through the requested JSP page.

Page 42 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

3. When it comes across a JSF tag in the JSP page, it inserts the JSF
component object associated with the tag into the component tree.

Diagrammatically, the component tree for the JSP page above looks like the
following figure:

{__]n U P pesdS ook
[§|__;. LISelect]
ey UiSelectitems

EI 3 UlSelect
L UiSelectitems
{3 UlButton
{3 UIButton

All the components are under the Ul Vi ewRoot component. The root
component contains the Ul Sel ect 1 component class (which corresponds to
the h: sel ect OneRadi o tag), the Ul Sel ect class (which corresponds to the
h: sel ect ManyCheckbox tag), and the Ul But t on class (which corresponds
to the h: commandBut t on tag) child components. The Ul Sel ect 1 and

Ul Sel ect components in turn contain the Ul Sel ect | t ens class (which
corresponds to the f : sel ect |t ens tag).

The UlIComponentTag class

In the previous section, we saw that the JSF tags and components are
associated with each other. Now we'll see how this association works.

In the JSP page, each JSF tag has a tag handler class associated with it. This
tag handler tracks the attributes specified in the JSF tag and wraps the type of
the JSF component and renderer classes associated with the tag. We have
already introduced the concept of the JSF component class. The renderer class
generates the markup for the component on the response stream. A JSF tag
may or may not have a renderer class associated with it because a component
class can do all the functionality that a renderer class does. In Rendering a
component on page 60, we will discuss the renderer classes in detail.

The JSF framework provides a Ul Conponent Tag class that implements an
interface named Tag. When you develop a component, you only have to extend
from the Ul Conponent Tag class or one of the Ul Conponent Tag children
classes. The Ul Conponent Tag is an abstract class, so you cannot instantiate
it. You always extend this class. The Ul Conponent Tag class has two abstract
methods: get Conponent Type() and get Render er Type() . Your tag
handler class should implement both.

Using JSF technology for XForms applications Page 43 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

For example, in the JSP page above, there is an
xfornms-j sf:sel ect OneRadi o JSF tag. The tag handler class associated
with the xf or ns-j sf: sel ect OneRadi o tag looks like the following:

public class Sel ect 1Radi oTag extends Ul Conponent Tag{

public String getConmponent Type() { return "Selectl"; }
public String getRendererType() { return null; }
public void setProperties(U Conponent conponent){}

}// Sel ect 1Radi oTag

Notice the following points:

° The Sel ect 1Radi oTag class extends the Ul Conponent Tag class.

° It implements the get Conponent Type() and get Render er Type()
abstract methods of the Ul Conponent Tag class. Both methods return a
St ri ng object.

° The get Conponent Type() method returns a string that represents the
type of the JSF component associated with the JSF tag.

° Similarly, the get Render er Type() method returns the string that
represents the renderer type associated with the JSF tag. The
get Render er Type() method in the Sel ect 1Radi oTag class returns
nul | , indicating that there is no renderer associated with this JSF tag. We
will discuss the details of renderer classes in Rendering a component on
page60 .

° The Sel ect 1Radi oTag class also overrides the set Properti es()
method of the Ul Conponent Tag class. The set Properti es() method is
used to pass on the values of the properties from the tag handler class to the
corresponding component class. These properties are actually the attributes
passed by the JSP author in the JSF tag while using the JSF tag in the JSP
page. We will explain the set Properti es() method in the Setting
properties of a component on page 51 section.

The JSF framework calls the get Conponent Type() method of each JSF tag
in a JSP page to know the JSF component associated with a particular JSF tag.
In Associating a tag with a component on page 54, we will discuss how this
component type is used to extract the JSF component class from a JSF
configuration file named faces-config.xml.

The JSF framework also calls the get Render er Type() method of each JSF
tag in a JSP page to know the renderer associated with the tag.

But how will the JSF framework know which tag handler class is associated with
a particular JSF tag? The next section explains the association between the

Page 44 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

JSF tag and the tag handler class.

Associating JSF tags with tag classes

In this section you'll learn how:

° A JSP compiler knows that a JSF tag is associated with a particular tag
handler class

° Atag library declares the JSF tags and tag handler classes for a particular
JSF tag

° The JSP author includes a tag from a tag library in a JSP page

To explain how a JSP compiler knows that a JSF tag is associated with a
particular tag handler class, we'll use a tag library descriptor (TLD) file. A TLD
file contains information like the library version, general description, and
declaration of all the tags that a tag library supports. The declaration of each tag
contains the tag name, tag handler class, and attributes a tag can support.

The TLD file is not a JSF-specific file. You can have your own non-JSF tag
libraries. We call them generally as custom tag libraries. All JSF tags are
custom JSP tags, and a TLD file is required in all custom JSP libraries.

The TLD file also specifies that a particular tag is associated with a particular
tag handler class. To define a JSF tag, you have to declare it in the TLD file:

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>
<tagli b>
<t ag>
<name>sel ect OneRadi o</ nanme>
<t ag-cl ass>xforms_j sf. Sel ect 1Radi oTag</t ag- cl ass>
<attribute>
<nane>i d</ nane>
<requi red>f al se</requi red>
</attribute>
<attribute>
<nane>r ef </ nanme>
<requi red>true</required>
</attribute>

<t ag>
<nane>conmandBut t on</ nane>
<t ag-cl ass>xforms_j sf. ButtonTag</tag-cl ass>
<attribute>
<nane>i d</ nane>
<requi r ed>f al se</requi red>
</attribute>
<attribute>

Using JSF technology for XForms applications Page 45 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<nanme>act i on</ nane>
<requi red>f al se</requi red>
</attribute>

</taglib>
Notice the following points in the above TLD file:

° All the t ag elements of a TLD file are enclosed within a singlet agl i b
element.

° At ag element wraps the information of a single JSF or custom tag.
° The name of the JSF tag is defined within the nane element.

¢ The fully qualified name of the tag handler class is specified inside the
t ag- cl ass element.

° The entry of the nanme and t ag- cl ass elements is mandatory in a tag
declaration.

° The attri but e element declares a single attribute for the particular tag.
There can be any number of at t ri but e elements in at ag element.

° The attri but e element has different subelements to define a JSF tag's
attributes properly, such as name, required, type, etc. The nane element is
necessary for the at t ri but e element; the rest are optional.

° The nane element wraps the name of the attribute.

° Therequired element indicates whether this attribute is mandatory while
this tag is used in the JSP page. Its value is specified as "true" or "false” (by
default, it's false).

° Thet ype element indicates the data type of the attribute (by default, it's
string).

For example, in the sel ect OneRadi o tag declaration, we have a r ef
attribute. We declare this attribute in a TLD file like this:

<attribute>

<name>r ef </ nane>

<requi red>t rue</required>
</attribute>

The r equi r ed element wraps true, which indicates that whenever the
sel ect OneRadi o tag is used in the JSP page, the r ef attribute must come

Page 46 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

within the tag.

Each attribute declared in the TLD file for a particular JSF tag should have a
setter method in its respective tag handler class. The JSF framework calls these
setter methods to pass on the values from the JSF tag (in the JSP file) to the
tag handler class.

In the above listed TLD file, different attributes are declared for the

xfornms-j sf:sel ect OneRadi o JSF tag. All these attributes should have
setter methods in the tag handler class. For example, look at the following tag
handler class:

public class Sel ect 1Radi oTag extends Ul Conponent Tag{

public void setld(String id){
this.id = id;

public void setRef(String ref){
this.ref = ref;

}/ 1 Sel ect 1Radi oTag

The attributes declared for the sel ect OneRadi o tag in the above TLD file
have setter methods in the tag handler class. For example, the r ef attribute
declared for the sel ect OneRadi o tag has a set Ref () method in the

Sel ect 1Radi oTag class.

Now let's see how the JSP author includes a tag from a tag library in a JSP
page. The t agl i b directive of the JSP page is used to include a tag library in
the JSP page. The tags declared in the tag libraries are accessed with the prefix
defined in the pr ef i x attribute of the t agl i b directive. We have already
discussed the details of including the tag library in the JSP page in Using JSF
tags in JSPs on page 31.

Now let's see how the JSP container maps a JSF tag to its corresponding tag
handler class. The following sequence of events enables this mapping:

1. The JSP container sees a JSF tag with a particular prefix.

no

It maps the prefix in the t agl i b directive to identify the right TLD file.
3. It opens the TLD file.

4. It searches the tag name inside the nane element of each t ag in the TLD
file.

5. After finding the right tag definition, it loads the tag handler class specified in
the t ag- cl ass element of the tag identified in step 4.

You will place the TLD file in the \ VEB- | NF directory of the application. For

Using JSF technology for XForms applications Page 47 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

example, look at the sample code folder named Demo in the section4.zip file
available in the source code download of this tutorial, see Resources on page
?. The Demo folder only shows the directory structure and a few files. We'll add
more files in later sections as we develop more code for the XForms-JSF tag
library.

At the moment, the folder hierarchy and arrangement of files in the sample code
folder looks like this:

3 Demo
=3 WEB-INF
wforma-jaf.td

Notice that the TLD file for the XForms-JSF tag library resides inside the
\ VEB- | NF folder.

Before going further, we would like to explain two classes named

Val ueBi ndi ng and Met hodBi ndi ng. The introduction of these classes is
important in understanding how to pass application data from the tag handler to
the corresponding component classes.

The ValueBinding class

The Val ueBi ndi ng class is used to get application-specific data from model
beans. A JSF tag handler or component class can invoke the Val ueBi ndi ng
class when it needs to get or set the value of a property from a bean.

To get or set the value of a model bean property, we need to:

1. Get an instance of the Val ueBi ndi ng class
2. Use the instance to get or set the property value

Look at the following code segment used to get an instance of the
Val ueBi ndi ng class:

Application application = facesContext.getApplication();
Val ueBi ndi ng bi nding = application. createVal ueBi ndi ng(val ue);

In the first statement, we simply fetched an instance of the Appl i cati on class
from the FacesCont ext object.

Notice that the FacesCont ext object we have used to fetch the
Appl i cat i on object represents the context in which you want to find the
model bean property.

Page 48 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

The Appl i cat i on class holds all information related to a complete JSF
application (for instance, it can return a component object corresponding to a
particular component type or it can return any model bean object in the
application context by using the Val ueBi ndi ng class).

In the second statement, we have called the cr eat eVal ueBi ndi ng() method
of the Appl i cat i on object. The cr eat eVal ueBi ndi ng() method call takes
a string value, which represents the name of a model bean and its property. The
call to the cr eat eVal ueBi ndi ng() method returns an instance of the

Val ueBi ndi ng class. For example, if we pass the "#{myModelBean.property}"
string to the cr eat eVal ueBi ndi ng() method, it returns a Val ueBi ndi ng
object that contains a reference to the get Pr operty() method of the

nmy Model Bean object present in the application context.

Now we simply call the get Val ue() method of the Val ueBi ndi ng object to
get the value of the model bean property that was passed to the
cr eat eVal ueBi ndi ng() method call:

oj ect val ue = bi ndi ng. get Val ue(cont ext);

The get Val ue() method takes an instance of the FacesCont ext class and
returns the value of the property.

The return value from this method is Cbj ect type, so you have to cast it into
the appropriate application-specific class.

Recall the val ue attribute, which we discussed in Model bean wrappers for
application's business logic and data on page 33. If we pass the value of the
val ue attribute (which is in fact a reference of the model bean property) to the
cr eat eVal ueBi ndi ng() method, it returns the Val ueBi ndi ng object for the
model bean property. For example, the following code shows the declaration of
a JSF tag:

<j sf:sel ect OneRadi o val ue="#{product Dat a. products}"/>

The following code (written anywhere in the tag handler class) returns the object
corresponding to the pr oduct Dat a. pr oduct property:

String val ue = getVal ue();

Application application = facesContext. getApplication();

Val ueBi ndi ng bi nding = application. createVal ueBi ndi ng(val ue);
Ooj ect val ue = bindi ng. get Val ue(cont ext);

The Val ueBi ndi ng class has another method named set Val ue(), which
sets the value of the model bean property. The set Val ue() method takes two
parameters: a FacesCont ext object and the value we want to set in the model
bean property:

String val ue = getVal ue();
Application application = facesContext. getApplication();

Using JSF technology for XForms applications Page 49 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Val ueBi ndi ng bi ndi ng = application. creat eVal ueBi ndi ng(val ue) ;
/1ln this line you will create a new object named newval ue.
bi ndi ng. set Val ue(cont ext, newval ue);

Next, we'll discuss the Met hodBi ndi ng class.

The MethodBinding class

The concept behind the Met hodBi ndi ng class is the same as we discussed
for the Val ueBi ndi ng class. The Val ueBi ndi ng class was used to bind or
fetch the value of a property of a model bean. On the other hand, the

Met hodBi ndi ng class is used to bind or call a specific method of a model
bean.

You may use the Met hodBi ndi ng class whenever you need to call a particular
method of some model bean from your tag handler or component class.

To call a method of a model bean:

1. Get the attribute value of a JSF tag, which specifies the method of a model
bean you want to call.

2. Create an array of Objects. Each object in the array represents a parameter
in the method call, so the array of Objects represents the signature of the
method you want to call.

3. Getan Appl i cati on object from the context.
4. Get an instance of the Met hodBi ndi ng class from the application.

5. Finally, use the method binding object to call or invoke the method.

For example, suppose the following code is the declaration of the JSF tag:

<j sf: sel ect OneRadi o net hod="#{ myMdel Bean. nyMehod}"/ >
The method attribute above refers to myModel Bean. nyMet hod() , for which

we have to create a binding. Furthermore, suppose the following code is the
signature for myMet hod() in the model bean:

public void nyMethod(d assl cl, O ass2 c2)

Now we'll perform the above five steps to invoke myMet hod() . First we fetch
the value of the net hod attribute:

Page 50 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

String method = getMet hod();

Then we'll create an array of Objects containing Cl ass1 and Cl ass?2 objects.
In the method signature above, the nyMet hod() call takes these two objects
as arguments.

oject [] args = {new O assl(), newd ass2};

Next, we'll fetch an instance of the Appl i cat i on class from the faces context:

Application application = facesContext. getApplication();

Notice that the FacesCont ext object we used to fetch the Appl i cati on
object represents the context in which you want to find the model bean and
invoke its method.

The Appl i cat i on class contains a method named

cr eat eMet hodBi ndi ng(), which returns an instance of the Met hodBi ndi ng
class, so we call the cr eat eMet hodBi ndi ng() method of the Appl i cati on
object.

The cr eat eMet hodBi ndi ng() method call takes two parameters: a string
value, which represents the model bean and its method name (the value of the
method attribute in the JSF tag), and an array of Objects containing parameters
for the method call. The call to the cr eat eMet hodBi ndi ng() method returns
an instance of the Met hodBi ndi ng class, which contains a reference to the
nyMet hod() method of the myModel Bean object present in the application
context:

Met hodBi ndi ng nb = application. creat eMeht odBi ndi ng(val ue, args);

The Met hodBi ndi ng class contains a method named i nvoke() . This method
takes two parameters: a FacesCont ext object (the same FacesCont ext
object that we used to fetch the Appl i cat i on object) and an array of Objects
that contain the list of parameters you want to pass along with the method call:

nmb. i nvoke(context, args);

The call to the i nvoke() method results in a call to the method of model bean
for which the Met hodBi ndi ng object was created.

The concept of the Met hodBi ndi ng and Val ueBi ndi ng classes will be
clearer when we use both concepts in the next section.

Setting properties of a component

Using JSF technology for XForms applications Page 51 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

We mentioned a set Properti es() method while discussing the tag handler
class in The UlIComponentTag class on page 43. You have seen that attributes
of a particular tag declared in the TLD file are defined as properties of the tag
handler class. This section explains how the set Properti es() method
makes these attributes and properties available for the JSF component class.

In JSF tags and JSF components on page 30, we explained that the component
class implements the behavior of a JSF tag. So the component class needs to
know all the information specified by the JSP author for a JSF tag in the JSP
page. Therefore, the tag handler class needs to set the properties of a tag in the
component class.

For example, the tag handler class for the sel ect OneRadi o tag implements
the set Properti es() method to set the properties for the associated JSF
component class. The following code shows the set Properti es() method in
the Sel ect 1Radi oTag class:

public class Sel ect 1Radi oTag extends Ul Conponent Tag{
public void setProperties(U Conponent conponent){
super. set Properti es(comnmponent);
U Selectl uis = (U Sel ect 1) conponent;
FacesContext fc = FacesContext.getCurrentlnstance();
Application app = fc.getApplication();
if(value !'= null){
i f (Ul Conponent Tag. i sVal ueRef erence(val ue))
{
Val ueBi ndi ng vb = app. creat eVal ueBi ndi ng(val ue);
ui s. set Val ueBi ndi ng("val ue", vb);
}
el se
ui s. set Val ue(val ue);

i f (val ueChangeLi stener != null){
i f (Ul Conponent Tag. i sVal ueRef er ence(val ueChangelLi st ener)){
Class args[] ={
j avax. f aces. event . Val ueChangeEvent. cl ass
b
Met hodBi ndi ng nb = app. cr eat eMet hodBi ndi ng
(val ueChangeli st ener, args);
ui s. set Val ueChangelLi st ener (mb) ;

}

}/1if(val ueChangelLi stener != null)
if(ref = null){
uis.getAttributes().put("ref", ref);

}/ 1 Sel ect 1Radi oTag

Notice that the JSF component object (component) is passed as a parameter to
the set Properti es() method. The set Properti es() method calls its
super set Properti es() method, which sets some default properties for the
component (like setting the renderer for the component).

Next, the set Properti es() method fetches an instance of the
FacesCont ext class and gets the instance of the Appl i cat i on class from

Page 52 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

the FacesCont ext class. This Appl i cat i on object does two things. First,
we'll use the Appl i cat i on object to create a Val ueBi ndi ng object for the
val ue attribute. Second, we'll use the Appl i cat i on object to create a

Met hodBi ndi ng object for the val ueChangelLi st ener attribute. The

val ueChangelLi st ener attribute is used to specify the handler for value
change events, which we'll discuss in detail in Handling value-change events on
page7l.

Here's how the set Properti es() method creates the Val ueBi ndi ng object
for the val ue attribute:

1. The set Properti es() method first checks if the value of the val ue
attribute is not nul | . If it's not, it checks whether the value of the val ue
attribute is a reference value by calling the static i sVal ueRef er ence()
method. The i sVal ueRef er ence() method internally checks if the val ue
attribute specifies a valid reference to a model bean property present in the
application context. If it is not a valid reference, the i sVal ueRef er ence()
method returns false.

2. If the val ue attribute is a reference, the set Properti es() method calls
the cr eat eVal ueBi ndi ng() method of the Appl i cat i on class, passing
the val ue property along with the method call.

3. Next, the set Properti es() method passes the Val ueBi ndi ng object to
the component class, so that it can use the binding whenever it's needed.

Here's how the set Properti es() method creates the Met hodBi ndi ng
object for val ueChangeli st ener:

1. The set Properti es() method checks if the val ueChangelLi st ener
property value (passed by the JSP page author as the value of the
val ueChangelLi st ener attribute) is not nul | .

2. It checks whether the val ueChangelLi st ener value is a reference to a
model bean method by calling the static i sVal ueRef er ence() method.

3. If the val ueChangelLi st ener property is a valid reference, the
set Properti es() method calls the cr eat eMet hodBi ndi ng() method
of the Appl i cat i on class, passing the val ueChangelLi st ener and
arguments along with the method call, which returns the Met hodBi ndi ng
object.

4. Next, the set Properti es() method passes the Met hodBi ndi ng object
to the component class so that the component class can call the value
change listener method specified by the val ueChangelLi st ener attribute.

5. Finally, the set Properti es() method checks the value of the r ef
property. The r ef property is an XForms-specific attribute, which refers to a
particular tag in the nodel element. We described the XForms r ef attribute
in The select element on page 18.

Using JSF technology for XForms applications Page 53 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

If the r ef attribute is not nul | , the set Properti es() method calls the
get Attri but es() method of the component, which returns a Map object.
This Map object contains a list of all attributes available in the component class.

We simply call the put () method of the Map object, passing it the property
name ("ref") and value, along with the method call, which results in the addition
of another attribute in the list of attributes already available in the component
class.

This is another useful technique to pass information from a tag handler class to
a component class.

We have discussed three things a set Properti es() method may do (value
binding, method binding, and putting attributes directly into the Map object). We
will use these techniques often in this tutorial. Now whenever we implement the
set Properties() method, we'll refer to this section and not go into detail
each time.

Associating a tag with a component

We have seen how the JSP container maps a JSF tag to a tag handler class
and how the tag handler class manages its attributes. Now let's see how to
relate a tag handler class to a JSF component class.

A JSF tag library developer can develop many component classes against a
single JSF tag. It is up to an application developer to decide which component
he wants to associate with a particular JSF tag.

We need a mechanism that enables us to decide the tag-to-component
mapping during application development.

Your JSF application includes a JSF configuration XML file named
faces-config.xml, which specifies component classes against component types:

<?xm version="1.0"?>
<f aces-config>
<conponent >
<conponent - t ype>Sel ect 1</ conponent -t ype>

<conponent - ¢l ass>xf orns_j sf. U Sel ect 1</ conponent - cl ass>
</ conponent >
<conponent >
<conponent -t ype>Sel ect </ conponent -t ype>

<component - cl ass>xf ornms_j sf. Ul Sel ect </ conponent - cl ass>
</ conponent >

</ faces-config>

Page 54 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Note the following points from the above:

° The faces-config.xml file contains a number of conponent elements.

° The conponent element in the faces-config.xml file wraps the type of the
component and JSF component class against that type.

° It wraps this information with the help of conponent -t ype and
conponent - cl ass elements as shown above. Each conponent element
contains conponent -t ype and conponent - cl ass child elements.

° The conponent - t ype element specifies the type of the component.

° The conponent - cl ass element wraps the fully qualified name of the JSF
component class.

Here's how the JSF framework uses the faces-config.xml file to load the JSF
component against a particular JSF tag, as outlined in the following points:

° The JSF framework calls the get Conponent Type() method of a tag
handler class, and the method call returns a string value that represents the
type of component in the configuration file.

° The JSF framework locates which conponent -t ype element in the
faces-config.xml file wraps the string returned by the
get Conponent Type() method of the tag handler class.

° When it finds a matching component, it reads the conponent - cl ass
element that forms a pair with the conponent - t ype element and learns
about the JSF component class associated with the JSF tag.

For example, let's suppose the get Conponent Type() method of a

Sel ect 1Radi oTag class returns "Selectl." In the faces-config.xml file above,
the component class whose type matches "Selectl" is

xforms_j sf. Ul Sel ect 1.

You will write your faces-config.xml files during application development and
match the component types with appropriate component classes.

The faces-config.xml file is then placed in the / V\EB- | NF directory of the
application.

The UlIComponentBase class

We have seen how the JSF tags are associated with the JSF components. Now
it's time to see how components in a JSF component tree work.

Using JSF technology for XForms applications Page 55 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

The Ul Conponent abstract class is the base class for all the components. It
represents the functionality or behavior of the JSF component. You can think of
U Conponent as an abstraction of the functionality of a JSF component. The
JSF tag library developers extend the Ul Conponent abstract class, thus
allowing the JSF framework to interact with the component.

The Ul Conponent abstract class contains many methods, where each method
represents some functionality of the component. Not all components require the
whole set of functionality.

The JSF framework provides a Ul Conponent Base class, which already
extended the Ul Conponent class. When you are developing your own
customized components, you can extend the JSF component class from the
Ul Conponent Base class or from its subclasses.

The Ul Conponent Base class contains various methods that the JSF
framework calls at appropriate times during a JSF request-processing life cycle.
For example, the JSF framework calls the decode() method of the

Ul Conponent Base class when the user clicks a button or hyperlink in the JSF
page (refer to step 4 of Scenario Il in The URL processing life cycle in a JSF
application on page 37.

The two most important functionalities of a JSF component are decoding and
encoding. In the next two sections, we will offer a detailed discussion of these
two functionalities of a JSF component. However, note that a JSF component
has functions other than decoding and encoding. We'll explain these two first to
demonstrate the working of a JSF component tree. Later, we'll demonstrate
other functionality of a JSF component.

The decoding process

The JSF framework calls the decode() method of each JSF component in the
tree one by one. Recall The URL processing life cycle in a JSF application on
page 37, where we presented two types of request scenarios. For Scenario |,
the decode() method was not called, but whenever the request is made
according to Scenario Il, the decode() method is called for each request.

The purpose of calling the decode() method is to allow each component in the
tree to decode the request value parameters (or data in any form) into a Java
object. Look at the following URL generated by clicking a button on the JSF

page:

www. aFi ctitiousShoppi ngCart. con®i dO=red;idl=btnl
When the JSF framework receives this request, it calls decode() methods of

each component in the tree one by one. The decode() method of each
component does the following:

Page 56 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

° It checks whether its ID exists in the request. For example, in the URL
above, there are two name-value pairs: _i d1=red and _i d2=bt n1. The
_1 d1=r ed pair may correspond to a check box component, and the
_ 1 d2=bt n1 pair may correspond to a button component.

° If the component ID the request contains matches the ID of the component
whose decode() method is called, it fetches the values against this ID from
the request. For example, the decode() method of the check box
component fetches the string "red" as its value.

° Next, it stores this value in the component by calling the
set Subm tt edVal ue() method of the component class.

° Ifthe decode() method is of a button or hyperlink component, instead of
fetching the value from the request, it simply fires an action event. An action
event represents a user's action (like clicking a button). We will explain the
firing and handling of action events in Event-generation mechanism in JSF
on page 70 andHandling action events on page74 .

The decode() method takes the FacesCont ext object as a parameter. In
The FacesContext class on page 36, we explained that the FacesCont ext
object contains all the information regarding a JSF request and response.

Look at the following decode() method implementation:

public void decode (FacesContext context){

//step-1
if(fc == null)

t hrow new Nul | Poi nt er Exception();
//step-2
String clientld = getCientld(fc);
//step-3

/1 Gets inconming request and fetches the id and the user data
//against the id fromthe request

//step-4

if(clientld. equal s(id))

{

}
//step-5

set Val ue(true);
}// decode

set Subni tt edVal ue(val ue)

Notice the following steps in the decode() method above:

1. The decode() method first verifies the FacesCont ext object passed to it.
Ifitis nul | , it throws a Nul | Poi nt er Except i on.

2. ltcallsthegetdientld() method of the component, which is
implemented by the Ul Conponent Base class. The get Cl i ent1d()
method returns an ID for the component that uniquely identifies the
component.

Using JSF technology for XForms applications Page 57 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

3. The decode() method gets the incoming request and searches the
component ID in the request.

4. If the component ID is found in the request, it fetches the data against this ID
and saves it.

5. Finally, it calls the set Val i d(t rue) method of the component class, which
tells the component that the decoding process was successful.

If the decode() method belongs to a button component, the method
implementation is slightly different:

public void decode (FacesContext context){

//step-1
if(fc == null)

t hrow new Nul | Poi nt er Exception();
//lstep-2
String clientld = getCientld(fc);
//step-3

/1 Gets incom ng request and fetches the id fromthe request
//step-4
if(clientld. equal s(id))
{

gueueEvent (new Acti onEvent (t his)

}
//step-5 not needed

}// decode

The main difference comes in step 4 where the decode() method fires an
action event (by calling the queueEvent () method, which we will discuss in
Event-generation mechanism in JSF on page 70) instead of saving the ID value.
Also, note that we don't need to call the set Val i d() method in the case of a
button component.

The decode() methods we will implement for XForms-JSF components will be
slightly different from the decode() method implementation above. The reason
is that the code above works on the idea of name-value pairs in the request
URL, while XForms-JSF components work on the idea of having XML markup in
the request body. We will demonstrate the difference in XForms-JSF integration
strategy on page80 .

The encoding methods

The second major functionality of the JSF component is encoding. In the
encoding methods, the component developer writes the markup for the
component rendered on the browser. The Ul Conponent has three types of
encoding methods:

° encodeBegi n()

Page 58 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

° encodeChil dren()
° encodeEnd()

The encodeBegi n() method writes the starting tag markup for the JSF tag.
The encodeChi | dr en() method renders the markup for children of the JSF
tag. If the children implement their own encoding, we don't need the
encodeChi | dren() method. The encodeEnd() method encodes ending tag
markup of the JSF tag.

The following points explain the calling sequence of the encode methods:

1. When the JSF framework comes across a JSF tag in the JSP page, it adds
the component associated with the JSF tag in the component tree and calls
the encodeBegi n() method.

2. If the JSF tag whose encodeBegi n() method is called contains any child
JSF tag, the JSF framework first adds the associated JSF child component
in the component tree and calls the encodeChi | dr en() method of the
parent component.

3. When the JSF framework comes across the ending JSF tag (whose
encodeBegi n() method is called above), it calls the encodeEnd()
method of the associated JSF component.

Look at the following encodeBegi n() method implementation, which encodes
the conmandBut t on component on the browser:

public void encodeBegi n(FacesCont ext context) {
i f(context == null)
t hrow new Nul | Poi nt er Excepti on();
i f(!isRendered())
return;
ResponseWiter witer = context.getResponseWiter();
String ref = (String) getAttributes().get("ref");
/1 Gets remaining attribute val ues
//Wites markup to render the conmandButton conponent using
/| ResponseWiter.wite() nethod
}/ /I encodeBegin

Notice the following points:

° The encodeBegi n() method first verifies the value of the FacesCont ext
object passed to it. If itis nul | , it throws a Nul | Poi nt er Except i on.

° After verifying the context, it checks a flag by calling the i sRender ed()
method. The i sRender ed() method checks the value of the rendered
attribute that the JSP author may have provided in the tag declaration. If the
JSP author specified r ender ed="f al se" in the tag declaration, the JSP
author does not want to render this tag. In this case, i sRender ed() returns
false and encodeBegi n() returns without rendering the component.

Using JSF technology for XForms applications Page 59 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

° Next, it retrieves the ResponseW i t er object from the FacesCont ext
class by calling its get ResponseW i t er () method. The
ResponseW i t er objectis used to write the markup in response to the
user's request.

° Then it retrieves the values of the different attributes of the tag. It calls the
get Attri but es() method of the component, which returns a Map object.
(Recall from Setting properties of a component on page 51, where we put
the tag attribute values in the same Map object.) Now we call the get ()
method of this Map object, passing it the name of the attribute. The get ()
method returns the value of the attribute that we will finally use for the
encoding.

° Finally, the encodeBegi n() method writes the markup for the component
by calling the wri t e() method of the ResponseW i t er object that we got
in step 3. The w i t e() method accepts a string, which it simply writes on
the ResponseW i t er object.

Rendering a component

The renderer classes are view-generating (or encoding) classes. We have seen
that components can be self-rendering -- they can have encode methods that
the JSF framework can call to let the component render itself. The JSF
framework also allows you to develop separate renderers, letting you develop
separate classes that handle the rendering of a component. It is up to you
whether you want a separate renderer class are not.

Normally, you develop a renderer class for your component when you want to
have different presentations of the same component.

To write your own renderer, you have to extend your class from a class named
Render er . The Render er class is part of the JSF framework and is an
abstract class, so you cannot instantiate it. You always extend this class.

Look at the following Sel ect 1Render er class:

public class Sel ect 1Renderer extends Renderer{
public Sel ect1Renderer (){
}

public void decode(FacesContext context, Ul Component conponent){

}

public void encodeBegi n(FacesCont ext context, U Conponent conponent)

throws | OException {

}

public void encodeChil dren(FacesCont ext context, Ul Conponent
conponent)

throws | OException {
}

public void encodeEnd(FacesCont ext context, U Conponent conponent)

Page 60 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

throws | OException {

}
}/ /1 Sel ect 1Render er

Notice that the renderer class contains the decoding and encoding methods.
The working of the decoding and encoding methods in a renderer class is
similar to the Ul Conponent Base class. The only difference is that the methods
in the Render er class have one extra parameter: the Ul Conponent object
that represents the component associated with this renderer.

The Ul Conponent instance is passed to these functions because they may
need to use some functionalities of the JSF component class. For example, the
decode() method has to call the get C i ent 1 d() method of the JSF
component to check the component's ID.

Associating a tag with a renderer

The association of a renderer class with a specific JSF tag is also done in the
JSF configuration (faces-config.xml) file, which means this is also an
application-specific task:

<?xm version="1.0"?>
<f aces-config>

<render er >
<render er -t ype>MyRender er Type</ r ender er -t ype>

<renderer-cl ass>deno. MyRender er O ass. cl ass</renderer-cl ass>
</ renderer>
<renderer >
<render er -t ype>M/Anot her Render er Type</ render er-type>

<render er - cl ass>deno. MyAnot her Render er . cl ass</renderer-cl ass>
</ renderer >

</ faces-config>
Note the following points:
° The faces-config.xml file contains a r ender - ki t element that wraps a

number of r ender er elements. The r ender er element wraps the type of
the renderer and renderer class against that type.

° Each renderer element contains r ender er -t ype and r ender er - cl ass
child elements.

° Therenderer-type element specifies the type of the renderer.

Using JSF technology for XForms applications Page 61 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

° Therenderer-cl ass element wraps the name of the corresponding
renderer class.

Here's how the JSF framework uses the faces-config file to associate a
renderer with a JSF tag:

1. The JSF framework calls the get Render er Type() method of a tag handler
class, and the method call returns a string value that represents the type of
the renderer in the configuration file. Let's suppose the
get Render er Type() returns the string "MyRendererType."

2. The JSF framework locates which r ender er - t ype element in the
faces-config.xml file wraps the string returned by the get Render er Type()
method of the tag handler class. Notice that the contents of the
r ender er - t ype child element of the first renderer element matches with
the string returned by the get Render er Type() method.

3. The JSF framework then returns the renderer class specified in the
accompanying r ender er - cl ass element, which is MyRender er eC ass.

The Validation process

In step 6 (Scenario 1) of The URL processing life cycle in a JSF application on
page 37, we said the JSF framework calls the val i dat e() method to validate
the user data. The JSF framework calls the val i dat e() method of each
component in the component tree after decoding request and handling the
events occurred during decoding.

The val i dat e() method compares the model bean property specified in the
val ue attribute with the user's data that the decode() method stored after
decoding the request. If the two values are different, the val i dat e() method
fires a value-change event. (See Handling value-change events on page 71 for
details of value-change events.)

For now, look at the following sample val i dat e() method implementation:

public void validate(FacesContext context){
if(context == null)
t hrow new Nul | Poi nt er Exception();
Ohj ect ol dVal ue = get Val ue();
Chj ect newVal ue = get Subni ttedVal ue();
if(oldvalue !'= null){
i f (ol dval ue. equal s(newval ue))
return;
el se {
set Val ue(newval ue) ;
gueueEvent (new Val ueChangeEvent (thi s, ol dval ue, newal ue));
return;

}

Page 62 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Y/ /lif(oldvalue != null)
else if(newalue !'= null) {
set Val ue(newal ue) ;
gueueEvent (new Val ueChangeEvent (thi s, ol dval ue, newal ue));

}
}//validate

This method performs the following steps to validate the user data:

1. It calls the get Val ue() method of the component, which returns the value
of the model bean property specified in the val ue attribute.

2. Next, it calls the get Submi t t edVal ue() method of the component, which
returns the component value parsed by the decode() method from the
request.

3. Finally, it compares the two values. If they are different, the val i dat e()
method fires a value-change event by calling a method named
gueueEvent (), which is discussed in detail in Event-generation
mechanism in JSF on page70 .

The JSF framework also uses the val i dat e() method to validate the format
of the user's data. But in an XForms application, data validation is the
responsibility of the browser. for XForms-JSF applications, we do not need to
implement data validation in our components.

Updating model beans

The JSF framework provides component developers with an updat eModel ()
method to update the model beans with the user's data. In step 8 of The URL
processing life cycle in a JSF application on page 37, we explain that the JSF
framework calls the updat eMbdel () method to update the model bean with
user data. The updat eMbdel () method updates only the model bean property
specified in the val ue attribute. The JSF framework calls the updat eMbdel ()
method of each JSF component available in the component tree.

The updat eMbdel () method calls the set Val ue() method of the
Val ueBi ndi ng class to set the model bean property with new data parsed by
the decode() method from the JSF request.

For example, look at the following sample updat eMbdel () method
implementation:

public void updat eMbdel (FacesCont ext context){
i f(context == null)
t hrow new Nul | Poi nt er Excepti on();
if(lisvalid())
return;
Val ueBi ndi ng vb = get Val ueBi ndi ng("val ue");

Using JSF technology for XForms applications Page 63 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

try{
vb. set Val ue(cont ext, getLocal Val ue());

return;

}
cat ch(Exception e){

setVal i d(false);
t hrow new FacesException(e);

}
}/ / updat eModel

This method performs the following steps to update the model value:

1. The updat eMobdel () method first calls the i sVal i d() method to check
whether the decode() method processed the request successfully. If this
method returns false, the updat eMbdel () method stops execution and
does not update the model values. Recall from The decoding process on
page 56 that we called the set Val i d(true) method at the end of
successful decoding.

2. Next, the updat eMbdel () method gets the val ue attribute value, which
contains the Val ueBi ndi ng object. Recall from Setting properties of a
component on page 51 that we created the Val ueBi ndi ng object for the
val ue attribute in the set Properti es() method of the
Sel ect 1Radi oTag class and passed it to the component class.

3. Finally, the updat eMbdel () method calls the set Val ue() method of the
Val ueBi ndi ng object, passing it the context and new value along with the
method call. This call to the set Val ue() method results in the model bean
property being updated.

Summary

The JSP page includes the TLD file using the t agl i b directive of ISP
technology. When the JSP container comes across a JSF tag, it looks for the
tag library for that tag to instantiate its tag handler class. Each JSF tag has a
tag handler class, which extends from the Ul Conponent Tag class, which in
turn implements the Tag interface. The Ul Conponent Tag class has two
abstract methods: get Conponent Type() and get Render er Type() , which
every tag handler class implements. The get Conponent Type() method
returns a string. The JSF framework uses this string to locate the associated
component class from the configuration file. The configuration file is used to
associate the tag with a component class.

From the above discussion, we can see that there are two bridges used to
complete a JSF application. One of them is the TLD file between the JSP and
tag handler class; the second is the configuration file between the tag handler
class and main JSF component behind the JSF tag.

The JSF components extend the Ul Conponent Base class, which implements
the Ul Conponent abstract class. The component developers implement

Page 64 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

customized functionality of their components.

We have now discussed four main functionalities of the component: decoding,
encoding, validation, and updating model beans.

Using JSF technology for XForms applications Page 65 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Section 5. Model beans and events in JSF

Developing model beans

The JSF framework allows application developers to write data model classes
(also called model beans) to hold their application data. Developing model
beans is an application-specific task and, therefore, part of the application
development process.

This section explains the:

¢ Development of model beans

° Association of model beans with JSF components
° Updating properties of model beans

° Event-generation mechanism

° Event-handling mechanism

Let's start by explaining why we need model beans in our JSF applications. The
simple bean acts as your data model, where any application can call the setter
and getter methods to talk to the bean. You can design a simple model bean
with public setter and getter methods for properties of the bean.

Let's look at a simple model bean:

public class Product Dat a{
private Product product;
private String nmodel = null;
private String action = null;
publi ¢ ProductDat a() {
}
public String getMdel (){
}
public void set Mbdel (String nodel){

}
public String getAction(){

}

public void setAction (String action){

}
publi ¢ Product getProduct(){

}
public void setProduct (Product pData){

}
public void showCat al ogVi ew Acti onEvent ae){

}
public void showCartVi ew(Acti onEvent ae){

}
}/ 1 Product Dat a

Notice the following points from the Pr oduct Dat a model bean class above:

° It has some properties to store application data, and simple setter and getter

Page 66 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

methods for the model bean properties.

° The JSF component classes call the setter methods to store the application
data in a model bean property. The JSP author passes a reference of this
property in the val ue attribute of the associated JSF tag.

° The JSF framework calls the getter method of the model bean property to
get application-specific data.

° The JSF framework uses the Val ueBi ndi ng class to call the setter and
getter methods of the model bean. Recall Setting properties of a component
on page 51, where we created the Val ueBi ndi ng objects for the model
bean properties.

° In addition to the setter and getter methods, the model bean also contains a
couple of event-handling methods: showCat al ogVi ew() and
showCart Vi ew) . The JSP author passes the reference of these methods
in the val ueChangelLi st ener or the acti onLi st ener attributes of the
JSF tag.

° The JSF framework uses the Met hodBi ndi ng class to call the
event-handling methods of the nodel bean. Recall Setting properties of a
component on page 51, where we created a Met hodBi ndi ng object for the
val ueChangelLi st ener property and passed it to the component class.

° Whenever the user interacts with a component that contains the
val ueChangelLi st ener or acti onLi st ener attributes, the JSF
framework calls the event-handling methods, passing the event object along
with the method call. We will explain this event-handling capability of the
model bean in detail in Handling value-change events on page71 .

Next, we'll discuss the association of model beans with a JSF component.

Associating model beans with JSF components

You can associate a specific property of a model bean with any JSF component
during application development. To do this, provide a reference to the name of
the bean and its property with the corresponding JSF tag. For example, look at
the following JSF tag:

<j sf:sel ect OneRadi o val ue="#{ product Dat a. product }" >
The substring #{ in the contents of the value attribute indicates that it is a

reference value (that is, the reference to a model bean property or method). The
name of the model bean and its property are wrapped inside the curly brackets.

Using JSF technology for XForms applications Page 67 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

The substring (inside the curly brackets) before the dot symbol in the value of
the val ue attribute specifies the name of the model bean (pr oduct Dat a). The
string after the dot (pr oduct) is the name of the property to associate with the
JSF component. The name of the bean should match the bean already present
in the application.

The component classes interact with the model beans with the help of the
Val ueBi ndi ng and Met hodBi ndi ng classes, as discussed in The
ValueBinding class on page 48 and The MethodBinding class on page 50,
respectively.

We can instantiate the model beans in appl i cati on, sessi on, request, or
page scopes.

If we instantiate our model bean in appl i cat i on scope, the lifetime of our
model bean will be equal to the lifetime of the servlet. We will instantiate a
model bean in appl i cat i on scope if we want our model bean to preserve its
state throughout application execution. Normally, we are not required to specify
the scope of a model bean at appl i cat i on level. However, if a model bean is
maintaining a log throughout the application's existence, we can declare that
model bean in appl i cat i on scope.

If we specify the scope of our model bean as sessi on, on each new session,
the Web server creates a new instance of the model bean. We instantiate a
model bean in sessi on scope if we want to track the interactions of a user with
our application in a session or want to process the actions and decide the next
move. In most Web applications, application developers declare model beans in
sessi on scope.

If we specify the scope of our model bean as r equest , on each request, the
Web server creates a new instance of the model bean. We instantiate a model
bean in r equest scope if we want our bean to instantiate on each request with
some new values.

There are a couple of ways to instantiate model beans. The first is by using the
useBean directive of the JSP; the second is by declaring a bean as
managed-bean in the application configuration file.

You should already be familiar with the first way of instantiating model beans.
The second method is new with JSF technology, so it's the only one we'll
discuss. The JSF framework introduces this managed-bean mechanism of
instantiating a model bean.

To declare a model bean as managed-bean you have to make some entries in
the faces-config.xml file. The faces-cofig.xml file contains an element named
managed- bean, which wraps the following information:

° A small description about the model bean

° The name of the model bean

° The fully qualified name of the model bean class
° The scope at which the model bean is declared

Page 68 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Look at the following entry of managed- bean in the faces-config.xml file:

<?xm version="1.0"?>
<f aces-config>
<managed- bean>
<descri pti on>Data Bean </description>
<managed- bean- nane>pr oduct Dat a</ nanaged- bean- nane>
<managed- bean- cl ass>
xfornms_j sf. Product Dat a
</ managed- bean- cl ass>
<managed- bean- scope> sessi on </ managed- bean- scope>
<managed- pr operty>
<property-nane>acti on</ property-nane>
<val ue>product </ val ue>
<managed- pr operty>
</ managed- bean>

</faces-config>

Note the following points:

o

The managed- bean- nane element wraps the name of the instance we will
use in the application to access the model bean.

The managed- bean- cl ass element specifies the fully qualified name of
the model bean class.

The managed- bean- scope element defines the scope of the model bean.

The managed- pr operty element is used to set the value of a property in
the model bean when the model bean is first initialized. It contains
property-nanme and val ue child elements.

The pr opert y- nane element contains the name of a property (action) of
the model bean. The val ue element contains the actual value that the JSF
framework will set in the property specified in the pr opert y- nane element
when it initializes the model bean. As you can guess, the JSF framework
simply calls the setter method of the property, passing the value as the
parameter.

Telling the application that some value has changed
or some event has occurred

Ul components, like input boxes, radio buttons, check boxes, can re-put
changes in model objects. The JSF components tell the application that the
user has changed a value. For example, a page can have radio buttons to
select an option from a list of options.

Using JSF technology for XForms applications Page 69 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Suppose the user has selected a value and submitted it to the server. When the
JSF framework receives the request, it does the following to inform the
application about the user's selection:

1. Decodes the request

2. Validates the values by comparing the old value and new value from the
request; if the values are different, the val i dat e() method tells the
application by firing a value-change event

We have a detailed discussion of the decoding and validation processes in The
decoding process on page 56 and The Validation process on page 62,
respectively.

As a result of the event firing, the JSF framework invokes the
application-specific event-handling logic. Through this mechanism, our
application will learn what values have been changed by the user.

The JSF framework has a comprehensive event-generation and handling
mechanism for this purpose, which we'll study in detail.

Event-generation mechanism in JSF

The following events are two types of events a JSF component can generate:
value-change events and action events.

A value-change event occurs when the user changes a component value by
selecting check boxes, selecting radio buttons, entering text in an input box, etc.
The val i dat e() method of a component fires value-change events when it
finds that the value the user entered is different from the value fetched from the
model bean.

Suppose, for example, that after adding a product to a shopping cart, the user
wants to change a feature. The user again changes the value of the feature and
submits it. On the server side, the component associated with this feature gets
the old value from the model bean and compares it with the new value from the
user. If the two values are different, it fires a value-change event, passing it the
old and new values.

To fire the value-change event, we call the queueEvent () method of the
component class. The queueEvent () method takes an instance of the event
to be thrown. In this case, it is the Val ueChangeEvent class instance. The
gueueEvent () method adds an event in the list of events that the JSF
framework handles after the execution of the updat eModel () method.

Look at the following:

Val ueChangeEvent vce = new Val ueChangeEvent (this, ol dval ue,
newval ue) ;

Page 70 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

queueEvent (vce);

In the first statement, we created an instance of the Val ueChangeEvent class.
The Val ueChangeEvent constructor takes three parameters: a component
object, the old value of the component (from the model bean), and the new
value (fetched by the decode() method from the request).

In the second statement, we called the queueEvent () method of the
component to fire the value-change event. The queueEvent () method takes
the Val ueChangeEvent object (which we created in the first statement) along
with the method call.

The execution of these two statements results in firing a new value-change
event.

The action event occurs when the user clicks a button or a hyperlink. The action
events are fired in the decode() method of a component (refer to The
decoding process on page 56).

To fire an action event, we call the queueEvent () method of the component
class. As mentioned above, the queueEvent () method takes an instance of
the event to be thrown along with the method call. In this case, it is an

Act i onEvent instance.

Look at the following, which is quite similar to the value-change event firing
code discussed above:

ActionEvent ae = new Acti onEvent(this);
queueEvent (ae);

In the next couple of sections, we will discuss handling the value-change and
action events.

Handling value-change events

Handling events is an application-specific task, so the application developer
implements the listeners to handle the value-change events.

The JSF framework provides application developers with two ways to handle
the value-change events: implement a value-change event-handling method in
the model bean or implement a class, which the JSF framework invokes when a
value-change event is fired.

First, we'll demonstrate how to implement a value-change event-handling
method in the model beans.

The value-change event-handling method is a simple public method with a
return type of voi d. This method should take an instance of the

Using JSF technology for XForms applications Page 71 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Val ueChangeEvent class along with the method call.

The Val ueChangeEvent class has the record of old and new values of the
component. Recall from Event-generation mechanism in JSF on page 70 that
while firing the event, we passed both these values in the Val ueChangeEvent
constructor. You can access old and new values of the component by calling
the Val ueChangeEvent class methods named get A dVal ue() and

get Newval ue() respectively.

For example, look at the following sample method:

public void val ueChanged(Val ueChangeEvent vce)({
/1 Application specific processing goes here......

hj ect oldValue = ev.getd dVal ue()

hj ect newval ue = ev. get Newal ue()

Ul Conmponent conponent = ev. get Conponent () ;

/1 Application specific processing goes here......

}//val ueChanged

The get A dVal ue() and get Newval ue() methods return Object values.
Cast these values to application-specific classes. The get Conponent ()
method returns the instance of the component that fired this value-change
event.

The JSP author passes the name of the value-change event-handling method in
the val ueChangelLi st ener attribute of the JSF tag. We explained the method
binding for the val ueChangeLi st ener property in Setting properties of a
component on page 51. When a value-change event is fired by the

val i dat e() method, the JSF framework uses the Met hodBi ndi ng object to
call the i nvoke() method, which in turn calls the model bean method specified
in the val ueChangelLi st ener attribute.

Next, we will discuss the second way to handle value-change events:
implementing a value-change event-handling class.

To handle the value-change event in this way, you have to define a class that
should implement the Val ueChangelLi st ener interface. The

Val ueChangelLi st ener interface contains a method named

pr ocessVal ueChange() . The JSF framework calls this method to handle a
value-change event.

The pr ocessVal ueChange() method takes a Val ueChangeEvent object
along with the method call. For example, look at the following

DenpVal ueChangelLi st ener class, which implements

Val ueChangelLi st ener to catch any value-change event:

public cl ass DenpbVal ueChangelLi st ener inpl enents Val ueChangeli st ener {
publ i ¢ DenoVal ueChangelLi stener () {

}
public void processVal ueChange(Val ueChangeEvent ev){
/1 Application specific processing goes here......

Page 72 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

hj ect oldvalue = ev.getd dVal ue()

Chj ect newval ue = ev. get Newal ue();

U Component conponent = ev. get Conponent () ;

/1 Application specific processing goes here..

}/ 1 processVal ueChange
}/ 1 DenoVal ueChangeli st ener

The JSF framework provides JSF tags that you can use to register
value-change handler classes with the components. The tags are:

<f:val ueChangeli st ener type="xcart. DenpVal ueChangeli stener"/>

The JSP author uses the val ueChangelLi st ener tag to register a
value-change event handler class with a particular component. The JSP author
includes the val ueChangelLi st ener tag as a child of the JSF tag with which
he wants to register a Val ueChangelLi st ener tag. The t ype attribute of this
tag specifies the fully qualified name of the value-change handling class.

For example, look at the following tag definition in a JSP page:

<j sf:sel ect OneRadi o | abel ="Sel ect One : "

val ue="#{product Dat a. sel ect edFeat ure}" >

<f:val ueChangeli st ener type="xcart. DenpVal ueChangeli stener"/>
</jsf:sel ect OneRadi 0>

Handling value-change events vs. updating model
beans

Handling the value-change events is an application-specific task. If our
application requirement is such that we do not need to process data coming
from the user, we do not need to write an event handler. In this case, the JSF
framework simply calls the updat eMbdel () method of the component to
update the model bean. On the other hand, if our application requirement is
such that we need to process new data coming from the user, we can process it
in the event handlers before updating the model bean.

Application developers can achieve an important task during the handling of a
value-change event. For example, if the user sends some invalid data, you can
stop the component from updating the model bean with new data. For this
purpose, call the set Val i d(f al se) method of the component class, which
stops the component from updating the model bean:

public void processVal ueChange(Val ueChangeEvent ev){
/1 Application specific processing goes here......
Ul Conponent conponent = ev. get Conponent ();
If(/*sone condition to check if user's data is invalid*/)

Using JSF technology for XForms applications Page 73 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Conponent . set Val i d(f al se);
/1 Application specific processing goes here......

}/ 1 processVal ueChange

Handling action events

As we have seen in Event-generation mechanism in JSF on page 70, the
component fires an action event when the user clicks a button or hyperlink. To
handle the action event, the JSF framework provides two mechanisms (just like
the two mechanisms to handle the value-change events): the implementation of
an action event-handling method in the model bean and the implementation of a
separate action event-handling class.

The action event-handling method is like the one we implemented for the
value-change event previously, except that the action event-handling method
takes an instance of the Act i onEvent class, rather than the

Val ueChangeEvent object.

The Act i onEvent class has the information about the component class that
fired the action event. Recall from Event-generation mechanism in JSF on page
70, while firing the event, we passed the component object to the

Val ueChangeEvent constructor.

For example, look at the following sample method in the model bean:

public void actionPerforned(ActionEvent ae){
U Component uic = ae. get Conponent () ;
/1 Application-specific code goes here
}/lactionPerforned

The act i onPer f or ned() method above calls the get Conponent () method
of the Acti onEvent class. The get Conponent () method simply returns an
instance of the component class that fired this action event. You will implement
your application-specific processing after getting the component instance. For
example, you will call some getter method of the component class to learn what
action was performed.

The JSP author passes the model bean's action event-handling method name
in the acti onLi st ener attribute of the JSF tag. When a user clicks a button
or hyperlink in the JSP page, the decode() method of a component (button or
hyperlink) fires an action event.

When the JSF framework finds that the decode() method of a component has
fired an action event, it checks the value of the i nmedi at e property of the
component that fired the event. If this i mredi at e property value is true, it uses
the Met hodBi ndi ng object to call the i nvoke() method, which in turn calls
the model bean method specified in the act i onLi st ener attribute. If the

I mredi at e property value is false, the JSF framework calls the action

Page 74 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

event-handling method after the call to the updat eModel () method of the
component.

The default value of the i nmedi at e property is false. The JSP author specifies
the value of the i medi at e property in the i mredi at e attribute:

<xforns-jsf:comrandButton acti onLi st ener ="dat aSt or e. acti onPerf or med"
i mredi ate="true">
</ xf or ms-j sf : commandBut t on>

Next, we will discuss the second way to handle value-change events:
implementing a value-change event-handling class.

To handle action through the second method, you have to define a class that
implements an interface named Act i onLi st ener. The Acti onLi st ener
interface contains a method named pr ocessAct i on() . The JSF framework
calls this method to process the action event. The action event-handling class
must implement at the pr ocessAct i on() method.

The JSF framework calls the pr ocessAct i on() method, passing it the event
object (fired by the component) along with the method call.

For example, look at the following Act i onLi st ener:

public class DenmpActi onLi stener inplements ActionListener{
public void processActi on(Acti onEvent event){
Ul Conmponent uic = ae. get Conponent () ;

}
}

The code given for the pr ocessAct i on() method is similar to the code given
for the act i onPer f or med() method already discussed. The only difference is
in the use of the two event-handling mechanisms.

We use the act i onLi st ener tag from the JSF core tag library to register an
action event handler class with the button tag. For example, look at the
following conmandBut t on tag:

<j sf:command_button | abel ="Submit" >
<f:actionListener type="xforms_jsf.DenoActionListener"/>
</j sf:comuand_button>

We have included an f : acti onLi st ener child tag to the commandBut t on
tag. The t ype attribute of the f : acti onLi st ener tag specifies the name of
the action event-handling class.

Navigation process

Using JSF technology for XForms applications Page 75 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

The JSF framework has defined a mechanism for navigation in a JSF
application. The application developer has to write some navigation rules in the
configuration file (faces-config.xml). The following faces-config.xml file shows
the entry for a navigation rule:

<?xm version="1.0"7?>
<faces-confi g>

<navi gati on-rul e>
<fromviewid>/catal ogView. jsp</fromviewid>
<navi gati on-case>
<f rom out cone>cat egor y</ f r om out cone>
<to-vi ewi d>/catal ogVi ew. j sp</to-viewid>
</ navi gati on- case>
<navi gati on- case>
<f rom out come>pr oduct </ f rom out cone>
<t 0-vi ew i d>/ product Vi ew. j sp</to-vi ewi d>
</ navi gati on- case>
</ navi gati on-rul e>

</ faces-config>
Notice the following points from the above code:

° The faces-config.xml file contains a number of navi gati on-rul e
elements, where each navigation-rule element defines a single navigation
rule from one JSP page to another. Every navigation rule should define three
things: the initial JSP page, the action that occurs in the initial JSP page, and
the final JSP page to be loaded as a result of the action. Therefore, every
navigation rule specifies these three bits of information.

° In the above faces-config.xml file, the navi gat i on-r ul e element contains
afromvi ew i d element, which wraps the name of the initial JSP page.

° The navi gati on-rul e element also contains two navi gat i on- case
child elements.

° The first navi gat i on- case element in turn contains a f r om out cone
and t o- vi ew i d child element.

° The from out cone element specifies the action that may occur in the initial
JSP page, while the t o- vi ew i d element wraps the name of the final ISP
page that will be invoked as a result of the action specified in the
f r om out cone element.

° Now look at the second navi gat i on- case element, which contains
different combinations of action and final JSP.

° You can have any number of navi gat i on- case elements within a
navi gati on-rul e element.

Page 76 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

We have seen how the navigation rules are defined in the faces-config.xml file.
Let's now look at how the JSF framework uses the navigation rule to navigate to
a page.

After updating the model beans, the JSF framework enters the invoke
application phase, where it performs the following steps for each JSF tag that
has an action attribute (such as the xcart : cat egory tag in the

cat al ogVi ew. | sp page):

1. It calls the model bean method specified in the act i on attribute method call
and returns a string value.

2. The JSF framework matches this string value with the contents of each
f r om out cone element in the navi gat i on-r ul e element defined for the
current JSP page.

3. When the match is found, the JSF framework invokes the page specified in
the t o- vi ew i d element, which results in automatic invocation of the final
JSP page.

After going through the navigation rules, if the JSF framework finds that the
same currently loaded page needs to be invoked, nothing special happens and
the JSF framework simply calls the encoding methods of all the components in
the current component tree.

If the JSF framework finds that a new JSP page needs to be invoked, it goes
back to the beginning with the new JSP page.

Life-cycle processing phases of a JSF application

We have learned so many things that happen in a JSF application. Before we
start using these concepts to build our XForms-JSF library, however, it is better
to summarize our discussion in the form of life-cycle processing phases of a
JSF application, as follows.

A JSF application request goes through six phases. Don't worry about the
management of these phases. They are managed by the JSF framework.

The servi ce() method of the FacesSer vl et class invokes the JSF
framework, which checks whether the root component exists. If not, it creates
the root component, adds (stores) it in the FacesCont ext , and directly goes to
the last phase (the Render response phase). If the root component is found, the
JSF framework adds (restores) the root component, along with all its children in
the FacesCont ext , and goes to the next phase (the Apply request values
phase). This storing or restoring of the root component in the FacesCont ext is
called the Restore view phase.

After restoring the components tree, JSF framework calls the decode()

Using JSF technology for XForms applications Page 77 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

method of each component in the component tree. The decode() method
decodes the client's request according to the component behavior. The
decode() method can also add action events (for clicking buttons or
hyperlinks) for later processing. This phase is called the Apply request value
phase.

After decoding the request, the JSF framework calls the val i dat e() method
of each component in the component tree. The val i dat e() method verifies
the changes made by the user in component values. If a change in component
values is found, it fires a value-change event. This validation of data is called
the Process validation phase.

After validating the user changes in the component, the JSF framework calls the
updat eModel () method of each component in the tree. The updat eMbdel ()
method updates the model bean with the user's new data. This phase is called
the Update model values phase.

Next, the JSF framework checks the navigation rules to determine whether it
needs to invoke another JSP page. If the invocation of new JSP is not required,
the component tree, which is currently loaded in the FacesCont ext , remains
as it is. Otherwise, a new component tree is created (goes back to the first
phase). This phase is called the Invoke application phase.

Finally, the JSF framework checks whether the complete component tree of the
JSP page that the user requested exists. If it does not, the JSF framework goes
through the entire JSP page. When it comes across a JSF tag, it adds its
component class as a child of the root component we created in the first phase
(forming a component tree). Then it calls the encoding methods of the
component. If the component tree exists, the JSF framework simply calls the
encoding methods of all the components in the component tree. This phase is
called the Render response phase.

The phases are shown below:

r/_JSF Framework “‘\
. JSF
i+ Request Apply Reguest Process
i ViE:EIE‘?‘-F:SE Value Validation
Phase Fhase
| JSF
. Response Invoke Update
§ — Apghcatiﬂn Maodel Values
hase Phasze

Page 78 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Summary

Application developers write model beans to hold application-specific data. The
component classes call the setter and getter method of the model bean
properties to get or store application-specific data.

We can bind a specific property of a model bean or a specific method of a
model bean to a component.

A JSF component can fire two types of events: value-change events and action
events. The JSF component fires a value-change event when the user changes
component values. The JSF component fires an action event when the user
clicks a button or clicks a hyperlink component on the page.

Application developers implement event-handling logic in event-handling

methods. The JSF framework internally invokes the event-handling methods at
the appropriate time to process the event.

Using JSF technology for XForms applications Page 79 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Section 6. XForms-JSF integration strategy

XForms-JSF integration requirements

We have explained the server-side programming requirements of an XForms
application. We have also demonstrated how the JSF architecture works. We
are now ready to demonstrate how we can use JSF to fulfill the server-side
requirements of XForms applications.

In this section, we are presenting the strategy for XForms-JSF integration. For
this purpose, we are going to develop an XForms-JSF sample application. This
section demonstrates the basic integration strategy by developing three
components:

° The xforns-j sf:sel ect OneRadi o component provides users with a list
of choices (a radio button with each choice) to select one of them. It renders
the markup for the XForms sel ect 1 element.

° The xforns-j sf: conmandBut t on component renders the markup for the
XForms submi t element.

° The xforns-j sf: nodel component renders the markup for the XForms
nodel element.

The last subsection provides a small JSP page to demonstrate the use of the
three XForms-JSF tags.

In the next section (XForms-JSF tag library on page 118), we will use the same
integration strategy to implement the rest of the tags necessary for XForms-JSF
integration.

We would like to point out that an XForms-JSF application is like any other JSF
application, except that it authors and processes XForms markup, which means
that XML is used as the format for data interchange between an XForms
browser and a server. A JavaBean component sitting on the server side parses
the XML data from the browser and loads it into a Document Object Model
(DOM) object. The XForms-JSF application uses this DOMobject to retrieve data
coming from the client.

While trying to fit XForms into JSF, we will try to fulfill the following
requirements:

1. We have to design a JSF tag library that works according to the JSF
framework discussed in the past three sections.

2. The names of the JSF tags should be the same as the names of
corresponding tags in the HTML tag library. While developing a JSF tag, if
we can find a similar tag in the JSF's HTML tag library, we will use the same

Page 80 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

name. If we cannot find a parallel tag in the JSF's HTML tag library, we will
use a different name, which will help in porting existing HTML applications to
XForms.

3. XForms-JSF tags should be able to render XForms markup. For example,
the sel ect OneRadi o tag of the JSF's HTML tag library generates the
following markup:

<t abl e border="0">
<tr>
<t d><i nput type="radio" nanme="r1"
val ue="Red" >Red</ t d>
<t d><i nput type="radio" nanme="r1"
val ue="Bl ue">Wi te</td>
</[tr>
</t abl e>

Our XForms-JSF tag library also contains a tag named sel ect OneRadi o.
When sel ect OneRadi o is used in an XForms-JSF application, it generates
the following markup:

<xforns:selectl xm ns: xforms="http://ww. w3. org/ 2002/ xf or ns"
nodel =" opt Mbdel " appearance="ful |l " ref="sel ectedCol or" >
<xforms: | abel >Choose a col or: </ xfornms: | abel >
<xforms:itenp
<xforms: | abel >Red</ xf or ns: | abel >
<xf orms: val ue>Red</ xf or ns: val ue>
</xforns:itenpr
<xforms:itenp
<xforms: | abel >Wi t e</ xforns: | abel >
<xf orms: val ue>Whi t e</ xf or ns: val ue>
</xforns:itenpr
</ xforns: sel ect 1>

From the HTML and XForms markup above, the sel ect OneRadi o tags in
the JSF's HTML tag library and our XForms-JSF tag library are different from
each other, and that our XForms-JSF tags should be able to render XForms
markup.

4. XForms markup contains some attributes specific to XForms and do not
have a parallel in HTML, so the XForms-JSF tag library has to handle such
attributes.

As an example, let's look at the JSF tags used in both cases. Here's the JSF
tag used to generate HTML markup:

<f:sel ect OneRadi o val ue="#{dat aSt ore. sel ect edCol or}">
< f:selectltens val ue="#{dataStore.col orsList}"/>
</ xforms-j sf:sel ect OneRadi 0>

Here's the JSF tag used to generate XForms markup:

<f:sel ect OneRadi o val ue="#{dataStore. sel ectedCol or}"
nodel =" opt Model " ref=" sel ectedCol or" | abel =" Choose a Col or:">
<f:selectltenms val ue="#{dataStore.col orsList}"/>

</ xforns-j sf:sel ect OneRadi 0>

Using JSF technology for XForms applications Page 81 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

You can observe from the JSF code segments above that the difference
between the HTML and XForms tags is that the

xforms-j sf:sel ect OneRadi o tag contains two extra attributes named

r ef and nodel . In The select element on page 18, we explained the
purpose of these two attributes in detail. The XForms-JSF tags we are going
to develop will render XForms markup containing XForms-specific attributes.

5. The XForms-JSF tag library should be able to handle the way an XForms
browser submits data to a Web server, which is quite different from the way
an HTML browser submits data to a Web server. XForms submit XML data,
while HTML forms submit data in the form of name-value pairs. This means
our XForms-JSF tag library needs to author and process XML data. We will
implement the XML authoring and processing logic in the XForms-JSF tag
library so an XForms-JSF application developer does not have to worry
about low-level details.

6. We will design the XForms-JSF tag library to be independent of the existing
JSF's HTML tag library. You can use either or both in a JSF application,
which means that XForms and HTML tags should be able to co-exist in one
application.

Integration steps

We are going to list the programmatic steps we need to follow to implement the
XForms-JSF tag library. Some steps are required to be implemented just once
for the entire tag library, while some will be done separately for each tag in the
library.

The following steps are common for the entire library, so we will need to
implement them just once for the library:

1. Develop a JSF tag and its accompanying JSF component, which renders the
application-specific XML data wrapped inside the XForms nodel element.
We will call this JSF tag an xf or nms-j sf: nodel tag. This tag handles all
aspects of rendering an XForms nodel element in an XForms page. It also
allows an application to supply application-specific XML data to the
xfornms-j sf: nodel tag, so that the xf or ns-j sf: nodel component can
render the same on the XForms page.

There is no equivalent of this in the present JSF framework, so we will build
the xf or ms-j sf: nodel tag from scratch.

2. Write a JavaBean component that parses an incoming XForms request and
author a DOMobject that wraps the XML instance data from an XForms
browser. The name of this JavaBean will be

Page 82 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

| ncom ngXM.I nst anceRequest .
3. Create a TLD file for the library.

4. Write a faces-config.xml file for the tag library.

Complete the following steps for each tag in the library:

1. Create a tag handler class for each tag in the XForms-JSF tag library.
2. Make entries in the TLD file for each tag in the XForms-JSF tag library.

3. Make entries in the faces-config.xml file for each component in the tag
library.

4. Write the decode() method for each component that parses the incoming
XML instance data.

5. Write the encodeBegi n() and encodeEnd() methods of the components
that render XForms markup.

The rest of this section elaborates on each step listed above.

Implementing the xforms-jsf:model component

The xf or ms- j sf: nodel component renders the markup for the XForms
nodel element. There is no equivalent of the xf or ns-j sf : nodel tag in the
present JSF framework, so this xf or ms- j sf: nodel tag needs to be
developed from scratch.

The purpose of the xf or nms- | sf : nodel tag is to author an XForms nodel
element that contains an XForms i nst ance child element. The XForms

I nst ance element in turn wraps the application-specific XML data. In The
model element on page 16, we discussed the XForms nodel element in detail.

For example, if the following code is the application-specific XML data:

<nmodel Xm >
<sel ect edCol or ></ sel ect edCol or >
</ nmodel Xm >

Then the xf or ns-j sf: nodel component would author the following markup:

Using JSF technology for XForms applications Page 83 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<xf orns: nodel id="nyMdel ">
<xforms: subm ssi on acti on="/xforns-
j sf/faces/ Deno. jsp;jsessi oni d=B30A73E86F22A6BB68A36B348CF97D6B"
nmet hod="post" id="submt" />
<xforms:instance>
<nodel Xl >
<acti on- perf or med></ acti on- per f or red>
<sel ect edCol or ></ sel ect edCol or >
</ nodel Xm >
</ xforns:instance>
</ xf or ns: nodel >

Compare the application-specific XML data with the markup that the
xf orms-j sf: nodel component delivers, and you will find the following:

° The application-specific XML is wrapped in the i nst ance element of the
XForms nodel element.

° The application-specific XML generated by the xf or ns-j sf: nodel tag
contains an extra tag named act i on- per f or ned.

° This modification in the application-specific XML is required to track the user
interaction in the page. We are required to insert an extra tag because if
your application's page contains more than one button or hyperlink,
components cannot verify which button or hyperlink the user clicked.

° This acti on- per f or med tag wraps the ID of the button or hyperlink
component clicked by the user on the page. The decode() methods of the
component classes extract the ID of the button from the
action- perf or ned tag to identify the component (button or hyperlink) the
user clicked.

The JSP author provides this component with a val ue attribute, whose value
points to a String type property of the model bean. For example, look at the
following use of the xf or ms-j sf: nodel tag:

<xforms-jsf:model val ue="#{dataStore. xfornmsMdel Data}"/>

The xf or ms-j sf: nodel component implementation calls the getter method of
the dat aSt or e. xf or rs Model Dat a property, which returns the
application-specific XML. The component class associated with the

xforms-j sf:nodel tag wraps the application-specific XML inside the XForms
nodel and i nst ance elements.

The next subsection explains how to develop the model bean that provides the
application-specific XML model data. But first, let's see how to implement the
xformns-j sf:nodel tag.

The first step toward the development of a component is to make an entry in the

TLD file. The TLD file entry for xf or ns-j sf : nodel looks like the following
code:

Page 84 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials

<t ag>
<nane>nodel </ nane>

<t ag- cl ass>xforms_j sf. Model Tag</t ag- cl ass>

<body- cont ent >JSP</ body- cont ent >
<l-- JSF attributes -->
<attribute>

<name>val ue</ nanme>

<requi red>true</required>

<rtexprval ue> fal se </rtexprval ue>

</attribute>
<l-- XFornms Attributes -->
<attribute>

<nane>i d</ name>

<requi red> fal se </required>

<rtexprval ue> fal se </rtexprval ue>

</attribute>
<attribute>
<nane>schema</ nane>
<requi red> fal se </required>

<rtexprval ue> fal se </rtexprval ue>

</attribute>

<attri bute>
<nane>f uncti ons</ nane>
<requi red> fal se </required>

<rtexprval ue> fal se </rtexprval ue>

</attribute>
</tag>

ibm.com/developerWorks

In Associating JSF tags with tag classes on page 45, we explained the TLD file
in detail. You can refer to this for the details of the above TLD file.

In The UIComponentTag class on page 43, we explained that each JSF tag has
a tag class associated with it, whose name we have to wrap in the t ag- cl ass
element in the TLD file. Let's see the implementation of the

xforms_j sf. Model Tag class mentioned in the t ag- cl ass element in the

above TLD file entry:

public class Mdel Tag extends Ul Conponent Tag{

private String id = null;
private String schema = null;
private String val ue = null;

private String functions = null;
public String getRendererType() {
return null;

}

public String get Conponent Type() {

return "Model";

}
public String getVal ue() {

return val ue;

}

public void setld(String id) {
this.id = id;

}

public void setSchema(String id) {

this.id =id;
}

public void setFunctions(String id) {

Using JSF technology for XForms applications

Page 85 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

this.id =id;
}
public void setValue(String val ue) {
thi s.val ue = val ue;
}
public void setProperties(U Conmponent conponent){
super. set Properti es(conmponent);
U Model uim = (U Mdel) conponent;
FacesContext fc = FacesContext.getCurrentlnstance();
Application app = fc.getApplication();
if(id!=null) {
i f (U Conponent Tag. i sVal ueRef erence(id)) {
Val ueBi ndi ng vb = app. creat eVal ueBi ndi ng(i d);
ui m set Val ueBi ndi ng("xi d", vb);

}
el se{
uimagetAttributes().put("xid", id);
}
}
if(schema !'= null){
uimagetAttributes(). put("schema", schemm);
}
if(functions !'= null){
uimagetAttributes().put("functions", functions);
if(value !'= null){
i f (U Conponent Tag. i sVal ueRef erence(val ue)) {
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(val ue) ;
ui m set Val ueBi ndi ng("val ue", vb);
}
el se{
ui m set Val ue(val ue);
}
}
}//setProperties
}// Mbdel Tag

The Mbdel Tag class above contains the get Conponent Type(),

get Render er Type(), and set Properti es() methods, in addition to the
simple setter and getter methods for the properties. We have already covered
the details of these methods. You can refer to The UIComponentTag class on
page 43 for the details of the get Conponent Type() and

get Render er Type() methods. Refer to Setting properties of a component on
page 51 for the set Properti es() method.

Here's how to implement the xf or ns-j sf : nbdel component class. Look at
the following entry in the faces-config.xml file:

<?xm version="1.0""?>
<faces-config>
<conponent >
<conponent - t ype>Model </ conponent - t ype>
<component - cl ass>xf orms_j sf. U Mddel </ component - cl ass>
</ conponent >
<l-- other conponent instances-->
</ faces-config>

The conponent -t ype element wraps the type of the component. The value

Page 86 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

returned by the get Conponent Type() method of Model Tag -- "Model" -- is
matched with the content wrapped in the conponent -t ype element. The
conponent - cl ass element specifies the fully qualified name of the
component class: xf orms_j sf. Ul Model .

Now we will implement the component class Ul Model .

The following code shows the properties and methods of the Ul Model class:

public class U Mdel extends U Conponent Base{
private String value = null;
public void encodeBegi n(FacesCont ext fc)
throws | CExcepti on{

}

public void setValue(String val ue){

}
public Object getValue(){

}
private String insertEl enent(String xm Data){

}
private String get Cont ext Pat h(FacesCont ext fc)({

}
}/ 71U Model

The Ul Mbdel class contains only one property (val ue), two public methods
(set Val ue() and encodeBegi n()), and two private methods
(i nsert El enent () and get Cont ext Pat h()).

The Ul Model component does not need to implement the decode() method
because the Ul Model is not required to parse the incoming request from the
user. It only renders the markup for the XForms nodel element. That is why
Ul Model only overrides the encodeBegi n() method of Ul Conponent Base.

Let's discuss the methods of the Ul Mbdel class one by one.

The set Val ue() method is used to set the val ue property of the component.
We called this method in the set Properti es() method of the Model Tag
class to set the value of the val ue attribute passed by the JSP author:

public void setValue(String value) ({
t his.val ue = val ue;

}

The i nsert El ement () method of Ul Model inserts the act i on- per f or med
tag in the application-specific XML (we have already explained the purpose of
this extra tag in the application-specific XML):

private String insertEl enent(String xm Data){
if(xmData == null) {
xm Dat a = "<dat aW aper ><act i on- per f or ned>
</ acti on- per f or med></ dat aw aper >";

}

el se{

Using JSF technology for XForms applications Page 87 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

String tenp = xm Dat a;
int index = xm Data.indexOF(">");
xm Data = xm Dat a. substring(0,index+1);
temp = tenp. substring(index+1);
xm Data += "<acti on-perforned></action- perfornmed>";
xm Data += tenp;

}

return xnl Dat a;

}//insertEl enent

The get Cont ext Pat h() method returns a string value that is used in the
act i on attribute of the XForms subm ssi on element. For details about the
XForms act i on attribute, see The model element on page 16.

private String get Cont ext Pat h(FacesContext fc){
String viewmld = fc. getViewRoot().getViewd();
Application app = fc.getApplication();
String tenp = app. get Vi ewHandl er (). get Acti onURL(fc, view d);
return fc.getExternal Context().encodeActi onURL(tenp);
}/ 1 get Cont ext Pat h

Now let's discuss the implementation of the encodeBegi n() method:

public voi d encodeBegi n(FacesCont ext fc)
throws | OException{
if(fc == null)
t hrow new Nul | Poi nt er Excepti on();
i f(!isRendered())
return;
ResponseWiter out = fc.get ResponseWiter();
String id (String) getAttributes().get("xid");
String schema (String) getAttributes().get("schem");
String functions (String) getAttributes().get("functions");
String xmi Data nul | ;
Val ueBi ndi ng vb = get Val ueBi ndi ng("val ue");
if (vb !'= null)
xm Data = (String) vb.getValue(fc);
/linserting action-perfornmed
el se
xm Data = get Val ue();
xm Data = insertEl enent (xm Dat a) ;
Ilretrieving path from external context
String contextPath = get Cont extPath(fc);
//witing nodel data
out.wite("<xforns:nodel");
if(id !=null)
out.wite(" id=\""+1id + "\"");

if(schema !'= null)
OUI\MI’[e(” schema=\""+ schem + u\uu);
if(functions != null)

out.wite(" functions=\""+ functions + "\"");
out.wite(" xmns:xfornms=\"http://ww. w3. org/ 2002/ xforns\">");
out.wite("<xforns:submnission action=\"");
out.wite(contextPath);
out.wite("\" ");
out.wite("nmethod=\"post\" id=\"submt\" />");
out.wite("<xforns:instance>");
out.wite(xmn Data);
out.wite("</xforms:instance>");

Page 88 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

out.write("</xforms: model >");
}// encodeBegin

The encodeBegi n() method:

1. First checks the value of the r ender ed attribute of the JSF tag. If it is false,
then it will not render the component. Instead it returns without rendering the
component.

2. Retrieves the ResponseW i t er object from the FacesCont ext object. All
encoding methods use this ResponseW i t er object to write their markup.

3. Retrieves the attribute values (set by the set Properti es() method of
Model Tag) by calling the get () method and passing it the name of the
attribute.

4. Uses the Val ueBi ndi ng object passed by the Model Tag class to fetch the
application-specific XML from the model bean.

5. Inserts an act i on- per f or ned element in the application-specific XML (to
identify the button that the user clicked) by calling the i nsert El enent ()
method.

6. Writes the markup for the component by calling the wri t e() method of the
ResponseW i t er object.

The Ul Mbdel class is now ready to be used in a JSF application to render the
XForms nodel element. In the last subsection of this section, we will
demonstrate the usage of the Ul Model component in a sample XForms-JSF
application.

Writing the model bean that represents
application-specific XML data

The model bean that authors application-specific XML data is like any other
application-specific bean that you may need and develop in a server-side Java
application. The only special thing that our xf or ns- j sf : nodel tag demands
from the model bean is that the bean should have a string-type property. The
xfornms-j sf: nodel tag assumes that the string-type property contains the
application-specific XML data it needs to wrap inside the XForms i nst ance
element. Refer to The model element on page 16 for details of the
application-specific XML data.

The JSP author passes the reference of the string property as the value of the

val ue attribute of the xf or ns-j sf: nodel tag. The component class
(Ul Model) uses the val ue attribute to get application-specific data.

Using JSF technology for XForms applications Page 89 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

For example, look at the following model bean named Dat aSt or e, whose
xf or msMbdel Dat a property is a good candidate to act as the value attribute of
an xf orns-j sf: nodel tag:

public class DataStore{

private String action = null;
private ArraylList col orsLi st = null;
private String sel ectedCol or = null;
private String xfornmsModel Data = nul |l ;

public DataStore(){
String [] colors = new String[2];
colors [0] = "Red";
colors [1] = "Geen";
sel ectedCol or = null;
col orsLi st = new ArraylList(colors.length);
for (int i =0 ; i <colors.length ; i++)
col orsList.add(new Sel ectltem(colors[i], colors[i],
colors[i]));
xf ornsModel Data =

"<nmodel Xm ><sel ect edCol or ></ sel ect edCol or ></ npdel Xm >";
}
public void set Sel ect edCol or (hj ect sel Col or) {
sel ectedCol or = (String) sel Col or;

publ i c Object getSel ectedCol or(){
return sel ectedCol or;

}

public void setColorsList (Collection colorsList) {
this.colorsList = new ArrayList();

}

public Collection getColorsList(){
return col orsLi st;

}

public String getXfornmsMdel Data () {
return xfornsMdel Dat a;

}

public void set XfornmsModel Data (String xfornsMdel Data) {
t hi s. xf ornsModel Dat a = xf or neMbdel Dat a;

}

public void setAction(String newAction){
this.action = newAction;

}

public String getAction(){
return action;

}

public void btnPressed(Acti onEvent event) ({
if(this.selectedCol or.equal s("Red"))
set Action("redSel ected");
el se if(this.selectedCol or.equal s("G een"))
set Action("greenSel ected");
}/ /bt nPressed
}// DataStore

Notice the following points from the Dat aSt or e class implementation above:
° The xf or re Mbdel Dat a property of the Dat aSt or e class wraps the

application-specific XML, which the JSP author can pass to an
xforms-j sf:nodel tag in the val ue attribute.

Page 90 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

° We hard-coded the application-specific XML for the sake of simplicity. While
developing your application-specific bean, you can read this from a file or
database. These days, nearly all DB vendors provide XML interfaces. The
only requirement is that your bean should have a property that represents
the application-specific XML.

° The Dat aSt or e bean contains a few more properties (col or sLi st
sel ect edCol or, and act i on) along with their setter and getter methods.
The other JSF tags in the JSP page use these properties to pass on
application-specific data to the components.

° The public method named bt nPr essed() is actually an action event
handler method, which we will use for action event-handling in our sample
application.

° Similarly, the public method named val ueChanged() is actually a
value-change event handler method, which we will use for value-change
event-handling in our sample application.

Parsing the incoming XML instance data

The XML that the xf or ns-j sf : nodel tag renders serves to wrap the user's
data he wants to submit back to the server. The XML rendered by the

xf orms-j sf: nodel tag wraps the user's changes and carries the data to the
server. Our server-side application needs to parse the XML received from the
user to extract the user data.

We'll explain this concept with the following example. Suppose the request body
contains the following XML.:

<nmodel XM_>
<acti on- perfornmed>i d1</ acti on- perf or med>
<sel ect edCol or >Red</ sel ect edCol or >

</ model XM.>

In the XML, the nodel XM tag carries information in two tags:
action-perfornmedandsel ect edCol or. The acti on- perf or ned tag
wraps the ID of the button that the user clicked, and the sel ect edCol or tag
wraps the color name that the user selected. The decode() method of each
XForms-specific JSF component has to parse the XML request to fetch the
information sent by the user.

To make this work independently from component development, we will
implement a class that parses the incoming XForms request and author a DOV
Docunent object for the incoming XML. The name of this JavaBean
component is | ncom ngXM.| nst anceRequest .

Using JSF technology for XForms applications Page 91 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

The following code shows the properties and methods in the
I ncom ngXM.I nst anceRequest JavaBean component:

public class I ncom ngXM.I nst anceRequest {
prot ect ed Document DOVDocument;
publ i c I ncom ngXM.I nst anceRequest () {
}
publ i ¢ Document get DOVDocument ()
throws org. xm . sax. SAXExcepti on,
javax. xm . parsers. Par ser Conf i gur ati onExcepti on{

}

}/ /1 ncom ngXM.I nst anceRequest

The | ncom ngXM.I nst anceRequest class contains a constructor, single
property (DOVDocurmnent), and public method get DOVDocunent () .

The DOVDocunent property contains the contents of the incoming client
request. The decode() method of each component in the XForms-JSF tag
library fetches the value of this property to learn its contents.

Now let's discuss the methods of the | ncom ngXM.I nst anceRequest class
one by one.

The I ncom ngXM.I nst anceRequest constructor simply initializes the
DOVDocunent property with nul | :

publi c I ncom ngXM.I nst anceRequest () {
DOVDocunment = nul | ;

}

The get DOVDocunent () method returns an instance of the DOM Docunent
object, which contains the application-specific XML request.

publ i ¢ Document get DOVDocumnent ()
throws org.xm .sax. SAXExcepti on,
javax. xm . parsers. Par ser Conf i gurati onException
{
i f(DOVvDocunent == nul I'){
FacesCont ext facesContext = FacesContext.get Currentlnstance();
Ext er nal Cont ext eContext = facesContext. get Ext ernal Context();
Servl et Request request = (Servl et Request) eCont ext. get Request () ;
Servl et nput Stream si s = request. getl nput Stream()
try{
Docunent Bui | der Factory dbf =
Docunent Bui | der Fact ory. newl nst ance();
Docurent Bui | der db = dbf. newDocunent Bui | der () ;
DOVDocunent = db. parse();
return DOVDocurment ;
}
catch(java.io.| Cexception e){
e.printStackTrace();
}
}/ /i f(DOVvDocunent == null)
return DOVDocument ;
}/ 1 get DOVDocunent

Page 92 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

When the get DOVDocunent () method is called by any component, it first
checks the value of the DOVDocunent property. If the value is nul | , it does the
following steps:

1. It creates an instance of the FacesCont ext object.

2. It calls the get Ext er nal Cont ext () method of the FacesCont ext object,
which returns an instance of the Ext er nal Cont ext class. This
Ext er nal Cont ext object is necessary to fetch the request.

3. It calls the get Request () method of the Ext er nal Cont ext class, which
returns an instance of the Ser vl et Request class. This Ser vl et Request
object wraps all the details about the request from the client.

4. Then it calls the get | nput St r ean() method of the Ser vl et Request
object, which returns an instance of the Ser vl et | nput St r eamobject.

5. This Ser vl et | nput St r eamobject wraps the input stream from the client in
the binary form. This binary data is actually the XML that the user sent.

6. After fetching the input stream, the get DOVDocunent () method creates an
instance of the Docunent Bui | der class.

7. Then it calls the par se() method of the Docunent Bui | der class, passing
it the Ser vl et | nput St r eamobject retrieved in step 4.

8. This par se() method authors the XML from the Ser vl et | nput St r eam
and returns a Docunent object, which contains the XML the user sent to the
Web server.

9. The get DOVDocunent () method assigns this Docunent object to the
DOVDocunent property.

Finally, the get DOVDocunent () method returns the DOVDocunent property.

We will normally declare the | ncom ngXM.I nst anceRequest model bean in
the faces-config.xml file to make this bean available for the whole application.
We said in Associating model beans with JSF components on page 67 that the
application-level declarations are made in the faces-config.xml file.

Look at the following declaration of the | ncom ngXM.I nst anceRequest
bean in the faces-config.xml file:

<managed- bean>
<descri ption>l nconi ng XM. Request </ descri ption>

<managed- bean- nanme>i ncom ngXM.I nst anceRequest </ nanaged- bean- nane>

Using JSF technology for XForms applications Page 93 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<managed- bean- cl ass>
xforns_j sf. I ncom ngXM.I nst anceRequest
</ managed- bean- cl ass>
<managed- bean- scope>r equest </ managed- bean- scope>
</ managed- bean>

The managed- bean- nane element wraps the name of the bean:
i ncom ngXM.I nst anceRequest . This name acts like an instance for the
class. The application classes access the bean through this name.

The managed- bean- cl ass element specifies the qualified name of the bean
class: xforms_j sf. 1 ncom ngXM.I nst anceRequest .

The managed- bean- scope element wraps the scope for the bean. The scope
for the | ncom ngXM.I nst anceRequest bean is specified as r equest , which
tells that this bean is instantiated on each request from a client.

As you know, the | ncom ngXM.I nst anceRequest class loads incoming
requests, so this bean is instantiated on each request from the client.

Now let's discuss how the decode() method of different components uses this
class to access the request.

The decode() method of each component in the component tree does the
following:

1. Gets an instance of the i ncom ngXM.| nst anceRequest JavaBean
component from the application (as mentioned above, it's a bean defined in
the faces-config.xml file)

2. Calls the get DOVDocunent () method of the
i ncom ngXM.I nst anceRequest bean

3. lterates through the document that contains XML nodes and retrieves data
related to the component

Implementing the xforms-jsf.selectOneRadio tag

The xf orms-j sf: sel ect OneRadi o tag we are going to implement here
renders the following markup:

<xforns:sel ectl ref="sel ectedCol or" nodel =" opt Model "
appearance="ful | " xm ns: xforms= "http://ww. w3. or g/ 2002/ xf or ns" >
<xforms: | abel >Choose a Col or: </ xfornms: | abel >
<xforms:itenp
<xforms: | abel >Red</ xf or ns: | abel >
<xf orms: val ue>Red</ xf or ns: val ue>
</xforns:itenpr
<xforms:itenp

Page 94 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

<xforms: | abel >Whi t e</ xf or ns: | abel >
<xforms: val ue>Wi t e</ xf orns: val ue>
</xforns:itenpr
</ xforns: sel ect 1>

In the XForms browser, the above markup looks like the following figure:

Choose a Color © Red © White

The tag as used in a JSP page looks like the following code:

<xforns-jsf:sel ect OneRadi o val ue="#{dat aSt or e. sel ect edCol or}"
nodel =" opt Mbdel " ref=" sel ectedCol or" | abel =" Choose a Col or:"
val ueChangeli st ener =" #{ dat aSt or e. val ueChanged}" >
<f:selectltens val ue="#{dataStore.col orsList}"/>

</ xforms-j sf:sel ect OneRadi 0>

There are two things to be explained regarding the above code: the
xfornms-jsf:sel ectOneRadi o andf: sel ectltens tags.

The three most important attributes of the xf or ns-j sf: sel ect OneRadi o tag
are:

The val ue attribute: As explained in the previous section, the val ue attribute
is used to specify the model bean and its property associated with a JSF tag. In
the above example, the name of the bean (dat aSt or e) and its property

(sel ect edCol or) is passed to the component in val ue. This property tracks

the user's selection that is made from a list of choices.

The nodel attribute: The nodel attribute of the

xforms-j sf:sel ect OneRadi o element is used to establish an association
between the sel ect 1 and nbdel elements. The nodel attribute value of the
sel ect element matches the i d attribute value of the nodel element. The
nodel attribute of the sel ect 1 element in the

xforms-j sf:sel ect OneRadi o tag indicates that the XForms sel ect 1
element is associated with the XForms nodel element whose i d attribute has
the value "optModel."

The r ef attribute: This attribute refers to a tag in the XForms nodel element.
In the xf orms-j sf: sel ect OneRadi o tag above, the r ef attribute contains
selectedColor as a value, which is the name of a tag in the XForms nodel
element that we discussed in Implementing the xforms-jsf:model component on
page 83. In other words, the value of the r ef attribute always contains the
name of the tag from the application-specific XML in the XForms nodel
element.

Using JSF technology for XForms applications Page 95 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

The XForms sel ect 1 element binds itself with the XForms nodel element
through this r ef attribute. We have already explained the purpose of having
r ef attributes in XForms elements in The select element on page 18.

Now let's discuss the f : sel ect | t ens -- the child tag of the

xfornms-j sf:sel ect OneRadi o tag. Actually, we used this tag from the JSF's
core tag library where it provides components with a list of values from model
beans to render on the browser.

In the above JSP code, the f : sel ect |t ens tag has a val ue attribute (whose
value is "#{dataStore.colorsList}"). Here, the val ue attribute carries the name
of the model bean property, which holds the list of choices that will be rendered
in response to the xf or ns-j sf: sel ect OneRadi o tag, as shown in the above
screenshot.

Now let's start implementing the sel ect OneRadi o tag. The tag entry in the
TLD file for the sel ect OneRadi o tag looks like the following code:

<t ag>
<nane>sel ect OneRadi o</ name>
<t ag-cl ass>xforns_j sf. Sel ect 1Radi oTag</t ag- cl ass>
<body- cont ent >JSP</ body- cont ent >
<I-- JSF Specific Attributes -->
<attribute>
<nane>val ue</ nanme>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name>val ueChangeli st ener </ nanme>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name>r ender ed</ nanme>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<nane>i d</ nane>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name>bi ndi ng</ nanme>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name>i nmedi at e</ nanme>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<nane>r equi r ed</ name>
<r equi r ed>f al se</required>
<rtexprval ue>f al se</rtexprval ue>
</attribute>

Page 96 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

<l-- Xforns Specific attributes -->
<attribute>
<name> nodel </name>
<requi red> fal se </required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name> | abel </nanme>
<requi red> fal se </required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name> navi ndex </ nane>
<required> fal se </required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name> accesskey </ nanme>
<requi red>fal se </required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name> bi nd </ nane>
<requi red> fal se </required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name> ref </name>
<required> true </required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name> sel ection </name>
<requi red> fal se </required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name> increnental </nane>
<requi red> fal se </required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<l-- JSF Specific attributes -->
<attribute>
<name>i d</ name>
<requi r ed>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name> val ue </nane>
<required> true </required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name>r ender ed</ name>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
</ tag>

The above TLD file entry declares two types of attributes: XForms-specific
attributes and JSF-specific attributes.

Using JSF technology for XForms applications Page 97 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

In the above TLD file entry, the name of the tag class is
xforms_j sf. Sel ect 1Radi oTag, which we have implemented in the
following code:

public class Sel ect 1Radi oTag extends Ul Conponent Tag{

private String val ue = null;
private String required = null;
private String i mediate = null;
private String val ueChangelLi stener = null;
private String ref = nul | ;
private String bind = null;
private String nodel = null;
private String | abel = null;
private String navi ndex = null;
private String accesskey = null;
private String selection = null;
private String increnental = nul | ;

public String get Renderer Type() {
return null;

}

public String get Component Type(){
return "Selectl";

}

public void setValue(String val ueRef) {
this.val ue = val ueRef;

}

public void setRequired(String required) {
this.required = required;

}

public void setlmediate(String i medi ate) {
this.i mediate = i medi at e;

}

public void setVal ueChangelLi stener(String val ueChangelLi stener) {
t hi s. val ueChangelLi st ener = val ueChangeli st ener;

}

public void setRef(String ref){
this.ref = ref;

}

public void setBind(String bind){
this.bind = bind;

}

public void setMdel (String nodel){
t hi s. nodel = nodel ;

}

public void setlLabel (String |abel){
this.|label = |abel;

}

public void setNavi ndex(String navi ndex){
t hi s. navi ndex = navi ndex;

}

public void set Accesskey(String accesskey){
this. accesskey = accesskey;

}

public void setSelection(String sel ection){
this.selection = sel ection;

}

public void setlncrenental (String incremental){
this.increnental = increnental;

}

public void setProperties(U Conponent conponent) {

Page 98 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

super . set Properti es(conponent);

U Selectl uis = (U Sel ect 1) component;

FacesCont ext fc = FacesContext.getCurrentlnstance();

Application app = fc.getApplication();

if(required !'= null) {

i f (Ul Conponent Tag. i sVal ueRef erence(required)) {

Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(required);
ui s. set Val ueBi ndi ng("required", vb);

}

el se{
bool ean bool Required =

(new Bool ean(required)).bool eanVal ue();
ui s. set Requi r ed(bool Requi red);
}
}
i f(val ueChangeLi stener !'= null) {
i f (U Conponent Tag. i sVal ueRef er ence(val ueChangelLi stener)) {
Class args[] = {
j avax. f aces. event . Val ueChangeEvent . cl ass
b
Met hodBi nding nb =
app. cr eat eMet hodBi ndi ng(val ueChangelLi st ener, args);
ui s. set Val ueChangelLi st ener (mb) ;
}
if(imediate !'= null) {

i f (Ul Conponent Tag. i sVal ueRef erence(i nmedi ate)) {
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(i nmedi at e) ;
ui s. set Val ueBi ndi ng("i nmedi ate", vb);

}

el se{
bool ean bool | nmedi ate =

(new Bool ean(i mredi at e)) . bool eanVal ue();
ui s. set | nmedi at e(bool | nmedi at e) ;

}

}
if(value '= null) {

i f (U Conponent Tag. i sVal ueRef erence(val ue)) {

Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(val ue) ;
ui s. set Val ueBi ndi ng("val ue", vb);

}

el se{
ui s. set Val ue(val ue);

}

}

if(ref '= null)
uis.getAttributes().put("ref", ref);

if(bind !'= null)
uis.getAttributes().put("bind", bind);

if(label !'= null)
uis.getAttributes().put("label”, |abel)
if(nodel !'= null)
uis.getAttributes().put("nmodel", nodel);
i f(navindex !'= null)
uis.getAttributes().put("navindex", navindex);
i f(accesskey !'= null)
uis.getAttributes(). put("accesskey", accesskey);
if(selection != null)
uis.getAttributes().put("selection”, selection);
if(incremental !'= null)
uis.getAttributes().put("incremental", increnmental);

uis.getAttributes(). put("appearance", "full");
}//setProperties

Using JSF technology for XForms applications Page 99 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

}/ 1 Sel ect 1Radi oTag

This code is exactly like the code used in Implementing the xforms-jsf:model
component on page 83, so we won't explain it here.

Here's how to implement the component class associated with the
xforns-j sf:sel ect OneRadi o tag. Look at the following entry in the
faces-config.xml file:

<?xm version="1.0"?>
<f aces-config>
<conponent >
<conponent -t ype>Sel ect 1</ conponent -t ype>

<conponent - cl ass>xf orns_j sf. Ul Sel ect 1</ conponent - cl ass>
</ conponent >
<!-- other conponent instances-->

</ faces-config>

In the next section, we will implement the component class mentioned in the
conponent - cl ass element of the faces-config.xml file above (Ul Sel ect 1).

Implementing the UlSelectl component

The Ul Sel ect 1 component class lets users select one choice from a list of
given choices. If the user changes the component's value, the Ul Sel ect 1
component class fires a value-change event and automatically updates the
application-specific model bean with the user's new selection.

The Ul Sel ect 1 component informs application-specific event-handlers about
the user's selection of a new value by firing a value-change event.

The behavior of the xf or ns-j sf: sel ect OneRadi o0 component is quite
similar to the behavior of its equivalent component provided by the JSF's HTML
tag library. However, there are slight differences in the implementation. The
JSF's HTML tag library component renders HTML markup while its equivalent
XForms-JSF tag library component (Ul Sel ect 1) renders XForms markup.

While implementing the Ul Sel ect 1 component, we extended our component
from the Ul | nput class, which is part of the JSF's HTML tag library. The
difference is between encoding the markup and decoding the request. And
while implementing, we will override these two methods in Ul Sel ect 1.

The methods in the Ul Sel ect 1 class are shown in the following code:

public class U Selectl extends Ul I nput{
private Iterator getltens(FacesContext context) {

}

Page 100 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

public void encodeEnd(FacesContext fc) throws | OException {

}
private String get Newval ue(Docunent doc, String tag) ({

}
public void decode(FacesContext fc) throws | OException {

}

public void validate(FacesContext context){

}
}/ /U Selectl

Now let's discuss the implementation of the methods shown one by one.

The get I t ens() helper method returns an instance of the | t er at or object,
which contains the list of choices that the encodeEnd() method renders. The
following code shows the implementation of the get | t ens() method:

private Iterator getltens(FacesContext context) {
oj ect value = null;
ArraylList list = new ArrayList();
for(lterator kids = this.getChildren(); kids.hasNext();)
{
Ul Component kid = (Ul Conmponent) ki ds. next ();
i f(kid instanceof U Selectltens)
{
val ue = ((Ul Sel ectltens)kid).currentVal ue(context);
i f(val ue instanceof Collection)
{
for(lterator item= ((Collection)value).iterator();
item hasNext ();)
list.add((Selectltemitemnext());
return list.iterator();
}
}
}

return new lterator(){
public void renove(){}
publi ¢ bool ean hasNext (){return fal se;}
public Object next(){throw new NoSuchEl ement Exception();}

b
}//getltens

Notice the following points:

° The getltens() method first gets the child component of Ul Sel ect 1.

° Then it gets the model bean property value that the JSP author specified in
the val ue attribute of the f : sel ect | t ens tag.

° Thenthe get|tens() method iterates through the values fetched in step 2
and adds them to an Arr ayLi st object.

° Next, it converts the ArrayLi st intoan | t er at or object and returns the
| t er at or object.

° If there is no child component, this method returns an empty | t er at or .

Using JSF technology for XForms applications Page 101 of 201

ibm.com/developerWorks

Presented by developerWorks, your source for great tutorials

Now let's discuss the implementation of the encodeEnd() method:

public void encodeEnd(FacesContext fc) throws | OException {

i f(f

C

== null)

t hrow new Nul | Poi nt er Excepti on();
i f(!isRendered())

return;
String ref = (Stri
String bind = (Stri
String nodel = (Stri
String | abel = (Stri
String navi ndex = (Stri
String accesskey = (Stri
String selection = (Stri
String appearance = (Stri
String increnental = (Stri

ResponseWiter out

ng)
ng)
ng)
ng)
ng)
ng)
ng)
ng)
ng)

getAttributes().get("ref");
getAttributes().get("bind");

get Attributes().get("nodel");
getAttributes().get("label");

get Attributes().get("navindex");
get Attributes().get("accesskey");
getAttributes().get("selection");
get Attributes().get("appearance");
getAttributes().get("increnmental");

fc.get ResponseWiter();

out.write("<xforns:selectl ref=\"" + ref +"\""):
if(bind !'= null)
OLI'[WI'Ite(" bl nd:\""+ b| nd + "\lln);

i f(nodel !'= null)

out.wite(" model =\""+ nodel + "\"");
i f(navindex !'= null)

out.wite(" navindex=\""+ navindex + "\"");
if(selection !'= null)

out.wite(" selection=\""+ selection + "\"");
i f(accesskey !'= null)

out.wite(" accesskey=\""+ accesskey + "\"");
i f (appearance !'= null)

out.write(" appearance=\""+ appearance + "\"");
if(incremental != null)

out.wite(" increnental =\""+ increnental + "\"");
out.wite(" xmns:xforms=\"http://ww. w3. org/ 2002/ xf or ms\ " >");
if(label !'= null)
out.wite("<xforms:|abel>" + |abel +
"</ xforns: | abel >");

el se

out.wite("<xforns:|abel>" + "Select One" +
"</ xforms: | abel >");
Iterator itenms = null;

itens = getltens(fc);
Selectltemsi = null;
if(itens == null)

t hr ow new Nul | Poi nt er Excepti on();
whi | e(i tens. hasNext ()){
= (Selectltenmitemns. next();

S

out. wite("<xforns:item");

String itenLabel = (String)si.getlLabel ();
String strValue = (String)si.getValue();
if(itemLabel !'= null){
out.wite("<xforms:|abel >" + itenlLabel +
"</ xforms:| abel >");
out.wite("<xforms:value>" + strValue +
"</ xforms: val ue>");

}

el se

out.wite("<xforns: | abel >Opti on</ xforns: | abel >");
out.wite("</xforns:itenp");

Y/ while()

out.wite("</xforms:selectl>");

Page 102 of 201

Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

}/ 1 encodeEnd
The encodeEnd() method above performs the following steps:

1. It first verifies the value of the FacesCont ext object. Ifitis nul | , it throws
a Nul | Poi nt er Excepti on.

2. After verifying the context, it retrieves the ResponseW i t er object from
FacesCont ext by calling its get ResponseW i t er () method.

3. Then it retrieves the values of attributes set by the set Properties()
method of Sel ect 1Radi oTag by calling the get () method and passing it
the name of the attribute.

4. Next, it calls the get | t ens() method as already explained.

5. Finally, the encodeEnd() method writes the markup to render the list of
choices returned by the get I t ens() method call.

The decode() method calls a helper method named get Newval ue(),
passing it the document that contains the request and the XML tag that wraps
the user's selected value along with the method call. The get NewVal ue()
method returns the user's selected value after retrieving it from the document.
The code for the get Newval ue() method:

private String get Newval ue(Docunent doc, String tag) ({
String newal ue = null;
NodelLi st nl = doc. get El enent sByTagNane(t ag) ;
if (nl '= null){
Node tags = null;
int length = nl.getLength();
for(int i=0; i<length ; i++){
tags = nl.item(i);
NodelLi st children = tags. get Chi | dNodes();

if(children == null)
br eak;
if(children.item(i) == null)
br eak;

newval ue = (String)children.iten(i).getNodeVal ue();

}
Ylif(nl 1= null)
return newval ue;
}/ 1 get Newval ue

The decode() method needs another helper method named

get Model BeanObj ect () . The get Mbdel BeanObj ect () method takes a
string value (the name of the model bean property that contains the request)
and the FacesCont ext object along with the method call. This method returns
the actual value of the model bean property:

public Object getMdel Beanhject(String ref, FacesContext fc){
Application app = fc.getApplication();

Using JSF technology for XForms applications Page 103 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Val ueBi ndi ng vb = app. creat eVal ueBi ndi ng(ref);
return vb. get Val ue(fc);
}/ 1 get Model BeanQbj ect

The decode() method is implemented to parse the incoming request. In an
XForms-JSF application, the request is in XML. We demonstrated the parsing
mechanism in Parsing the incoming XML instance data on page 91.

The code for the decode() method:

public void decode(FacesContext fc){
if(fc == null)
t hrow new Nul | Poi nt er Excepti on();

String tag = null;
String newval ue nul | ;
String ref (String) getAttributes().get("ref");

String bind
String clientld
if(bind == null)

(String) getAttributes().get("bind");
getCientld(fc);

tag = ref;
el se
tag = bind;

Document doc = (Docunent) get Model BeanObj ect
("#{I ncom ngXM.| nst anceRequest . DOVDocunent }", fc);
if(doc !'= null){
newal ue = get Newval ue(doc, tag);

}
set Subni tt edVal ue(newval ue) ;

setValid(true);
}/ 1 decode

Notice the following points from the decode() method above:

1. It retrieves the values of the attributes set by the set Properti es()
method of Sel ect 1Radi oTag by calling the get () method and passing it
the name of the attribute.

2. The decode() method calls the get Model BeanCbj ect () method,
passing it the "incomingXMLInstanceRequest. DOMDocument" model bean
and the FacesCont ext instance along with the method call. This method
call returns a Docunent object, which contains the XML request.

3. If the Docunent object fetched in step 2 is nul | , the decode() method
stops processing and returns.

4. If the document is not nul | , it calls the get NewVal ue() method, which
returns the value selected by the user.

5. Next, decode() calls the set Subm ttedVal ue() method to store the
user's selected values.

Now the Ul Sel ect 1 class is ready to be used with any JSF application. In the
last subsection of this section (Trying out the sample application on page 116),

Page 104 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

we will explain the usage of this component in a sample XForms-JSF
application.

Next, we will implement the xf or ns- j sf : commandBut t on tag.

Implementing the xforms-jsf.commandButton tag

The xf or ms-j sf: commandBut t on tag we are going to implement here
renders the following markup:

<xforms: submt subm ssion="submt"
xm ns: xforms="http://ww. w3. or g/ 2002/ xf or ns" >
<xforms: action ev: event ="DOVActi vat e"
xm ns: ev="http://ww. w3. org/ 2001/ xm - event s" >
<xforms: setval ue
ref="acti on_perforned">i dl</ xforns: setval ue>
</ xforms: acti on>
<xforns: | abel >Subm t </ xf or ns: | abel >
</ xforms: subm t>

In the XForms browser, the above markup looks like the following figure:

Submit

The tag as used in a JSP page looks like the following code:

<xforns-jsf:comandButton | abel ="Submt"
actionLi st ener ="#{dat aSt ore. acti onPer f or med} " >
</ xforms-j sf: commandButton >

The xf or ms-j sf: commandBut t on tag renders the markup for the XForms
subm t element.

The tag entry in the TLD file for the commandBut t on tag looks like the
following code:

<t ag>
<nanme>conmmandBut t on </ name>
<t ag-cl ass>xforns_j sf. ButtonTag</tag-cl ass>
<l-- Xforns Specific attributes -->
<attribute>
<nane> nodel </nane>

Using JSF technology for XForms applications Page 105 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> appear ance </ name>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> navi ndex </ nane>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<nane> accesskey </nanme>
<requi red>fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<nane> bi nd </ name>
<required> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> ref </name>
<requi red> true </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<l-- JSF Specific attributes -->
<attribute>
<name>i d</ name>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name>act i on</ name>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<nane>act i onLi st ener </ name>
<r equi r ed>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name>i mredi at e</ nane>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<nane>val ue</ nane>
<requi r ed>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name>bi ndi ng</ name>
<requi red>f al se</required>
<rtexprval ue>f al se</rtexprval ue>
</attribute>
<attribute>
<name>r ender ed</ name>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>

Page 106 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

</attribute>
</tag>

In the above TLD file, we mentioned xf or ms_j sf. Butt onTag as the tag
handler class. The following code shows the implementation of the But t onTag
class:

public class ButtonTag extends U Conponent Tag{
private String value = null;
private String action = null;
private String i mediate = null;
private String actionListener = null;

private String ref = null;
private String bind = null;
private String label = null;
private String nmodel = null;
private String navindex = null;
private String accesskey = null;
private String appearance = null;

public String getRendererType(){
return null;

}

public String get Conponent Type() {
return "Submt";

}

public String getValue(){

return val ue;

}

public void setValue(String newal ue) {
val ue = newval ue;

}

public String getAction(){
return action;

}

public void setAction(String newAction) {
action = newActi on;

}

public String getlmredi ate()
return i medi at e;

}

public void setlmediate(String newl nmedi ate) {
i medi ate = newl nmedi at e;

}

public String getActionListener(){
return acti onLi stener;

}

public void setActionListener(String newActionListener) {
actionLi stener = newActi onLi st ener;

}

public String getRef()({
return ref;

}

public String getBind(){
return bind;

}

public String getMdel (){
return nodel ;

}

Using JSF technology for XForms applications Page 107 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

public String getLabel (){
return | abel;
}
public String getNavi ndex(){
return navi ndex;
}
public String getAccesskey(){
return accesskey;
}
public String getAppearance(){
return appearance;

}

public void setRef (String newRef){
ref = newRef;

}

public void setBind(String newBi nd) {
bi nd = newBi nd;

}

public void setlLabel (String newlLabel){
| abel = newlLabel ;

}

public void set Model (String newwbdel){
nodel = newivbdel ;
}
public void setNavi ndex(String newNavi ndex) {
navi ndex = newNavi ndex;
}
public void set Accesskey(String newAccesskey){
accesskey = newAccesskey;
}
public void set Appearance(String newAppearance) {
appear ance = newAppear ance;
}
protected void setProperties(U Conponent conponent) {
super. set Properti es(conmponent);
U Button uib = (Ul Button)conponent;
FacesContext fc = FacesContext.getCurrentlnstance();
Application app = fc.getApplication();
if(action !'= null) {
i f (U Conponent Tag. i sVal ueRef erence(action)) {
Met hodBi ndi ng nb = app. creat eMet hodBi ndi ng(action, null);
ui b. set Acti on(nb);
}
el se{
Met hodBi ndi ng nmb = new Const ant Met hodBi ndi ng(acti on);
ui b. set Acti on(nb);

}
}
i f(actionListener !'= null) {
i f (Ul Conponent Tag. i sVal ueRef erence(acti onLi stener)) {
Class args[] = {
j avax. faces. event. Acti onEvent. cl ass
b
Met hodBi ndi ng nb=app. cr eat eMet hodBi ndi ng(acti onLi st ener, args);
ui b. set Acti onLi st ener (nb);
}
}
if(imediate !'= null) {
i f (Ul Conponent Tag. i sVal ueRef erence(i nmedi ate)) {
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(i rmedi at e) ;
ui b. set Val ueBi ndi ng("i nmedi ate", vb);
}
el se{

Page 108 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

bool ean bool | medi ate =
(new Bool ean(i nmedi at e)) . bool eanVal ue();
ui b. set | mredi at e(bool | nmedi at e) ;
}
}

if(value '= null) {
i f (Ul Conponent Tag. i sVal ueRef erence(val ue)) {
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(val ue) ;
ui b. set Val ueBi ndi ng("val ue", vb);

}
el se{
ui b. set val ue(val ue);
}
}
if(ref '= null)

uib.getAttributes().put("ref", ref);
if(bind !'= null)
ui b.getAttributes(). put("bind", bind);

if(label !'= null)
uib.getAttributes().put("label", |abel);
i f(nodel !'= null)
uib.getAttributes(). put("nodel", nodel);
i f(navindex !'= null)
ui b. get Attri butes(). put("navindex", navindex);
i f(accesskey !'= null)
ui b.getAttributes(). put("accesskey", accesskey);
i f(appearance != null)

ui b.getAttributes(). put("appearance", appearance);
}//setProperties
}//ButtonTag

This code is exactly like the code used in Implementing the xforms-jsf:model
component on page 83, so we won't explain it here.

Here's how to implement the component class associated with the
xf orms-j sf: commandButt on tag. Look at the following entry in the
faces-config.xml file:

<conponent >

<conponent - t ype>Submi t </ conponent -t ype>

<conponent - ¢l ass>xf orns_j sf. Ul Butt on</ conponent - cl ass>
</ conponent >

In the next section, we will implement the component class mentioned in the
conponent - cl ass element of the faces-config.xml file above (Ul But t on).

Implementing the UIButton component

The Ul But t on component renders an XForms subm t element. The
Ul But t on component provides users with a facility to submit data back to the
application after making changes in the components.

The behavior of the xf or ns-j sf : commandBut t on component is quite similar
to the behavior of its equivalent component in the JSF HTML tag library. The

Using JSF technology for XForms applications Page 109 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

difference comes while performing the same task with two different
technologies. The xf or ns-j sf: commandBut t on component renders XForms
markup and works according to the XForms requirements (such as parsing a
request that is in XML).

While implementing the Ul But t on component class, we extended the class
from the Ul Command class, which is the component class for the

h: commandBut t on tag in the JSF HTML tag library. The difference is between
encoding and decoding so, while implementing, we override these methods in
the Ul But t on class.

The following code shows the method in the Ul But t on component class:

public class U Button extends U Command{
public void encodeBegi n(FacesCont ext context)
t hrows | OException{

}

public void decode(FacesContext fc) ({

}
private hject get Model BeanObj ect (String val ueRef, FacesContext fc){

}
private String getButtonVal ue(Docunment doc, String tag) {

}
}/ /Ul Button

The Ul But t on class implements two public methods (encodeBegi n() and
decode()) and two private methods (get Model BeanCbj ect () and
get But t onVal ue()).

The following code shows the implementation of the encodeBegi n() method:

public voi d encodeBegi n(FacesCont ext context)
throws | OException
{
i f(context == null)
t hrow new Nul | Poi nt er Exception();
i f(!isRendered())

return;
String ref (String) getAttributes().get("ref");
String bind (String) getAttributes().get("bind");
String nodel (String) getAttributes().get("nodel");
String | abel (String) getAttributes().get("label");

String navi ndex (String) getAttributes().get("navindex");
String accesskey (String) getAttributes().get("accesskey");
String appearance (String) getAttributes().get("appearance");
ResponseWiter witer = context.getResponseWiter();
witer.wite("<BR/ ><xforms:submit");
writer.wite(" subm ssion=\"submt\"");
if(bind !'= null)

witer.wite(" bind=\""+ bind + "\"");

i f(nmodel !'= null)

witer.wite(" nodel =\""+ nodel + "\"");
i f(navindex !'= null)

witer.wite(" navindex=\""+ navindex + "\"");
i f(accesskey !'= null)

witer.wite(" accesskey=\""+ accesskey + "\"");

Page 110 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

i f(appearance !'= null)

witer.wite("appearance=\""+ appearance + "\"");
witer.wite(" xmns:xforns=\"http://ww.w3. org/2002/ xforns\"");
witer.wite(" xmns:ev=\"http://ww.w3. org/ 2001/ xm -events\">");
witer.wite("<xforns:action ev:event=\"DOVWActivate\">");
witer.wite("<xforns:setvalue ref=\"action-perforned\ ">");
witer.wite(getdientld(context));
witer.wite("</xforms:setval ue>");
witer.wite("</xforms:action>");
witer.wite("<xforms:|abel >");
if(label !'= null)

witer.wite(label);
el se

witer.wite("Submt");
witer.wite("</xformns:|abel >");
witer.wite("</xforms:subm t><BR/ >");

}// encodeBegin

The following points explain the encodeBegi n() method:

1. It checks the value of the rendered attribute. If it is false, it does not render
the markup for the component and returns.

2. It retrieves the ResponseW i t er object from the FacesCont ext object.

3. It fetches the attribute values (set by the set Properti es() method of
But t onTag) by calling the get () method and passing it the name of the
attribute.

4. The encodeBegi n() method writes the markup for the component by
calling the w i t e() method of the ResponseW i t er object.

The decode() method calls a private helper method named
get But t onVal ue() , which returns the ID of the button the user clicked:

private String getButtonVal ue(Docunment doc, String tag){
String value = null;
NodelLi st nl = doc. get El enent sByTagNane(t ag);
if (nl !'=null){
Node tags = null;
int length = nl.getLength();
for(int i=0; i<length ; i++){
tags = nl.item(i);
if (tags.get NodeNane().equal s(tag))
NodelLi st children = tags. get Chi |l dNodes();
value = children.iten(i).getNodeVal ue();
}
Y/ for
Y/lif (nl 1= null)
return val ue;
}// getButtonVal ue

The following code shows the implementation of the decode() method:

Using JSF technology for XForms applications Page 111 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

public void decode(FacesContext fc){
if(fc == null)
t hrow new Nul | Poi nt er Excepti on();
String val ue nul |
String clientld getCientld(fc);
Document doc (Docurent) get Mbdel BeanChj ect
("#{1 ncom ngXM.I nst anceRequest . DOMDocunent }", fc);
if(doc '= null){
val ue = get ButtonVal ue(doc, "action-performed");
if(value == null)
return;

if(clientld.equal s(value)){
gqueueEvent (new Acti onEvent(this));

}
}// decode

Notice the following points in the decode() method above:

1. The decode() method retrieves the client ID by calling the
getdientld() method.

2. The decode() method calls the get Model BeanObj ect () helper method,
passing it the "incomingXMLInstanceRequest. DOMDocument" model bean
and FacesCont ext instance, along with the method call. This method call
returns a Docunent object, which contains the XML request.

3. If the Docunent objectis nul | , the decode() method stops processing
and returns.

4. If the Docunent objectis not nul | , it calls the get But t onVal ue() private
method, which returns the ID of the button clicked by the user.

5. It compares this ID with the client ID retrieved in step 1.

6. If the two values are the same, it fires an action event. Otherwise, it returns
without firing any event.

After implementing the Ul But t on class, this component is ready to be used in
JSF applications to render the markup for the submi t element of XForms.

In the next section, we will explain the usage of this component in an
XForms-JSF sample application.

Using the model, selectOneRadio, and
commandButton tags

We're almost ready to show you how to use all the XForms-JSF components
we developed. Before we do, however, we would like to explain the behavior of

Page 112 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

the sample JSP page named Demo.jsp. This JSP page provides an option to
select one color from a given list of colors and redirect you to the selected
color's JSP page.

This page uses the following components:

1. xforns-j sf:sel ect OneRadi o to render radio buttons

2. xforms-jsf: commandBut t on to submit the selected option to the
application server

3. xforns-j sf: nodel torenderthe XForms nodel element

4. Dat aSt or e JavaBean that acts as an application-specific model bean and
implements event-handlers

The JSP author has to take care when mapping components to the XForms
nodel . For example, XForms can have more than one nodel elements and
identifies each nodel with ani d attribute, which a Ul component (such as a
sel ect 1 element) refers to using its nodel attribute. Observe the i d attribute
in the xf or ns-j sf: nodel element and the nodel attribute in the

j sf: sel ect OneRadi o element in the JSP code below:

<?xm version="1.0" encodi ng="i so-8859-1"7?>
<htm >

<U@taglib uri
<U@taglib uri
<vi ew>
<head>
<xforms-jsf:model val ue="#{dataStore. xf ornsMdel Data}"
i d="opt Model "/ >
</ head>
<body>
<xforns-jsf:sel ect OneRadi o ref="sel ectedCol or" | abel =" Sel ect
col or"
val ue="#{dat aSt or e. sel ect edCol or}" >
<f:selectltens val ue="#{dataStore.colorsList}"/>
</ xforns-j sf:sel ect OneRadi 0>
<xforns-jsf:commandButton | abel =" Show sel ecti on”
i medi at e="f al se”
acti on="#{dat aSt ore. get Acti on}"
acti onLi st ener ="#{ dat aSt or e. bt nPressed}" >
</ xforns-j sf: comandBut t on>
</ body>
</ vi ew>
</htm >

"t %
"/ WEB- | NF/ xforms-jsf.tld" prefix="xforns-jsf"%

T
>
—
—

©
<
=
o
<
o
(2]
c
>
o
2
(2]
@
Z
o
o
-
(D-

°
=
o
o
x
I
-

This JSP page renders the following markup:

<?xm version="1.0" encodi ng="i so- 8859-1"?>
<htm xm ns: xforms="http://ww. w3. org/ 2002/ xf or ns" >
<head>
<xfornms: nodel xm ns: xforms="http://ww. w3. org/ 2002/ xf or ns" >
<xf orns: submi ssi on
action="/xforns-j sf/faces/Denp. | sp;jsessi oni d=B30A73E86F22A6BB68A36B348CF97D6B"
nmet hod="post" id="subnmit" />
<xforms:instance>

Using JSF technology for XForms applications Page 113 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<nodel Xl >
<acti on- per f or med></ acti on- per f or ned>
<sel ect edCol or ></ sel ect edCol or >
</ nmodel Xm >
</ xforns:instance>
</ xf or ns: nodel >
</ head>
<body>
<xforns:sel ectl ref="sel ectedCol or" appearance="full"
xm ns: xforms="http://ww. w3. or g/ 2002/ xf or ns" >
<xforms: | abel >Sel ect a col or: </ xforns: | abel >
<xforms:itenp
<xforms: | abel >Red</ xf or ns: | abel >
<xf orms: val ue>Red</ xf or ns: val ue>
</xforns:itenpr
<xforms:itenp
<xforms: | abel >G een</ xf orns: | abel >
<xforms: val ue>G een</ xf orns: val ue>
</xforns:itenmr
</ xforns: sel ect 1>
<BR/ >
<xforms: submt subm ssion="submt"
xm ns: xfornms="http://ww. w3. or g/ 2002/ xf or ns"
xm ns: ev="http://ww. w3. org/ 2001/ xn - event s" >
<xforms: action ev:event="DOVActi vate">
<xforms: setval ue
ref ="acti on- perfornmed">i dO</ xf or ms: set val ue>
</ xforns:action>
<xforms: | abel >Show Sel ecti on</ xf or ns: | abel >
</ xfornms: subm t >
<BR/ >
</ body>
</htm >

The output of this markup is shown in the following screenshot:

Page 114 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

#3 ¥Formz-JSF Demos - Microsoft Internet Explorer

File Edit “iew Favortez Toolz Help |

= Back - = - @ 3] &Y | QSeach EFavoites Meda (|- S B~ >

PR T tip /o alhost B00/D e/ |
=

Select n:olorfP T Red © Green

Show selection |

=
|@| Dane l_ l_ l_ Local intranet o

This page shows two colors: red and green. You can select one of them and
send it to the application server.

Suppose you selected red and submitted it. On the server side, the component
checks the selected value (as explained earlier in this tutorial) and redirects it
according to the selection -- in this case, to the red.jsp shown below.

Using JSF technology for XForms applications Page 115 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

#3 ¥Formz Demos - Microsoft Internet Explorer

Fil= Edit “iew Favortes Tools Help |

= Back -~ = -) ol | ‘ChSearch [kl Favoites dfMedia ¢4 | S - *

Lddress I@ hitp: A flocalhiozt: 3080/ DemodDemo.faces j

Red Color Selected

|@ Done l_l_l_ (52 Local intranet o

All the compiled and uncompiled code of this sample application resides inside
the section6.zip file; see Resources on page 200. The next section explains how
you can try this code.

Trying out the sample application

| tested the sample application on the Sun Java System Application Server
Platform Edition V8 with J2EE V1.4 Update 1 to run the sample application, but
you can use any J2EE 1.4-compliant application server to deploy it.

I've provided a WAR file (Demo.war) so you can deploy the application directly
in your application server (be sure to enter the URL

http://1 ocal host: 8080/ Denvo in the address bar of your XForms browser
to run the sample application). The WAR and the Demo folder are in the
section6.zip file available in the source code download of this tutorial; see
Resources on page200 .

The Demo folder contains the hierarchy of folders and files that the WAR file

requires: the JSP pages of our sample application (discussed in the previous
section) and a WEB-INF folder. The WEB-INF folder contains a TLD,

Page 116 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

faces-config.xml, and web.xml file, as well as a folder named classes
(containing the compiled classes for the sample application and the three
XForms-JSF tag library-specific components we developed in this section). The
arrangement of these files and folders in the Demo folder maps with the
arrangement of folders and files in a WAR file, as shown in the screenshot
below:

) Demo

S WEBHNF

) clazzes

3 b

----- faces-config. xmi
----- wieb, =l

----- sformz-jsf. Hd

----- Js] Demo.jsp

----- Jsi| areen.jsp

----- @ Index.jzp

Using JSF technology for XForms applications Page 117 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Section 7. XForms-JSF tag library

Completing the XForms-JSF tag library

In this section, we will complete the XForms-JSF tag library and demonstrate
the development of each JSF component in it.

In the previous section, we demonstrated the development of

xfornms-j sf:nodel , xforms-jsf:comandButton, and

xfornms-j sf:sel ect OneRadi o components in detail. Now, without going into
too much detail, we will discuss the development of the remaining components.
We will only stick to the behavior and implementation specific to the
components we are developing.

The following components are XForms-JSF tag library components we will
develop:

° xforms-jsf:sel ect OneMenu

° xforns-jsf:sel ect OneLi st box

° xforns-jsf:sel ect ManyLi st box
° xfornms-jsf:sel ect ManyCheckbox
° xfornms-jsf:sel ect ManyMenu

° xforms-jsf:inputText

° xforms-jsf:inputSecret

° xfornms-jsf:inputTextarea

We will explain these components in detail shortly, but first, we'll give a brief
description of each component. We'll also discuss the markup generated by the
component and the expected interpretation by the XForms browser for the
markup, how the JSP author uses the component in the JSP page, and the
possible entries for the JSF tag in the TLD file. Finally, we'll discuss the
implementation of the tag handler class associated with the tag. After the
development of the tag handler class, we will implement the component class
for the tag.

Implementing the xforms-jsf.selectOneMenu
component

The xf or ms-j sf: sel ect OneMenu component is similar to the

xfornms-j sf:sel ect OneRadi o component we developed in Implementing
the xforms-jsf:selectOneRadio tag on page 94. The only difference is in the
graphical appearance of the components in the XForms browser. The remaining
features are the same as the xf or ns-j sf: sel ect OneRadi o tag.

Page 118 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

In the case of the xf or ns-j sf: sel ect OneRadi o tag, each choice appears
with a radio button, while the xf or nms- j sf : sel ect OneMenu tag choices
appear in a menu list.

The xf orms-j sf: sel ect OneMenu component renders the following markup:

<xforns:sel ectl ref="sel ectedCol or" nodel ="opt Model "
appear ance="m ni mal "

xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ms" >
<xforms: | abel >Choose a Col or </ xf orns: | abel >
<xforns:itenp

<xforms: | abel >Red</ xf orns: | abel >
<xf or nms: val ue>Red</ xf or ns: val ue>
</xforns:itenp
<xforns:itenp
<xforns: | abel >Wi t e</ xf orns: | abel >
<xf or ms: val ue>Wi t e</ xf or ns: val ue>
</xforns:itenmr
</ xforns: sel ect 1>

Notice the value of the appear ance attribute in the above markup ("minimal”).
In the markup of xf or ns-j sf: sel ect OneRadi o, the value of the
appear ance attribute was "full.”

In the XForms browser, the above markup looks like the following:

Choose a Color IRed -]

The JSP author codes the following elements to use the component in the JSP
page:

<xforns-jsf:sel ect OneMenu val ue="#{dat aSt or e. sel ect edCol or}"
ref ="sel ect edCol or" nodel =" opt Model ">
<f:selectltens val ue="#{dataStore.col orsList}"/>

</ xforns-jsf:sel ect OneMenu>

The explanation of this JSP code is the same as for the sel ect OneRadi o tag
in Implementing the xforms-jsf:selectOneRadio tag on page 94.

Let's start implementing the sel ect OneMenu tag.
The first step is to make an entry in the TLD file. The entries in the TLD files are
the same as for the sel ect OneRadi o tag. The only difference is between the

entry in the name element and in the t ag- cl ass element. Look at the TLD file
for sel ect OneMenu:

Using JSF technology for XForms applications Page 119 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<?xm version="1.0" encodi ng="1SO 8859-1" ?>
<tagli b>
<t ag>
<nane>sel ect OneMenu</ nane>
<t ag-cl ass>xforms_j sf. Sel ect IMenuTag</t ag-cl ass>

<l-- remmining is sane as listed for sel ectOneRadio -->
</tag>
<l-- other tag instances-->
</taglib>

In this TLD file, we mentioned that the t ag- cl ass element contains the
xforms_j sf. Sel ect 1MenuTag class. We will implement this tag handler
class.

Except for the appearance property of the component, most of the features are
the same as for sel ect OneRadi o in Implementing the
xforms-jsf:selectOneRadio tag on page 94. We will extend the

Sel ect 1IMenuTag class from Sel ect 1Radi oTag and override only the

set Properti es() method. The following code shows the implementation of
the Sel ect 1MenuTag class:

public class Sel ect lMenuTag extends Sel ect 1Radi oTag{
public void setProperties(U Conponent conponent) {
super. set Properti es(conmponent);
U Selectl uis = (U Sel ect 1) conponent;
uis.getAttributes().put("appearance”, "mninal");
}//setProperties
}/ 1 Sel ect 1IMenuTag

We first make a call to the same method of its base class that will perform the
default functionality of the set Pr operti es() method defined in the base
class. Then we override the appear ance property of the component with the
"minimal” value.

The JSF component class we will associate with the sel ect OneMenu is

Ul Sel ect 1. Itis the same component class we developed for the

sel ect OneRadi o component in Implementing the UlSelectl component on
page 100.

Implementing the xforms-jsf:selectOneListbox
component

The behavior of the xf or ns-j sf: sel ect OneLi st box tag is similar to the
xfornms-j sf:sel ect OneRadi o component we developed in Implementing
the xforms-jsf:selectOneRadio tag on page 94. The only difference is in the
graphical appearance of the components in the browser. The remaining aspects
are similar to the xf or ns-j sf : sel ect OneRadi o component. In the case of
xforns-j sf:sel ect OneRadi 0, each choice appears with a radio button. In
the case of xf or ns-j sf : sel ect OneMenu, the choices appear in a list box.

Page 120 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

The xfornms-j sf: sel ect OneLi st box component we are going to
implement renders the following markup:

<xforns:sel ectl ref="sel ectedCol or" nodel =" opt Model "
appear ance="conpact" xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ns" >
<xforms: | abel >Choose a Col or </ xf orns: | abel >
<xforms:itenp
<xforms: | abel >Red</ xf orns: | abel >
<xf or ms: val ue>Red</ xf or ns: val ue>
</xforns:itenpr
<xforms:itenp
<xforms: | abel >Whi t e</ xforns: | abel >
<xf orms: val ue>Whi t e</ xf or ns: val ue>
</xforns:itenpr
</ xforns: sel ect 1>

Notice the value of the appear ance attribute in the above markup (“compact”).
In the markup of xf or ns-j sf: sel ect OneRadi o, the value of the
appear ance attribute was "full.”

In the XForms browser, the above markup looks like the following:

Choose a Color [Red
White

The JSP author codes the following elements to use the component in the JSP
file:

<xforns-j sf:sel ect OnelLi st box val ue="#{dat aStore. sel ectedCol or}"
ref ="sel ect edCol or" nodel =" opt Model ">
<f:selectltens val ue="#{dataStore.col orsList}"/>

</ xforms-j sf:sel ect OneLi st box>

The TLD file entry for the sel ect OneLi st box tag is similar to the
sel ect OneRadi o tag:

<t ag>

<name>sel ect OnelLi st box</ name>

<t ag-cl ass>xforms_j sf. Sel ect 1Li st Tag</t ag-cl ass>

<!-- remaining is sane as listed for selectOneRadio -->
</ tag>

In the above TLD file entry, the t ag- cl ass element contains the
Sel ect 1Li st Tag class, which is the name of the tag handler class for the

Using JSF technology for XForms applications Page 121 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

sel ect OnelLi st box tag. We will now implement the Sel ect 1Li st Tag class.

Like the sel ect OneMenu tag, the sel ect OneLi st box tag is similar to the
sel ect OneRadi o tag, except for the appear ance property. We will extend
the tag handler class for sel ect OneLi st box from Sel ect 1Radi oTag, as we
did earlier for the sel ect OneMenu tag. The following code shows the
implementation of the Sel ect 1Li st Tag class:

public class Sel ect1Li st Tag extends Sel ect 1Radi oTag{
public void setProperties(U Conponent comnponent) {
super. set Properti es(conmponent);
U Selectl uis = (U Sel ect 1) conponent;
uis.getAttributes(). put("appearance", "conpact")
}//setProperties
}/ 1 Sel ect 1Li st Tag

The JSF component class we will associate with the sel ect OneLi st box is

Ul Sel ect 1. It is the same class that we developed for the sel ect OneRadi o
component in Implementing the UlSelectl component on page 100. There is no
need to develop a separate component class, as the behavior of both
components is the same.

Implementing the xforms-jsf:selectManyListbox
component

The xf orms-j sf: sel ect ManyLi st box component provides users with an
option to select multiple choices from a list of given choices in a list box. It
renders the XForms sel ect element's markup.

The xf orms- j sf: sel ect ManyLi st box component renders the following
markup:

<xforns: sel ect ref="sel ectedCol ors" nodel =" opt Model "
appear ance="conpact" xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ns" >
<xforms: | abel >Choose a Col or </ xforns: | abel >
<xforms:itenp
<xforms: | abel >Red</ xf orns: | abel >
<xf or ms: val ue>Red</ xf or ns: val ue>
</xforns:itenpr
<xforms:itenp
<xforms: | abel >Whi t e</ xforns: | abel >
<xf orms: val ue>Whi t e</ xf or ns: val ue>
</xforns:itenpr
</ xforns: sel ect >

In the XForms browser, the above markup looks like this:

Page 122 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Choose a Color [Red
White

The JSP author codes the following elements to use the component in the JSP
file:

<xforns-jsf:sel ect ManyLi st box ref="sel ect edCol ors" nodel =" opt Model "
val ue="#{dat aSt or e. sel ect edCol ors}" >
<f:selectltens val ue="#{dataStore.col orsList}"/>

</ xforns-j sf:sel ect ManyLi st box>

The details of the attributes of this component are the same as the

xfornms-j sf:sel ect OneRadi o component in Implementing the
xforms-jsf:selectOneRadio tag on page 94. The only difference is between the
val ue attribute of sel ect ManyLi st box. As we explained, that value is used
by the component to set or get the JavaBeans property. The property that the
JSP author passes in the val ue attribute for the sel ect ManyLi st box tag
should be an array of the string object in the model bean (while in the case of
the sel ect OneRadi o tag, it was simply a string type property).

Now we will implement the sel ect ManyLi st box tag by making an entry in the
TLD file to declare it. The entry looks like this:

<?xm version="1.0" encodi ng="1SO 8859-1" ?>
<tagli b>
<t ag>
<name>sel ect ManyLi st box</ nane>
<t ag-cl ass>xforms_j sf. Sel ect Li st BoxTag</t ag- cl ass>
<l-- JSF Specific Attributes -->
<attribute>
<nane>val ue</ nane>
<r equi red>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>val ueChangeli st ener </ nane>
<requi red>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>r ender ed</ nane>
<requi r ed>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>i d</ name>

Using JSF technology for XForms applications Page 123 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<requi r ed>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>bi ndi ng</ nane>
<requi red>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>i mredi at e</ nane>
<requi red>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>r equi r ed</ nane>
<requi r ed>f al se</required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<!-- XForms Attributes -->
<attribute>
<name> nodel </nanme>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<nane>| abel </ nane>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> navi ndex </ nane>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> accesskey </ nanme>
<requi red>fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<nane> bi nd </ name>
<required> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> ref </nanme>
<requi red> true </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> sel ection </nanme>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> increnmental </nanme>
<required> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
</tag>
<!-other tag instances-->
</taglib>

Page 124 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

In the above TLD file, we mentioned the tag handler
xforns_j sf. Sel ect Li st BoxTag class in the t ag- cl ass element. Now we
will implement the Sel ect Li st BoxTag class:

public class Sel ectlListBoxTag ext ends U Conponent Tag{

private String val ue = null;
private String required = null;
private String i mediate = null;
private String val ueChangelLi stener = null;

private String ref = null;
private String bind = null;
private String nodel = null;
private String | abel = null;
private String navi ndex = null;
private String accesskey = null;
private String selection = null;
private String increnental = null;

public String getRendererType(){
return null;

}

public String get Conponent Type() {
return "Select";

}

public void setValue(String val ueRef) ({
this.val ue = val ueRef;

}

public void setRequired(String required) {
this.required = required;

}

public void setlmediate(String i medi ate) {
this.i mediate = i medi at e;

}

public void setVal ueChangeli stener(String val ueChangelLi stener) {
t hi s. val ueChangelLi st ener = val ueChangeli st ener;

}

public void setRef(String ref) {
this.ref = ref;

}

public void setBind(String bind) {
this.bind = bind;

}

public void set Mbdel (String nodel) {
t hi s. nodel = nodel ;

}

public void setlLabel (String |abel) {
this.|label = |abel;

}

public void set Navi ndex(String navi ndex) {
t hi s. navi ndex = navi ndex;

}

public void set Accesskey(String accesskey) {
this. accesskey = accesskey;

}

public void setSelection(String sel ection) {
this.selection = sel ection;

}

public void setlncrenental (String increnental) {
this.increnental = increnental;

}

public void setProperties(U Conponent conponent) {

Using JSF technology for XForms applications Page 125 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

super . set Properti es(conponent);
U Sel ect uis = (Ul Sel ect)conponent;
FacesCont ext fc = FacesContext.getCurrentlnstance();
Application app = fc.getApplication();
if(required !'= null){
i f (Ul Conponent Tag. i sVal ueRef erence(required)){
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(required);
ui s. set Val ueBi ndi ng("requi red", vb);
}
el se{
bool ean bool Requi red = (new Bool ean(required)). bool eanVal ue();
ui s. set Requi red(bool Requi red);

}
}
i f (val ueChangelLi stener !'= null){

i f (Ul Conponent Tag. i sVal ueRef er ence(val ueChangeLi stener)) {
Class args[] = {

j avax. f aces. event . Val ueChangeEvent . cl ass
3
Met hodBi nding nb =

app. cr eat eMet hodBi ndi ng(val ueChangeli st ener, args);
ui s. set Val ueChangelLi st ener (mb) ;

}

}
if(imediate !'= null) {

i f (Ul Conponent Tag. i sVal ueRef erence(i nmedi ate)) {
Val ueBi ndi ng vb = app. creat eVal ueBi ndi ng(i nmedi at e) ;
ui s. set Val ueBi ndi ng("i nmedi ate", vb);

}

el se{
bool ean bool | medi ate =

(new Bool ean(i nmedi at e)) . bool eanVal ue() ;
ui s. set | nredi at e(bool | medi at e) ;

}

}
if(value '= null) {

i f (U Conponent Tag. i sVal ueRef erence(val ue)) {

Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(val ue) ;
ui s. set Val ueBi ndi ng("val ue", vb);

}
ui s. set Val ue(val ue);

}
if(ref !'= null)

uis.getAttributes().put("ref", ref);
if(bind !'= null)
uis.getAttributes().put("bind", bind);

if(label !'= null)
uis.getAttributes().put("label", |abel);
i f(nmodel !'= null)
uis.getAttributes(). put("nodel", nodel);
i f(navindex !'= null)
ui s.getAttributes(). put("navindex", navindex);
i f(accesskey !'= null)
uis.getAttributes(). put("accesskey", accesskey);
if(selection != null)
uis.getAttributes().put("selection", selection);
if(incremental !'= null)
uis.getAttributes().put("increnental", increnental);

uis.getAttributes(). put("appearance", "conpact");
}//setProperties
}/ 1 Sel ect Li st BoxTag

Page 126 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

This code is exactly like the code used in Implementing the xforms-jsf:model
component on page 83, so we won't explain it here.

Now we'll discuss the JSF component class associated with the
xforms-j sf:sel ect ManyLi st box tag.

Ul Sel ect is the component class we will associate with the

xfornms-j sf:sel ect ManyLi st box tag. The Ul Sel ect component is similar
to the Ul Sel ect 1 component discussed in Implementing the UlSelectl
component on page 100. We extended the Ul Sel ect class from Ul Sel ect 1,
which is part of the JSF's HTML tag library.

The following code shows the methods in the UlSelect class:

public class U Sel ect extends Ul Sel ect 1{
public void encodeEnd(FacesCont ext fc)
throws | OException{

}
private String[] get Newal ues(Docunent doc, String tag){

}
}/1'Ul Sel ect

The Ul Sel ect class overrides the encodeEnd() method and implements a
new helper method named get NewVal ues().

The encodeEnd() method is similar to the same method in the Ul Sel ect 1
class, except that it renders a different markup.

The get Newval ues() helper method returns the values selected by the user,
after fetching from the XML request. We need this method because the values
selected by the user come as an array of strings in which each individual string
Is separated from the other by a space. The get Newval ues() method parses
the user's data and returns it in the form of a St ri ng[] .

The decode() method calls the get Newval ues() method, passing it the
Docunent object (that contains the request) and the name of the XML tag that
wraps values selected by the user:

private String[] get Newval ues(Docunent doc, String tag){
String[] newal ues = null;
NodelLi st nl = doc. get El enent sByTagNane(t ag);
if (nl '=null){
Node tags = null;
int length = nl.getLength();
for(int i=0; i<length ; i++){
tags = nl.item(i);
NodeLi st children = tags. get Chi | dNodes();
if (children == null)
br eak;
if(children.itenm(i) == null)
br eak;
String values = children.iten(i).getNodeVal ue();
i f(values == null)
br eak;

Using JSF technology for XForms applications Page 127 of 201

ibm.com/developerWorks

i nt spaceCounter = 0;
int j =-1;
while(true) {
j = values.indexOr (" ", j
i@ == -1){
spaceCount er ++;
br eak;
}
el se
spaceCount er ++;
}
newval ues
i nt index
for(int k
k = val ues.indexCf (" ");
if(k 1= -1){
newval ues[i ndex++]

0;

+ 1);

0 ; values.length() > 0 ;

Presented by developerWorks, your source for great tutorials

new String[spaceCounter];

k++) {

= val ues. substring(0,k);

val ues = val ues. substring(k+1);

}

el se{

newval ues[i ndex] = val ues. substring(0);

br eak;
}
Yilfor(int k
Y/ for(int i=0;
Y/iif (nl = null)
return newal ues;
}/ 1 get Newval ues

=0 ;

i<length ; i++)

Notice the following points in this code:

values.length() > 0 ;

k++)

1. It retrieves the node (from the Docunent) that wraps the new values.

2. It retrieves the contents of the node fetched in step 1 (the list of choices

selected by the user).

3. Because this component lets users select more than one choice at a time, a
space separates each choice in the node fetched in step 2.

4. The get Newval ues() method extracts each choice and places it in an
array of string type, then returns the array.

Now look at the following code, which shows the decode method

implementation:

public void decode(FacesContext fc) ({
if(fc == null)
t hrow new Nul | Poi nt er Exception();
String tag = null;
String[] newalue = null;
String ref
String bind
String clientld
i f(bind == null)
tag = ref;
el se

getCientld(fc);

Page 128 of 201

(String) getAttributes().get("ref");
(String) getAttributes().get("bind");

Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

tag = bind
Document doc = (Docunent) get Model Bean(Cbj ect
("#{i ncom ngXM.I nst anceRequest . DOVDocunent}", fc);
if(doc !'=null) {
newval ue = get Newval ues(doc, tag);
}

i f(newal ue == null)
set Subni tt edVal ue(new String[0])
el se

set Subni tt edVal ue(newval ue) ;
setValid(true);
}/ 1 decode

Now you can use this component with any JSF application after making an
entry in the faces-config.xml file:

<conponent >

<conponent -t ype>Sel ect </ conponent -t ype>

<conponent - cl ass>xf orns_j sf. Ul Sel ect </ conponent - cl ass>
</ conponent >

Implementing the xforms-jsf:selectManyCheckbox
component

The behavior of the xf or ns-j sf: sel ect ManyCheckbox component is
similar to sel ect ManyLi st box. The only difference is between the
appearances of both the components. This component provides users with an
option to select one or more check boxes from a list of check boxes (each
check box represents a choice).

The xf orms- j sf: sel ect ManyCheckbox tag renders the following markup:

<xforns: sel ect ref="sel ectedCol ors" nodel =" opt Model "
appearance="ful |" xm ns: xforns= "http://ww. w3. org/ 2002/ xf or ns" >
<xforms: | abel >Choose a Col or</ xforns: | abel >
<xforms:itenp
<xforms: | abel >Red</ xf or ns: | abel >
<xf orms: val ue>Red</ xf or ns: val ue>
</xforns:itenpr
<xforms:itenp
<xforms: | abel >Whi t e</ xf or ns: | abel >
<xforms: val ue>Wi t e</ xf orns: val ue>
</xforns:itenpr
</ xforns: sel ect >

The only difference between the markups of the xf or ns- j sf:
sel ect ManyCheckbox and xf or ms-j sf: sel ect ManyLi st box tags is the
appear ance attribute.

In the XForms browser, the above markup looks like the following:

Using JSF technology for XForms applications Page 129 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Choose a Color T Red T White

The JSP author codes the following elements to use the tag in the JSP file:

<xfornms-jsf:sel ect ManyCheckbox ref="sel ect edCol ors"
val ue="#{dat aSt or e. sel ect edCol ors}" nodel =" opt Model ">
<f:selectltens val ue="#{dataStore.col orsList}"/>

</ xforns-j sf:sel ect ManyCheckbox>

Now let's start implementing the sel ect ManyCheckbox tag. Its TLD entry:

<t ag>

<name>sel ect ManyCheckbox</ name>

<t ag- cl ass>xforms_j sf. Sel ect CheckLi st Tag</t ag-cl ass>

<l-- remmining is sane as listed for sel ect ManyLi stbox -->
</tag>

In the above TLD file, we mentioned
<t ag-cl ass>xforns_j sf. Sel ect CheckLi st Tag</t ag- cl ass>. We will
implement this tag handler class.

As explained earlier, the sel ect ManyCheckbox and sel ect ManyLi st box
components are similar. The only difference is the appearance of the
components, which are controlled by the appear ance property of the
component.

We extend the tag handler class for this component from Sel ect Li st BoxTag,
which is the tag handler class for the sel ect ManyLi st box component
(explained in the previous section), and override the set Properti es()
method, which only sets the appear ance property for the component.

The following code shows the implementation of the Sel ect CheckLi st Tag
class, which represents the sel ect ManyCheckbox tag:

public class Sel ect CheckLi st Tag extends Sel ect Li st BoxTag{
public void setProperties(U Conponent conponent){
super. set Properti es(conponent);
U Sel ect uis = (U Sel ect) conponent;
uis.getAttributes(). put("appearance”, "full");

}
}/ 1 Sel ect CheckLi st Tag

In the set Properti es() method, we first make a call to the same method of

Page 130 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

its base class that performs the default functionality of the set Properti es()
method defined in the base class, then we override the appear ance property
of the component with "full.”

The component class for this JSF tag is Ul Sel ect , the same as for
sel ect ManyLi st box.

Implementing the xforms-jsf:selectManyMenu
component

The xf orms-j sf: sel ect ManyMenu component provides users with an
option to select check boxes from a tree of check boxes (in the tree, each node
has a check box and a label. Each node represents a choice).

The xf orms- j sf: sel ect ManyMenu component renders the following
markup:

<xforns: sel ect ref="sel ectedCol ors" nodel =" opt Model "
appearance = "mininmal"

xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ms" >
<xforms: | abel >Choose a Col or </ xforns: | abel >
<xforns:itenp

<xforms: | abel >Red</ xf or ns: | abel >
<xf orms: val ue>Red</ xf or ns: val ue>
</xforns:itenpr
<xforms:itenp
<xforms: | abel >Whi t e</ xf orns: | abel >
<xf orms: val ue>Whi t e</ xf or ns: val ue>
</xforns:itenr
</ xforns: sel ect >

If you compare the markups generated by the

xforms-j sf:sel ect ManyMenu and xf or ns-j sf: sel ect ManyLi st box
components, you will see that the difference is only in the value of the
appear ance attribute.

In the XForms browser, the above markup looks like the following:

Choose a Color [JRed
: Dﬁmﬁte

The JSP author codes the following elements to use the component in the JSP
file:

Using JSF technology for XForms applications Page 131 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<xforns-jsf:sel ect ManyMenu val ue="#{dat aSt ore. sel ect edCol ors}"
ref ="sel ect edCol ors" nodel =" opt Model " >
<f:selectltens val ue="#{dataStore.colorsList}"/>

</ xforms-jsf:sel ect ManyMenu>

The TLD file entry for the sel ect ManyMenu tag:

<t ag>

<nane>sel ect ManyCheckbox</ name>

<t ag- cl ass>xforms_j sf. Sel ect MenuTag</t ag- cl ass>

<l-- remaining is sane as listed for sel ect ManyLi stbox -->
</tag>

In the above TLD file, we mentioned
<t ag-cl ass>xformns_j sf. Sel ect MenuTag</t ag- cl ass>. Now we will
implement this tag handler class.

The following code shows the implementation of the Sel ect MenuTag class,
which represents the sel ect ManyMenu tag:

public class Sel ect MenuTag extends Sel ect Li st BoxTag{
public void setProperties(U Conponent comnponent) {
super . set Properti es(conmponent);
U Sel ect uis = (Ul Sel ect)conponent;
uis.getAttributes().put("appearance”, "mininal");

}
}/ 1 Sel ect MenuTag

In the set Properti es() method, we first make a call to the same method of
its base class, which performs the default functionality of the

set Properti es() method defined in the base class. We then override the
appear ance property of the component with "minimal.”

As before, we can use the Ul Sel ect component class for this tag.

Implementing the xforms-jsf:.inputText component

The xf orms-j sf: i nput Text component provides the user with an input box
to enter text into it. In addition, xf or ms-j sf : i nput Text renders the following
markup:

<xforns:input ref="name" nodel ="opt Model "
xm ns: xforms= "http://ww. w3. org/ 2002/ xf or ms" >
<xforns: | abel >Nane</ xf or ns: | abel >
<xforns: hi nt >Pl ease enter your nane.</xforns: hint>
</ xforms:input >

In the above markup, the XForms hi nt element is used. In the hi nt element,
you can wrap a description about the text to enter. For example, in the markup

Page 132 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

shown above, the label is "Name." When the user rolls the mouse on the input
box, the hint is displayed to the user.

In the XForms browser, the above markup looks like the following:

Matme

:Please EtIlEr VOUL f1aine.

The JSP author codes the following elements to use the component in the JSP
file:

<xforms-jsf:inputText val ue="#{custonerData.nanme}" ref="nanme"
nodel =" opt Mbdel ">
</ xforms-j sf:input Text >

The component saves the user data in the bean property passed in the val ue
attribute.

Let's start implementing the xf or ms-j sf : i nput Text component. The first
step is to make a new tag entry in the TLD file. The tag entry in the TLD file for
xf orms-j sf:input Text looks like the following:

<?xm version="1.0" encodi ng="1SO 8859-1" ?>
<tagli b>
<t ag>
<name>i nput Text </ nane>
<t ag- cl ass>xforms_j sf. | nput BoxTag</t ag- cl ass>
<l-- JSF Specific Attributes -->
<attribute>
<nane>val ue</ nane>
<r equi r ed>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>val ueChangeli st ener </ nanme>
<requi red>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>r ender ed</ nanme>
<requi r ed>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>i d</ name>
<r equi r ed>f al se</required>
<rtexprval ue> fal se </rtexprval ue>

Using JSF technology for XForms applications Page 133 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

</attribute>
<attribute>
<name>bi ndi ng</ nanme>
<requi red>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<nane>i medi at e</ nane>
<requi red>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<nanme>r equi r ed</ name>
<r equi red>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<l-- XForns Attributes -->
<attribute>
<name> nodel </nane>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>| abel </ name>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<nanme> navi ndex </ nane>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> accesskey </ nanme>
<requi red>fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> bi nd </ nane>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> hi nt </ nane>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> ref </name>
<required> true </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> i nput node </ name>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name> increnental </nane>
<requi red> fal se </required>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>

Page 134 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

<nane> appear ance </ nane>
<requi red> fal se </required>

<rtexprval ue> fal se </rtexprval ue>

</attribute>

</tag>

<l-other tag instances-->

</taglib>

In the above TLD file, we mentioned

<t ag- cl ass>xfornms_j sf. | nput BoxTag</t ag- cl ass>. Now let's

implement this tag handler class.

The following code shows the implementation of the | nput BoxTag class:

public class | nputBoxTag extends U Conponent Tag{

prot ect ed
pr ot ect ed
prot ect ed
prot ected

pr ot ect ed
protected
prot ect ed
prot ect ed
prot ect ed
protected
pr ot ect ed
pr ot ect ed
protected
prot ected

Stri
Stri
Stri
Stri

Stri
Stri
Stri
Stri
Stri
Stri
Stri
Stri
Stri
Stri

return null

}

public String get Conponent Type() {
return "I nput Box";

}

public void setRef(String ref)({
this.ref

}

public void setBind(String bind){

= ref;

this.bind =

}

public void setH nt(String hint){

this.hint =

}

public void setMddel (String nodel){
t hi s. nodel

}

public void setlLabel (String | abel){
t his. | abel

}

ng
ng
ng
ng

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng

bi nd;

hi nt ;

nodel

= | abel

val ueChangeli st ener

appear ance
i ncrement al
public String getRendererType(){

nul | ;
nul | ;
nul | ;
nul | ;

nul |
nul |
nul |
nul |
nul |
nul |
nul | ;
nul | ;
nul | ;
nul | ;

public void setValue(String val ueRef) {

this.val ue

}

val ueRef ;

public void setNavi ndex(String navi ndex) {
t hi s. navi ndex

}

public void set Accesskey(String accesskey){
t hi s. accesskey

}

Using JSF technology for XForms applications

accesskey;

Page 135 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

publ i
t hi
}
publ i
t hi
}
publ i
t hi

}
publ i

Cc

voi d set | nputnode(String inputnode){
. i nput rode = i nput node;

voi d set Appearance(String appearance) {
. appear ance = appear ance;

voi d setlncrenental (String increnental){
.incremental = increnental;

voi d set Properties(U Conmponent conponent) {

super. set Properti es(conmponent);
Ul | nput Box uib = (Ul I nput Box) conponent ;
FacesContext fc = FacesContext.getCurrentlnstance();
Application app = fc.getApplication();
if(required '=null) {
i f (U Conponent Tag. i sVal ueRef erence(required)) ({

}

Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(required);
ui b. set Val ueBi ndi ng("requi red", vb);

el se{

bool ean bool Requi red = (new Bool ean(required)). bool eanVal ue();
ui b. set Requi r ed(bool Requi red);

}
}
i f(val ueChangelLi stener !'= null){

i f (U Conponent Tag. i sVal ueRef er ence(val ueChangelLi st ener)){
Class args[] = {

j avax. faces. event . Val ueChangeEvent. cl ass
}
Met hodBi nding nb =

app. cr eat eMet hodBi ndi ng(val ueChangeli st ener, args);
ui b. set Val ueChangelLi st ener (mb) ;

}

}
if(imediate !'= null){

i f (Ul Conponent Tag. i sVal ueRef erence(i nmedi ate)) {
Val ueBi ndi ng vb = app. creat eVal ueBi ndi ng(i nmedi at e) ;
ui b. set Val ueBi ndi ng("i nredi ate", vb);

}

el se{
bool ean bool | medi ate =

(new Bool ean(i nedi ate)) . bool eanVal ue();
ui b. set | nmedi at e(bool | medi ate);

}

}
if(value !'= null){

i f (Ul Conponent Tag. i sVal ueRef erence(val ue)) {

Val ueBi ndi ng vb = app. creat eVal ueBi ndi ng(val ue);
ui b. set Val ueBi ndi ng("val ue", vb);

}

el se
ui b. set Val ue(val ue);

}
if(ref '= null)

uib.getAttributes().put("ref", ref);
if(bind !'= null)

ui b.getAttributes().put("bind", bind);
if(hint = null)

uib.getAttributes().put("hint", hint);

if(label !'= null)
uib.getAttributes().put("label", |abel);
i f(rmodel !'= null)

ui b.getAttributes(). put("nodel", nodel);

Page 136 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

i f(navindex !'= null)
ui b.getAttributes(). put("navindex", navindex);
i f(accesskey !'= null)
ui b.getAttributes(). put("accesskey", accesskey);
i f(inputnode !'= null)
ui b.getAttributes().put("inputnode", inputnode);
i f (appearance !'= null)
ui b.getAttributes(). put("appearance", appearance);
if(incremental !'= null)
uib.getAttributes().put("incremental", incremental);

}//setProperties
}/ /'l nput BoxTag

Now let's implement the JSF component class associated with

xforms-j sf:input Text.

The Ul | nput Box is the component class we associate with

xforms-j sf:inputText.We extend Ul | nput Box from Ul Sel ect 1:

public class U Il nputBox extends U Sel ect 1{

public void encodeEnd(FacesContext fc) throws | OException{

if(fc == null)
t hrow new Nul | Poi nt er Excepti on();
i f(!isRendered())

return;
String ref (String) getAttributes().get("ref");
String bind (String) getAttributes().get("bind");
String hint (String) getAttributes().get("hint");
String nodel (String) getAttributes().get("nodel");
String | abel (String) getAttributes().get("label");

String navi ndex
String i nputnode
String accesskey
String appearance

(String) getAttributes().get("navindex");
(String) getAttributes().get("inputnode");
(String) getAttributes().get("accesskey");
(String) getAttributes().get("appearance");
String increnental (String) getAttributes().get("increnental");
ResponseWiter out fc.get ResponseWiter();
out.wite("<xforms:input ref=\"" + ref +"\"");
if(bind !'= null)

out.wite(" bind=\""+ bind + "\"");

if(nodel !'= null)

out.wite(" nodel =\""+ nodel + "\"");
i f(navindex !'= null)

out.wite(" navindex=\""+ navindex + "\"");
i f(inputnmode !'= null)

out.wite(" inputmode=\""+ inputnmode + "\"");
i f(accesskey !'= null)

out.wite(" accesskey=\""+ accesskey + "\"");
i f (appearance != null)

out.wite(" appearance=\""+ appearance + "\"");
if(incremental !'= null)

out.wite(" incremental =\""+ increnmental + "\"");
out.wite(" xmns:xforms=\"http://ww. w3. org/ 2002/ xforms\">");
if(label !'= null)

out.wite("<xforns:|abel >" + |abel +

"</ xforms:| abel >");

el se
out.wite("<xforns:|abel>" + "Enter data " +

"</ xfornms: | abel >");

if(hint '= null)
out.wite("<xforns:hint>" + hint + "</xforns: hint>");

Using JSF technology for XForms applications Page 137 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

out.write("</xforms:input>");
}// encodeEnd
}/ 1 Ul nput Box

The Ul | nput Box class only overrides the encodeEnd() method of the

Ul Sel ect 1 class to render its own markup. The reason is because the markup
rendered is different from the parent class, but the behavior of the tag is not
different. It has to manage only one string coming from the user.

Now you can use this component with any JSF application after an entry in the
faces-config.xml file:

<conponent >

<component - t ype>l nput Box</ conponent -t ype>

<component - cl ass>xf orms_j sf. U | nput Box</ conponent - cl ass>
</ conmponent >

Implementing the xforms-jsf.inputSecret component

The xf ornms-j sf: i nput Secr et component provides the user with an input
box to enter text in a nonreadable form.

The xf or ms-j sf: i nput Secr et renders the following markup:

<xforns: secret ref="password" nodel =" opt Model "
xm ns: xfornms= "http://ww. w3. org/ 2002/ xf or ns" >
<xforns: | abel >Passwor d</ xf or ns: | abel >
<xforms: hint>Pls. Enter password here.</xforns: hint>
</ xforns: secret>

In the XForms browser, the above markup looks like the following:

Fassword [

TE'.]_‘FE.EF. enter password,

The JSP author codes the following elements to use the component in the JSP
file.

<xforns-jsf:inputSecret val ue="#{custonerData. pwd}" ref="password"
nodel =" opt Mbdel " >
</ xforms-j sf:inputSecret>

Page 138 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

The component saves the user's password in the bean property passed in the
val ue attribute.

The TLD file for xf or ms-j sf : i nput Secr et looks like the following:

<t ag>

<nane>i nput Secr et </ nanme>

<t ag-cl ass>xfornms_j sf. | nput Secr et Tag</t ag-cl ass>

<l-- Renmmining is sane as inplenented for inputText-->
</tag>

In the above TLD file, we mentioned
<t ag-cl ass>xforns_j sf. | nput Secr et Tag</t ag- cl ass>. Now let's
implement this tag handler class.

Next, we'll implement the tag handler class for xf or ms-j sf: i nput Secr et .
The attributes for the i nput Secr et tag are the same as were defined for the
I nput Text tag. We extended the tag handler class for i nput Secr et from

| nput BoxTag that is implemented for the i nput Text tag in the previous
topic. The following code shows the implementation of the | nput Secr et Tag
class:

public class I nputSecretTag extends | nputBoxTag{
public String get Conponent Type() {
return "I nputSecret”;
}
public void setProperties(U Conponent conponent) {
super. set Properti es(conmponent);
U | nput Secret uis = (U I nput Secret)conponent;
FacesContext fc = FacesContext.getCurrentlnstance();
Application app = fc.getApplication();
if(required '=null) {
i f (Ul Conponent Tag. i sVal ueRef erence(required)) {
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(requi red)
ui s. set Val ueBi ndi ng("requi red", vb);
}
el se{
bool ean bool Requi red = (new Bool ean(required)). bool eanVal ue();
ui s. set Requi red(bool Requi red);

}

i f(val ueChangeLi stener !'= null) {
i f (Ul Conponent Tag. i sVal ueRef er ence(val ueChangelLi st ener)) {
Class args[] = {
j avax. faces. event . Val ueChangeEvent . cl ass
b
Met hodBi ndi ng nb =
app. cr eat eMet hodBi ndi ng(val ueChangeli st ener, args)
ui s. set Val ueChangelLi st ener (mb) ;

}
}
if(imediate !'= null) {
i f (Ul Conponent Tag. i sVal ueRef erence(i medi ate)) {
Val ueBi ndi ng vb = app. creat eVal ueBi ndi ng(i nmedi at e) ;
ui s. set Val ueBi ndi ng("i mredi ate", vb);

}

el se{

Using JSF technology for XForms applications Page 139 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

bool ean bool | medi ate =
(new Bool ean(i nmedi at e)) . bool eanVal ue();
ui s. set | mredi at e(bool | nmedi at e) ;

}
}
if(value '= null) {

i f (Ul Conponent Tag. i sVal ueRef erence(val ue)) {
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(val ue) ;
ui s. set Val ueBi ndi ng("val ue", vb);

}

el se
ui s. set Val ue(val ue);

}
if(ref !'= null)

uis.getAttributes().put("ref", ref);
if(bind !'= null)

uis.getAttributes(). put("bind", bind);
if(hint '= null)

uis.getAttributes().put("hint", hint);

if(label !'= null)
uis.getAttributes().put("label", |abel);
i f(nodel !'= null)
uis.getAttributes(). put("nodel", nodel);
i f(navindex !'= null)
ui s.getAttributes(). put("navindex", navindex);
i f(accesskey !'= null)
uis.getAttributes(). put("accesskey", accesskey);
i f(inputnode !'= null)
uis.getAttributes(). put("inputnode", inputnode);
i f (appearance != null)
uis.getAttributes(). put("appearance", appearance);
if(incremental !'= null)
uis.getAttributes().put("increnmental", increnmental);

}//setProperties
}/ /'l nput Secr et Tag

The | nput Secr et Tag class overrides the get Conponent Type() and

set Properti es() methods of the | nput BoxTag class. The

get Conponent Type() method returns the type of component associated with
the xf or ns-j sf: i nput Secr et tag.

Now we will discuss the JSF component class associated with
xfornms-jsf:inputSecret.

Ul | nput Secr et is the component class we associated with
xforms-j sf:inputSecret.We extended the Ul | nput Secr et class from
the Ul | nput Box class:

public class U lnputSecret extends U I nput Box{
public void encodeEnd(FacesContext fc) throws | OException{

Page 140 of 201

if(fc == null)
t hrow new Nul | Poi nt er Excepti on();
i f(!isRendered())

return;
String ref = (String) getAttribute("ref");
String bind = (String) getAttribute("bind");
String hint = (String) getAttribute("hint");
String nodel = (String) getAttribute("nodel");
String | abel = (String) getAttribute("label");

Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

String navi ndex
String accesskey
String inputnode
String appearance

(String) getAttribute("navindex");
(String) getAttribute("accesskey");
(String) getAttribute("inputnode");
(String) getAttribute("appearance");
String increnental (String) getAttribute("increnental");
ResponseWiter out fc.get ResponseWiter();
out. wite("<xforns:secret ref=\"" + ref +"\"");
if(bind !'= null)

out.wite(" bind=\""+ bind + "\"");

if(nodel !'= null)

out.wite(" nodel=\""+ nodel + "\"");
i f(navindex !'= null)

out.wite(" navindex=\""+ navindex + "\"");
i f(inputnode !'= null)

out.wite(" inputrmode=\""+ inputnmode + "\"");
i f(accesskey !'= null)

out.wite(" accesskey=\""+ accesskey + "\"");
i f (appearance != null)

out.wite(" appearance=\""+ appearance + "\"");
if(incremental !'= null)

out.wite(" incremental=\""+ increnental + "\"");
out.wite(" xmns:xfornms=\"http://ww. w3. org/ 2002/ xf or ns\ " >") ;
if(label !'= null)
out.wite("<xforns:|abel > + | abel +
"</ xforms: | abel >");
el se
out.wite("<xforns:|abel >"+"Enter Secret:"+
"</ xforns: | abel >");
if(hint '= null)
out. wite("<xfornms: hint>" + hint +
"</ xforms: hint>");
out.wite("</xforms:secret>");
}/ 1 encodeEnd
}/ Ul nput Secr et

The Ul | nput Secr et class extends the Ul | nput Box class and overrides the
encodeEnd() method, which renders the markup for the XForms secr et
element.

After implementing the Ul | nput Secr et class, you can use this component
with any JSF application after an entry in the faces-config.xml file:

<conponent >
<conponent - t ype>l nput Secr et </ conponent -t ype>

<conponent - cl ass>xf orms_j sf. Ul | nput Secr et </ conponent - cl ass>
</ conponent >

Implementing the xforms-jsf.inputTextarea
component

The xf orms-j sf: i nput Text ar ea component provides the user with an edit
box to enter multiple lines of text and renders the following markup:

Using JSF technology for XForms applications Page 141 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

<xforns:textarea ref="comments" nodel ="opt Model "
xm ns: xforms= "http://ww. w3. org/ 2002/ xf or ms" >
<xforns: | abel >Comrent s</ xf or ns: | abel >
<xfornms: hi nt >Pl ease enter your comments. </ xforns: hint>
</ xforms: textarea>

In the XForms browser, the above markup looks like the following:

Comments

=

=
Flease enter your comments.

The JSP author codes the following elements to use the component in the JSP
page.

<xforms-jsf:inputTextarea val ue="#{cust omer Dat a. conment s}"
ref =" comment s" nodel =" opt Model ">
</ xforms-j sf:input Text ar ea>

The component saves the text entered by the user in the model bean property
passed in the val ue attribute.

The TLD file entry for the xf or ns-j sf: i nput Text ar ea tag looks like the
following markup:

<t ag>
<name>i nput Text ar ea</ nane>
<t ag-cl ass>xforms_j sf. | nput Text AreaTag</t ag- cl ass>
<l-- Remaining is sane as inplenented for inputText-->
</tag>

In the above TLD file, we mentioned
<t ag- cl ass>xforns_j sf. | nput Text AreaTag</t ag- cl ass>. Now let's
implement this tag handler class.

The attributes for the i nput Text ar ea tag are the same as defined for
I nput Text . We extended the | nput Text Ar eaTag tag handler class from the

| nput BoxTag class implemented for the i nput Text tag. The following code
shows the implementation of the | nput Text Ar eaTag class:

public class |InputText AreaTag extends | nput BoxTag{

Page 142 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

public void setProperties(U Conponent conponent){
super . set Properti es(conponent);
U | nput Text Area uita = (Ul I nput Text Ar ea) conponent ;
FacesCont ext fc = FacesContext.getCurrentlnstance();
Application app = fc.getApplication();
if(required !'=null) {
i f (Ul Conponent Tag. i sVal ueRef erence(required)) {
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(required);
ui ta. set Val ueBi ndi ng("required", vb);
}
el se{
bool ean bool Requi red = (new Bool ean(required)). bool eanVal ue();
ui t a. set Requi red(bool Requi red);

}
}
i f(val ueChangeLi stener !'= null) {
i f (U Conponent Tag. i sVal ueRef er ence(val ueChangelLi st ener)){
Class args[] = {
j avax. f aces. event . Val ueChangeEvent . cl ass
b
Met hodBi nding nb =
app. cr eat eMet hodBi ndi ng(val ueChangeli st ener, args);
ui t a. set Val ueChangelLi st ener (nb) ;
}
if(imediate !'= null) {
i f (Ul Conponent Tag. i sVal ueRef erence(i medi ate)) {
Val ueBi ndi ng vb = app. creat eVal ueBi ndi ng(i nmedi ate) ;
ui ta. set Val ueBi ndi ng("i mmedi ate", vb);
}
el se{
bool ean bool | medi ate =
(new Bool ean(i mredi at e)) . bool eanVal ue() ;
ui ta. setl medi at e(bool | medi ate);
}
}
if(value '= null) {
i f (U Conponent Tag. i sVal ueRef erence(val ue)) {
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(val ue) ;
ui ta. set Val ueBi ndi ng("val ue", vb);
}
el se
ui ta. set Val ue(val ue);
}

if(ref '= null)
uita.getAttributes().put("ref", ref);

if(bind !'= null)
uita.getAttributes().put("bind", bind);

if(hint !'= null)
uita.getAttributes().put("hint", hint);

if(label !'= null)
uita.getAttributes().put("label”, |abel);
if(nodel !'= null)
uita.getAttributes().put("nodel", nodel);
i f(navindex !'= null)
uita.getAttributes().put("navi ndex", navindex);
i f(accesskey !'= null)
uita.getAttributes().put("accesskey", accesskey);
i f(inputnmode !'= null)
uita.getAttributes().put("inputnode", inputnode);
i f (appearance != null)
uita.getAttributes().put("appearance", appearance);
if(incremental != null)

Using JSF technology for XForms applications Page 143 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

uita.getAttributes().put("increnental", increnental);
}//setProperties
}/ /1 nput Text Ar eaTag

Now let's discuss the Ul | nput Text Ar ea component class associated with
xforms-j sf:input Text area:

public class U I nput Text Area extends Ul I nput Box{
public void encodeEnd(FacesContext fc) throws | OException{
if(fc == null)
t hrow new Nul | Poi nt er Excepti on();
i f(!isRendered())

return;
String ref (String) getAttributes().get("ref");
String bind (String) getAttributes().get("bind");
String hint (String) getAttributes().get("hint");
String nodel (String) getAttributes().get("nodel");
String | abel (String) getAttributes().get("label");

String navi ndex
String inputnode
String accesskey
String appearance

(String) getAttributes().get("navi ndex");
(String) getAttributes().get("inputnode");
(String) getAttributes().get("accesskey");
(String) getAttributes().get("appearance");
String increnental (String) getAttributes().get("increnental");
ResponseWiter out fc.get ResponseWiter();
out.wite("<xforns:textarea ref=\"" + ref +"\"");
if(bind !'= null)

out.wite(" bind=\""+ bind + "\"");

if(nodel !'= null)

out.wite(" nodel=\""+ nodel + "\"");
i f(navindex !'= null)

out.wite(" navindex=\""+ navindex + "\"");
i f(inputnode !'= null)

out.wite(" inputrmode=\""+ inputnode + "\"");
i f(accesskey !'= null)

out.wite(" accesskey=\""+ accesskey + "\"");
i f (appearance != null)

out.wite(" appearance=\""+ appearance + "\"");
if(incremental !'= null)

out.wite(" increnental =\""+ incremental + "\"");
out.wite(" xmns:xfornms=\"http://ww. w3. org/ 2002/ xf or ns\ " >");

if(label !'= null)
out.wite("<xforns:|abel >" + | abel +
"</ xforms: | abel >");
el se
out.wite("<xforms:|abel >"+" Enter Message
"+"</ xforns: | abel >");
if(hint '= null)
out.wite("<xforms: hint>" + hint +
"</ xforms: hint>");
out.wite("</xforms:textarea>");
}/ 1 encodeEnd
}/1'U I nput Text Area

The Ul | nput Text Ar ea class extends the Ul | nput Box class. The
Ul | nput Text Ar ea class only overrides the encodeEnd() method, which
renders the markup for the XForms text area element.

The Ul | nput Box class renders a text box, which takes a single line string as

Page 144 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

input. On the other hand, the Ul | nput Text Ar ea class renders a text area,
which can take multiple lines of text as input. Whether it is a single line or a
number of lines, it is always a string (a multiple line string contains "\r" and "\n"
characters at the end of each line). We can treat both types of strings the same.
That's why the Ul | nput Text Ar ea class does not override the decode()
method of the parent class.

Now we can use the Ul | nput Text Ar ea component with any JSF application
after including the component entry in the faces-config.xml file:

<conponent >
<conponent -t ype>l nput Secr et </ conponent -t ype>

<conponent - ¢l ass>xf orns_j sf. U | nput Secr et </ conponent - cl ass>
</ conponent >

By implementing the Ul | nput Text Ar ea component, our XForms-JSF tab
library is complete. In the next section, we will see how to compile a tag library
in a JAR file.

How to distribute tag libraries

To distribute a tag library, you have to compile its components in a JAR file. The
JAR file (compiled tag library) should contain the following information:

° The compiled tag handler, component, and model bean classes of a tag
library in their respective packages

° The configuration files (faces-config.xml) and TLD file in a folder named
META-INF

To create the JAR file, place the compiled classes and META-INF folder in a
single folder (such as the XForms-JSF folder, which you will find when you
unzip the section7.zip file; see Resources on page200 .

Run the following command in the command prompt:

d: \ XForms- JSF>j ar cvf xforns-jsf.jar *.*
This command creates a JAR file named xforms-jsf.jar, which contains the
META-INF folder (which in turn contains the TLD and configuration files) and
the class files available in the XForms-JSF folder.

The xforms-JSF.jar file is available in the section7.zip file; see Resources on
page200 .

Now the tag library is ready to be used with any JSF application. Place this JAR

Using JSF technology for XForms applications Page 145 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

file in the WEB-INF\lib folder of your application. In the next section, we will
develop a sample application to show you how to use the JAR file in a JSF
application.

A sample JSP page to try the XForms-JSF tag library

To show how to use the tag library in an application, | have written a simple JSP
page, which includes different components from our tag library:

<?xm version="1.0" encodi ng="i so-8859-1"7?>
<ht
xm ns: ev="http://ww. w3. org/ 2001/ xm - event s"
xm ns: xfornms="http://ww. w3. or g/ 2002/ xf or ns" >
<U@taglib uri="http://java.sun.com jsf/core" prefix="f" %
<U@taglib uri=" http://afictitiousshoppingcart.con XForns-JSF"
prefix="xforms-jsf" %
<f:view
<head>
<xforns-jsf:nodel val ue="#{customerData. nodel }"/>
</ head>
<body>
<h1>Cust onmer | nformation</hl>
<xforns-jsf:inputText ref="1ogin" val ue="#{custonerData.l ogin}"
| abel ="Logi n" hi nt="Pl ease enter your |ogin nane."/>
<xforms-jsf:inputSecret ref="password"
val ue="#{ cust oner Dat a. passwor d}"
| abel =" Passwor d" hi nt="Pl ease enter your password."/>
<xforms-jsf:inputText ref="name" val ue="#{customner Dat a. nane}"
| abel =" Nane"
hi nt =" Pl ease enter your full nane."/>
<xforms-jsf:textarea ref="address"
val ue="#{cust oner Dat a. addr ess}"
| abel =" Mai | i ng Address” hint="Pl ease enter your address."/>

<xforms-jsf:commandButton | abel =" Finish ">
</ xfornms-j sf:commandButt on>
</ body>

</f:view

</htm >

The output of the above JSP page is shown in the following screenshot:

Page 146 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

; Sample F"age Hll:'.m:ufl Intemet E xplmer

IFI|E Edit View F-av::nrltes Tn:u:nls Heh:n I-

i - 5 - @ E) | DSeach GuiFovie: Ped F|B-FB - »
: ddress |@ http #localhost EEIEEIHDemDW =
=]

Cutomer Information

Lo gjnﬂ} | Pas swardﬂ) |

Na:m&ﬁ} |

Mailing Address /B =

Finish |
=

[’é]DnnP: e i @ My Computer o
To try the XForms-JSF tag library and JSP page, unzip the section7.zip file in
the source code download for this tutorial; see Resources on page200 .

The section7.zip file contains two folders named Demol and src, and a couple
of files named xforms-jsf.jar and Demol.war. The Demol folder contains the
sample JSP page, and the src folder contains the complete source code for our
XForms-JSF tag library we created in this section.

Now simply deploy the Demol.war file in your application server. Be sure to use
following URL in the address bar of your XForms browser:

http://1ocal host: 8080/ Denpl

As a result, the JSP page shown in the above screenshot displays in your
XForms browser.

Using JSF technology for XForms applications Page 147 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Section 8. Designing the XForms-JSF shopping cart

What will our XForms-JSF shopping cart
demonstrate?

The XForms-JSF shopping cart application tests the concepts discussed so far.
We will demonstrate the architecture of a real-world XForms-JSF application
and demonstrate how to use a few tags we have developed in the past two
sections. In this section, we will develop a small shopping cart-specific tag
library and show how to use the tag library to fit the requirements of a shopping
cart.

Recall the XForms-JSF shopping cart application described in A sample
XForms application on page 5. Our XForms-JSF shopping cart application is the
JSF implementation of exactly the same XForms shopping cart.

Components of the XForms-JSF shopping cart
application

As mentioned in Components of a JSF application on page 29, a JSF
application can have different types of components. Our shopping cart has the
following components:

° JSF components:

Our XForms-JSF shopping cart uses some components from the JSF core
tag library (for instance, f : acti onLi stener,f: sel ectltens, and so
on). We will also use some components from the XForms-JSF tag library
developed in XForms-JSF integration strategy on page 80 and XForms-JSF
tag library on page 118.

We will also develop three JSF components (xcart : cat egory,

xcart: product, and xcart : cart) for our shopping cart. The

xcart: cat egory tag renders the list of categories and products as buttons
in the catalog view. The xcart: product tag renders the details of an
individual product in a tabular format. The xcart : cart tag displays the
details of products in the cart.

° JSP pages:

We will have the following six JSP pages in our shopping cart application:

o

catalogView.jsp: The first page with which a visitor starts browsing our
shopping cart. It displays the list of categories and products in the catalog
view.

Page 148 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

° productView.jsp: Appears when the user clicks a product in the
catalogView.jsp page. It shows the features of the clicked product and a
button to add the product in the cart. This page also allows the user to
select from available optional features of a product.

° cartView.jsp: Appears when the user clicks the Add to cart button in the
productView.jsp page. This page shows a list of all the products the user
put in the cart, with buttons to remove and edit them. The cartView.jsp
page also shows a Buy button to buy the contents of the cart.

° editProductView.jsp: Appears when the user clicks the Edit product
button in the cart. This page provides the user with a facility to edit a
particular product added in the cart.

° checkout.jsp: Appears when the user clicks the Buy button in the
cartView.jsp page. This page takes the user's bio data and provides a
Checkout button.

° thankyou.jsp: Appears when the user clicks the Checkout button in the
checkout.jsp page. It's the last page for our XForms shopping cart.

° Model beans to hold application data:

Our shopping cart has the following three model beans to store the
application data:

° CategoryData: Holds the data of the complete catalog. As the user
browses through the catalog view, he clicks on various categories. When
he clicks on any category, that category becomes the selected category.
The Cat egor yDat a model bean keeps track of the current category.

° ProductData: Holds the data of a product (name, ID, description, price,
and features).

° CartData: Wraps cart data -- the list of all products the user added to the
cart.

° Event handler classes:

We also need to implement two action event handler classes to handle the
events generated by the Ul Cat egory and Ul Cart components. The action
handlers prepare the model beans according to the action performed.

For example, when the user clicks a product or category in the catalog view,
an action event will occur. The Ul Cat egor yAct i onLi st ener action
listener handles this action event. Similarly, when a user clicks the Edit or
Remove button against a product, Ul Cart Act i onLi st ener handles the
generated action event.

Using JSF technology for XForms applications Page 149 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

The interaction of components in our shopping cart

In the next few panels, we will elaborate on the interaction between the different
components of our shopping cart application for the following actions:

° Rendering the catalog data (categories and products names)
° Rendering product data

° Adding a product to the cart

° Editing a product entry from the cart

° Saving an edited product entry to the cart

Each action represents a sequence of events, which we will explain in the next
five sections. The explanations of these actions act as a high-level view of our
shopping cart application and will provide a practical example of the concepts

we have learned so far.

Rendering the catalog data (catalog view)

The first job a shopping cart application does is generate a list of the products
and categories.

Recall the Views of the shopping cart on page 7, where we described the
rendering of catalog data as a catalog view. The following diagram shows the
sequence of events that occur inside our XForms-JSF shopping cart application
while rendering the catalog view:

Page 150 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

'3 N |
Web Server
-'21 JS5F Framework 5 JSP Container
1y — > "31(4)(10) catalogWiew jep
i | XForms :| A AN, s
i |Browser | \6)
Tag Libraries
ZFomms-T5F HCart L
Shopping Cart | UIComponent Tag | CategonyTag
Application e
UIComponent
T ategorydotionListener| 'y 3
"""""""" ¥ =
CategoryDrata I-.‘ — :II UlCategory

ISF Core

The events of the fi-;c-]-Ufe are explained below. Each step in the following
discussion is marked as a number in the figure shown above:

1. Suppose a user requests the following URL:

www. aFi ctitiousShoppi ngCart.com

2. The Web server receives the request and invokes the JSF framework.

3. Now the JSF framework initializes the model beans defined in the
faces-config.xml file. All the beans in our XForms shopping cart application
are in sessi on scope, so a separate set of beans is instantiated for every
session. The first model bean our shopping cart application uses is the
Cat egor yDat a class. The Cat egor yDat a constructor is built in such a
manner that it prepares itself with the catalog data when it is initialized. Note
that the other model beans in our shopping cart application are initialized,
but they are not prepared for use with components. The user interactions
with our shopping cart prepare the remaining model beans.

4. After initializing the model beans, the JSF framework starts the request
processing life cycle of the catalogView.jsp page. It first checks whether the
root of the JSF component (the Ul Vi ewRoot object) exists. Because it is
the first request for the page, the root does not exist, so it creates a new
Ul Vi ewRoot object and stores it in the FacesCont ext object.

5. The JSF framework dispatches the request to the JSP container (that
executes the JSP page).

Using JSF technology for XForms applications Page 151 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

6. The JSP container goes through the catalogView.jsp page. When it comes
across a JSF tag in the catalogView.jsp, it finds its corresponding tag
handler class from the TLD file and instantiates the tag class.

7. The tag handler class extracts the reference of the corresponding JSF
component class by reading the faces-config.xml file.

8. The tag handler class adds the component in the JSF component tree as a
child of the root component (Ul Vi ewRoot) and calls the encode methods
(encodeBegi n(), encodeChi | dren(), and encodeEnd() methods) of
the JSF component just added to the tree.

9. The encode methods extract the application-specific data from the
Cat egor yDat a model bean, which we instantiated in step 3. This
application-specific data contains categories and products to be rendered.
Steps 6-9 repeat for each JSF tag in the catalogView.jsp page.

10.The JSF framework saves the component tree in the session.

11.Finally, it sends the generated markup back to the user. The output of this
markup is already shown in Views of the shopping cart on page 7.

Now the catalog view is in front of the user, displaying the list of categories
and products. The user can click a category or a product. The following
diagram shows the sequence of events that occur when the user clicks on a
category:

B Weh Server 3

JSF Framework

@ JSP Container
15)
i6)

L i

| XForms
: Browser

CE

Tag Lihraries
ZFormms-J5F HCart

UlComponentTag CategoryTag
T
Application UlComponent

@ »| UlCategory

|UICa1Jegcurj.rActim1.T..istEﬂer

Page 152 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

The events of the figure are explained below:

12.The user clicks a category in the catalog view. The XForms browser wraps
the information related to the category in the application-specific XML. Next,
it wraps the XML structure in the body of a request for the same JSP page
(catalogView.jsp) and sends the request to the Web server.

13.The Web server receives the request and invokes the JSF framework.

14.All the model beans in our XForms-JSF shopping cart are in sessi on
scope, so they will not be initialized this time. All the model beans will
maintain their previous states.

15.The JSF framework checks whether the root of the component tree exists,
and this time it finds the Ul Vi ewRoot object. It sets the Ul Vi ewRoot
component in the FacesCont ext object as the root of the component tree.
(Recall step 6, where we added all components into the component tree.)

16.The JSF framework iterates through the JSF component tree and calls the
decode() method of each JSF component in the tree. The decode()
method of the xcart : cat egor y component decodes the request and
extracts the ID of the clicked item. Then the decode() method fires an
action event.

17.The action event handler class associated with the xcart : cat egory JSF
tag catches the event. The action listener checks whether the ID belongs to
a category or a product. In this case, the ID is of a category, so it tells the
Cat egor yDat a model bean which category was clicked. The
Cat egor yDat a model bean stores this information for future use.

18.Next, the JSF framework invokes the model bean method specified in the
act i on property of the component. This method call returns a string value.
The JSF framework searches this string value in the navi gati on-rul e
written in the application configuration file (faces-config.xml) for the
catalogView.jsp page. If the contents of the f r om out con®e child of any of
the navi gat i on- case element matched with the string value, the JSF
framework returns the JSP page specified in the accompanying
t o- vi ew i d element. In this case, the user clicked a category, which
means he just wants to browse deeper into the catalog view. The same
categoryView.jsp page handles this request. The event handler classes will
not change the view ID.

19.Next, the JSF framework calls the encoding method of each component in
the tree one by one.

20.1t then saves the component tree.

21.Finally, the JSF framework sends back the response to the user.

Using JSF technology for XForms applications Page 153 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Rendering the product data (product-specification
view)

Clicking a product in the catalog view brings up the product-specification view.
The productView.jsp page shows product details like product name, price,
description, features, and optional features, and allows the user to select them.
The following diagram shows the sequence of events that occur while rendering
the product-specification view:

- ~ |
Web Server i

JSF Framework
@ JS5P Container

L
HForms @ @ @ @ productView jsp

rowser @ @

L 4

-]

=N

Tag Libraries
HCart ¥
Shopping Cavt 2h o ISR ProdustTag
Application | UICormponent Tag | @

UlCormponent @
ProductData [l= ____________ ,| UlProduct

UICategory

]
O CategoryTag

h

[UICategnryActimi.istmﬂnﬂﬁ

The events of the figure are eplaidbelow:

1. The user clicks a product button in the catalogView.jsp page.
2. The Web server receives the request and invokes the JSF framework.

3. As you know, the model beans in our XForms-JSF shopping cart are in
sessi on scope, so they will not be initialized this time. All the model beans
will maintain their previous states.

4. The JSF framework checks whether the root of the component tree exists,
and this time it finds the Ul Vi ewRoot object. It sets the Ul Vi ewRoot
component in the FacesCont ext object as the root of the component tree.

Page 154 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

(Recall step 6, where we added all components into the component tree.)

5. The JSF framework iterates through the JSF component tree and calls the
decode() method of each JSF component in the tree. The decode()
method of the xcart : cat egory component decodes the request and
extracts the ID of the clicked item. Then the decode() method fires an
action event.

6. The action event handler class associated with the xcart : cat egory JSF
tag catches the event. The action listener checks whether the ID belongs to
a category or a product. In this case, the ID is of a category, so it tells the
Cat egor yDat a model bean which category was clicked. The
Cat egor yDat a model bean stores this information for future use.

7. Similar to step 18 from the previous panel, but this time the JSF framework
invokes the productView.jsp page.

8. Steps 8-14 are the same as steps 5-11 discussed in the previous panel,
except that the productView.jsp page and Pr oduct Dat a model bean are
used instead of the catalogView.jsp page and Cat egor yDat a model bean
respectively.

Adding a product to the shopping cart (cart view)

The following diagram shows the sequence of events that occur when a user
clicks the Add to cart button in the product-specification view.

Using JSF technology for XForms applications Page 155 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

i B
Weh Server
J5F Framework
" —~ JSP Container
0 oo NOR. B
00 O.0.0.0 | TN
i| XForms - SN S
i| Browser I/'_“‘HJ
| b \Z
- =]
(14) (3)
Tag Libraries
ZFomms-J5F 0 s
RUNEPUIE Lart UlCom CartTag
P ponentTag g
Application {"E:.I | | Ii!ulil_r]
ProductDaa |el UlButton |, _
=
= o)
@‘ — » UlCart
@
\)

ararETE

1.

The user clicks the Add to cart button in the product-specification view. The
XForms browser gathers the information about the product to be added to
the cart, wraps this information in application-specific XML, and sends the
request to the Web server.

The Web server receives the request and invokes the JSF framework.

As you know, the model beans in our XForms-JSF shopping cart are in
sessi on scope, so they will not be initialized this time. All the model beans
will maintain their previous states.

The JSF framework checks whether the root of the component tree exists,
and this time it finds the Ul Vi ewRoot object. It sets the Ul Vi ewRoot
component in the FacesCont ext object as the root of the component tree.
(Recall step 6, where we added all components into the component tree.)

The JSF framework iterates through the JSF component tree and calls the
decode() method of each JSF component in the tree. The decode()
method of the JSF component against the XFor ms- JSF: commandBut t on
tag decodes the request, extracts the ID of the clicked button and fires an
action event.

The action event handler method passed in the act i onLi st ener attribute
of the XFor ns- JSF. commandBut t on JSF tag handles the event. The
action handler adds the product in the Car t Dat a model bean, which holds

Page 156 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

the data of a cart.

7. Now the JSF framework checks the faces-config.xml file and invokes the
cartView.jsp page.

8. Steps 8-14 are the same as steps 5-11 discussed in Rendering the catalog
data (catalog view) on page 150, except that the cartView.jsp page and
Car t Dat a model bean are used instead of the catalogView.jsp page and
Cat egor yDat a model bean, respectively.

Editing the product entry from cart (edit product view)

The cart view contains an Edit product entry button with each product in the
cart. The following diagram shows the sequence of events that occurs when a
user clicks that button:

r N
Weh Server ;

(— JSF Framework
E) S~ JSP Container

: » L8)
| (1)) (T :
i| EForms > {f; 4 .l"-',r (13 e editProductWiew jsp H
:| Browser 2 C"’J) O | |
; - Y i
(o) |

Tag Libraries

XForms-J5F G0 B

Shopping Cart ProductTag

b |UICDmpDnentTag | @

'y :

------------ ol ||

ProductData | o = »| UlProduct

(12) ;

[UICasthctionListener | o — > UlCart

O

).

The events of the figure are explained below

1. The user clicks the Edit button in the cart view. The XForms browser wraps
the button-identifying information in the application-specific XML data. The
XForms-JSF component sitting on the server side uses this
button-identifying information to check which button was clicked by the user.

Using JSF technology for XForms applications Page 157 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

2. The Web server receives the request and invokes the JSF framework.

3. The model beans in our XForms-JSF shopping cart are in sessi on scope,
so they will not be initialized this time. All the model beans will maintain their
previous states.

4. The JSF framework checks whether the root of the component tree exists,
and this time it finds the Ul Vi ewRoot object. It sets the Ul Vi ewRoot
component in the FacesCont ext object as the root of the component tree.
(Recall step 6, where we added all components into the component tree.)

5. When the decode() method of the JSF component against the
xcart: cart JSF tag is called, it decodes the request and extracts the ID of
the clicked button and fires an event.

6. The action event handler class (Ul Cart Acti onLi st ener) associated with
the xcart: cart JSF tag handles the event. The action handler adds the
product in the model bean, which holds the data of a cart (Car t Dat a).

7. The JSF framework checks the navi gati on-r ul e and invokes the
editProductView.jsp page.

8. Steps 8-14 are same as steps 5-11 discussed in Rendering the catalog data
(catalog view) on page 150, except that the editProductView.jsp page and
Pr oduct Dat a model bean are used instead of the catalogView.jsp page
and Cat egor yDat a model bean, respectively.

Saving edited product entries to the cart

The edit product view renders the product for editing, which is accompanied by
an Edit cart entry button. The user edits the product entry in the edit cart view.
The following sequence of events occurs when saving the edited product:

Page 158 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

@ JSF Framewaork JSP Container
@ @ @ ® @ | cartView.jsp |
®

Tag Libraries

r XCart i

XForms
Browser

i
=]

Shﬂpplﬁg Cart @ XForms-JSF Cart

| UIComponentTagl
ProductData | ™) @l

Application

il

CartData : UlicCart

The events of the figure are explained below. Each step in the following
discussion is marked as a number in the figure shown above:

1. A user clicks the Save edited product button in the editProductView.jsp
page.

2. The Web server receives the request and invokes the JSF framework.

3. The model beans in our XForms-JSF shopping cart are in sessi on scope,
so they will not be initialized this time. All the model beans will maintain their
previous states.

4. The JSF framework checks whether the root of the component tree exists,
and this time it finds the Ul Vi ewRoot object. It sets the Ul Vi ewRoot
component in the FacesCont ext object as the root of the component tree.
(Recall step 6, where we added all components into the component tree.)

5. The JSF framework iterates through the JSF component tree and calls the
decode() method of each JSF component in the tree. The decode()
method of the JSF component against the xf or ns-j sf: conmandBut t on
tag decodes the request, extracts the ID of the clicked button, and fires an
action event.

6. The action event handler method passed in the act i onLi st ener attribute
of the xf or ns-j sf: commandBut t on JSF tag handles the event. The
action handler replaces the product-edited product in the Car t Dat a model

Using JSF technology for XForms applications Page 159 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

bean, which holds the data of a cart.

7. The JSF framework checks the faces-config.xml file and invoke the
cartView.jsp page.

8. Steps 8-14 are the same as steps 5-11 discussed in Rendering the catalog
data (catalog view) on page 150, except that the cartView.jsp page and
Pr oduct Dat a model bean are used instead of the catalogView.jsp page
and Cat egor yDat a model bean, respectively.

Summary

In this section, we have provided the high-level view of our XForms-JSF
shopping cart application. We discussed the components required to develop
the application (JSP pages, model beans, event handlers, etc.). We also
explained how these components interact with each other.

In the next section, we will implement the components introduced in this section

and complete the implementation of our XForms-JSF shopping cart application.
The next section also explains all the low-level details of the implementation.

Page 160 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Section 9. Implementing the XForms-JSF shopping cart

Implementing the NameValuePair, Category, and
Product classes

In Components of the XForms-JSF shopping cart application on page 148, we
discussed three JSF tags: xcart : cat egory, xcart: product, and

xcart: cart. These tags form the XForms-based shopping cart tag library. We
wish to make this tag library independent of our shopping cart application to
ensure that you can integrate our shopping cart tag library into your own
shopping cart application.

To make our shopping cart tag library independent of the shopping cart
application, we need to implement three classes: NaneVal uePai r, Cat egory,
and Pr oduct . These classes will be part of the shopping cart tag library.
Application-specific model beans initialize and use these classes.

The NaneVal uePai r class just wraps a name-value pair. The Cat egor y class
holds the subcategories and products corresponding to a particular category.
The Pr oduct class holds the details of an individual product (name, ID,
description, price, etc.).

Let's look at the implementation details of the NaneVal uePai r, Cat egory,
and Pr oduct classes in detail.

The NaneVal uePai r class contains two fields -- name and value -- and their
respective setter and getter methods. The following code shows the
implementation of the NanmeVal uePai r class:

public class NameVal uePai r{

protected String nane;

protected String val ue

public void setNane(String name) {
this. nane = nane

}

public String getName(){
return nane;

}

public void setValue(String val ue){
this.value = val ue

}

public String getValue(){
return val ue

}
}/ 1 NameVal uePai r

Many of the classes in our shopping cart tag library and shopping cart
application use the NaneVal uePai r class.

Any application that wants its data to be rendered using the xcart : cat egory
tag instantiates a Cat egor y object and populates it with application-specific

Using JSF technology for XForms applications Page 161 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

data. The xcart : cat egory component uses this Cat egor y object to fetch
the application-specific data.

The Cat egor y class holds the category data ini d, pr oduct s, ancest or s,
and subcat egori es properties.

The i d property of the Cat egor y class is a St ri ng object that holds the ID of
the current category. The pr oduct s, ancest or s, and subCat egori es
properties are arrays of NaneVal uePai r objects. The pr oduct s property
contains the information of each product in the category. The ancest ors
property tracks the ancestors of the current category. The subCat egori es
property stores the list of subcategories in the current category.

The following code shows the implementation of the Cat egor y class:

public class Category{

protected String id;

protect ed NaneVal uePai r[] products;

prot ect ed NanmeVal uePai r[] ancestors;

prot ect ed NanmeVal uePair[] subCategori es;

public void set Ancestors(NaneVal uePair[] nameld) {
ancestors = nanel d;

}

publ i c NameVal uePair[] getAncestors(){
return ancestors;

}

public void set SubCat egori es(NaneVal uePair[] nameld) ({
subCat egori es = nanel d;

}

publ i ¢ NarmeVal uePai r[] get SubCat egories(){
return subCategori es;

}

public void setProducts (NaneVal uePair[] nameld) ({
products = nanel d;

}

publ i ¢ NarmeVal uePai r[] get Products()({
return products;

} public void setld(String id) {
this.id = id;

}

public String getld(){
return id;

}

}/ 1/ Cat egory

Now let's discuss the implementation of the Pr oduct class.
The Pr oduct class holds the product data in seven properties:

° 1d: Stores the ID of a particular product the user clicked in the catalog view
° nane: Stores the name of the product

° pri ce: Stores the price of the product

Page 162 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

° descri pti on: Stores the description of the product
° feat ures: Stores the features of a product in name-value pair form
° optional -features: Stores the optional features of the product

° sel ect edOpti onal Feat ur es: Stores those optional features the user
selected in the product specification view

The following code shows the implementation of the Pr oduct Dat a class:

public class Product{
protected String id;
protected String nane;
protected String price;
protected String[] options;
protected String description;
prot ected NaneVal uePair[] features;
prot ect ed NaneVal uePair[] optional Features;
protect ed NaneVal uePair[] sel ect edOpti onal Feat ures;
public void setNane (String nane) {
thi s. nane = nane;
}
public String getNanme (){
return nane;
}
public void setld (String id) {
this.id = id;
}
public String getld(){
return id;
}
public void setDescription (String description) {
this.description = description;
}
public String getDescription (){
return description;
}
public void setPrice(String price) {
this.price = price;
}
public String getPrice(){
return price;
}
public void set Features(NaneVal uePair[] features) {
this.features = features;
}
publ i c NameVal uePair[] getFeatures (){
return features;
}
public void set Sel ect edOpti onal Feat ur es(NaneVal uePai r[]
sel Opt Feat ures){
this.sel ectedOpti onal Features = sel ect edOpti onal Feat ures;
}
publ i c NameVal uePair[] get Sel ect edOpti onal Feat ures() {
return sel ect edOpti onal Feat ures;

Using JSF technology for XForms applications Page 163 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

}

public void setOptional Features (NaneVal uePair[] optional Features){
thi s. optional Features = opti onal Feat ures;

}
publi ¢ NarmeVal uePai r[] get Optional Features (){

return optional Features;

}
public void setOQptions (String[] options) {

this.options = options;

}
public String[] getOptions(){

return options;

}
}/ 1 Product

Now let's start implementing our sample XForms-JSF shopping cart. We have
to implement three JSP pages (catalogView.jsp, productView.jsp, and
cartView.jsp), three JSF components (Ul Cat egory, Ul Pr oduct , and

Ul Cart), two event handler classes (Ul Cat egor yAct i onLi st ener and

Ul Cart Acti onLi st ener), and three model beans (Cat egor yDat a,

Pr oduct Dat a, and Car t Dat a).

The catalogView.jsp page, Ul Cat egor y component,

Ul Cat egor yAct i onLi st ener event handler, and Car t Dat a model bean
form a set. We will explain the working of this set in the next four sections. For
the rest of the JSP pages, components, event handlers, and model beans, we
will only explain the differences from the first set.

Using the xcart.category tag to generate the catalog
view

Look at the following catalogView.jsp page, which generates the catalog view:

<?xm version="1.0" encodi ng="i so-8859-1"7?>
<ht m
xm ns: ev="http://ww. w3. org/ 2001/ xm - event s"
xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ns" >
<%@taglib uri="http://java.sun.conljsf/core" prefix="f" %
<U@taglib uri="http://afictitiousshoppingcart.conf XCart"
prefix="xcart" %
<U@taglib uri="http://afictitiousshoppingcart.con XForns-JSF"
prefix="xforms-jsf" %
<f:view
<head>
<xforns-jsf:nodel val ue="#{categoryData. nodel" />
</ head>
<body>
<xcart:category val ue="#{cat egoryDat a. cat egory}"
acti on="#{cat egoryDat a. get Acti on}">
<f:action_listener type="nodel.U CategoryActionListener"/>
</ xcart: cat egory>
<xforms-jsf:commandButton | abel =" Show Cart" inmmedi ate="true"
acti on="#{cat egoryDat a. get Acti on}"

Page 164 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

actionLi st ener ="#{ cat egor yDat a. showCart Vi ew} " >
</ xformns-jsf:commandButton> </ body>
</ body>
</f:view>
</htm >

Note the following points:

° We have used the xf or ns-j sf: nodel tag from the XForms-JSF tag
library in the head element. We explained this tag in Implementing the
xforms-jsf:model component on page 83.

° We have included the xcart : cat egory tag in the body element, which
contains two attributes: val ue and act i on.

° The JSP author provides the xcart : cat egory tag with a val ue attribute.
The val ue attribute contains the property of the model bean
(cat egor yDat a. cat egor y), which contains the application data
associated with the catalog view. The cat egor yDat a. cat egory property
is an object of the Cat egor y class explained earlier. Note that the model
bean (categoryData) can be an object of any class, but the property that
contains the application data should be an object of the Cat egor y class.

° The method of the model bean specified in the act i on attribute
("categoryData.getAction") controls navigation. In Navigation process on
page 75, we explained how navigation works and how the JSF framework
uses the act i on attribute for navigation.

° We have associated an action listener (Ul Cat egor yAct i onLi st ener)
with the xcar t : cat egory component. When the user clicks any category
or product in the catalog view, the Ul Cat egor yAct i onLi st ener class
handles the generated action event, which we will discuss in Implementing
the UlCategoryActionListener class on pagel76 .

° We have used the xf or ns-j sf: commandBut t on tag to show the cart
view. The act i onLi st ener attribute of the
xfornms-j sf: commandBut t on tag refers to the event handling method of
the model bean. When the user clicks this button, the JSF framework calls
this method to handle the generated action event.

Implementing the UlCategory component

The xcart : cat egory tag renders the list of categories and products available
in the catalog view. Each category or product is rendered as a button. If the
user clicks on any category, its subcategories and products are displayed. If the
user clicks on a product, the product-specification view appears to show the
details of the product.

Using JSF technology for XForms applications Page 165 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

The first step toward the development of any JSF tag is to make an entry in the
TLD file. The TLD entry for the xcart : cat egory tag looks like the following
code:

<?xm version="1.0" encodi ng="1SO 8859-1" ?>
<tagli b>
<t ag>
<nane>cat egor y</ name>
<t ag- cl ass>xcart. Cat egoryTag</t ag-cl ass>
<attribute>
<name>val ue</ name>
<requi r ed>f al se</required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name>i d</ nane>
<r equi r ed>f al se</required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<nane>act i on</ nane>
<requi r ed>f al se</required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<name>bi ndi ng</ nane>
<requi red>f al se</requi red>
<rtexprval ue> fal se </rtexprval ue>
</attribute>
<attribute>
<name>act i onLi st ener </ name>
<requi r ed>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<nane>i medi at e</ nane>
<r equi r ed>f al se</requi red>
<rtexprval ue>f al se</rtexprval ue>
</attribute>
<attribute>
<name>r ender ed</ name>
<requi red>f al se</requi red>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
</ tag>
<l--other tag instances-->
<tagli b>

In the above TLD entry, the nane element inside the t ag element wraps the
name of the JSF tag (category), and the t ag- cl ass element wraps the
complete qualified name of the tag handler class (xcart . Cat egor yTag).
The xcart : cat egory tag contains two attributes: val ue and acti on. The
two attribute elements in the above TLD entry correspond to these two
attributes.

Here's how we implement the xcar t . Cat egor yTag tag handler class:

Page 166 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

public class CategoryTag extends U Conmponent Tag {
private String val ue;
private String action;
private String inmmediate;
private String actionListener;
public void setVal ue(Obj ect val ue){
t his.val ue = val ue;

public Object getValue(){
return this.val ue;

}

public void setAction(Ooject action) {
this.action = action;

}

public Object getAction(){
return this.action;

}

public String get Conponent Type() {
return "category";

}

public String getRendererType(){
return null;

}

public String getlmredi ate()
return inmedi at e;
}
public void setlmediate(String newl nmedi ate) ({
i medi ate = newl nmmedi at e;
}
public String getActionListener(){
return actionListener;
}
public void setActionListener(String newActionListener) {
actionLi stener = newActi onLi stener;
}
public void setProperties(U Conponent conponent) {
super. set Properti es(conmponent);
Ul Cat egory cat Conmp = (Ul Cat egory) conponent;

FacesContext fc
Application app

FacesCont ext . get Current | nstance();
fc.getApplication();

if(action !'= null) {
i f (U Conponent Tag. i sVal ueRef erence(action)) {
Met hodBi ndi ng nb = app. cr eat eMet hodBi ndi ng(acti on,
cat Conp. set Acti on(nb);
}

el se{

Met hodBi ndi ng nb = new Const ant Met hodBi ndi ng(acti on);

cat Conp. set Acti on(nb);

}
}
if(value '= null) {
i f (Ul Conponent Tag. i sVal ueRef erence(val ue))
{
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(val ue) ;
cat Conp. set Val ueBi ndi ng("val ue", vb);
}
el se
cat Conp. set Val ue(val ue);
}
i f(actionListener !'=null) {

Using JSF technology for XForms applications

null);

Page 167 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

i f (Ul Conponent Tag. i sVal ueRef erence(acti onLi stener)) {
Class args[] = {
j avax. faces. event. Acti onEvent. cl ass
3
Met hodBi nding nmb =
app. cr eat eMet hodBi ndi ng(acti onLi stener, args);
cat Conp. set Acti onLi st ener (nb);
}

if(imediate !'= null) {
i f (Ul Conponent Tag. i sVal ueRef erence(i mmedi ate)) {
Val ueBi ndi ng vb = app. cr eat eVal ueBi ndi ng(i rmedi at e) ;
cat Conp. set Val ueBi ndi ng("i medi ate", vb);
}

el se{
bool ean bool | medi ate =
(new Bool ean(i nmedi at e)) . bool eanVal ue() ;
cat Conp. set | medi at e(bool | medi at e) ;

}
}

}//setProperties
}/ 1 Cat egoryTag

The Cat egor yTag class extends the Ul Conponent Tag class to act as a tag
class. Notice the following points from the Cat egor yTag class implementation
above:

The get Conponent Type() method returns the type of the component
(category), which tells the JSF framework about the component class used
with this tag. Later, we will implement the matching component class.

° The get Render er Type() method returns null, which indicates that there is
no renderer class associated with this JSF tag.

° There are two setter methods (set Val ue() and set Acti on()) in the tag
class, which the JSF framework uses to pass the attribute values from the
JSP page to the Cat egor yTag tag handler class.

The set Properti es() method is used to pass on the values of val ue
and act i on attributes from the tag handler class to the matching
component class.

Here's how to implement the component class associated with the
xcart: cat egory tag. Look at the following entry in the faces-config.xml file:

<?xm version="1.0"?>
<faces-config>
<conponent >
<conponent - t ype>cat egor y</ conponent - t ype>
<conponent - ¢l ass>xcart . U Cat egor y</ conponent - cl ass>
</ conponent >
<! -- other conponent instances-->
</ faces-config>

Page 168 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

The conponent -t ype element wraps the type of the component (category).
The name of the component class is specified in the accompanying
conponent - cl ass element (xcart . Ul Cat egor y). Now we will implement
this Ul Cat egor y component class.

The Ul Cat egor y component renders the categories and products as buttons.
An action event is generated whenever the user clicks on a category or a
product button. We will extend our Ul Cat egor y component class from the

U Conmand class, which helps us handle action events.

The following code shows the fields and methods of the Ul Cat egor y class:

public class U Category extends U Conmrand{
private String btnld = null;
private void renderVal ueAsButton (ResponseWiter witer, String nane,
String id, String clientld) {
}

public void encodeBegi n(FacesCont ext context)
throws | OException {

}
private String getActionVal ueFronRequest (FacesContext fc, String ref,

String tagNanme) {

}
private bject get Model BeanCbject (String ref, FacesContext fc){

}

public void decode (FacesContext context)
throws | OException {

}
public void setBtnld(String id) {

}
public String getBtnld(){

}
}/ /Ul Cat egory

The Ul Cat egor y class contains only one property (bt nl d), its setter and
getter methods, two public methods (encodeBegi n() and decode()), and
three private helper methods (r ender Val ueAsBut t on(),

get Act i onVal ueFr onRequest (), and get Model BeanObj ect ()).

The bt nl d property contains the ID of the category or product button that the
user clicks. When the Ul Cat egor y component fires an action, the action event
handling class calls the getter method of this property to identify the category or
product the user clicked in the catalog view.

Let's discuss the methods of the Ul Cat egor y class one by one.

The r ender Val ueAsBut t on() method writes the markup to render a single
product or category as a button. The encodeBegi n() method of the

Ul Cat egor y class calls this method once for every category and product
available in the catalog view.

The r ender Val ueAsBut t on() method takes the following four parameters:

° writer: An object of the ResponseW i t er class. The
render Val ueAsBut t on() method writes XForms markup on this

Using JSF technology for XForms applications Page 169 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

ResponseW it er object.
° name: The name of a product or category.

° id: The ID of a product or category.

o

clientld: uniquely identifies a JSF component on the client side.

The code for the r ender Val ueAsBut t on() method:

private void renderVal ueAsButton(ResponseWiter witer, String nane,
String id, String clientld){

try{
witer.wite("<xforms:subnmt subm ssion=\"submt\" >");

witer.wite("<xforms:|abel >"+name.trin()+"</xforms:|abel >");
witer.wite("<xforns:action ev:event=\"DOVWActivate\">");
witer.wite("<xforns:setvalue ref=\"action-perforned\ ">"+
clientld+" @ +i d+"</ xforns: setval ue>");
witer.wite("</xforms:action>");
witer.wite("</xforms:submt>");

}

catch (java.io.lOException ie){
i e.printStackTrace();

}
}/ 1 render Val ueAsBut t on

The above code authors the following markup:

<xforms: submt subm ssion="submt"
xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ns"
xm ns: ev="http://ww. w3. org/ 2001/ xm - event s" >
<xforns: | abel >Conput er </ xf or ns: | abel >
<xforms: acti on ev: event ="DOMActi vat e">

<xforms: setval ue

ref ="action-perforned">_i dl@</ xforns: setval ue>
</ xforns: acti on>

</ xforns: subm t>

This markup renders a button. The whole markup is hard-coded in the

r ender Val ueAsBut t on() method, except the strings "Computer" and

" id1@1" (boldface in the markup above). The string "Computer" is the value of
the second parameter (name). The second string "_id1@1" is the result of
concatenating the third and fourth parameters (i d and cl i ent | d). This data
uniquely identifies a product or category. It consists of two parts separated by
an "@" symbol. The first part (_id1, value of the third parameter) is the ID of the
Ul Cat egor y component. The second part (1, value of the fourth parameter)
identifies a particular category or product in the catalog view.

Recall from Implementing the xforms-jsf:model component on page 83, where
we explained the purpose of inserting an extra act i on- per f or ned tag in the
application-specific XML. The r ender Val ueAsBut t on() method wraps the
component and category (or product) ID in the act i on- per f or ned tag. When

Page 170 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

a user clicks the button corresponding to a particular category or product, the
data in boldface (_id1@1) is sent back to the server, where it is used to identify
which button was clicked.

The encodeBegi n() method of the Ul Cat egor y class is lengthy, so we will
implement this method incrementally.

The encodeBegi n() method first checks whether the FacesCont ext
instance is nul | . Ifitis nul | , it simply throws an exception.

Then it extracts the component ID by calling the get d i ent 1 d() method.
Next, it gets the ResponseW i t er object so it can render the markup for this
component. These steps are shown in the following code:

public void encodeBegi n(FacesCont ext context)
throws | CException
{
if (context == null)
t hr ow new Nul | Poi nt er Excepti on();
String clientld = getCientld(context);
Ext er nal Cont ext ext ernal Cont ext = context. get Ext er nal Cont ext () ;
ResponseWiter witer = context.getResponseWiter();

}// encodeBegin

Now the encodeBegi n() method calls the get Mbdel BeanObj ect ()
method. We explained how the get Model Bean(bj ect () method works in
Implementing the UlSelectl component on page 100. The

get Model BeanObj ect () method returns an object of the Cat egor y class,
which contains the data to be rendered, as shown in boldface below:

public voi d encodeBegi n(FacesCont ext context)
throws | CException
{
if (context == null)
t hrow new Nul | Poi nt er Excepti on();
String clientld = getCientld(context);
Ext er nal Cont ext ext ernal Cont ext = cont ext. get Ext er nal Cont ext () ;
ResponseWiter witer = context.getResponseWiter();
categorybData = (Category) getMddel BeanObj ect (cont ext,
val ue);

}// encodeBegin

Now we check if the Cat egor y instance returned by the
get Model Bean(Obj ect () method is nul | . Ifitis nul | , it means that we have
no data (that is, categories and products) to render in the catalog view.

public voi d encodeBegi n(FacesCont ext context)
t hrows | OException
{
if (context == null)
t hrow new Nul | Poi nt er Excepti on();
String clientld = getCientld(context);

Using JSF technology for XForms applications Page 171 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Ext er nal Cont ext external Context = context. get Ext er nal Cont ext () ;
ResponseWiter witer = context.getResponseWiter();
categorybData = (Category) get Mddel BeanObj ect (cont ext,

val ue);

if (categorybData == null){
witer.wite ("catalog is enpty...");
return;

}// encodeBegin

Recall Views of the shopping cart on page 7, where we discussed that the
catalog view contains three boxes: ancestors, subcategories, and products.
Now we will code to display these boxes one by one.

The encodeBegi n() method calls the get Ancest or s() method of the

Cat egor y object to check whether the current category has any ancestors. If
the category contains ancestors, the encodeBegi n() method writes markup to
display the ancestors in the ancestors box.

public void encodeBegi n(FacesCont ext context)
t hrows | OException

if (categorybData == null){
witer.wite ("category data is null...");
return;

}

i f (categoryData.getAncestors() != null){
witer.wite("<table border=\"1\" w dth=\"100%">");
witer.wite("<tr>");
witer.wite("<td>");

NanmeVal uePai r[] ancestors = cat egoryDat a. get Ancestors();
if (ancestors != null){
for(int x = 0; x < ancestors.length-1; x++){
render Val ueAsButton (writer, ancestors[x].getValue(),
ancestors[x].getNane(), clientld);
witer.wite(" >");
}
Y}/ /if (ancestors !'= null)
witer.wite (ancestors[ancestors.|ength-1].getValue());
witer.wite("</td>");
witer.wite("</tr>");
witer.wite ("</table>");
}/1if (categoryData.getAncestors() != null)

}// encodeBegin

Next it calls the get SubCat egori es() and get Pr oduct s() methods of the
Cat egor y object to check for the subcategories and products in the current
category. If it contains any subcategory or product, the encodeBegi n()
method writes markup to display subcategories and products as buttons in their
respective boxes. For this purpose, it calls the r ender Val ueAsBut t on()
method explained earlier.

If the category does not contain a subcategory or product, the encodeBegi n()
method writes the markup to display that there is no subcategory or product in

Page 172 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

the current category.

public voi d encodeBegi n(FacesCont ext context)
throws | OException

i f (categoryData.getAncestors() != null){

i f (categoryData. get SubCategories() !'= null){

witer.wite("<table border=\"1\" w dth=\"100%">");

writer.wite("Sub-Categories");
witer.wite("<tr>");
witer.wite("<td>");
witer.wite("");

NaneVal uePai r[] categories = categoryData. get SubCat egori es();

for (int x =0; x < categories.length; x++){
witer.wite("");

render Val ueAsButton (writer, categories[x].getValue(),

categories[x].getName(), clientld);
witer.wite("</1i>");

Y/ for
witer.wite("");
witer.wite("</td>");
witer.wite("</tr>");
witer.wite("</table>");

it

el se{

NaneVal uePai r[] ancestors = cat egoryData. get Ancestors();
witer.wite("<table border=\"1\" wi dt h=\"100% ">");

witer.wite("Sub-Categories");
witer.wite("<tr>"),
witer.wite("</tr>");
witer.wite("<tr><td>");

witer.wite("<h3> There is no sub-category in the ");
writer.wite (ancestors[ancestors.|ength-1].getValue());

witer.wite(" category. . . </h3>");
witer.wite("</td></tr>");
witer.wite("<tr>");
witer.wite("</tr>");
witer.wite("</table>");

Y/ lelse

i f (categoryData.getProducts() != null){

witer.wite("<table border=\"1\" wi dth=\"100%" >");

writer.wite("Products");
witer.wite("<tr>");
witer.wite("<td>");
witer.wite("");

NaneVal uePai r[] products = categoryData. get Products();

for (int x =0; x < products.|length; x++)({
witer.wite("");

render Val ueAsButton(witer, products[x].getValue(),

product s[x].get Nane(), clientld);
witer.wite("</1i>");

Y/ for
witer.wite("");
witer.wite("</td>");
witer.wite("</tr>");
witer.wite("</table>");

Y Iif

el se{

Using JSF technology for XForms applications

Page 173 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

NaneVal uePai r[] ancestors = categoryData. get Ancestors();
witer.wite("<table border=\"1\" w dth=\"100%">");
writer.wite("Products");
witer.wite("<tr>");
witer.wite("</tr>");
witer.wite("<tr><td>");
witer.wite("<h3> There is no product in the ");
witer.wite (ancestors[ancestors.|ength-1].getValue());
witer.wite(" category. . . </h3>");
witer.wite("</td></tr>");
witer.wite("<tr>");
witer.wite("</tr>");
witer.wite("</table>");

Y/ lelse

witer.wite("</tr>");

witer.wite("</table>");

}// encodeBegin

Now let's see the implementation of the get Act i onVal ueFr onRequest ()
method. This method parses the incoming request and extracts an identifier
from the request (the identifier used to identify which category or product was
clicked by the user). The decode method uses this method.

The get Act i onVal ueFr onRequest () method takes the following
parameters:

° fContext: The FacesCont ext instance.

o

ref: Contains the model bean (I ncom ngXM.I nst anceRequest) name
and the property that contains the incoming XML request from the client
side. See Parsing the incoming XML instance data on page 91 for details
about this model bean.

° tagName: The name of the tag (act i on- per f or med) that contains the
information about the button clicked by the user.

private String getActionVal ueFronRequest (
FacesCont ext f Cont ext,
String ref,
String tagNane){
Docunment doc = (Docunent) get Model BeanObj ect (f Context, ref);
String value = new String();
if(doc !'=null) {
NodelLi st nl = doc. get El enent sByTagNane(t agNane) ;
if (nl !'=null) {
for (int i=0; i < nl.getLength(); i++){
if(nl.item(i).getFirstChild().getNodeType() ==
Node. TEXT_NODE) {
value = nl.item(i).getFirstChild().getNodeVal ue();
if (value.indexOO ("' @) !'= -1) {
int index = value.indexOh(' @);
String id = val ue. substring(0, i ndex);
if (id.equals(getCientld(fContext)))
return val ue. substring(i ndex+1);
el se
return null;

Page 174 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Y}/Iif (value.indexOF (" @) !'= -1)
Y/lif(nl.item(i).getFirstChild()
Y/ for
Y/lif(nl = null)
Y} /lif(doc !'= null)
return null;
}/ 1 get Acti onVal ueFr onRequest ()

Notice the following points from the get Act i onVal ueFr onRequest ()
method above:

1. Itfirst calls the get Model BeanObj ect () method, which returns a DOV
Docunent object. The DOMDocunent object contains DOMrepresentation of
the application-specific XML from the user's request.

2. Then it extracts the act i on- per f or ned tag from the DOMdocument and
extracts its contents. The contents of the act i on- per f or med tag consist
of two parts separated by the "@" symbol. The first part identifies the
component; the second part identifies the category or the product that was
clicked. The get Act i onVal ueFr onRequest () method identifies both the
values and returns the product and category ID.

Next, we will discuss the implementation details of the decode() method.

public void decode (FacesContext context){
if (context == null)
t hrow new Nul | Poi nt er Excepti on();
String id = getActionVal ueFronRequest (cont ext,
"#{i ncom ngXM.| nst anceRequest . DOVDocunent }", "action-perforned");
if (id!=null){
this.btnld = id;
gqueueEvent (new Acti onEvent(this));
YIf
}// decode

You are already familiar with the functionality of the decode() method. Here,
the decode() method is performing the following steps:

1. It checks whether the FacesCont ext objectis nul | . Ifitis nul |, the
decode() method throws an exception.

2. It calls the get Act i onVal ueFr onRequest () method explained above.

3. The call in step 2 returns a string value. This value can tell which product or
category was clicked.

4. if the ID returned by the get Act i onVal ueFr onRequest () method is not
nul | , the decode() method will set this ID in the bt nl d property of the
component (which the event handling logic will use to identify the category or
product ID the user clicked).

5. Finally, the decode() method fires an action event. To fire an action event,

Using JSF technology for XForms applications Page 175 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

the decode() method first instantiates an Act i onEvent object, passing it
the component instance. It then calls the queueEvent () method, passing it
the Act i onEvent object along with the method call. Note that the event
handler class will extract the component object from the Act i onEvent
object, then call the get Bt nl d() method of the component to identify the
category or product the user clicked.

Implementing the UlCategoryActionListener class

The Ul Cat egor yActi onLi st ener class is associated with the Ul Cat egory
component. When the user clicks any category or product in the catalog view,
the Ul Cat egor y component fires an action event. this action event is handled
by Ul Cat egor yAct i onLi st ener . The following code shows the methods in
the Ul Cat egor yAct i onLi st ener class:

public class U CategoryActionLi stener inplenents
ActionLi stener {
public void processAction(ActionEvent event) {

}
}/ 1 Ul Cat egor yAct i onLi st ener

Ul Cat egor yAct i onLi st ener implements the processAct i on() method
of the Act i onLi st ener interface.

The processActi on() method first creates an instance of the
FacesCont ext object. It then gets an instance of the model bean from the
context by calling the get Mbdel BeanCbj ect () method. The

get Mbdel Bean(Obj ect () method returns an object of the Cat egor yDat a
class, which contains complete catalog data, as shown in boldface below:

public void processActi on(Acti onEvent event)

{

FacesCont ext context = FacesContext.getCurrentlnstance();
Cat egoryDat a categoryData = (CategoryData) get Model BeanChj ect
("#{categoryData}", context);

}/ 1 processAction

Next, the pr ocessAct i on() method calls the get Conponent () method of
the event object, which returns the instance of the component that fires the
action event. Then it calls the get Bt nl d() method, which returns the ID of the
category or product that identifies the category or product button clicked by the
user in the catalog view. The processActi on() method stores the ID in a

St ri ng type variable named act i onl d:

public void processAction(Acti onEvent event){
FacesCont ext context = FacesContext.getCurrentlnstance();
Cat egoryDat a categoryData = (CategoryData) get Model BeanChj ect
("#{categoryData}", context);

Page 176 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Ul Category uic = (Ul Category) event.get Component();
String actionld = (String) uic.getBtnld();

}// processAction

Next, we check whether the user clicked a category or product. If the user
clicked a category, there can be two further subcases: The user can click the
root category or any subcategory.

If the user clicked the root category, we will set the category ID as nul | (as the
root category does not have an ID). If the user clicked any subcategory in the
catalog view, we will set the category ID as the act i onl d value. We then call
the set Acti on() method of the model bean, passing the string "category” to
tell the model bean that the user clicked a category.

public void processAction(Acti onEvent event){
Ul Category uic = (Ul Category) event.get Component();
String actionld = (String) uic.getBtnld();
i f(actionld.equals("null"))
category = true;
el se
category = categoryData.i sCat egory(actionld);
if (category){
i f(actionld.equals("null"))
cat egoryDat a. get Cat egoryDat a().setld(null);
el se
cat egor yDat a. get Cat egoryDat a(). setld(actionld);
cat egoryDat a. set Acti on("category");
Y/ /if(category)

}/ 1 processAction

Now the pr ocessAct i on() method handles the case when the user clicks a
product in the catalog view. Clicking a product shows the product-specification
view. First, we have to prepare the Pr oduct Dat a model bean, then we have to
tell the Cat egor yDat a model bean that the user clicked a product.

So we call the get Mbdel BeanObj ect () method, which returns an instance of
the Pr oduct Dat a class. The Pr oduct Dat a model bean was initialized when
the first request was made of the shopping cart, but it does not contains any
data. Now we populate the Pr oduct Dat a object with the data of the product
that the user wants. The product-specification view uses this data to render the
specifications of the product.

Finally, we call the set Acti on() method of the Cat egor yDat a model bean,
passing the string "product” to tell the Cat egor yDat a model bean that the user
clicked a product:

public void processActi on(Acti onEvent event){
i f(actionld.equals("null"))
category = true;
el se
category = categoryData.isCategory(actionld);

Using JSF technology for XForms applications Page 177 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

if (category){

el se {

Product Dat a product Data = (Product Data) get Model BeanObj ect
("#{ProductData}", context);
pr oduct Dat a. set Docunent (cat egor yDat a. get Docunent ()) ;
product Dat a. set Product | d(acti onld);
cat egor yDat a. set Acti on(" product™);
Y/ /el se
}// processAction

Implementing the CategoryData model bean

The Cat egor yDat a bean is an application-specific model bean that performs
the following actions:

° It parses the XML file, which holds the complete catalog data comprising all
products and categories in our shopping cart. Note that we are using a
simple XML file for back-end data storage. If you want to use some other
type of back-end data storage in your shopping cart application, you will only
need to reimplement the Cat egor yDat a model bean, and the rest of the
application will work fine.

° It also instantiates and populates the Cat egor y class required by the
components to render the catalog view.

° The Cat egor yDat a model bean also implements action event handling
methods to handle the events fired by the xf or ns-j sf: conmandBut t on
components in the catalog view.

The following code shows the properties and methods of the Cat egor yDat a
class:

public class CategoryDat af
private String nodel = null;
private String outcone = null;
private Category categoryDat a;
private Docurment docunent = null;

public CategoryData() {}

public void setMdel (String nodel) {}

public String getMdel () {}

public void set Docurent (Docunent doc) {}

publ i c Document get Docurent () {}

public void setAction(String action) {}

public Action getAction() {}

public void setCategorybData(Category categorybData) {}
public Category getCategoryData() {}

publi c bool ean isCategory(String id) {}

private Category setCategoryDataVal ues(String id, Docunment doc) {}
private void set SubCat egori esAndProducts (El ement el enent,

Page 178 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Cat egory categoryData) {}

private void set NaneVal uePair (El ement[] el enents, NaneVal uePair[]
naneVal uePair) {}

private El ement[] getEl enent sByTagNanme(El enent el enent, String
tagName) {}

private El ement getEl ement Byl d(El ement el enent, String tagNane,
String id) {}

private void |l oadXM.(String fileNane) {}

public void showCart Vi ewm Acti onEvent ae) {

}
}// Cat egor yDat a

The Cat egor yDat a class has a constructor, four properties (docunent ,
nodel , out cone, and cat egor yDat a), setter and getter methods for these
properties, some private helper methods, and a public showCar t Vi ew()
action event handling method.

The docunent property contains the complete catalog of our shopping cart.
The Ul Cat egor yAct i onLi st ener class calls the getter method
(get Docunent ()) to pass on the document to the Pr oduct Dat a model bean.

The nodel property contains the application-specific XML, which is used to
track the category or product the user clicked in the catalog view. The
xforms-j sf: nmodel component renders the application-specific XML, so the
U Mbdel component explained in Implementing the xforms-jsf:model
component on page 83 calls the getter method of the model property to fetch
the application-specific XML.

The out cone property specifies the string used to navigate to the next page.
This property can have any of the following three values: "category,” "product,”
and "cart." If the value of the out cone property is "category” (which tells that
the user clicked a category in the catalog view), the next page will be the same:
catalogView.jsp. If the value of the out cone property is "product” (which tells
that the user clicked a product), the next page will be productView.jsp. If the
value of the out cone property is "cart" (which tells that the user clicked the
Show cart button), the next page will be cartView.jsp.

The cat egor yDat a property is an instance of the Cat egor y class, which this
model bean instantiates and populates for the Ul Cat egor y component.

Let's discuss the methods of the Cat egor yDat a class one by one.

The Cat egor yDat a constructor first initializes the Cat egor y object. It then
calls the | oadXM_() method, passing along the name of the XML file that
contains the complete catalog data of our shopping cart. The constructor also
sets the ID property of the newly created Cat egor y objectto nul | . The

| oadXM_() method parses the XML file and then loads it in the docunent
property of the bean discussed above.

public CategoryData(){
cat egorybData = new Cat egory();
cat egorybDat a. setld(null);
String path = fc.getApplication().getViewHandl er (). get Resour ceURL

Using JSF technology for XForms applications Page 179 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

(fc, "/shoppingcart.xm");
String url = fc.get External Context().encodeResourceURL(path);
this.loadXM.(url);
}// Cat egor yDat a

The Cat egor yDat a class implements the set Acti on() method. The

set Act i on() method takes a string parameter and sets it in the out cone
property of the model bean. The decode() method of the Ul Cat egory class
knows the ID of the category or product that the user clicked in the catalog view.
Before firing the action event, the decode() method sets this ID in the bt nl d
property of the component.

The event handler class (Ul Cat egor yAct i onLi st ener) calls the getter
method of the bt nl d to check if the ID belongs to a category. Then it calls the
set Act i on() method and passes it a string value "category."

public void setAction(String action){
this.outcome = action;
}//setAction

The get Act i on() method returns a string value, which the JSF framework
uses for navigation. In Using the xcart:category tag to generate the catalog view
on page 164, we provided the catalogView.jsp page. Notice the act i on
attribute in the xcart : cat egor y tag shown in the JSP page. The acti on
attribute specifies the cat egor yDat a. get Acti on() method name that
decides the navigation. The following code shows the implementation of this
method in the model bean:

public String getAction(){
return outcone;
}//getAction

The get Acti on() method returns the value of the out conme property (which
Ul Cat egor yAct i onLi st ener has already set by calling the set Acti on()
method).

The set Cat egor yDat a() method simply takes an instance of the Cat egory
object and assigns it to the cat egor yDat a property.

public void set CategoryDat a(Cat egory categoryData) {
thi s.categorybData = categoryDat a;
}// set Cat egor yDat a

The decode() method extracts the ID of the category or product the user
clicked in the catalog view and passes it to the event handler class (the

Ul Cat egor yAct i onLi st ener class). When Ul Cat egor yAct i onLi st ener
receives the ID, it instantiates the Cat egor y class and sets the i d property of
the Cat egor y object. It then calls the set Cat egor yDat a() method of the
model bean and passes the Cat egor y object along with the method call.

The get Cat egor yDat a() method simply calls a helper method named
get Cat egor yDat aVal ues() . The get Cat egor yDat aVal ues() method

Page 180 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

takes the same ID that the Ul Cat egor yAct i onLi st ener supplied to the
model bean. The get Cat egor yDat aVal ues() helper method returns another
Cat egor y object that contains the same ID, as well as all the data related to
the same category (list of subcategories, ancestors, and products).

public Category get CategorybData(){
Cat egory catData = get Cat egor yDat aVal ues(cat egoryData. getld());
return catDat a;

}// get Cat egor yDat a

The Cat egor yDat a model bean implements an action event handling method
named showCar t Vi ew() . Recall the screen shot for the catalog view from
Views of the shopping cart on page 7, which contains a Show cart button. When
the user clicks this, the JSF framework calls the showCar t Vi ew() method of
the model bean, which simply sets the act i on property with a "cart" string and
causes the navigation to the cartView.jsp page.

public void showCartVi ew(Acti onEvent ae){
this.action = "cart";
}/ 1 showCart Vi ew

In the past four sections, we have seen the implementation of the
catalogView.jsp page, Ul Cat egor y component,

Ul Cat egor yAct i onLi st ener, and the Cat egor yDat a model bean. These
four components together form a set, which renders the catalog view.

In the next two sections, we will implement similar kinds of sets to render the
product-specification view and catalog view. But this time, we will not go into
low-level details like we did for first set.

Implementing the productView.jsp page, UlIProduct
component, and ProductData model bean

In the productView.jsp page, we have used three tags from our XForms-JSF tag
library (xf or ms- j sf: nodel , xf or ms-j sf: sel ect ManyCheckbox, and
xfornms-j sf:commandBut t on) and one tag (xcart : pr oduct) from our
shopping cart tag library.

The JSP author provides the xcart : product tag with a val ue attribute,
whose value refers to a Pr oduct class type property of a Pr oduct Dat a model
bean. For example, look at the following xcart : pr oduct tag in the JSP page:

<?xm version="1.0" encodi ng="i so-8859-1"7?>
<ht m
xm ns: ev="http://ww. w3. org/ 2001/ xnl - event s"
xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ms" >
<U@taglib uri="http://java.sun.com jsf/core" prefix="f" %
<Uv@taglib uri="http://afictitiousshoppingcart.conl XCart"

Using JSF technology for XForms applications Page 181 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

prefix="xcart" %
<U@taglib uri="http://afictitiousshoppingcart.conl XForns-JSF"
prefix="xforms-jsf" %
<f:view>
<head>
<xforns-jsf:nodel val ue="#{product Dat a. nodel }"/>
</ head>
<body>
<xcart:product val ue="#{productData. product}"/>
<xforns-jsf:sel ect ManyCheckbox | abel =" Opti onal Feat ures:
val ue="#{product Dat a. sel ect edOpti onal Features}" ref="opti ons">
<f:sel ectltens val ue="#{product Dat a. opti onal Features}"/>
</ xforms-j sf:sel ect ManyCheckbox>
<xforns-jsf:commandButton | abel ="Add to cart" i medi ate="fal se"
acti on="#{product Dat a. get Acti on}"
acti onLi st ener ="#{ pr oduct Dat a. addPr oduct ToCart}">
</ xforms-j sf:comrmandBut t on>
<xforns-jsf:commandButton | abel ="Back to catal og view'
action="#{product Dat a. get Acti on}" i nmedi ate="true"
actionLi st ener ="#{ product Dat a. showCat al ogVi ew} " >
</ xf orns-j sf: comandButt on>
</ body>
</f:view
</htm >

The xcart : product tag takes only one attribute: val ue. You are already
familiar with the functionality of the val ue attribute. In the above JSP, the

val ue attribute contains the pr oduct property of the Pr oduct Dat a model
bean. The xcart : product component implementation calls the getter method
of the pr oduct Dat a. pr oduct property and gets the Pr oduct instance that
contains the complete details of a single product.

The xcart : product tag renders the details of the product the user clicked in
the catalog view. These details of a product consist of the name, price,
description, and features of a particular product.

Now let's implement the component class mentioned in the conponent - cl ass
element of the faces-config.xml file above: the Ul Pr oduct class.

The following code shows the properties and methods of the Ul Pr oduct class:

public class U Product extends U Conponent Base{
private String val ue
public voi d encodeBegi n(FacesCont ext context)
throws | OException {
}

public void setVal ue(Object value) {

}
}//1'Ul Product

The Ul Product class contains only one property (val ue), two public methods
(encodeBegi n() and set Val ue()), and four private helper methods
(render Pr oduct Spec(), r ender Feat ur es(), r ender NanmeVal ue() , and
get Model BeanQbj ect ()).

The val ue property contains the name of the Pr oduct object associated with
the Ul Pr oduct component. The Ul Pr oduct component uses the val ue

Page 182 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

attribute to get the Pr oduct object. It then uses the Pr oduct object to fetch
the application-specific data (name, id, price, and description of a product).

Let's look at the encodeBegi n() method of the Ul Pr oduct class.

public void encodeBegi n(FacesCont ext context)
throws | OException
{
if (context == null)
t hrow new Nul | Poi nt er Excepti on();
Product productData = (Product) getMbdel BeanChj ect (context,
val ue);
ResponseWiter witer = context.getResponseWiter();
if (productbData == null)
writer.wite("
product data is null"); //show nothing
el se
{
witer.wite("<h3> X-Cart Product Detail </h3>");
witer.wite("<table wi dth=\"100%">");
witer.wite("<tr>");
witer.wite("<table colspan=\"3\" border=\"1\" width=\"70%"");
String[] spec = new String[4];

spec[0] = productData.getld();

spec[1] = product Dat a. get Name() ;
spec[2] = product Data. get Description();
spec[3] = productData.getPrice();

String[] labels = {"Product_I D', "Product _Nane: ",
"Product _Description:", "Product_Price:"};

render Product Spec(writer, spec, |abels);

NaneVal uePai r[] features = productData. get Features();

if (features !'= null)
render Features(witer, "Product Features",features);

witer.wite("</table>");

witer.wite("</tr>");

witer.wite("</table>"); //colspan=\"4\" border=\"1\"

Y/ lelse
}/ 1 encodeBegin

The following points explain the above code:

° lItfirst verifies the FacesCont ext instance passed to it. Ifitis nul I , it
throws a Nul | Poi nt er Except i on.

° After verifying the FacesCont ext object, it calls the
get Model Bean(Obj ect () method, which returns an instance of the
Pr oduct object.

° It fetches the ResponseW it er object.

° It then determines whether the Pr oduct instance is nul | . If so, it
hard-codes the markup to display that the product is nul | .

° If the Pr oduct instance retrieved in step 2 is not nul | , it uses the Pr oduct
instance to get the name, description, price, and features of the product.

Using JSF technology for XForms applications Page 183 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

° Finally, it calls the r ender Pr oduct Spec() and r ender Feat ur es()
private helper methods to display the product specifications (product name,
description, price, etc.) and product features.

Now we will implement the Pr oduct Dat a model bean.

The Pr oduct Dat a model bean is associated with the product-specification
view. This model bean basically populates the Pr oduct class used by

Ul Product and Ul Sel ect components to display the product details like
name, price, features, and optional features. The Pr oduct Dat a model bean
also implements the action event handling methods to handle the action events
generated in the product-specification view and in the edit product view.

The following code shows the implementation of the Pr oduct Dat a model
bean:

public class Product Dat a{
private Product productDat a;
private Docunment docunent = null;
private String nmodel = null;
private String productld = null;
private bool ean i sProductSet = fal se;
private ArraylLi st optional Features;
private String[] selectedOptional Features = null;

public ProductData() {}

public String getMdel () {}

public void set Model (String nodel){}

public void set Docunent (Docunent doc) {}

publi ¢ Document get Docunent (){}

public String getProductld(){}

public void setProductld(String id) {}

publi ¢ Product getProductData(){}

public void setProduct Dat a(Product pData) {}

public void setOptional Features (String[] optFeatures, Product pd) {}

public Collection getOptional Features (){}

public void setSel ectedOpti onal Features (String[]
sel ect edOpti onal Features) {}

public String[] getSel ectedOpti onal Features(){}

public void showCat al ogVi ewm Acti onEvent ae){

}

public void showCart Vi ew(Acti onEvent ae){

}

public void addProduct ToCart (Acti onEvent ae){

}

public void saveToCart (Acti onEvent ae){

}
}// Product Dat a

The Ul Product class contains a constructor, six properties (docunent ,
nodel , pr oduct Dat a, pr oduct | d, opt i onal Feat ur es, and

sel ect edOpt i onal Feat ur es), setter and getter methods for these
properties, and four event handler methods (showCat al ogVi ew(),
addPr oduct ToCart (), showCart Vi em(), and saveToCart ()).

The docunent property contains the complete catalog of our shopping cart.

Page 184 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Ul Cat egor yAct i onLi st ener calls the setter method (set Docunent ()) to
pass on the document to the Pr oduct Dat a model bean.

The nodel property contains the application-specific XML. The Ul Mbdel
component calls the getter method of the nodel property to fetch the
application-specific XML.

The pr oduct | d property contains the ID of the product the user clicked in the
catalog view. Ul Cat egor yAct i onLi st ener calls the setter method
(set Product 1 d()) to pass on the product ID the user clicked.

The opt i onal Feat ur es property of bean contains the optional feature of the
product the user clicked in the catalog view. The Ul Sel ect component calls
the get Opt i onal Feat ur es() method to render the optional features of the
product as check boxes.

The sel ect edOpt i onal Feat ur es property stores those optional features the
user selects in the product-specification view. The updat eModel () method of
the Ul Sel ect component calls the set Sel ect edOpt i onal Feat ur es()
method to set the user's selected optional features that its respective

decode() method retrieved from the request.

The pr oduct property of the Pr oduct Dat a model bean is an instance of the
Pr oduct class. This property only stores the record of a single product. The
Ul Product and Ul Sel ect components call the get Product () method to
render the product details.

Let's discuss the implementation of the event handling methods in the
Pr oduct Dat a model bean one by one.

The showCat al ogVi ew() method takes an instance of the Act i onEvent
class along with the method call. Recall the product-specification view from
Views of the shopping cart on page 7, where a Back to catalog view button is
shown. When the user clicks this, an action event occurs. The JSF framework
calls the showCat al ogVi ew() method to handle the event. This method
simply sets the act i on property with the "catalogView" string:

public void showCat al ogVi ewm Acti onEvent ae){
this.action = "catal ogVi ew';
}// showCat al ogVi ew

The showCar t Vi ew() method takes an instance of the Acti onEvent class
along with the method call. Recall the edit product view from Views of the
shopping cart on page 7, where a Back to cart button is shown. When the user
clicks this, an action event occurs. The JSF framework calls the

showCart Vi ew() method to handle the event. This method simply sets the
action property with the "cart" string.

public void showCart Vi ew(Acti onEvent ae){
this.action = "cart";
}// showCart Vi ew

Using JSF technology for XForms applications Page 185 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

The addPr oduct ToCart () event handling method takes an instance of the
Act i onEvent object along with the method call. When the user clicks the Add
to cart button in the product-specification page, the JSF calls the

addPr oduct ToCart () method to handle the event. The following code shows
the implementation of the addPr oduct ToCart () method:

public void addProduct ToCart (Acti onEvent ae) {
FacesCont ext context = FacesContext.getCurrentlnstance();
Application app = context.getApplication();
Val ueBi ndi ng vb = app. creat eVal ueBi ndi ng("#{cartData}");
CartData cdnb = (CartData) vh. getVal ue(context);
Product pd = getProduct();
String[] sel ectedFeatures = get Sel ect edOpti onal Feat ures();
if (selectedFeatures != null) {
NanmeVal uePai r[] optional Features = pd. get Optional Features();
NaneVal uePai r[] new_optional Features = new
NaneVal uePai r[sel ect edFeat ures. | engt h] ;
for (int x = 0; x < selectedFeatures.|ength; x++){
for (int y = 0; y < optional Features.|ength; y++){
NaneVal uePai r pair = optional Features[y];
i f (sel ectedFeatures[x].equal s(pair.getName()))
new_optional Features[x] = pair;
Y/ for
}

pd. set Sel ect edOpt i onal Feat ur es(new_opt i onal Feat ures);
}//if(sel ectedFeatures !'= null)
cdnb. addPr oduct (pd) ;
this.action = "cart";
}// addPr oduct ToCart

Note the following points:

° The addPr oduct ToCart () method first gets an instance of the
FacesCont ext object.

° It fetches an instance of the Car t Dat a model bean from the application
context.

° The addPr oduct ToCart () method then calls the get Pr oduct () method,
which returns the Pr oduct class instance that wraps the details of the
product the user clicked in the catalog view.

° Next, the addPr oduct ToCart () method calls the
get Sel ect edOpt i onal Feat ur es() method, which returns the list of
features the user selected in the product-specification view.

° It checks if the selected optional features are not nul | , then it sets the
selected optional features in the sel ect edOpt i onal Feat ur es property of
the Pr oduct object.

° After setting the selected features, it adds the product to the cart. It calls the
addPr oduct () method of the Cart Dat a model bean to add the product to
the cart.

Page 186 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

° Finally, the addPr oduct ToCar t () method sets the act i on property of the
model bean with the "cart" string.

When the user clicks the Save edited product button in the edit product view,
the JSF calls the saveToCart () method to handle the event. The following
code shows the implementation of the saveToCart () method:

public void saveToCart (Acti onEvent ae){
FacesCont ext context = FacesContext.getCurrentlnstance();
Application app = context.getApplication();
Val ueBi ndi ng vb = app. creat eVal ueBi ndi ng("#{cartData}");
CartData cd = (CartData) vb.getVal ue(context);
Product pd = getProduct();
String[] sel ectedFeatures = get Sel ect edOpti onal Feat ures();

if (selectedFeatures == null || sel ectedFeatures.|length == 0)
pd. set Sel ect edOpt i onal Feat ur es(new NaneVal uePai r[0]);

el se{
NanmeVal uePai r[] optional Features = pd. get Optional Features();

NaneVal uePai r[] new_optional Features =
new NaneVal uePai r[sel ect edFeat ures. | engt h];
for (int x = 0; x < selectedFeatures.|ength; x++){
for (int y =0; y < optional Features.|ength; y++){
NanmeVal uePai r pair = optional Features[y];
i f (sel ectedFeatures[x].equal s(pair.getName()))
new_optional Features[x] = pair
Yifor(int y =0; y < optional Features.|length; y++)
Yilfor(int x = 0; x < selectedFeatures.|length; x++)
pd. set Sel ect edOpt i onal Feat ur es(new_opt i onal Feat ures);

Y/ /el se
Product[] pData = cd. getProducts();
for(int i = 0; i< pbData.length; i++){

if(pData[i].getld().equals(pd.getlid()))
cd. set Product At (pd, i);
Y/ for
this.action = "cart"
}// saveToCart

Note the following code points:

° The saveToCart () method first gets an instance of the FacesCont ext
object.

° It then fetches an instance of the Car t Dat a model bean from the
application context.

° Then the saveToCart () method calls the get Product () method, which
returns the Pr oduct class instance that wraps the details of the product the
user clicked in the catalog view.

° The saveToCart () method calls the
get Sel ect edOpt i onal Feat ur es() method, which returns the list of
features the user selected in the product-specification view.

° It then checks if the selected optional features are nul | and sets the

Using JSF technology for XForms applications Page 187 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

sel ect edOpt i onal Feat ur es property of the Pr oduct objectas nul | .

° If the selected optional features are not nul | , it sets the selected optional
feature in the sel ect edOpt i onal Feat ur es property of the
Pr oduct Dat a model bean class.

° After adding the selected features, it calls the get Pr oduct s() method of
Car t Dat a, which returns all products in the cart as an array of the Pr oduct
object.

° After iterating through all the products until the current product (edited) is
found, it overwrites the edited product.

° Finally, the saveToCart () method sets the act i on property of the model
bean with the "cart" string.

Implementing the cartView.jsp page, UlCart
component, UlCartActionListener, and CartData
model bean

Look at the following cartView.jsp page, which generates the cart view:

<?xm version="1.0" encodi ng="i so-8859-1"?>
<ht m
xm ns: ev="http://ww. w3. org/ 2001/ xm - event s"
xm ns: xforms="http://ww. w3. or g/ 2002/ xf or ns" >
<U@taglib uri="http://java.sun.com jsf/core" prefix="f" %
<U@taglib uri="http://afictitiousshoppingcart.conl XCart"
prefix="xcart" %
<g@taglib uri="http://afictitiousshoppingcart.con XForns-JSF"
prefix="xforns-jsf" %
<f:view>
<head>
<xforms-jsf:model val ue="#{cartData. nodel }"/>
</ head>
<body>
<xcart:cart val ue="#{cartData. products}"”
acti on="#{cartDat a. get Acti on}">
<f:actionLi stener type="nodel. Ul Cart Acti onLi stener"/>
</ xcart:cart>
<xforns-jsf:commandButton | abel ="Buy Cart"
acti on="#{cart Dat a. get Acti on}"
actionLi stener="#{cartDat a. buy}" inmmediate="true">
</ xf orns-j sf: comandBut t on>
<xforns-jsf:commandButton | abel ="Back to catal og view'
acti on="#{cart Dat a. get Acti on}"
acti onLi st ener="#{cart Dat a. showCat al ogVi ew}" i mmedi ate="true">
</ xforms-j sf:commandBut t on>
</ body>
</f:view

Page 188 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

</htm >
Note the following points:

° We have included the xcart: cart tag in the body element, which contains
two attributes: val ue and acti on.

° Thexcart: cart tag renders the list of all the products a user added to the
cart. The xcart: cart tag also renders Remove and Edit buttons with each
product in the cart.

° The method of the model bean specified in the act i on attribute
(cart.getAction) controls navigation.

° We have associated an action listener (Ul Cart Act i onLi st ener) with the
xcart: cart component. When the user clicks the edit or Remove button of
any product in the cart view, the Ul Cart Act i onLi st ener class handles
the generated action event, which we will discuss shortly.

° We have used two xf or ms- j sf: commandBut t on tags. The first is used to
go back to the catalog view; the second is to buy the cart.

Next, we'll implement the component class associated with the xcart: cart
tag.

The following code shows the properties and methods in the Ul Car t
component:

public class U Cart extends U Command{
private String btnld = null;
private String productld = null;
private void renderVal ueAsButton (ResponseWiter witer, String nane,
String id, String clientld) {}
public void encodeBegi n(FacesCont ext context)
throws | CException {}
public void decode (FacesContext context) {}
private String getActionVal ueFronRequest (String retVal ue,
FacesContext fc, String ref, String tagNanme) {}
Y/ /U Cart

The Ul Cart class contains two properties (bt nl d, pr oduct | d), setter and
getter methods for the properties, two public methods (encodeBegi n() and
decode()), and three private helper methods (r ender Val ueAsBut t on(),
get Mbdel Bean(Obj ect (), and get Act i onVal ueFr onRequest ()).

The bt nl d property contains the ID of the Edit or Remove button the user
clicks in the cart view. When the Ul Cart component fires an action, the action

event handling class calls the getter method of this property to compare the
button the user clicked against a particular product in the cart view.

The pr oduct | d property contains the ID of the product whose Edit or Remove

Using JSF technology for XForms applications Page 189 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

button the user clicks in the cart view. When the Ul Cart component fires an
action, the action event handling class calls the getter method of the

product | d property to get the product ID.

Let's discuss the methods of the Ul Cart class one by one.

The r ender Val ueAsBut t on() method writes the markup to render a single
product as a button. The encodeBegi n() method of the Ul Cat egory class
calls this method once for every product available in the cart view.

The r ender Val ueAsBut t on() method takes the following four parameters:

° writer: An object of the ResponseW i t er class. ltswi t e() method is
used to write the response markup.

° name: The name of a product.

° id: The ID of a product.

o

clientld: Uniquely identifies a component on the client side.

The code for the r ender Val ueAsBut t on() method:

private void renderVal ueAsButton(ResponseWiter witer, String nane,
String id, String clientld){
try {
writer.wite("<xfornms:submt subm ssion=\"submt\"");
witer.wite("
xm ns: xforns=\"http://ww. w3. or g/ 2002/ xf or ns\ " >") ;

witer.wite("<xforns:|abel >"+name.trin()+"</xforms:|abel >");
writer.wite("<xformnms:action ev:event=\"DOWActivate\"");
witer.wite("
xm ns:ev=\"http://ww. w3. org/ 2001/ xm - event s\ " >");
witer.wite("<xforms:setvalue ref=\"action-perforned\">"+
clientld+" @ +i d+" @ +nane. tri m() +" </ xf or ns: set val ue>");
witer.wite("</xforms:action>");
witer.wite("</xforms:submt>");
}
catch (java.io.|CException ie){
ie. printStackTrace();

}
}/ 1 render Val ueAsBut t on

The above code authors the following markup:

<xforms: subnit subnission="submnit"
xm ns: xforns="http://ww. w3. or g/ 2002/ xf or ns"
xm ns: ev="http://ww. w3. org/ 2001/ xn - event s" >
<xforns: | abel >l ntel _Penti numi</ xf orns: | abel >
<xforns:action ev:event="DOWActivate">
<xforns: setval ue ref="acti on-performed">

_idi@@dit

Page 190 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

</ xforns: set val ue>
</ xforns:acti on>
</ xforms: subm t>

This markup renders a button. The whole markup is hard-coded in the

r ender Val ueAsBut t on() method, except the strings "Intel_Pentinum4" and
" idl@l@edit" (boldface in the markup above). The first string
"Intel_Pentinum4" is the value of the second parameter (nane). The second
string "_idl@l1@edit" uniquely identifies the product whose Remove and Edit
button the user clicks. The second string consists of three parts, each of which
Is separated by an "@" symbol. The first part (_id1) is the ID of the component.
The second part (1) identifies a particular product in the catalog view. The third
part (edi t) identifies the button clicked.

Recall Implementing the xforms-jsf:model component on page 83, where we
explained the purpose of inserting an extra act i on- per f or ned tag in the
application-specific XML. The r ender Val ueAsBut t on() method wraps the
component, product ID, and button name (edit or remove) in the

acti on- per f or med tag. When a user clicks the button corresponding to a
particular product in the cart view, the string "_id1@1@edit" is sent back to the
server.

The encodeBegi n() method of the Ul Cart class is lengthy, so we will
implement this method incrementally.

The encodeBegi n() method first checks whether the FacesCont ext
instance is nul | . Ifitis nul | , it simply throws an exception. Then it extracts the
component ID by calling the get C i ent 1 d() method. Next, it gets the
ResponseW i t er object so that it can render the markup for this component.
See these steps in the following code:

public void encodeBegi n(FacesCont ext context) throws | OException {
if (context == null)
t hrow new Nul | Poi nt er Excepti on();
String clientld = getCientld(context);
Ext er nal Cont ext ext ernal Cont ext = cont ext. get Ext er nal Cont ext () ;
ResponseWiter witer = context.getResponseWiter();
doubl e total Price = 0;

}/ / encodeBegin

Now the encodeBegi n() method calls the get Model BeanQbj ect ()
method. We explained how this method works in Implementing the UlSelectl
component on page 100. The get Model BeanQbj ect () method returns an
array-type object Pr oduct class, which contains the data to be rendered. See
the boldface code below:

public void encodeBegi n(FacesCont ext context)
throws | OException {
if (context == null)
t hrow new Nul | Poi nt er Excepti on();
String clientld = getCientld(context);
Ext er nal Cont ext ext ernal Cont ext = cont ext. get Ext er nal Cont ext () ;
ResponseWiter witer = context.getResponseWiter();

Using JSF technology for XForms applications Page 191 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

doubl e total Price = 0;
Product[] products = (Product[]) get Model BeanCbj ect (cont ext,
val ue);

}/ /I encodeBegin

Now we check if the Pr oduct instance returned by the
get Model BeanObj ect () method is nul | . Ifitis nul | , it means that we have
no data (products) to render in the cart view.

public void encodeBegi n(FacesCont ext context)
throws | OException {

Product[] products = (Product[]) get Model BeanCbj ect (cont ext,

val ue);

if (products == null){
witer.wite ("Cart is enpty...... ");
return;

Y Iif(products == null)

}// encodeBegin

Now the encodeBegi n() method writes the markup to display each product
and its price in tabular format from the Pr oduct object, as shown in boldface
below:

public void encodeBegi n(FacesCont ext context)
throws | CException {
if (products == null){
witer.wite ("
<h3> Cart is
enmpty...... </ h3>");
return;
Y Iif (products == null)
witer.wite("\r\n X-Cart View
");
witer.wite("<table border=\"1\">");
witer.wite("<ol type=\"1\">");
for (int x = 0; x<products.|length; x++){
Product product = products[x];
doubl e price = Integer. parselnt(product.getPrice());
NameVal uePai r[] pair = product. get Sel ect edOpti onal Features();
if(pair '=null){
for(int y =0; y < pair.length; y++){
price += Integer.parselnt(pair[y].getValue());
}
Y /lif(pair !'= null)
total Price += price;
witer.wite("<tr>");
witer.wite("<td>");
witer.wite(""+product.getNane()+"</1i>");
witer.wite("</td>");
witer.wite("<td>");
render Val ueAsButton(witer, " Edit ",
new I nteger(x).toString(), clientld);
witer.wite("</td>");
witer.wite("<td>");
render Val ueAsButton(witer, Renmove ",
new I nteger(x).toString(), clientld);

Page 192 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials

witer.wite("</td>");
witer.wite("<td>");
witer.wite("" + price);
witer.wite("</td>");
witer.wite("</tr>");
Y} /for (int x = 0; x<products.|ength; x++)
witer.wite("");
witer.wite("</table>");
witer.wite("<table border=\"1\">");
writer.wite("");
witer.wite("<tr>");
witer.wite("<td>");
witer.wite(" Total Cart Price ");
witer.wite("</td>");
witer.wite("<td>");
witer.wite(""+total Price);
witer.wite("</td>");
witer.wite("</tr>");
witer.wite("");
witer.wite("</table>");
}/ 1 encodeBegin

ibm.com/developerWorks

Now we'll implement the get Act i onVal ueFr onRequest () method. The
decode() method calls this method to get the ID of the product whose Edit or

Remove button the user clicked in the cart view.

The get Act i onVal ueFr onRequest () method takes the following four

parameters:

° retValue: Contains the string value "id" or "action,"” which decides the return

value of the method.

° fc: The FacesCont ext instance.

° ref: Contains the model bean (that is, | ncom ngXM.I nst anceRequest)
name and the property that contains the incoming XML request from the
client side. See Parsing the incoming XML instance data on page 91 for

details about this model bean.

° tagName: The name of the tag (that is, act i on- per f or ned) that contains

the clicked button information.

private String getActionVal ueFronRequest (String retVal ue,

FacesContext fc, String ref, String tagNane){

String value = new String();
Docurment doc =
if(doc !'= null){

NodelLi st nl = doc. get El enent sByTagNane(t agNane) ;

if (nl '= null){
for (int i=0; i < nl.getLength(); i++){

if (nl.itenm(i).getFirstChild().getNodeType()

Node. TEXT_NODE) {

(Docunent) get Mbdel BeanOhj ect (fc,

ref);

value = nl.iten(i).getFirstChild().getNodeVal ue();

if (retValue.equals("id")){
if (value.indexO'('@) !'= -1){
int index = value.indexOh(' @);

Using JSF technology for XForms applications

Page 193 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

String id = val ue. substring(0, i ndex);
if (id.equals(getCientld(fc)))
return val ue. substring(i ndex+1,
val ue.l astl ndexO (' @)) ;

el se
return null;

Y lif(value.indexO (" @) != -1)
Y 1if(retVal ue. equal s("id"))
el se

return val ue. substring(val ue.lastlndexOtf (' @) +1);

YRR
Y/ for

Ylif(nl I'=null)
Y/ lif(doc !'= null)
return null;
}/ 1 get Acti onVal ueFr omRequest

Note the following points from the get Act i onVal ueFr onRequest () method:

° The method first gets the property from the model bean that contains the
client request as DOM Docunent object.

° Then it extracts the act i on- per f or med tag from the DOMdocument and
extracts its value.

° Finally, it checks the value of the r et Val ue parameter. If it is "id," then it
returns the product ID whose Edit or Remove button is clicked. Otherwise, it
returns the ID of the button -- edit or Remove -- from the request.

Next, we will discuss the implementation details of the decode() method.

public void decode(FacesContext context){
if (context == null)
t hrow new Nul | Poi nt er Excepti on();
String id = getActionVal ueFronRequest ("i d", context,
"#{i ncom ngXM.| nst anceRequest . DOVDocunent }", "acti on-perforned");
String action = getActionVal ueFronRequest ("acti on", context,
"#{i ncom ngXM.| nst anceRequest . DOVDocunent }", "acti on- perforned");
if(id !=null){
this.btnld = action;
this.productld = id;
gqueueEvent (new Acti onEvent (this));
Ylrif(id = null)
}// decode

Note the following points in the decode() method implementation:

° Itfirst verifies the FacesCont ext instance passed to it by the JSF
framework. If itis nul | , it throws a Nul | Poi nt er Excepti on.

° If the FacesCont ext instance is not nul | , the decode() method calls the
get Act i onVal ueFr onRequest () method, passing it the string "id" in the
r et Val ue parameter, as explained above. This method returns the ID of the
product that the user clicked.

Page 194 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

° The decode() method again calls the get Act i onVal ueFr onRequest ()
method, passing it the string "action.” It returns the name of the button the
user clicked (edit or Remove).

° If the product ID returned by the get Act i onVal ueFr onRequest ()
method is not nul | , it sets the product name ID in the bt nl d property and
the product ID in the pr oduct | d property of the component (that the event
handling logic uses to identify the Edit or Remove button of a particular
product the user clicked).

° Finally, the decode() method fires an action event by instantiating an
Act i onEvent object, passing it the component instance. It then calls the
gueueEvent () method, passing it the Act i onEvent object along with the
method call. Note that the event handler class extracts the component object
from the Acti onEvent object and calls the get Bt nl d() method of the
component to identify the product the user clicked.

Next, we will implement the Ul Car t Acti onLi st ener.

The Ul Cart Acti onLi st ener class is associated with the Ul Car t
component. When the user clicks the Edit or Remove button of a particular
product in the cart view, the Ul Cart component fires an action event. This
action event is handled by the Ul Car t Acti onLi st ener class. The
implementation of the Ul Car t Acti onLi st ener class:

public class U CartActionListener inplements ActionListener {
public void processActi on(Acti onEvent event) ({
}
private Object getMdel Beanbj ect (FacesContext context, String val ue){

}
}/ /Ul Cart Acti onLi st ener

The Ul Cart Acti onLi st ener class contains two methods

(processActi on() and get Mbdel BeanQbj ect ()). We explained the

get Model BeanObj ect () method in Implementing the UlSelectl component
on page 100. The processActi on() method processes the action event fired
by the component:

public void processAction(ActionEvent event) {
FacesCont ext context = FacesContext.getCurrentlnstance();
CartData cd = (CartData) get Model BeanObj ect ("#{cartData}",
context);
Pr oduct Data pdm = (Product Dat a)
get Model BeanObj ect ("#{edi t ProductData}", context);
U Cart uic = (U Cart) event.get Conponent();
String productld = uic.getProductld();
String btn = uic.getBtnld();
i f(btn.equal s("Edit"))({
Product pd = cd. get Product At (productid);
if (pd !'= null)
pdm set Pr oduct (pd);
cd.setAction("edit");
Y /if(btn.equal s("Edit"))

Using JSF technology for XForms applications Page 195 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

el se{
cd. renovePr oduct (product1d);
cd. set Action("renove");
Y/ lelse
}/ 1 processAction

Note the following points:

° The processActi on() method first retrieves the FacesCont ext
instance.

° It then fetches the Car t Dat a and Pr oduct Dat a model bean instances
from the application context.

° Next, it calls the get Conponent () method of the event object, which
returns an object of the component class that fired the event.

° Then it calls the get Bt nl d() and get Product | d() methods of the
component class, which returns the ID of the button the user clicked and the
product ID against that button, respectively.

° It then checks if the button ID is Edit. if it is, it fetches the product from the
cart against the product ID and sets it in the Pr oduct Dat a model bean by
calling its set Product () method.

° If the button ID is not Edit, it simply calls the r enovePr oduct () method of
the Car t Dat a model bean, passing it the product ID. This method call
simply removes the product from the cart.

Now let's implement the Car t Dat a model bean.

The Car t Dat a model bean stores all the products added by the user in the
cart. The Ul Cart component uses this Car t Dat a model bean to fetch the list
of products added to the cart and also to handle some action events that
occurred in the cart view.

The following code shows the implementation of the Car t Dat a class:

public class Cart Dat a{
protected String nodel = null;
protected String outconme = null;
protected Product[] products = null;

public String getAction()({
}

public void setAction (String outcone){

}
public String getMdel (){

}
public void setModel (String nodel){

}
public Product [] getProducts(){

Page 196 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

}
public Product getProductAt(String index){

}
public void setProduct At (Product pd, int index)

}

public void renoveProduct (String index){

}
public void addProduct (Product Dat a product Dat a) {

}
public void showCat al ogVi ew Acti onEvent ae){

}
public void buy(ActionEvent ae){

}
}// CartData

The Car t Dat a class has three properties (nodel , out cone, and pr oduct s),
setter and getter methods for these properties, some private helper methods,
four public methods (get Pr oduct At (), set Product At (), addPr oduct (),
and r enovePr oduct ()), and two action event handling methods

(showCat al ogVi ewm() and buy()).

The nodel property contains the application-specific XML, which is used to
track the product the user clicked in the cart view. The xf or ns-j sf : nodel
component renders the application-specific XML, so the Ul Model component
explained in Implementing the xforms-jsf:model component on page 83 calls the
getter method of the nodel property to fetch the application-specific XML.

The out cone property specifies the string used for navigation. This property
can have one of three values: "catalogView," "buy," or "edit." If the value of the
out cone property is "catalogView" (which indicates that the user clicked the
Back to catalog view button in the cart view), the next page will be the
catalogView.jsp. If the value is "edit" (which indicates that the user clicked the
Edit button of particular product), the next page will be editProductView.jsp. If
the value is "buy" (which indicates that the user clicked the Buy button), the next
page will be checkout.jsp.

The products property is an array of the Pr oduct object, which stores all the
products added by the user to the cart. The Ul Cart component calls its getter
method to fetch the list of products added to the cart.

Let's discuss the methods of the Car t Dat a class one by one.

The Car t Dat a class implements the set Acti on() method. The

set Act i on() method takes a string parameter and sets it in the out cone
property of the model bean. The action event handling logic calls the

set Act i on() method, passing it a string value.

public void setAction(String action)({
this.outcone = action;
}//setAction

The get Act i on() method returns a string value, which the JSF framework

uses for the navigation. In the cartView.jsp page above, notice the act i on
attribute in the xcart: cart tag. The act i on attribute specifies the

Using JSF technology for XForms applications Page 197 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

cartData.getAction method name that decides the navigation. The following
code shows the implementation of this method in the model bean:

public String getAction()({
return outcone;
}//getAction

The get Act i on() method returns the value of the out cone property (which
the event handling logic has already set by calling the set Acti on() method).

The get Product At () method returns a product from the array of Pr oduct
objects at some specific index. It takes the product index along with the method
call. The Ul Cart Acti onLi st ener calls this method to fetch the product at
some specific location in the cart.

public Product getProductAt(String index) {
if (productsVector.size() > 0)
return (Product) productsVector. el ement At (I nteger. parsel nt(index));
return null;
}// get Product At

The set Product At () method sets a product at some specific index in the
array of the Pr oduct object. It takes the Pr oduct object and index along with
the method call. The Ul Car t Act i onLi st ener calls this method to set the
product at a particular location:

public void setProduct At (Product pd, int index) {
if (pd!=null)
product sVect or. set El enent At (pd, i ndex);
}/ 1/ set Product At

The addPr oduct () method adds the product to the cart that is passed to it
along with the method call. The event handling logic behind the Add to cart
button in the product-specification view calls the addPr oduct () method,
passing it the Pr oduct object along with the method call.

public void addProduct (Product productData) {
if (productData !'= null) {
pr oduct sVect or . addEl enent (product Dat a) ;

}
}/ 1 addPr oduct

The r enovePr oduct () method removes the product from the array of

Pr oduct objects at the given index. When the user clicks the Remove button in
the cart view, the Ul Car t Act i onLi st ener calls the r enovePr oduct ()
method, passing it the index of the product in the cart.

public void renoveProduct (String index) {
product sVect or. renoveEl enent At (I nt eger. parsel nt (i ndex));
}/ I renovePr oduct

Page 198 of 201 Using JSF technology for XForms applications

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

The Car t Dat a model bean implements an action event handling method
named showCat al ogVi ew() . Recall the screenshot for the cart view from
Views of the shopping cart on page 7, which contains a Back to catalog view
button. When the user clicks this, the JSF framework calls the

showCat al ogVi ew() method of the model bean, which sets the acti on
property with a "catalogView" string and causes the navigation to the
catalogView.jsp page.

public void showCat al ogVi ewm Acti onEvent ae){
this.outcone = "catal ogView';
}/ 1 showCat al ogVi ew

The screenshot for the cart view shown in Views of the shopping cart on page 7
contains a Buy button. When the user clicks this, the JSF framework calls the
buy() method of the model bean, which sets the act i on property with a "buy"
string and causes the navigation to the checkout.jsp page.

public void buy(ActionEvent ae)({
i f(getProducts().length == 0){
return;
}
thi s. outconme = "buy";
} /1 buy

Trying out the shopping cart

We have placed the source code for our complete XForms-JSF shopping cart
application in the section9.zip file available in the source code download of this
tutorial; see Resources on page 200. When you unzip the section9.zip file, you
will find that it contains an xcart.jar file (that is, the shopping cart-specific tag
library developed in this section), ShoppingCart.war file (that is, the
XForms-JSF Shopping cart application developed in this section), and a folder
named ShoppingCart. The ShoppingCart folder contains the complete source
code for our XForms-JSF shopping cart application, including all the JSP pages,
model beans, and action listeners developed for our sample shopping cart
application.

To try our XForms-JSF shopping cart application, you deploy the

ShoppingCart.war file in your application server. Be sure to use the following
URL in the address bar of your XForms browser:

http://1 ocal host: 8080/ Shoppi ngCart

Once the catalog view displays, you can browse through our shopping cart, as
we discussed in Views of the shopping cart on page 7.

Using JSF technology for XForms applications Page 199 of 201

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Section 10. Wrap-up and resources

Summary

Throughout this tutorial, our goal has been to give an inside-out picture of the
JSF framework, to show how to use JSF for XForms applications, and enable
you to develop your own JSF components and tag libraries. For this purpose,
we developed tag libraries and many sample applications.

We also discussed the XForms authoring requirements in a server-side Java
application and listed the tasks you need to perform to develop an XForms
application using JSF technology. We discussed how the JSF framework
internally works and how the different modules of the JSF application cooperate
with each other. Finally, we developed the XForms-JSF tag library and several
XForms applications using the JSF framework.

Resources

° Download the j-jsfx-source.zip file for the complete source code (sample
application, WAR, and JAR files) developed in this tutorial.

° Download J2SE V1.4.2 (http://java.sun.com/j2se/1.4.2/download.html) and
J2EE V1.4 (http://java.sun.com/j2ee/1.4/download.html) (Update 1)
reference implementation.

° Visit the official JavaServer Faces information at Sun Microsystems.

° For an overview of JSF, and to learn about the existing JSF core and HTML
tag libraries, read Ul development with JavaServer Faces (developerWorks,
September 2003), a tutorial by Jackwind Li Guojie.

° Learn more about JSF with Rick Hightower's series, JSF for non believers
(developerWorks, February 2005).

° Read Integrating Struts, Tiles, and JavaServer Faces (developerWorks
September 2003) by Srikanth Shenoy and Nithin Mallya, which explains how
to use JSF with the Apache Struts framework.

° Visit the official XForms information (http://www.w3.org/TR/xforms/) at
wa3.org.

° To understand XForms in detail, read Understanding XForms
(developerWorks, December 2002) by Nicholas Chase.

Page 200 of 201 Using JSF technology for XForms applications

j-jsfx-source.zip
http://java.sun.com/j2se/1.4.2/download.html
http://java.sun.com/j2ee/1.4/download.html
http://java.sun.com/j2ee/javaserverfaces/download.html
http://www.ibm.com/developerworks/java/edu/j-dw-java-jsf-i.html
http://www.ibm.com/developerworks/java/library/j-jsf1/
http://www-106.ibm.com/developerworks/java/library/j-integrate/
http://www.w3.org/TR/xforms/
http://www-106.ibm.com/developerworks/web/edu/wa-dw-waxforms-i.html

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

° To get started with XForms, read Get ready for XForms (developerWorks,
September 2002) by Joel Rivera and Len Taing.

¢ XSmiles (http://www.xsmiles.org/download.html) is an XForms browser to
render the XForms markup.

formsPlayer (http://www.formsplayer.com/download/) is an XForms plug-in
for Internet Explorer V6.0. We used formsPlayer to test our sample
applications in this tutorial.

Visit the developerWorks Java technology zone
(http://www-136.ibm.com/developerworks/java/) for hundreds of articles and
tutorials about every aspect of Java programming.

° Visit The Developer Bookstore (http://devworks.krcinfo.com/) for a
comprehensive listing of technical books, including hundreds of Java-related
titles.

Your feedback

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

For more information about the Toot-O-Matic, visit
www-106.ibm.com/developerworks/xml/library/x-toot/ .

Using JSF technology for XForms applications Page 201 of 201

http://www-106.ibm.com/developerworks/xml/library/x-xforms/
http://www.xsmiles.org/download.html
http://www.formsplayer.com/download/
http://www-136.ibm.com/developerworks/java/
http://devworks.krcinfo.com/
http://devworks.krcinfo.com/WebForms/ProductList.aspx?Search=Category&id=1200&p=Java
http://devworks.krcinfo.com/WebForms/ProductList.aspx?Search=Category&id=1200&p=Java
http://www-106.ibm.com/developerworks/xml/library/x-toot/

	Table of contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	Tutorial topics
	Code samples and installation requirements
	About the author

	A sample XForms application
	How is XForms different from HTML forms?
	Features of the sample XForms-based shopping
cart
	Views of the shopping cart
	XML structures for the shopping cart
	Using XForms
	The model element
	The select element
	The submit element
	User interaction and flow of data in our shopping cart
application
	Server-side processing requirements of an XForms
application

	The JSF architecture
	Components of a JSF application
	JSF tags and JSF components
	Using JSF tags in JSPs
	Model bean wrappers for application's business logic and data
	The JSF framework
	How to make FacesServlet handle your requests
	Methods in the FacesServlet class
	The Lifecycle class
	The FacesContext class
	The URL processing life cycle in a JSF application
	The URL processing life cycle in an XForms-JSF application

	How does a JSF component tree work?
	The JSF component tree
	The UIComponentTag class
	Associating JSF tags with tag classes
	The ValueBinding class
	The MethodBinding class
	Setting properties of a component
	Associating a tag with a component
	The UIComponentBase class
	The decoding process
	The encoding methods
	Rendering a component
	Associating a tag with a renderer
	The Validation process
	Updating model beans
	Summary

	Model beans and events in JSF
	Developing model beans
	Associating model beans with JSF components
	Telling the application that some value has changed or some event has occurred
	Event-generation mechanism in JSF
	Handling value-change events
	Handling value-change events vs. updating model beans
	Handling action events
	Navigation process
	Life-cycle processing phases of a JSF application
	Summary

	XForms-JSF integration strategy
	XForms-JSF integration requirements
	Integration steps
	Implementing the xforms-jsf:model component
	Writing the model bean that represents application-specific XML data
	Parsing the incoming XML instance data
	Implementing the xforms-jsf:selectOneRadio tag
	Implementing the UISelect1 component
	Implementing the xforms-jsf:commandButton tag
	Implementing the UIButton component
	Using the model, selectOneRadio, and commandButton tags
	Trying out the sample application

	XForms-JSF tag library
	Completing the XForms-JSF tag library
	Implementing the xforms-jsf:selectOneMenu component
	Implementing the xforms-jsf:selectOneListbox component
	Implementing the xforms-jsf:selectManyListbox component
	Implementing the xforms-jsf:selectManyCheckbox component
	Implementing the xforms-jsf:selectManyMenu component
	Implementing the xforms-jsf:inputText
component
	Implementing the xforms-jsf:inputSecret component
	Implementing the xforms-jsf:inputTextarea component
	How to distribute tag libraries
	A sample JSP page to try the XForms-JSF tag library

	Designing the XForms-JSF shopping cart
	What will our XForms-JSF shopping cart demonstrate?
	Components of the XForms-JSF shopping cart application
	The interaction of components in our shopping cart
	Rendering the catalog data (catalog view)
	Rendering the product data (product-specification view)
	Adding a product to the shopping cart (cart view)
	Editing the product entry from cart (edit product view)
	Saving edited product entries to the cart
	Summary

	Implementing the XForms-JSF shopping cart
	Implementing the NameValuePair, Category, and Product classes
	Using the xcart:category tag to generate the catalog
view
	Implementing the UICategory component
	Implementing the UICategoryActionListener class
	Implementing the CategoryData model bean
	Implementing the productView.jsp page, UIProduct component, and
ProductData model bean
	Implementing the cartView.jsp page, UICart component,
UICartActionListener, and CartData model bean
	Trying out the shopping cart

	Wrap-up and resources
	Summary
	Resources
	Your feedback

