
Using JSF technology for XForms
applications

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of contents
If you're viewing this document online, you can click any of the topics below to link directly to that
section.

1. About this tutorial... 2
2. A sample XForms application.. 5
3. The JSF architecture ... 29
4. How does a JSF component tree work?.. 42
5. Model beans and events in JSF .. 66
6. XForms-JSF integration strategy... 80
7. XForms-JSF tag library.. 118
8. Designing the XForms-JSF shopping cart....................................... 148
9. Implementing the XForms-JSF shopping cart 161
10. Wrap-up and resources... 200

Using JSF technology for XForms applications Page 1 of 201

Section 1. About this tutorial

What is this tutorial about?

This tutorial explains and demonstrates the use of JavaServer Faces (JSF)
technology to develop XForms applications. The JSF API (JSR-127) allows
enterprise Java developers to build user interfaces for their server-side
applications. XForms (a W3C recommendation) is an XML application that
provides a framework for designing XML-based data entry forms.

This tutorial covers XForms authoring requirements in a server-side Java
application. It provides the inside-out picture of the JSF technology and shows
how XForms authoring requirements fit into the JSF architecture. It also lists the
tasks required if developers are going to use JSF technology for XForms
authoring and demonstrates the development of a JSF tag library capable of
authoring XForms markup.

We will also develop a sample application (XForms-JSF shopping cart) so you
can see the concepts put to work in a real-world application.

JSF technology provides the API for authoring user interfaces, and XForms
defines the markup that needs to be produced. Therefore, it is natural to expect
that many Java application developers will need to author XForms markup
using the JSF API. That's why we have chosen XForms as our sample
application in this tutorial. However, the concepts presented are applicable to all
types of JSF applications, so we've provided sample code to help answer your
JSF technology questions.

Should I take this tutorial?

To take this tutorial, you should be a Java programmer with some knowledge of
JavaBeans and the JavaServer Pages (JSP) technologies. This knowledge is
necessary to understand most of the coding details and examples. You also
need to be familiar with XML.

This tutorial will help you:

° Understand the JSF architecture
° Know how the JSF framework internally works
° Know what is happening inside a JSF application
° Comprehend the different phases of a JSF application
° Develop your own JSF tag library

This tutorial is not for readers who simply want to use the existing JSF core and
HTML tag libraries. If you'd like to learn more about the existing JSF tag

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 201 Using JSF technology for XForms applications

libraries, there are some excellent resources available on developerWorks, as
detailed in Resources on page200 .

Tutorial topics

This tutorial is divided into the following sections:

° Section 1 is the introduction and overview.

° Section 2 covers the XForms authoring requirements in server-side Java
applications. To cover the authoring requirements, we'll use a shopping cart
application scenario, and present the flow of data and user interactions in an
XForms application. then we provide a list of requirements to fulfill if you are
to use XForms in a server-side Java application.

° Section 3 offers a high-level view of the JSF architecture. This section lists
the components required to build a JSF application. It covers many of the
core JSF technology concepts without going into the low-level details of
each concept.

° Section 4 provides low-level details of JSF technology concepts.

° Section 5 discusses the two important components you will build in almost
all your JSF applications: model beans and event handlers. This section
demonstrates the development of model beans to hold application data and
event handlers to handle JSF events. By the end of Section 5, you should
have enough knowledge about JSF technology to start building your own
JSF tag libraries.

° Section 6 demonstrates how you can use JSF technology to fulfill the
server-side requirements of XForms applications. This section will also
present the strategy for XForms-JSF technology integration and
demonstrate this strategy by developing three XForms-JSF components.

° Section 7 walks you through the development of many more XForms-JSF
components using the concepts we learned in Section 6. At the end of this
section, we will demonstrate how to build Java Archive (JAR) files to
distribute your own tag libraries.

° Finally, in sections 8 and 9, you'll put your JSF and XForms technology
knowledge to the test by building a comprehensive real-world application.

Code samples and installation requirements

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 3 of 201

To run the sample applications, you will need the following:

° J2SE V1.4.2
° J2EE V1.4.0 Update 1
° An application server
° An XForms browser

I tested the sample applications using J2SE V1.4.2, J2EE V1.4 (Update 1), Sun
Java System Application Server Platform Edition V8, and Forms Player V1.0
(XForms browser) on Microsoft Windows 2000 Professional Edition Service
Pack 2. You should be able to use any J2EE 1.4-compliant application server.

The sample applications are available in the source code download for this
tutorial. This download contains three zip files: section6.zip, section7.zip, and
section9.zip (see Resources on page 200). These files contain code for the
sample applications developed in their respective sections. The steps to try the
sample applications in an individual zip file are discussed in their relevant
sections.

About the author

Faheem Khan is an independent software consultant specializing in enterprise
application integration (EAI) and B2B solutions. You can reach him at
fkhan872@yahoo.com.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 201 Using JSF technology for XForms applications

mailto:fkhan872@yahoo.com

Section 2. A sample XForms application

How is XForms different from HTML forms?

Almost every Web application contains forms to interact with its users and
gather information. For this purpose, Web applications use HTML forms.

XForms is an advanced XML-based version of HTML forms. The World Wide
Web Consortium (W3C) has prepared the official specification of XForms, which
is currently a W3C recommendation. (See Resources on page 200 for the official
XForms information.)

XForms is based on years of experience using HTML forms. You can say that
XForms is the next-generation Web forms.

The major advantages of using XForms instead of traditional HTML forms:

° XForms separate the design of the user interface from the application data,
which means the same application data can be gathered from Web-site
users who are using different UIs. This feature lets us develop the UI
independent of the data model. In HTML forms, there is no concept of this
feature. Our sample shopping cart application will demonstrate this feature.

° XForms browsers wrap data in the form of XML structures. XML data flows
from the browser to the server and back. For example, if a user enters data
in an XForms input box, the text entered in the input box will be wrapped in
an XML tag and sent to the server. In HTML, data is sent to the server in
name value pairs. Data is then structured as soon as it is generated on the
client end. It is easier to manage structured data on the server side.

° These days, major database vendors support XML interfaces. Therefore,
you can map XML data from an XForms browser directly into your database
design.

° XForms uses XML Schema Definition to validate user data on the client side.
On the other hand, data entered in HTML forms is validated on the server
side or by implementing client-side scripts. XForms has almost entirely
eliminated the need for server-side processing or client-side scripting for
data validation.

We are not going to discuss the basic details of XForms syntax and format in
this tutorial. For that information, refer to Resources on page200).

In this section, we will explain how a typical XForms-based application works.
The details of this section will help you recognize the server-side processing
requirements of a typical application.

We have chosen the shopping cart as our sample application because they are

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 5 of 201

inherently form-rich and session-based applications. Therefore, while
discussing a shopping cart, we will have a good opportunity to demonstrate
XForms features in a session-based application.

While you go through the details of the shopping cart, you will get a clear idea
about the XML authoring and processing requirements of a typical XForms
application. The last topic of this section will summarize and list the server-side
processing requirements of an XForms application. Later, when we implement
the same concepts using the JSF framework, we will demonstrate how to use
JSF technology to fulfill these requirements.

Features of the sample XForms-based shopping cart

Now let's discuss our fictitious shopping cart application. The shopping cart will
have the following features:

° The startup page presents a catalog, which consists of categories and
products. We call this startup page the catalog view.

° The application allows you to browse through the catalog. Each category in
the catalog can have products and further subcategories. You can browse
through the structure of categories to reach the product of choice.

° If the user clicks a product, a new page opens. This page shows the details
of the product selected. Product details include its name, price, description,
features, and optional features. We call this page the product-specification
view. The product-specification view also contains an Add to cart button,
which the user can click to place this product in the shopping cart. It also
contains a Back to catalog view button to go back to the catalog view.

° Optional features will be displayed as check boxes.

° When the user clicks the Add to cart button, a new page will open. This page
will show the cart status (that is, the list of products already in the cart). We
call this the cart view.

° There are also Edit and Remove buttons associated with each individual
product in the cart view.

° If the user clicks Remove, the product will be removed from the cart.

° If the user clicks the Edit button associated with some product in the cart
view, another page will appear. This page allows the user to select or
deselect optional product features. We call this page the edit product view.

° The cart view also contains a Buy button, which will confirm the order with all

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 201 Using JSF technology for XForms applications

the products in the cart.

Views of the shopping cart

Our shopping cart will include the following views:

° Catalog view
° Product-specification view
° Cart view
° Edit product view

The catalog view shows a list of categories and products:

Note the following points from the catalog view screenshot shown above:

° The screenshot has three boxes: an ancestors box, a subcategories box,
and a products box, along with a Show Cart button.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 7 of 201

° The ancestors box shows the list of ancestors of the category shown in the
catalog view. Each ancestor in the list is shown as a button. The list of
ancestors starts with the top-level ancestor in the catalog and ends at the
category displayed in the catalog view. You might be wondering why we are
using buttons instead of anchors. Actually, XForms V1.0 (W3C
recommendation) does not have an element to render anchors. But the
XForms V1.0 specification says we can use styles to render buttons as
anchors. Most of the XForms browsers available have problems displaying
anchors, so the screenshot shows buttons instead of anchors.

In the screenshot, the ancestors box contains two categories: Catalog and
Computer. The Catalog category is the top-level category in our sample
catalog, and the Computer category is its immediate child. The catalog view
shown above is showing the ancestors, subcategories, and products of the
Computer category, so we can say that the Computer category is the
currently selected category. While browsing through the catalog, the user
can click any category to browse deeper into the catalog. The user can then
come back to the parent category by clicking it in the ancestor box.

° The subcategories box shows a list of all the subcategories in the selected
category. Each subcategory is rendered as a clickable button to view its
details. For example, in the screenshot above, the Computer category
contains Hardware and Software subcategories.

° The products box shows the entire list of products in the currently open
category. In the above screenshot, the Computer category contains only one
product: Computer Table.

° The Show cart button is a handy way to display the cart view anytime while
browsing through the catalog.

If the user clicks on any of the categories shown on the catalog view, a new
catalog view will appear, showing the subcategories and products in the
requested category.

If the user clicks on a product, the details of that product will appear on the
product-specification view, as shown in the following screenshot:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 201 Using JSF technology for XForms applications

The product-specification view renders the specifications, price, description, and
default, as well as optional features of a product. The product-specification view
allows the user to select from optional features of the product.

The product-specification view contains an Add to cart button, which will add the
product to the cart and display the status of the cart in the cart view. The
catalog view button in the screenshot above is a convenient method to go back
to the catalog view.

The cart view is shown in the following screenshot:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 9 of 201

The cart view shows a list of all products in the cart. This view will show the Edit
and Remove buttons with each product in the cart view. If the user clicks
Remove, the product associated with the button will be removed from the cart
and the cart view will be updated.

Clicking edit will take the user to the edit product view:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 201 Using JSF technology for XForms applications

The edit product view is similar to the product-specification view. Differences
between the product-specification view and edit product view:

° In the edit product view, the optional features that were selected while
adding the product to the cart will appear selected.

° The edit product view has a Save edited product button, instead of Add to
Cart.

° If the user clicks Save edited product, the changes in the optional features
against the edited product will be saved in the cart and the cart view will be
updated.

The following diagram shows the interactions between different views of our
shopping cart application:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 11 of 201

Map the numbers (associated with arrows in the figure shown above) with the
following points:

1. Clicking a category in the catalog view

2. Clicking a product in the catalog view

3. Clicking the Show cart button in the catalog view

4. Clicking the Back to catalog view button in the product-specification view

5. Clicking the Add to cart button in the product-specification view

6. Clicking the Remove button of a particular product in the cart view

7. Clicking the Edit button of a particular product in the cart view

8. Clicking the Back to cart view button in the edit product view; in this case, his
changes in the edit product view will be lost

9. Clicking the Save edited product button in the edit product view

10.Clicking the Back to catalog view button in the cart view

11.Clicking the Buy button in the cart view

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 201 Using JSF technology for XForms applications

XML structures for the shopping cart

Because XForms works on the idea of XML, our XForms-based shopping cart
will need XML structures. We are going to design the product XML structure,
which wraps the details of an individual product; and the category XML
structure, which wraps the details of a category in the catalog.

To see the details of these XML structures, look at the following XML, which
shows the specification of a product:

<product id="h_1" name="Intel_Pentinum4" catId="1.1">
<description>Intel P4 series processor.</description>
<price>410</price>
<features>
<feature>
<name>20 GB HD</name>
<description> A Hard Drive of 20 Giga

Byte</description>
</feature>
.

</features>
<optional-features>

<feature>
<name>CD-ROM</name>
<price>35</price>
<description>optional feature</description>

</feature>
.

</optional-features>
</product>

Notice the following points from the XML structure shown above:

° The root element in the XML structure listed above is product, which wraps
the details of a product like its ID, name, category (to which this product
belongs), description, price, features, and optional features.

° The ID is an attribute of the product element. Similarly, the product name
and ID of the category to which the product belongs (catId) are also
attributes of the product element.

° A product has two types of features: fixed (or standard) features and optional
features (which cost extra).

° The features element wraps all the fixed features for a product. Each
feature is wrapped inside a feature element, which in turn wraps the name
and description of the feature. For example, in the XML shown above, the
string "20 GB HD" represents the name of a fixed feature for the product
"Intel Pentium4." The description of the feature is "A Hard Drive of 20 Giga
Byte."

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 13 of 201

° The optional-features element wraps all the optional features for a
product. Individual optional features are represented by feature child
elements of the optional-features element. Each feature element
wraps the name, price, and description of the optional feature.

A category element represents an individual category shown in the catalog
view. A category element wraps products and subcategories. All the top-level
category elements reside inside the root categories element. For example,
have a look at the following XML:

<categories>
<category id="1" name="Computer">
<category id="1.1" name="Hardware" catId="1">

<description>Hardware products for PC.</description>
<product id="h_1" name="Intel_Pentinum4" catId="1.1">
.

</product>
<!-- other products and subcategories -->

</category>
<!-- other subcategories -->

</category>
<!-- other categories -->

</categories>

Notice the following points from the XML structure shown above:

° A categories tag wraps all the categories in the catalog.

° The information of a particular category is wrapped in a category element.

° The name, ID, and ID of the parent category (to which this category belongs)
are attributes of the category element.

° The subcategories in a category are wrapped in the category children of
the category element.

° The products in a category are wrapped in product children of the
category element. We have already discussed the structure of the
product element.

Next, we'll explain the product specification page of the shopping cart. We have
chosen to explain that page before explaining the other pages of the shopping
cart because this will help you understand some important XForms tags and the
subsequent discussion on how the shopping cart works.

Using XForms

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 201 Using JSF technology for XForms applications

Now we will explain the use of XForms elements in an HTML file by taking the
markup that generates the product specification view. The XML markup that
generates the product-specification view is shown here:

<?xml version="1.0" encoding="iso-8859-1"?>
<html xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:xforms="http://www.w3.org/2002/xforms">
<head>
<title>Xforms-JSF shopping cart</title>
<xforms:model xmlns:xforms="http://www.w3.org/2002/xforms"

id="myModel">
<xforms:submission action="/XCart/faces/productView.jsp"

method="post" id="submit"/>
<xforms:instance>

<data>
<action-performed></action-performed>
<selectedFeatures></selectedFeatures>

</data>
</xforms:instance>

</xforms:model>
</head>
<body>
<h3> X-Cart Product Detail </h3>
<table width="100%">
<tr>
<table colspan="3" border="1" width="70%">

<!-- product details in tabular form-->
</table>

</tr>
</table>
<xforms:select ref="options" appearance="full"
xmlns:xforms="http://www.w3.org/2002/xforms">
<xforms:label>Optional Features: </xforms:label>
<xforms:item>
<xforms:label>CD-ROM ------- Price(35$) </xforms:label>
<xforms:value>CD-ROM</xforms:value>

</xforms:item>
<!-- other xforms:item instances-->

</xforms:select>
<xforms:submit submission="submit"

xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:ev="http://www.w3.org/2001/xml-events">
<xforms:action ev:event="DOMActivate">
<xforms:setvalue

ref="action-performed">_id1</xforms:setvalue>
</xforms:action>
<xforms:label>Add to cart</xforms:label>

</xforms:submit>
<xforms:submit submission="submit"

xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:ev="http://www.w3.org/2001/xml-events">
<xforms:action ev:event="DOMActivate">
<xforms:setvalue

ref="action-performed">id2</xforms:setvalue>
</xforms:action>
<xforms:label>Back to catalog view</xforms:label>

</xforms:submit>
</body>
</html>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 15 of 201

This XML markup is actually an HTML page, which contains some XForms
elements. You can easily identify the following components of this
product-specification markup:

° The header that contains an XForms element named xforms:model

° The xforms:select element in the body of the HTML page
° The two xforms:submit elements, which are included in the body of the

HTML page

Now let's see each component of the product-specification page one by one.
The next section explains the XForms model element.

The model element

Look at the xforms:model element:

<xforms:model xmlns:xforms="http://www.w3.org/2002/xforms"
id="myModel">
<xforms:submission action="/XCart/faces/productView.jsp"
method="post" id="submit"/>
<xforms:instance>

<data>
<action-performed></action-performed>
<selectedFeatures></selectedFeatures>

</data>
</xforms:instance>

</xforms:model>

The model element of XForms behaves like the form tag of HTML. The model
element:

° Wraps the structure of application-specific XML data. In our case, the
application-specific data structure is the data element. The
application-specific XML data is the XML structure that will be used for data
interchange between the client and server. And this application-specific XML
structure always comes in the instance element of the XForms model
element.

° Provides the submission logic of data, which involves various bits of
information, such as the method of submission (for instance, post, get,
etc.), the URL used for the submission (that is, the address of the server),
what data to submit (that is, the ref attribute), etc.

First, let's see how an xforms:model element wraps the structure of
application-specific XML data.

Look at the xforms:instance element:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 201 Using JSF technology for XForms applications

<xforms:instance>
<data>

<action-performed></action-performed>
<selectedFeatures></selectedFeatures>

</data>
</xforms:instance>

Notice the following points:

° There should be just one child of the instance element. For example, the
instance element shown above has just one child named data, which
wraps the complete application-specific data.

° The application-specific XML structure in the instance element wraps the
user's data. For example, if the selectedFeatures child of the data
element is associated with some user interaction element (such as a
selection list), the selectedFeatures element will wrap the user's
selection during data transfer from the client browser to the server. Later,
you'll see how to associate user interaction components with different
elements in application-specific XML.

Here's how the xforms:model specifies how to submit (or send) user data to
the server. Have a look at the xforms:submission element:

<xforms:model>
..
<xforms:submission action="/XCart/faces/productView.jsp"

method="post" id="submit"/>
..

</xforms:model>

Notice the following points:

° An XForms submission element is used.

° This element has three attributes: action, method, and id.

° The action attribute specifies the URL for submitting data (the HTTP
address of a Web server).

° The method attribute contains information about the way data will be sent
back to the URL mentioned in the action attribute. For example, if the
method is specified as "POST," data will be sent back to the server using
the HTTP POST method.

° The string specified in the id attribute value works as an identifier for the
submission element. There can be more than one submission child of a
model element. Each submission element will be identified using its id
attribute value.

In The submit element on page 20, you'll learn how to associate a user interface

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 17 of 201

button with a submission element.

The select element

We have said that the instance element defines the structure of
application-specific XML data. We have seen the structure of XML data, but
where does the data come from?

Naturally, it's the user's data, so it has to come from the user. Some user
interface XForms elements (such as a selection list) will fetch the user's data
and wrap it inside some application-specific child of the xforms:instance
element before sending the user's data to the server.

To understand how this works, look at the select element inside the body of
the product specification markup:

<xforms:select ref="options" appearance="full"
xmlns:xforms="http://www.w3.org/2002/xforms" model="myModel">
<xforms:label>Optional Features:

</xforms:label>
<xforms:item>
<xforms:label>CD-ROM --------- Price(35$)

</xforms:label>
<xforms:value>CD-ROM</xforms:value>
</xforms:item>
<!-- other xforms:item instances-->

</xforms:select>

The output of the above XForms markup is shown in the following screenshot:

Let's see the behavior of the select element shown above, then we'll see how
it will map the user's data to specific elements or attributes of the
application-specific XML data.

The following points depict the behavior of the select element:

° The behavior of the select element is similar to the <input
type="checkbox"> tag of HTML.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 201 Using JSF technology for XForms applications

° The select element provides a list of options (a selection list) to the user,
who can select one or more options from it.

° The label child of the select element is used to display a common label
for all the options in the selection list. We have used "Optional Features,"
which appears as the label for the selection list in the screenshot.

° The item child of the select element represents one option from the list of
options in the selection list.

° The label child of the select element wraps the label for the option.

° The value child of the select element wraps a string value, which will be
copied into the application-specific XML if the user selects this option.

Now we'll map a user interface element (such as the select element
discussed above) to application-specific XML data. Take a look at the following
XML:

<html
xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:xforms="http://www.w3.org/2002/xforms">
<head>
<xforms:model xmlns:xforms="http://www.w3.org/2002/xforms"

id="myModel">
<xforms:submission action="/XCart/faces/productView.jsp"
method="post" id="submit"/>

<xforms:instance>
<data>
<action-performed></action-performed>
<selectedFeatures></selectedFeatures>
</data>

</xforms:instance>
</xforms:model>

</head>
<body>
.
<xforms:select ref="options" appearance="full"

xmlns:xforms="http://www.w3.org/2002/xforms" model="myModel">
<xforms:label>Optional Features:

</xforms:label>
<xforms:item>

<xforms:label>CD-ROM --------- Price(35$)

</xforms:label>

<xforms:value>CD-ROM</xforms:value>
</xforms:item>
<xforms:item>

<xforms:label>CD-Writer ---------
Price(45$)
</xforms:label>

<xforms:value>CD-Writer</xforms:value>
</xforms:item>
<xforms:item>

<xforms:label>Combo-RW ---------
Price(65$)
</xforms:label>

<xforms:value>Combo-RW</xforms:value>
</xforms:item>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 19 of 201

<xforms:item>
<xforms:label>Floppy_Drive -------

Price(10$)
</xforms:label>
<xforms:value>Floppy_Drive</xforms:value>

</xforms:item>
</xforms:select>
.

</body>
</html>

Because a single HTML document can contain a number of xforms:model
elements, we have to identify which model a particular select element refers
to. The model attribute of the select element is used to establish an
association between the select and model elements. The model attribute
value of the select element matches the id attribute value of the model
element. The model attribute of the select element in our
product-specification page indicates that the select element is associated with
the model whose id attribute has the value "myModel."

In addition to specifying which model element wraps the application-specific
XML data associated with a particular select element, the select element
also needs to specify which element or attribute of the application-specific XML
wraps the user's choices. The ref attribute value of the select element
establishes this association. Notice from the select element shown above that
its ref attribute value is "selectedFeatures." This is actually an XPath query,
which specifies that the selectedFeatures element within the
application-specific XML data wraps the user's choice.

Let's use an example to elaborate on these ideas. If the user selects the first
and third option from the list, the application-specific XML will look like the
following code:

<data>
<action-performed></action-performed>
<selectedFeatures>Combo-RW CD-ROM</selectedFeatures>

</data>

The above XML wraps the value of the first and third elements (specified in the
value elements of their respective items). The content of the value elements
is concatenated together with a space between them in the application-specific
XML.

The submit element

Let's discuss the xforms:submit element that immediately follows the
xforms:select element in the product-specification page:

<xforms:submit submission="submit">
<xforms:action ev:event="DOMActivate">

<xforms:setvalue

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 201 Using JSF technology for XForms applications

ref="action-performed">_id1</xforms:setvalue>
</xforms:action>
<xforms:label>Add to cart</xforms:label>

</xforms:submit>

This markup will generate the following view, which resembles a button:

We explained the purpose of the xforms:submission element while
discussing the XForms model element, but when will this submission be
initiated? To initiate the submission process, XForms provides the submit
element, whose graphical view resembles a button.

The submit element:

° Behaves like the <input type="submit"> tag in HTML.

° Renders a button with a label on it that is specified in the label child of the
submit element.

° Is used to submit data (wrapped in an XML structure) to the URL mentioned
in the action attribute of the submission element.

° Can include different types of submissions in the same model element. For
each type of submission, there will be one submission element in the
model. Therefore, we need some mechanism in the submit element to
specify which submission this submit button will invoke. Notice the
submission attribute in the submit element in the markup shown above.
The value of the submission attribute identifies the XForms submission
element (a child of the model element), which should be invoked by clicking
a button.

When the user clicks the button, an xforms-submit event is fired that initiates
the XForms submission element defined in the XForms model element. The
XForms submission element will send the user's data wrapped in
application-specific XML to the URL mentioned in the action attribute of the
XForms submission element using the method specified in the method
attribute.

We have provided detailed information about the xforms:model,
xforms:select, and xforms:submit elements. This information applies to
the different UI elements of XForms. Later, we will introduce many more UI
elements (like XForms input, select, and select1). These UI elements use
the same concept of associating the user's data with application-specific XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 21 of 201

User interaction and flow of data in our shopping cart
application

Now we will discuss the sequence of events that occurs when a user accesses
the shopping cart. In particular, we will focus on the XML data interchange that
will take place between the shopping cart application and client.

For now, we won't worry about how the application performs all authoring tasks.
We are only concerned with what it authors. Later, we'll demonstrate how the
application uses JSF technology to fulfill the authoring tasks.

Look at the following figure, which shows the sequence of events that occurs
when a user visits our shopping cart (different events are marked as numbers in
the figure):

The events of the figure are explained below:

1. Suppose that a user requests the following URL:

www.aFictiousShoppingCart.com

2. On receipt of this request, the shopping cart application loads the XML
structure from the database that contains the catalog data.

3. The shopping cart application gets the information for products and
categories from the XML structure, and generates the following markup that
renders the catalog view to the user:

<html
xmlns:xhtml="http://www.w3.org/1999/xhtml"

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 201 Using JSF technology for XForms applications

xmlns:xforms="http://www.w3.org/2002/xforms">
<head>

<xforms:model>
<xforms:submission action="/myXCart/faces/catalogView.jsp"

method="post" id="submit" />
<xforms:instance>

<data>
<action-performed></action-performed>
<selectedFeatures>Combo-RW CD-ROM</selectedFeatures>

</data>
</xforms:instance>

</xforms:model>
</head>
<body>
<table width="100%" >
<tr>
<table border="1" width="100%">
<tr>
<td>Catalog</td>

</tr>
</table>
<table border="1" width="100%">Sub-Categories
<tr>
<td>
<xforms:submit submission="submit" >

<xforms:label>Computer</xforms:label>
<xforms:action ev:event="DOMActivate">
<xforms:setvalue ref="action-performed">

_id1@1
</xforms:setvalue>

</xforms:action>
</xforms:submit>
</td>

</tr>
<!-- remaining catalog data markup in same pattern -->

</table>
</tr>

</table>
</body>
</html>

The above markup will render a list of categories and products (catalog
view) in the form of buttons as shown in Views of the shopping cart on page
7.

4. The shopping cart application sends back the above markup to the XForms
browser.

5. Now suppose the user clicks a product with ID five. The browser will send
the request to the Web server with following XML structure:

<data>
<action-performed>_id1@5</action-performed>
<selectedFeatures>Combo-RW CD-ROM</selectedFeatures>

</data>

The data wrapped in the action-performed element has two parts
separated by an "@" symbol. The prefix of "@" (_id1) indicates the ID of
the server-side Java component (that authored the markup for the catalog

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 23 of 201

view). The postfix of "@" (5) represents the ID of the selected product.

6. On receipt of the request, the shopping cart application parses the XML
structure in the request and extracts the product's ID from it.

7. The shopping cart application then extracts the product's XML structure
against the ID retrieved in step 6 from the XML structure extracted from the
database in step 2. The product XML structure contains the details of the
product.

8. In response, the shopping cart application generates the following markup
and sends it to the XForms browser:

<?xml version="1.0" encoding="iso-8859-1"?>
<html xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:xforms="http://www.w3.org/2002/xforms">

<head>
<title>JSF_n_Xforms shopping cart</title>
<xforms:model xmlns:xforms="http://www.w3.org/2002/xforms"

id="myModel">
<xforms:submission action="/XCart/faces/productView.jsp"

method="post" id="submit"/>
<xforms:instance>

<data>
<action-performed></action-performed>
<selectedFeatures></selectedFeatures>

</data>
</xforms:instance>

</xforms:model>
</head>
<body>
<h3> X-Cart Product Detail </h3>
<table width="100%">
<tr>
<table colspan="3" border="1" width="70%">
<tr>

<td>Product_ID</td>
<td>h_1</td>

</tr>
<!-- other product details -->

</table>
</tr>
</table>
<xforms:select ref="options" appearance="full"
xmlns:xforms="http://www.w3.org/2002/xforms">
<xforms:label>Optional Features: </xforms:label>
<xforms:item>
<xforms:label>CD-ROM --------- Price(35$)

</xforms:label>
<xforms:value>CD-ROM</xforms:value>

</xforms:item>
<xforms:item>
<xforms:label>

CD-Writer --------- Price(45$)
</xforms:label>
<xforms:value>CD-Writer</xforms:value>

</xforms:item>
<!-- other xforms:item instances-->

</xforms:select>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 201 Using JSF technology for XForms applications

<xforms:submit submission="submit"
xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:ev="http://www.w3.org/2001/xml-events">
<xforms:action ev:event="DOMActivate">
<xforms:setvalue ref="action-performed">

_id1
</xforms:setvalue>

</xforms:action>
<xforms:label>Add to Cart</xforms:label>

</xforms:submit>
<xforms:submit submission="submit"
xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:ev="http://www.w3.org/2001/xml-events">
<xforms:action ev:event="DOMActivate">
<xforms:setvalue ref="action-performed">

_id2
</xforms:setvalue>

</xforms:action>
<xforms:label>Back To Catalog View</xforms:label>

</xforms:submit>
</body>
</html>

The graphical view of the above markup is already shown in Views of the
shopping cart on page 7.

9. Now suppose that the user selects first and second optional features of the
product shown on the product-specification view, and clicks the Add to cart
button. On clicking Add to cart, the browser wraps the values corresponding
to the selected features ("CD-ROM" and "CD-Writer") and the ID of the
button clicked ("_id2") in the request, then forwards the request to the
shopping cart application. The XML structure that carries the user's data to
the shopping cart application:

<data>
<action-performed>_id2</action-performed>
<options>CD-ROM CD-Writer</options>

</data>

Notice from this XML that the action-performed tag wraps the "ID" of the
button, and the options tag contains all the features the user selected.

10.The shopping cart application receives the request, parses the incoming
XML structure, extracts data about the selected features, and saves the data
in server-side objects.

11.The shopping cart application will respond with the following markup, which
renders the cart view on the user's browser:

<html xmlns:xhtml="http://www.w3.org/1999/xhtml"
xmlns:xforms="http://www.w3.org/2002/xforms">

<head>
<title>JSF_n_Xforms shopping cart >> Cart View

</title>
<xforms:model>

<xforms:submission action="/myXCart/faces/cartView.jsp"
method="post" id="submit"/>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 25 of 201

<xforms:instance>
<modelXML>
<action-performed></action-performed>

</modelXML>
</xforms:instance>

</xforms:model>
</head>
<body>
<table border="1">
<ol type="1"><tr>

<td>Intel_Pentinum4</td>
<td><xforms:submit submission="submit" >
<xforms:label>Edit</xforms:label>
<xforms:action ev:event="DOMActivate">
<xforms:setvalue ref="action-performed">

_id1@0@edit
</xforms:setvalue>

</xforms:action>
</xforms:submit></td>
<td><xforms:submit submission="submit" >
<xforms:label>Remove</xforms:label>
<xforms:action ev:event="DOMActivate">
<xforms:setvalue ref="action-performed">

_id1@0@remove
</xforms:setvalue>

</xforms:action>
</xforms:submit></td>

</tr>
</table>
<xforms:submit submission="submit">

<xforms:label>Remove</xforms:label>
<xforms:action ev:event="DOMActivate">
<xforms:setvalue ref="action-performed">

_id2
</xforms:setvalue>

</xforms:action>
</xforms:submit>

</body>
</html>

The graphical view of the above markup is shown in Views of the shopping
cart on page 7.

12.Recall from Views of the shopping cart on page 7 that each product in the
cart will have a set of edit and Remove buttons. If the user clicks the Edit
button, the XForms browser forwards the following XML:

<data>
<action-performed>_id1@0@edit</action-performed>

</data>

The data wrapped in the action-performed tag consists of three parts
separated by an "@" symbol. The prefix of the first "@" (_id1) symbol (from
the left) indicates the ID of the server-side Java component. The postfix of
"@" (0) represents the ID of the selected product. The last string (edit
identifies the button clicked.

13.The shopping cart application parses the XML structure, extracts the "ID" of

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 201 Using JSF technology for XForms applications

the product for editing, and generates the markup for the edit product view.
The markup generated for the edit product view is similar to the markup
shown in step 8.

14.The shopping cart application sends the markup for the edit product page to
the user's browser.

15.If the user clicks Remove, the XForms browser forwards the following XML
to the shopping cart application:

<data>
<action-performed>_id1@0@remove</action-performed>

</data>

16.On receipt of the request, the shopping cart application parses the XML
structure, extracts the "ID" of the product, removes the product from the cart,
and updates the cart view.

17.The shopping cart application responds with the updated cart view.

18.When the Buy button in the cart view is clicked, the browser forwards the
following XML to the shopping cart application:

<data>
<action-performed>_id2</action-performed>

</data>

19.On receipt of the XML above, the shopping cart application parses the XML
structure, extracts the ID of the button from XML, then removes the product
from the cart and updates the cart view.

In this section, we mostly we discussed the XML structures, but we did not
mention who generates these markups and how. XForms-JSF integration
strategy on page 80 andXForms-JSF tag library on page 118 will address these
issues. They will show how we can use the JSF architecture to generate the
different shopping cart views discussed here. We will explain the server-side
responsibilities for generating these markups while demonstrating the whole
XForms-JSF shopping cart application.

Server-side processing requirements of an XForms
application

We have already discussed the details of XML formats and data interchange in
our shopping cart. Keeping in mind the XML flow of data we described, you'll
see how our shopping cart application will have the following responsibilities on
the server side:

° Render XForms markup

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 27 of 201

Most importantly, our Shopping cart application will have to render XForms
markup, so that the XForms browser can properly display XForms
components.

° Author the XML formats

Our shopping cart application will have to author XML formats that will be
used to track the user interactions on the client side. It is the
application-specific XML wrapped inside the XForms model element.

° Parse the XML request

In an XForms application, user data is sent to the server wrapped in an XML
structure. Therefore, our shopping cart application will have to parse the
XML request to extract user data from the request.

° User interaction with the XForms components

In addition to all the above, our shopping cart application will have to
implement a mechanism to track the user's interactions with XForms
components on the client side. For example, if a user clicks an XForms
button, the server-side application needs to know which button was clicked.

° Talk to a database

The XForms shopping cart application will have to interact with some data
source to get application-specific data. For the sake of simplicity, our sample
shopping cart implementation in Implementing the XForms-JSF shopping
cart on page 161 will get the application data from an XML file.

In the next three sections, we will explain the JSF architecture to demonstrate
how to use JSF technology to fulfill the server-side authoring and processing
requirements stated above.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 201 Using JSF technology for XForms applications

Section 3. The JSF architecture

Components of a JSF application

In the previous section, we saw how an XForms application works. Our ultimate
goal in this tutorial is to explain and demonstrate the use of JSF technology to
fulfill the server-side authoring and processing requirements of an XForms
application. But before we can do that, we have to dig deep inside JSF
technology and see what's there.

First, we'll provide a high-level view of JSF technology to acquaint you with all
the components of a JSF application. You will learn how it works, what a JSF
tag library is, and how an application uses the JSF tag library.

Because this section is designed as a high-level view, we will not go into the
details of individual concepts. Subsequent sections will explore further details of
the concepts discussed here.

Let's start our discussion by dividing a JSF application into different types of
modules. If you are developing a JSF application, you will find that it is roughly
divided into the following four types of modules:

° Java classes that belong to the JSF framework
° The JSF tag library
° JSPs that author the UI of your application by using JSF tags
° JavaBeans that comprise the business logic and application data of the JSF

application

The first item is the basic framework that enables the other three types of
modules to work properly. There are various Java classes that form the JSF
framework. You'll explore these classes further in How does a JSF component
tree work? on page 42, which explains the purpose and methods in each class.

The second item (the JSF tag library) allows the JSF applications to run as
JSPs. The concept of tag libraries is part of the extensibility framework of JSP
technology and is not new with JSF technology. The JSF tag libraries are just
like normal JSP tag libraries; the only difference is that tags in a JSF library
work according to the JSF framework.

The last two items in the list (JSPs and JavaBeans) are application-specific
modules, which means you will develop them once for each JSF application.

In this tutorial, we'll demonstrate the use of the JSF framework. While doing so,
we will develop two tag libraries and several JSPs, as well as many JavaBeans.

We will use the terms "tag library-specific" and "application-specific" often. Tag
library-specific means that something applies to the entire tag library, no matter
which application this tag library is used in. Application- specific means that
something is specific to the application and may not be applicable if the same

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 29 of 201

tag library is used in another JSF application.

JSF tags and JSF components

The JSF tag library is a collection of reusable components required to develop a
JSF application. When you develop a JSF application, you will use these
components in your application without changing them.

To understand a JSF tag library, we need to know how the JSF tags and JSF
components work. A JSF tag is what you will write inside a JSP page. A JSF
component is the back-end class that wraps the functionality of a JSF tag.

Each JSF tag has a tag handler class. This tag handler class basically
associates the JSF tag with a JSF component. We will discuss the tag handler
class in detail in The UIComponentTag class on page43 .

JSF tags are declared in a tag library descriptor (TLD) file. This TLD file
specifies the tag handler class associated with a particular JSF tag. It also
declares the attributes that a JSF tag can have. We will discuss TLD files in
detail in Associating JSF tags with tag classes on page45 .

For example, look at the following JSF tag:

<jsf:selectManyCheckbox/>

In a JSP page, this tag provides the user with an option to select from a list of
given choices, just like check boxes in HTML. The behavior of the
selectManyCheckbox tag is shown in the following points.

° The JSF tag above renders the following HTML markup:

<table border="0">
<tr><td><input type="checkbox" name="_id0"

value="Red">Red</td></tr>
</table>

The JSF component will generate the response markup for the JSF tag by a
process called rendering or encoding. The rendering process is basically
done in the encode methods of the JSF component class (the back-end
class). In The UIComponentBase class on page 55, we will discuss the JSF
component class in detail.

° The HTML markup above provides the user with an option to select choices
from a list of given choices. Suppose the user selects some options and
submits it to the Web server in the form of a JSF request. When the request
reaches the server side, the JSF component class associated with the JSF
tag parses the request and detects the options selected by the user. The
JSF component class contains a method named decode(), which parses
all incoming JSF requests. The parsing of JSF requests is technically known

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 201 Using JSF technology for XForms applications

as the decoding process. We will describe the decoding process in The
decoding process on page56 .

° The options retrieved from the JSF request (during the decoding process)
need to be saved somewhere. Normally, a JSF application uses server-side
Java objects for this purpose. These server-side Java objects are called
model beans, which are basically Java classes used to manage
application-specific data. The JSF component class contains a method
named updateModel(), which stores the options in the model bean. We
will discuss the model beans in detail in Model bean wrappers for
application's business logic and data on page 33. We'll discuss the
updateModel() method in Updating model beans on page63 .

You will include the jsf:selectManyCheckbox tag in a JSP page and
configure your application in such a way that a corresponding JSF component
class will become associated with the tag. The JSF component class will
provide the behavior stated in the above points.

Whenever you develop a tag library, make sure that your component classes
provide the required behavior. Later, when an application developer uses your
tag library in a JSF application, your JSF components will provide the required
functionality to the application.

As we will see later, an application developer can associate JSF tags with
different JSF components while developing a JSF application. This process
enables the application developer to decide more easily what functionality
should be included in an application.

The JSF framework simply enables the use of JSF tags and components in a
JSF application so that reusable JSF components can be simply plugged into
any JSF application, thereby providing their functionality on its own.

We would like to mention that the JSF technology reference implementation
from Sun Microsystems comes with a tag library you can use in your
applications. You can also develop your own JSF tag libraries. XForms-JSF
integration strategy on page 80 andXForms-JSF tag library on page 118
demonstrate the development of a custom JSF tag library.

Using JSF tags in JSPs

Now we will look at how to use JSF tags in a JSP page.

You will use JSPs in a JSF application the way you use JSPs in any server-side
Java application. You will put your JSF tags in a JSP page and pass model
beans to JSF components.

For example, look at the following JSP code:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 31 of 201

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<head>

<title>Sample Page</title>
</head>
<body>

<f:view>
<h:form formName="myForm">
<h:selectManyCheckbox

value="{productData.selectedOptionalFeature}">
<f:selectItems

value="{productData.optionalFeatures}"/>
</h:selectManyCheckbox>
<h:commandButton label="Submit" >

<f:actionListener type="jsf.DemoActionListener"/>
</h:commandButton>

</h:form>
</f:view>

</body>
</html>

Notice the following points:

° We have used the taglib directives of JSP technology to include the JSF
tag library. The uri attribute of the taglib directive specifies the location of
the tag library. In the code above, we have included two tag libraries. One is
the core JSF tag library (http://java.sun.com/jsf/core), and the
other is the JSF HTML tag library (http://java.sun.com/jsf/html).
These two libraries come with the reference implementation.

° The prefix attribute of the taglib directive specifies a short prefix to
access a particular tag from the tag library in the JSP page. The prefix is
defined once and used in the JSP page at many places.

° All the JSF tags are wrapped inside the f:view tag. The component class
associated with the f:view tag is the UIViewRoot class. Because the
f:view tag wraps all the JSF tags in a JSP page, the UIViewRoot class
will be the parent of all the JSF components in a JSP page. We can also say
that a UIViewRoot object will always be the root of all JSF component
classes in a JSP page.

° The JSPs consist of JSF and non-JSF tags. Each of the JSF tags in a JSP
page wraps its own behavior. In the above markup, we used the JSF tags
like f:view, h:form, h:selectManyCheckbox, f:selectItems, and
h:commandButton. We also used HTML tags like head, title, and body.

The JSF framework provides a separation between the behavior and
presentation of a component. If we develop a non-JSF application using JSPs,
we write a tag's behavior and presentation on the same page. The JSF
framework has separated both things by providing presentation on the JSP
page and by encapsulating the behavior of the tag inside the JSF component
class, enhancing reusability of components.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 201 Using JSF technology for XForms applications

Model bean wrappers for application's business logic
and data

Model beans are application-specific Java classes that wrap the business logic
of a JSF application. The purpose of model beans is to provide
application-specific data to JSF components.

The JSF components use the data provided by model beans and update the
model beans with fresh data coming from the user.

For example, look at the following use of the selectManyCheckbox tag from
our shopping cart application:

<jsf:selectManyCheckbox
value="{productData.selectedOptionalFeatures}">
<f:selectItems value="{productData.optionalFeatures}"/>

</jsf:selectManyCheckbox>

The value of the "value" attribute refers to a model bean and its property. The
value attribute of the selectManyCheckBox tag above has a string value
"{productData.selectedOptionalFeatures}." This string specifies a model bean
and its property. In this case, productData is an application-specific model
bean and selectedOptionalFeatures is one of its properties that stores
the options selected by the user.

Similarly, you can check the value of the value attribute of the f:selectItems
child of the selectManyCheckbox element. productData is the same model
bean whose optionalFeatures property contains the list of all the options
available for the user.

Recall Views of the shopping cart on page 7, in which we provided a screenshot
for the product-specification view. That screenshot contains optional features;
the JSF component class against the selectManyCheckbox tag will interact
with the model bean and access the optional features from model beans
property mentioned in the "value" attribute above. We will discuss the
interaction of a JSF component with model beans in Associating model beans
with JSF components on page67 .

Before we detail the concepts introduced in the above section, you should
understand the JSF framework, which is explained in the next section.

The JSF framework

To explain how the JSF framework operates, we have to discuss the following
classes, which play an important role in the JSF framework:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 33 of 201

° The FacesServlet class
° The Lifecycle class
° The FacesContext class

The FacesServlet class initiates the JSF framework. As you know, any class
that wants to become a servlet has to implement the Servlet interface. The
FacesServlet class implements the Servlet interface to become a servlet.

The JSF framework revolves around request-response life cycles. We call this
request-response life cycle the JSF processing life cycle. The Lifecycle class
manages the complete JSF processing life cycle.

A JSF request goes through six phases, which we'll introduce in Life-cycle
processing phases of a JSF application on page 77. TheLifecycle class
executes each phase of the JSF framework.

The FacesContext class wraps all the information about a JSF request. We
will discuss the FacesContext class in detail in The FacesContext class on
page36 .

How to make FacesServlet handle your requests

When a server-side Java application receives a request from a browser, it
needs to invoke a servlet. If the request is for a JSF application, the
FacesServlet should be the servlet to handle the incoming request.

To instantiate the FacesServlet class, you need to tell your servlet container
to use FacesServlet to process JSF requests. For this purpose, you need to
make the following entries in your web.xml file:

<servlet>
<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.faces</url-pattern>

</servlet-mapping>

Note the following points in the markup above:

° The servlet element wraps three types of information in three different
elements: servlet name, servlet class, and load on startup.

° The servlet-name element specifies the servlet name, which the JSF
framework will use to access the servlet. The name of the servlet is "Faces
Servlet."

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 201 Using JSF technology for XForms applications

° The servlet-class element wraps the fully qualified name of the servlet
class. Above, the servlet-class element contains
javax.faces.webapp.FacesServlet.

° The content of the load-on-startup element indicates whether the
servlet should be loaded when an application starts.

° The servlet-mapping element contains servlet-name and
url-pattern child elements.

° The servlet-name element wraps the name of the servlet that should be
loaded on finding a specific pattern in the request URL.

° The url-pattern element wraps the pattern string, which, if found in the
request URL, will result in the invocation of the servlet specified by the
servlet-mapping element.

The servlet-mapping element above tells the servlet container that
whenever the string ".faces" comes in the URL, the
javax.faces.webapp.FacesServlet class should handle the request. For
example, look at the following:

http://localhost:8080/XCart/index.faces

When the container sees the ".faces" string in the URL, it loads the
FacesServlet as described above.

Now, let's see how the FacesServlet will handle a JSF request.

Methods in the FacesServlet class

Like all servlets, the FacesServlet implements the init() and service()
methods.

After selecting the FacesServlet, the servlet container calls the init()
method of the FacesServlet class to instantiate the servlet. The init()
method must complete successfully before the servlet can receive any
requests.

The init() method of the FacesServlet class creates an instance of the
Lifecycle object. The Lifecycle object is common across all JSF sessions.
This instance of the Lifecycle class will be used to execute different phases
of the JSF processing life cycle. We will discuss the Lifecycle class in detail
in the next section.

Whenever the container receives a JSF request, it will call the service()

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 35 of 201

method of the FacesServlet class, passing the request along with the
method call. The service() method does the following:

1. It uses appropriate factory classes to instantiate a FacesContext object.
We'll discuss the FacesContext class in detail in The FacesContext class
on page36 .

2. It then populates the FacesContext object with request data.

3. Next, it calls the execute() method of the Lifecycle class, passing the
FacesContext object along with the method call. The call for the
execute() method starts the JSF processing life cycle. We will discuss the
Lifecycle class in detail in the next section.

4. After the execute() method call, it calls the render() method of the
Lifecycle class, passing the FacesContext object along with the
method call. The render() method generates the response markup against
the requested JSP page.

Now, let's see how the Lifecycle class manages the JSF request life cycle.

The Lifecycle class

The Lifecycle class executes and manages the JSF request processing life
cycle for a JSF request.

The Lifecycle class contains two important methods: execute() and
render(). We said that the service() method of the FacesServlet class
calls the execute() and render() methods and passes it the
FacesContext object.

The execute() and render() methods are of special importance because all
JSF request processing is accomplished by these two methods.

Now let's see the FacesContext class.

The FacesContext class

All the information regarding a JSF request and response resides inside a
context named FacesContext. The object of FacesContext was instantiated
by the service() method of FacesServlet after receiving a request from
the client.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 201 Using JSF technology for XForms applications

The FacesContext class contains the methods you can use to fetch
information regarding the application context. For example, when any
component requires application-specific information, it calls the
getApplication() method of the FacesContext class. We will use the
getViewRoot() method to get the root JSF component of a JSP page.

We will use many methods of the FacesContext class extensively throughout
this tutorial. You will learn more about the FacesContext class as we
proceed.

In the next section, we will explain the sequence of events that occurs when a
user requests a JSF application.

The URL processing life cycle in a JSF application

We will explain the URL processing life cycle for a JSF application in two
scenarios.

The first scenario (Scenario I) will discuss the sequence of events that occurs
when a user makes a request for a JSF page by entering the URL in the
address bar of a browser. This scenario takes place when a user requests the
first page of a JSF application.

The second scenario (Scenario II) will discuss the sequence of events that
occurs when a user makes a request by interacting with a JSF component
(such as a button or hyperlink) rendered in response to the first request. This
scenario normally takes place when a user visits subsequent pages of a JSF
application.

In the following sequence of events, we will only discuss the high-level details.
For example, we will say that the JSF framework calls the decode() method,
but we will not go into the implementation detail of it.

Scenario I

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 37 of 201

The events of the figure:

1. Suppose the user requests the following URL:

www.aFictitiousShoppingCart.com

2. When the Web server receives this request, it invokes the FacesServlet
class. The Web server calls the init() method of the FacesServlet
class to load the servlet. Then it calls the service() method (by passing its
request and response details) of the FacesServlet object. The
service() method creates an instance of the FacesContext object and
calls the execute() and render() methods of the Lifecycle class one
by one, passing the FacesContext object along with each method call.

3. The execute() method checks whether the root of the JSF component (the
UIViewRoot object) exists. Because it is the first request for the page, the
root does not exist. So, it creates a new UIViewRoot object and stores it in
the FacesContext object.

4. The render() method dispatches the JSF request to the JSP container
that executes the JSP page.

5. The JSP container goes through the JSP page. When it comes across any
JSF tag (such as the f:view tag), it invokes its tag handler class (as we
said, each JSF tag has a tag handler class associated with it).

6. The tag handler class does two important functions:
1. It adds the JSF component associated with the tag to the root component

(UIViewRoot). As a result, all the components will be added in a tree
(hereafter referred to as a component tree), where the UIViewRoot
object sits as the root of the component tree.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 201 Using JSF technology for XForms applications

2. It calls the encode methods of the JSF component to render its markup.

7. Next, the JSF framework saves the view in the session.

8. Finally, it sends the generated markup back to the user.

Scenario II

The events of the figure:

1. Suppose the user clicks some button in response to the first request. The
following URL will be generated:

www.aFictitiousShoppingCart.com?id1=Submit

2. The Web server receives the request and initializes the FacesServlet
class (refer to step 2 in Scenario I for the initialization of FacesServlet).

3. The JSF framework checks whether the root of the component tree exists.
This time, it finds the UIViewRoot object and sets the UIViewRoot
component in the FacesContext object as the root of the component tree.
Recall from step 6 of Scenario I that we have already added all components
into the component tree.

4. Next, the JSF framework iterates through the JSF component tree and calls
the decode() method of each JSF component. The decode() method
parses the request and extracts the user data from the request to be stored

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 39 of 201

in model beans. It also detects which events occurred on the client side
(such as which button was clicked), and fires appropriate action events.

5. The JSF framework checks for the events fired during the decoding. If any
action event is added during decoding, the JSF framework calls the
appropriate application-specific event handler classes.

6. After decoding and processing the event, the JSF framework calls the
validate() method of each JSF component in the component tree. The
validate() method validates the format of the user's data, and compares
the old and new value of the component. If the two values differ, it fires a
value-change event.

7. At the end of the validation, the JSF framework checks for unhandled
events. If any event is added during validation, the JSF framework calls the
appropriate application-specific event handler.

8. After validation and event processing, the JSF framework calls the
updateModel() method for each component in the tree one by one. As a
result, the new values, which the decode() method parsed in step 4 above,
will be stored in the appropriate model beans.

9. The updateModel() method call can generate more events. After the
updateModel() call, the JSF framework checks for unhandled events in
the FacesContext class. If an event is added during the update, the JSF
framework executes the event handler class associated with the component.

10.At this point, we may need to invoke a new JSP page, depending on some
navigation rules. (We'll explain navigation rules in detail in Navigation
process on page 75.) The JSF framework will check whether we need to
invoke a new JSP page.

11.If we don't need to invoke a new JSP page, the JSF framework simply calls
the encode methods of all components in the component tree.

12.Finally, the JSF framework sends the generated markup back to the user.

If a new JSP page needs to be invoked in step 10, Scenario I will be repeated
starting from step 4.

In the next section, we will explain some special handling required when an
XForms-JSF application is requested by the user.

The URL processing life cycle in an XForms-JSF
application

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 201 Using JSF technology for XForms applications

Scenario I for an XForms-JSF application is the same as for a JSF application.
The difference between processing XForms-JSF and JSF requests will be
explored in Scenario II.

Recall step 9 of User interaction and flow of data in our shopping cart
application on page 22, where we explained that when the user clicks an
XForms button, a request is made with application-specific XML in the body of
the request.

When the user clicks a button, the following XML is sent to the server in the
body of the request:

<data>
<action-performed>_id1</action-performed>

</data>

The action-performed tag wraps the ID of the button clicked by the user.
This ID tells the button component that the user clicked the button. The special
handling we need for XForms-JSF applications is to process XML. We will
explain the action-performed tag and this ID concept in detail in
Implementing the xforms-jsf:model component on page83 .

We have discussed only the high-level view of the JSF framework. We did not
go into the details of individual concept. In the next section, we'll explore further
details of concepts discussed here.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 41 of 201

Section 4. How does a JSF component tree work?

The JSF component tree

We introduced the idea of the JSF component tree in The JSF architecture on
page 29. Now we'll explain and demonstrate how the tree works.

First, we'll present a JSP page and graphically show the tree of components in
the JSP page. We'll then discuss how JSF tags and components are associated
with each other, and how they work together. Finally, we'll discuss the methods
of JSF component classes.

Look at the following JSP page:

<html>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<head>
<title>JSF Demos</title>

</head>
<body>
<f:view>

<h:selectOneRadio id="colorsList"
value="#{dataStore.selectedColor}">
<f:selectItems id="colors" value="#{dataStore.colors}"/>

</h:selectOneRadio>
<h:selectManyCheckbox id="productsList"

value="#{dataStore.selectedProducts}">
<f:selectItems id="products"

value="#{dataStore.products}"/>
</h:selectManyCheckbox>
<h:commandButton label="Add to cart" id="cartView">

<f:actionListener type="cart.DemoActionListener"/>
</h:commandButton>
<h:commandButton label="Back to product view" id="prodView">

<f:actionListener type="cart.DemoActionListener"/>
</h:commandButton>

</f:view>
</body>
</html>

When the request for this JSF page is made, the JSF framework constructs a
tree of all the components on the page. Now let's see how this tree is
constructed.

When the first request for a JSF page (see Scenario I in The URL processing
life cycle in a JSF application on page 37) is made by a user, the JSF
framework does the following steps to construct the component tree:

1. The JSF framework first creates the UIViewRoot object, which corresponds
to the f:view tag and forms the default root of the component tree.

2. Then it goes through the requested JSP page.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 201 Using JSF technology for XForms applications

3. When it comes across a JSF tag in the JSP page, it inserts the JSF
component object associated with the tag into the component tree.

Diagrammatically, the component tree for the JSP page above looks like the
following figure:

All the components are under the UIViewRoot component. The root
component contains the UISelect1 component class (which corresponds to
the h:selectOneRadio tag), the UISelect class (which corresponds to the
h:selectManyCheckbox tag), and the UIButton class (which corresponds
to the h:commandButton tag) child components. The UISelect1 and
UISelect components in turn contain the UISelectItems class (which
corresponds to the f:selectItems tag).

The UIComponentTag class

In the previous section, we saw that the JSF tags and components are
associated with each other. Now we'll see how this association works.

In the JSP page, each JSF tag has a tag handler class associated with it. This
tag handler tracks the attributes specified in the JSF tag and wraps the type of
the JSF component and renderer classes associated with the tag. We have
already introduced the concept of the JSF component class. The renderer class
generates the markup for the component on the response stream. A JSF tag
may or may not have a renderer class associated with it because a component
class can do all the functionality that a renderer class does. In Rendering a
component on page 60, we will discuss the renderer classes in detail.

The JSF framework provides a UIComponentTag class that implements an
interface named Tag. When you develop a component, you only have to extend
from the UIComponentTag class or one of the UIComponentTag children
classes. The UIComponentTag is an abstract class, so you cannot instantiate
it. You always extend this class. The UIComponentTag class has two abstract
methods: getComponentType() and getRendererType(). Your tag
handler class should implement both.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 43 of 201

For example, in the JSP page above, there is an
xforms-jsf:selectOneRadio JSF tag. The tag handler class associated
with the xforms-jsf:selectOneRadio tag looks like the following:

public class Select1RadioTag extends UIComponentTag{
......
public String getComponentType() { return "Select1"; }
public String getRendererType() { return null; }
......
public void setProperties(UIComponent component){}

}//Select1RadioTag

Notice the following points:

° The Select1RadioTag class extends the UIComponentTag class.

° It implements the getComponentType() and getRendererType()
abstract methods of the UIComponentTag class. Both methods return a
String object.

° The getComponentType() method returns a string that represents the
type of the JSF component associated with the JSF tag.

° Similarly, the getRendererType() method returns the string that
represents the renderer type associated with the JSF tag. The
getRendererType() method in the Select1RadioTag class returns
null, indicating that there is no renderer associated with this JSF tag. We
will discuss the details of renderer classes in Rendering a component on
page60 .

° The Select1RadioTag class also overrides the setProperties()
method of the UIComponentTag class. The setProperties() method is
used to pass on the values of the properties from the tag handler class to the
corresponding component class. These properties are actually the attributes
passed by the JSP author in the JSF tag while using the JSF tag in the JSP
page. We will explain the setProperties() method in the Setting
properties of a component on page 51 section.

The JSF framework calls the getComponentType() method of each JSF tag
in a JSP page to know the JSF component associated with a particular JSF tag.
In Associating a tag with a component on page 54, we will discuss how this
component type is used to extract the JSF component class from a JSF
configuration file named faces-config.xml.

The JSF framework also calls the getRendererType() method of each JSF
tag in a JSP page to know the renderer associated with the tag.

But how will the JSF framework know which tag handler class is associated with
a particular JSF tag? The next section explains the association between the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 201 Using JSF technology for XForms applications

JSF tag and the tag handler class.

Associating JSF tags with tag classes

In this section you'll learn how:

° A JSP compiler knows that a JSF tag is associated with a particular tag
handler class

° A tag library declares the JSF tags and tag handler classes for a particular
JSF tag

° The JSP author includes a tag from a tag library in a JSP page

To explain how a JSP compiler knows that a JSF tag is associated with a
particular tag handler class, we'll use a tag library descriptor (TLD) file. A TLD
file contains information like the library version, general description, and
declaration of all the tags that a tag library supports. The declaration of each tag
contains the tag name, tag handler class, and attributes a tag can support.

The TLD file is not a JSF-specific file. You can have your own non-JSF tag
libraries. We call them generally as custom tag libraries. All JSF tags are
custom JSP tags, and a TLD file is required in all custom JSP libraries.

The TLD file also specifies that a particular tag is associated with a particular
tag handler class. To define a JSF tag, you have to declare it in the TLD file:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib>
......
<tag>

<name>selectOneRadio</name>
<tag-class>xforms_jsf.Select1RadioTag</tag-class>
<attribute>
<name>id</name>
<required>false</required>

</attribute>
<attribute>
<name>ref</name>
<required>true</required>

</attribute>
......

</tag>
<tag>

<name>commandButton</name>
<tag-class>xforms_jsf.ButtonTag</tag-class>
<attribute>

<name>id</name>
<required>false</required>

</attribute>
<attribute>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 45 of 201

<name>action</name>
<required>false</required>

</attribute>
......

</tag>
......

</taglib>

Notice the following points in the above TLD file:

° All the tag elements of a TLD file are enclosed within a single taglib
element.

° A tag element wraps the information of a single JSF or custom tag.

° The name of the JSF tag is defined within the name element.

° The fully qualified name of the tag handler class is specified inside the
tag-class element.

° The entry of the name and tag-class elements is mandatory in a tag
declaration.

° The attribute element declares a single attribute for the particular tag.
There can be any number of attribute elements in a tag element.

° The attribute element has different subelements to define a JSF tag's
attributes properly, such as name, required, type, etc. The name element is
necessary for the attribute element; the rest are optional.

° The name element wraps the name of the attribute.

° The required element indicates whether this attribute is mandatory while
this tag is used in the JSP page. Its value is specified as "true" or "false" (by
default, it's false).

° The type element indicates the data type of the attribute (by default, it's
string).

For example, in the selectOneRadio tag declaration, we have a ref
attribute. We declare this attribute in a TLD file like this:

<attribute>
<name>ref</name>
<required>true</required>

</attribute>

The required element wraps true, which indicates that whenever the
selectOneRadio tag is used in the JSP page, the ref attribute must come

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 46 of 201 Using JSF technology for XForms applications

within the tag.

Each attribute declared in the TLD file for a particular JSF tag should have a
setter method in its respective tag handler class. The JSF framework calls these
setter methods to pass on the values from the JSF tag (in the JSP file) to the
tag handler class.

In the above listed TLD file, different attributes are declared for the
xforms-jsf:selectOneRadio JSF tag. All these attributes should have
setter methods in the tag handler class. For example, look at the following tag
handler class:

public class Select1RadioTag extends UIComponentTag{
......
public void setId(String id){

this.id = id;
}
public void setRef(String ref){

this.ref = ref;
}
......

}//Select1RadioTag

The attributes declared for the selectOneRadio tag in the above TLD file
have setter methods in the tag handler class. For example, the ref attribute
declared for the selectOneRadio tag has a setRef() method in the
Select1RadioTag class.

Now let's see how the JSP author includes a tag from a tag library in a JSP
page. The taglib directive of the JSP page is used to include a tag library in
the JSP page. The tags declared in the tag libraries are accessed with the prefix
defined in the prefix attribute of the taglib directive. We have already
discussed the details of including the tag library in the JSP page in Using JSF
tags in JSPs on page 31.

Now let's see how the JSP container maps a JSF tag to its corresponding tag
handler class. The following sequence of events enables this mapping:

1. The JSP container sees a JSF tag with a particular prefix.

2. It maps the prefix in the taglib directive to identify the right TLD file.

3. It opens the TLD file.

4. It searches the tag name inside the name element of each tag in the TLD
file.

5. After finding the right tag definition, it loads the tag handler class specified in
the tag-class element of the tag identified in step 4.

You will place the TLD file in the \WEB-INF directory of the application. For

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 47 of 201

example, look at the sample code folder named Demo in the section4.zip file
available in the source code download of this tutorial; see Resources on page
?. The Demo folder only shows the directory structure and a few files. We'll add
more files in later sections as we develop more code for the XForms-JSF tag
library.

At the moment, the folder hierarchy and arrangement of files in the sample code
folder looks like this:

Notice that the TLD file for the XForms-JSF tag library resides inside the
\WEB-INF folder.

Before going further, we would like to explain two classes named
ValueBinding and MethodBinding. The introduction of these classes is
important in understanding how to pass application data from the tag handler to
the corresponding component classes.

The ValueBinding class

The ValueBinding class is used to get application-specific data from model
beans. A JSF tag handler or component class can invoke the ValueBinding
class when it needs to get or set the value of a property from a bean.

To get or set the value of a model bean property, we need to:

1. Get an instance of the ValueBinding class
2. Use the instance to get or set the property value

Look at the following code segment used to get an instance of the
ValueBinding class:

Application application = facesContext.getApplication();
ValueBinding binding = application.createValueBinding(value);

In the first statement, we simply fetched an instance of the Application class
from the FacesContext object.

Notice that the FacesContext object we have used to fetch the
Application object represents the context in which you want to find the
model bean property.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 48 of 201 Using JSF technology for XForms applications

The Application class holds all information related to a complete JSF
application (for instance, it can return a component object corresponding to a
particular component type or it can return any model bean object in the
application context by using the ValueBinding class).

In the second statement, we have called the createValueBinding() method
of the Application object. The createValueBinding() method call takes
a string value, which represents the name of a model bean and its property. The
call to the createValueBinding() method returns an instance of the
ValueBinding class. For example, if we pass the "#{myModelBean.property}"
string to the createValueBinding() method, it returns a ValueBinding
object that contains a reference to the getProperty() method of the
myModelBean object present in the application context.

Now we simply call the getValue() method of the ValueBinding object to
get the value of the model bean property that was passed to the
createValueBinding() method call:

Object value = binding.getValue(context);

The getValue() method takes an instance of the FacesContext class and
returns the value of the property.

The return value from this method is Object type, so you have to cast it into
the appropriate application-specific class.

Recall the value attribute, which we discussed in Model bean wrappers for
application's business logic and data on page 33. If we pass the value of the
value attribute (which is in fact a reference of the model bean property) to the
createValueBinding() method, it returns the ValueBinding object for the
model bean property. For example, the following code shows the declaration of
a JSF tag:

<jsf:selectOneRadio value="#{productData.products}"/>

The following code (written anywhere in the tag handler class) returns the object
corresponding to the productData.product property:

String value = getValue();
Application application = facesContext.getApplication();
ValueBinding binding = application.createValueBinding(value);
Object value = binding.getValue(context);

The ValueBinding class has another method named setValue(), which
sets the value of the model bean property. The setValue() method takes two
parameters: a FacesContext object and the value we want to set in the model
bean property:

String value = getValue();
Application application = facesContext.getApplication();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 49 of 201

ValueBinding binding = application.createValueBinding(value);
//In this line you will create a new object named newValue.
binding.setValue(context, newValue);

Next, we'll discuss the MethodBinding class.

The MethodBinding class

The concept behind the MethodBinding class is the same as we discussed
for the ValueBinding class. The ValueBinding class was used to bind or
fetch the value of a property of a model bean. On the other hand, the
MethodBinding class is used to bind or call a specific method of a model
bean.

You may use the MethodBinding class whenever you need to call a particular
method of some model bean from your tag handler or component class.

To call a method of a model bean:

1. Get the attribute value of a JSF tag, which specifies the method of a model
bean you want to call.

2. Create an array of Objects. Each object in the array represents a parameter
in the method call, so the array of Objects represents the signature of the
method you want to call.

3. Get an Application object from the context.

4. Get an instance of the MethodBinding class from the application.

5. Finally, use the method binding object to call or invoke the method.

For example, suppose the following code is the declaration of the JSF tag:

<jsf:selectOneRadio method="#{myModelBean.myMehod}"/>

The method attribute above refers to myModelBean.myMethod(), for which
we have to create a binding. Furthermore, suppose the following code is the
signature for myMethod() in the model bean:

public void myMethod(Class1 c1, Class2 c2)

Now we'll perform the above five steps to invoke myMethod(). First we fetch
the value of the method attribute:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 50 of 201 Using JSF technology for XForms applications

String method = getMethod();

Then we'll create an array of Objects containing Class1 and Class2 objects.
In the method signature above, the myMethod() call takes these two objects
as arguments.

Object [] args = {new Class1(), newClass2};

Next, we'll fetch an instance of the Application class from the faces context:

Application application = facesContext.getApplication();

Notice that the FacesContext object we used to fetch the Application
object represents the context in which you want to find the model bean and
invoke its method.

The Application class contains a method named
createMethodBinding(), which returns an instance of the MethodBinding
class, so we call the createMethodBinding() method of the Application
object.

The createMethodBinding() method call takes two parameters: a string
value, which represents the model bean and its method name (the value of the
method attribute in the JSF tag), and an array of Objects containing parameters
for the method call. The call to the createMethodBinding() method returns
an instance of the MethodBinding class, which contains a reference to the
myMethod() method of the myModelBean object present in the application
context:

MethodBinding mb = application.createMehtodBinding(value, args);

The MethodBinding class contains a method named invoke(). This method
takes two parameters: a FacesContext object (the same FacesContext
object that we used to fetch the Application object) and an array of Objects
that contain the list of parameters you want to pass along with the method call:

mb.invoke(context, args);

The call to the invoke() method results in a call to the method of model bean
for which the MethodBinding object was created.

The concept of the MethodBinding and ValueBinding classes will be
clearer when we use both concepts in the next section.

Setting properties of a component

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 51 of 201

We mentioned a setProperties() method while discussing the tag handler
class in The UIComponentTag class on page 43. You have seen that attributes
of a particular tag declared in the TLD file are defined as properties of the tag
handler class. This section explains how the setProperties() method
makes these attributes and properties available for the JSF component class.

In JSF tags and JSF components on page 30, we explained that the component
class implements the behavior of a JSF tag. So the component class needs to
know all the information specified by the JSP author for a JSF tag in the JSP
page. Therefore, the tag handler class needs to set the properties of a tag in the
component class.

For example, the tag handler class for the selectOneRadio tag implements
the setProperties() method to set the properties for the associated JSF
component class. The following code shows the setProperties() method in
the Select1RadioTag class:

public class Select1RadioTag extends UIComponentTag{
......
public void setProperties(UIComponent component){

super.setProperties(component);
UISelect1 uis = (UISelect1)component;
FacesContext fc = FacesContext.getCurrentInstance();
Application app = fc.getApplication();
if(value != null){

if(UIComponentTag.isValueReference(value))
{
ValueBinding vb = app.createValueBinding(value);
uis.setValueBinding("value", vb);

}
else
uis.setValue(value);

}
if(valueChangeListener != null){

if(UIComponentTag.isValueReference(valueChangeListener)){
Class args[] = {

javax.faces.event.ValueChangeEvent.class
};
MethodBinding mb = app.createMethodBinding

(valueChangeListener, args);
uis.setValueChangeListener(mb);

}
}//if(valueChangeListener != null)
if(ref != null){

uis.getAttributes().put("ref", ref);
}
.......

}
}//Select1RadioTag

Notice that the JSF component object (component) is passed as a parameter to
the setProperties() method. The setProperties() method calls its
super setProperties() method, which sets some default properties for the
component (like setting the renderer for the component).

Next, the setProperties() method fetches an instance of the
FacesContext class and gets the instance of the Application class from

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 52 of 201 Using JSF technology for XForms applications

the FacesContext class. This Application object does two things. First,
we'll use the Application object to create a ValueBinding object for the
value attribute. Second, we'll use the Application object to create a
MethodBinding object for the valueChangeListener attribute. The
valueChangeListener attribute is used to specify the handler for value
change events, which we'll discuss in detail in Handling value-change events on
page71 .

Here's how the setProperties() method creates the ValueBinding object
for the value attribute:

1. The setProperties() method first checks if the value of the value
attribute is not null. If it's not, it checks whether the value of the value
attribute is a reference value by calling the static isValueReference()
method. The isValueReference() method internally checks if the value
attribute specifies a valid reference to a model bean property present in the
application context. If it is not a valid reference, the isValueReference()
method returns false.

2. If the value attribute is a reference, the setProperties() method calls
the createValueBinding() method of the Application class, passing
the value property along with the method call.

3. Next, the setProperties() method passes the ValueBinding object to
the component class, so that it can use the binding whenever it's needed.

Here's how the setProperties() method creates the MethodBinding
object for valueChangeListener:

1. The setProperties() method checks if the valueChangeListener
property value (passed by the JSP page author as the value of the
valueChangeListener attribute) is not null.

2. It checks whether the valueChangeListener value is a reference to a
model bean method by calling the static isValueReference() method.

3. If the valueChangeListener property is a valid reference, the
setProperties() method calls the createMethodBinding() method
of the Application class, passing the valueChangeListener and
arguments along with the method call, which returns the MethodBinding
object.

4. Next, the setProperties() method passes the MethodBinding object
to the component class so that the component class can call the value
change listener method specified by the valueChangeListener attribute.

5. Finally, the setProperties() method checks the value of the ref
property. The ref property is an XForms-specific attribute, which refers to a
particular tag in the model element. We described the XForms ref attribute
in The select element on page 18.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 53 of 201

If the ref attribute is not null, the setProperties() method calls the
getAttributes() method of the component, which returns a Map object.
This Map object contains a list of all attributes available in the component class.

We simply call the put() method of the Map object, passing it the property
name ("ref") and value, along with the method call, which results in the addition
of another attribute in the list of attributes already available in the component
class.

This is another useful technique to pass information from a tag handler class to
a component class.

We have discussed three things a setProperties() method may do (value
binding, method binding, and putting attributes directly into the Map object). We
will use these techniques often in this tutorial. Now whenever we implement the
setProperties() method, we'll refer to this section and not go into detail
each time.

Associating a tag with a component

We have seen how the JSP container maps a JSF tag to a tag handler class
and how the tag handler class manages its attributes. Now let's see how to
relate a tag handler class to a JSF component class.

A JSF tag library developer can develop many component classes against a
single JSF tag. It is up to an application developer to decide which component
he wants to associate with a particular JSF tag.

We need a mechanism that enables us to decide the tag-to-component
mapping during application development.

Your JSF application includes a JSF configuration XML file named
faces-config.xml, which specifies component classes against component types:

<?xml version="1.0"?>
<faces-config>

......
<component>

<component-type>Select1</component-type>

<component-class>xforms_jsf.UISelect1</component-class>
</component>
<component>

<component-type>Select</component-type>

<component-class>xforms_jsf.UISelect</component-class>
</component>
......

</faces-config>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 54 of 201 Using JSF technology for XForms applications

Note the following points from the above:

° The faces-config.xml file contains a number of component elements.

° The component element in the faces-config.xml file wraps the type of the
component and JSF component class against that type.

° It wraps this information with the help of component-type and
component-class elements as shown above. Each component element
contains component-type and component-class child elements.

° The component-type element specifies the type of the component.

° The component-class element wraps the fully qualified name of the JSF
component class.

Here's how the JSF framework uses the faces-config.xml file to load the JSF
component against a particular JSF tag, as outlined in the following points:

° The JSF framework calls the getComponentType() method of a tag
handler class, and the method call returns a string value that represents the
type of component in the configuration file.

° The JSF framework locates which component-type element in the
faces-config.xml file wraps the string returned by the
getComponentType() method of the tag handler class.

° When it finds a matching component, it reads the component-class
element that forms a pair with the component-type element and learns
about the JSF component class associated with the JSF tag.

For example, let's suppose the getComponentType() method of a
Select1RadioTag class returns "Select1." In the faces-config.xml file above,
the component class whose type matches "Select1" is
xforms_jsf.UISelect1.

You will write your faces-config.xml files during application development and
match the component types with appropriate component classes.

The faces-config.xml file is then placed in the /WEB-INF directory of the
application.

The UIComponentBase class

We have seen how the JSF tags are associated with the JSF components. Now
it's time to see how components in a JSF component tree work.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 55 of 201

The UIComponent abstract class is the base class for all the components. It
represents the functionality or behavior of the JSF component. You can think of
UIComponent as an abstraction of the functionality of a JSF component. The
JSF tag library developers extend the UIComponent abstract class, thus
allowing the JSF framework to interact with the component.

The UIComponent abstract class contains many methods, where each method
represents some functionality of the component. Not all components require the
whole set of functionality.

The JSF framework provides a UIComponentBase class, which already
extended the UIComponent class. When you are developing your own
customized components, you can extend the JSF component class from the
UIComponentBase class or from its subclasses.

The UIComponentBase class contains various methods that the JSF
framework calls at appropriate times during a JSF request-processing life cycle.
For example, the JSF framework calls the decode() method of the
UIComponentBase class when the user clicks a button or hyperlink in the JSF
page (refer to step 4 of Scenario II in The URL processing life cycle in a JSF
application on page 37.

The two most important functionalities of a JSF component are decoding and
encoding. In the next two sections, we will offer a detailed discussion of these
two functionalities of a JSF component. However, note that a JSF component
has functions other than decoding and encoding. We'll explain these two first to
demonstrate the working of a JSF component tree. Later, we'll demonstrate
other functionality of a JSF component.

The decoding process

The JSF framework calls the decode() method of each JSF component in the
tree one by one. Recall The URL processing life cycle in a JSF application on
page 37, where we presented two types of request scenarios. For Scenario I,
the decode() method was not called, but whenever the request is made
according to Scenario II, the decode() method is called for each request.

The purpose of calling the decode() method is to allow each component in the
tree to decode the request value parameters (or data in any form) into a Java
object. Look at the following URL generated by clicking a button on the JSF
page:

www.aFictitiousShoppingCart.com?id0=red;id1=btn1

When the JSF framework receives this request, it calls decode() methods of
each component in the tree one by one. The decode() method of each
component does the following:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 56 of 201 Using JSF technology for XForms applications

° It checks whether its ID exists in the request. For example, in the URL
above, there are two name-value pairs: _id1=red and _id2=btn1. The
_id1=red pair may correspond to a check box component, and the
_id2=btn1 pair may correspond to a button component.

° If the component ID the request contains matches the ID of the component
whose decode() method is called, it fetches the values against this ID from
the request. For example, the decode() method of the check box
component fetches the string "red" as its value.

° Next, it stores this value in the component by calling the
setSubmittedValue() method of the component class.

° If the decode() method is of a button or hyperlink component, instead of
fetching the value from the request, it simply fires an action event. An action
event represents a user's action (like clicking a button). We will explain the
firing and handling of action events in Event-generation mechanism in JSF
on page 70 andHandling action events on page74 .

The decode() method takes the FacesContext object as a parameter. In
The FacesContext class on page 36, we explained that the FacesContext
object contains all the information regarding a JSF request and response.

Look at the following decode() method implementation:

public void decode (FacesContext context){
//step-1
if(fc == null)

throw new NullPointerException();
//step-2
String clientId = getClientId(fc);
//step-3
//Gets incoming request and fetches the id and the user data
//against the id from the request
//step-4
if(clientId.equals(id))
{

setSubmittedValue(value);
}
//step-5
setValue(true);

}//decode

Notice the following steps in the decode() method above:

1. The decode() method first verifies the FacesContext object passed to it.
If it is null, it throws a NullPointerException.

2. It calls the getClientId() method of the component, which is
implemented by the UIComponentBase class. The getClientId()
method returns an ID for the component that uniquely identifies the
component.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 57 of 201

3. The decode() method gets the incoming request and searches the
component ID in the request.

4. If the component ID is found in the request, it fetches the data against this ID
and saves it.

5. Finally, it calls the setValid(true) method of the component class, which
tells the component that the decoding process was successful.

If the decode() method belongs to a button component, the method
implementation is slightly different:

public void decode (FacesContext context){
//step-1
if(fc == null)

throw new NullPointerException();
//step-2
String clientId = getClientId(fc);
//step-3

//Gets incoming request and fetches the id from the request
//step-4
if(clientId.equals(id))
{

queueEvent(new ActionEvent(this);
}
//step-5 not needed

}//decode

The main difference comes in step 4 where the decode() method fires an
action event (by calling the queueEvent() method, which we will discuss in
Event-generation mechanism in JSF on page 70) instead of saving the ID value.
Also, note that we don't need to call the setValid() method in the case of a
button component.

The decode() methods we will implement for XForms-JSF components will be
slightly different from the decode() method implementation above. The reason
is that the code above works on the idea of name-value pairs in the request
URL, while XForms-JSF components work on the idea of having XML markup in
the request body. We will demonstrate the difference in XForms-JSF integration
strategy on page80 .

The encoding methods

The second major functionality of the JSF component is encoding. In the
encoding methods, the component developer writes the markup for the
component rendered on the browser. The UIComponent has three types of
encoding methods:

° encodeBegin()

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 58 of 201 Using JSF technology for XForms applications

° encodeChildren()

° encodeEnd()

The encodeBegin() method writes the starting tag markup for the JSF tag.
The encodeChildren() method renders the markup for children of the JSF
tag. If the children implement their own encoding, we don't need the
encodeChildren() method. The encodeEnd() method encodes ending tag
markup of the JSF tag.

The following points explain the calling sequence of the encode methods:

1. When the JSF framework comes across a JSF tag in the JSP page, it adds
the component associated with the JSF tag in the component tree and calls
the encodeBegin() method.

2. If the JSF tag whose encodeBegin() method is called contains any child
JSF tag, the JSF framework first adds the associated JSF child component
in the component tree and calls the encodeChildren() method of the
parent component.

3. When the JSF framework comes across the ending JSF tag (whose
encodeBegin() method is called above), it calls the encodeEnd()
method of the associated JSF component.

Look at the following encodeBegin() method implementation, which encodes
the commandButton component on the browser:

public void encodeBegin(FacesContext context) {
if(context == null)

throw new NullPointerException();
if(!isRendered())

return;
ResponseWriter writer = context.getResponseWriter();
String ref = (String) getAttributes().get("ref");
//Gets remaining attribute values
//Writes markup to render the commandButton component using
//ResponseWriter.write() method

}//encodeBegin

Notice the following points:

° The encodeBegin() method first verifies the value of the FacesContext
object passed to it. If it is null, it throws a NullPointerException.

° After verifying the context, it checks a flag by calling the isRendered()
method. The isRendered() method checks the value of the rendered
attribute that the JSP author may have provided in the tag declaration. If the
JSP author specified rendered="false" in the tag declaration, the JSP
author does not want to render this tag. In this case, isRendered() returns
false and encodeBegin() returns without rendering the component.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 59 of 201

° Next, it retrieves the ResponseWriter object from the FacesContext
class by calling its getResponseWriter() method. The
ResponseWriter object is used to write the markup in response to the
user's request.

° Then it retrieves the values of the different attributes of the tag. It calls the
getAttributes() method of the component, which returns a Map object.
(Recall from Setting properties of a component on page 51, where we put
the tag attribute values in the same Map object.) Now we call the get()
method of this Map object, passing it the name of the attribute. The get()
method returns the value of the attribute that we will finally use for the
encoding.

° Finally, the encodeBegin() method writes the markup for the component
by calling the write() method of the ResponseWriter object that we got
in step 3. The write() method accepts a string, which it simply writes on
the ResponseWriter object.

Rendering a component

The renderer classes are view-generating (or encoding) classes. We have seen
that components can be self-rendering -- they can have encode methods that
the JSF framework can call to let the component render itself. The JSF
framework also allows you to develop separate renderers, letting you develop
separate classes that handle the rendering of a component. It is up to you
whether you want a separate renderer class are not.

Normally, you develop a renderer class for your component when you want to
have different presentations of the same component.

To write your own renderer, you have to extend your class from a class named
Renderer. The Renderer class is part of the JSF framework and is an
abstract class, so you cannot instantiate it. You always extend this class.

Look at the following Select1Renderer class:

public class Select1Renderer extends Renderer{
public Select1Renderer (){
}
public void decode(FacesContext context, UIComponent component){
}
public void encodeBegin(FacesContext context, UIComponent component)
throws IOException {

}
public void encodeChildren(FacesContext context, UIComponent

component)
throws IOException {

}
public void encodeEnd(FacesContext context, UIComponent component)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 60 of 201 Using JSF technology for XForms applications

throws IOException {
}

}//Select1Renderer

Notice that the renderer class contains the decoding and encoding methods.
The working of the decoding and encoding methods in a renderer class is
similar to the UIComponentBase class. The only difference is that the methods
in the Renderer class have one extra parameter: the UIComponent object
that represents the component associated with this renderer.

The UIComponent instance is passed to these functions because they may
need to use some functionalities of the JSF component class. For example, the
decode() method has to call the getClientId() method of the JSF
component to check the component's ID.

Associating a tag with a renderer

The association of a renderer class with a specific JSF tag is also done in the
JSF configuration (faces-config.xml) file, which means this is also an
application-specific task:

<?xml version="1.0"?>
<faces-config>
.......
<render-kit>

.......
<renderer>

<renderer-type>MyRendererType</renderer-type>

<renderer-class>demo.MyRendererClass.class</renderer-class>
</renderer>
<renderer>

<renderer-type>MyAnotherRendererType</renderer-type>

<renderer-class>demo.MyAnotherRenderer.class</renderer-class>
</renderer>
.......

</render-kit>
.......

</faces-config>

Note the following points:

° The faces-config.xml file contains a render-kit element that wraps a
number of renderer elements. The renderer element wraps the type of
the renderer and renderer class against that type.

° Each renderer element contains renderer-type and renderer-class
child elements.

° The renderer-type element specifies the type of the renderer.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 61 of 201

° The renderer-class element wraps the name of the corresponding
renderer class.

Here's how the JSF framework uses the faces-config file to associate a
renderer with a JSF tag:

1. The JSF framework calls the getRendererType() method of a tag handler
class, and the method call returns a string value that represents the type of
the renderer in the configuration file. Let's suppose the
getRendererType() returns the string "MyRendererType."

2. The JSF framework locates which renderer-type element in the
faces-config.xml file wraps the string returned by the getRendererType()
method of the tag handler class. Notice that the contents of the
renderer-type child element of the first renderer element matches with
the string returned by the getRendererType() method.

3. The JSF framework then returns the renderer class specified in the
accompanying renderer-class element, which is MyRenderereClass.

The Validation process

In step 6 (Scenario II) of The URL processing life cycle in a JSF application on
page 37, we said the JSF framework calls the validate() method to validate
the user data. The JSF framework calls the validate() method of each
component in the component tree after decoding request and handling the
events occurred during decoding.

The validate() method compares the model bean property specified in the
value attribute with the user's data that the decode() method stored after
decoding the request. If the two values are different, the validate() method
fires a value-change event. (See Handling value-change events on page 71 for
details of value-change events.)

For now, look at the following sample validate() method implementation:

public void validate(FacesContext context){
if(context == null)

throw new NullPointerException();
Object oldValue = getValue();
Object newValue = getSubmittedValue();
if(oldValue != null){

if(oldValue.equals(newValue))
return;

else {
setValue(newValue);
queueEvent(new ValueChangeEvent(this, oldValue, newValue));
return;

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 62 of 201 Using JSF technology for XForms applications

}//if(oldValue != null)
else if(newValue != null) {

setValue(newValue);
queueEvent(new ValueChangeEvent(this, oldValue, newValue));

}
}//validate

This method performs the following steps to validate the user data:

1. It calls the getValue() method of the component, which returns the value
of the model bean property specified in the value attribute.

2. Next, it calls the getSubmittedValue() method of the component, which
returns the component value parsed by the decode() method from the
request.

3. Finally, it compares the two values. If they are different, the validate()
method fires a value-change event by calling a method named
queueEvent(), which is discussed in detail in Event-generation
mechanism in JSF on page70 .

The JSF framework also uses the validate() method to validate the format
of the user's data. But in an XForms application, data validation is the
responsibility of the browser. for XForms-JSF applications, we do not need to
implement data validation in our components.

Updating model beans

The JSF framework provides component developers with an updateModel()
method to update the model beans with the user's data. In step 8 of The URL
processing life cycle in a JSF application on page 37, we explain that the JSF
framework calls the updateModel() method to update the model bean with
user data. The updateModel() method updates only the model bean property
specified in the value attribute. The JSF framework calls the updateModel()
method of each JSF component available in the component tree.

The updateModel() method calls the setValue() method of the
ValueBinding class to set the model bean property with new data parsed by
the decode() method from the JSF request.

For example, look at the following sample updateModel() method
implementation:

public void updateModel(FacesContext context){
if(context == null)

throw new NullPointerException();
if(!isValid())

return;
ValueBinding vb = getValueBinding("value");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 63 of 201

try{
vb.setValue(context, getLocalValue());
return;

}
catch(Exception e){

setValid(false);
throw new FacesException(e);

}
}//updateModel

This method performs the following steps to update the model value:

1. The updateModel() method first calls the isValid() method to check
whether the decode() method processed the request successfully. If this
method returns false, the updateModel() method stops execution and
does not update the model values. Recall from The decoding process on
page 56 that we called the setValid(true) method at the end of
successful decoding.

2. Next, the updateModel() method gets the value attribute value, which
contains the ValueBinding object. Recall from Setting properties of a
component on page 51 that we created the ValueBinding object for the
value attribute in the setProperties() method of the
Select1RadioTag class and passed it to the component class.

3. Finally, the updateModel() method calls the setValue() method of the
ValueBinding object, passing it the context and new value along with the
method call. This call to the setValue() method results in the model bean
property being updated.

Summary

The JSP page includes the TLD file using the taglib directive of JSP
technology. When the JSP container comes across a JSF tag, it looks for the
tag library for that tag to instantiate its tag handler class. Each JSF tag has a
tag handler class, which extends from the UIComponentTag class, which in
turn implements the Tag interface. The UIComponentTag class has two
abstract methods: getComponentType() and getRendererType(), which
every tag handler class implements. The getComponentType() method
returns a string. The JSF framework uses this string to locate the associated
component class from the configuration file. The configuration file is used to
associate the tag with a component class.

From the above discussion, we can see that there are two bridges used to
complete a JSF application. One of them is the TLD file between the JSP and
tag handler class; the second is the configuration file between the tag handler
class and main JSF component behind the JSF tag.

The JSF components extend the UIComponentBase class, which implements
the UIComponent abstract class. The component developers implement

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 64 of 201 Using JSF technology for XForms applications

customized functionality of their components.

We have now discussed four main functionalities of the component: decoding,
encoding, validation, and updating model beans.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 65 of 201

Section 5. Model beans and events in JSF

Developing model beans

The JSF framework allows application developers to write data model classes
(also called model beans) to hold their application data. Developing model
beans is an application-specific task and, therefore, part of the application
development process.

This section explains the:

° Development of model beans
° Association of model beans with JSF components
° Updating properties of model beans
° Event-generation mechanism
° Event-handling mechanism

Let's start by explaining why we need model beans in our JSF applications. The
simple bean acts as your data model, where any application can call the setter
and getter methods to talk to the bean. You can design a simple model bean
with public setter and getter methods for properties of the bean.

Let's look at a simple model bean:

public class ProductData{
private Product product;
private String model = null;
private String action = null;
public ProductData(){
}
public String getModel(){
}
public void setModel(String model){
}
public String getAction(){
}
public void setAction (String action){
}
public Product getProduct(){
}
public void setProduct(Product pData){
}
public void showCatalogView(ActionEvent ae){
}
public void showCartView(ActionEvent ae){
}

}//ProductData

Notice the following points from the ProductData model bean class above:

° It has some properties to store application data, and simple setter and getter

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 66 of 201 Using JSF technology for XForms applications

methods for the model bean properties.

° The JSF component classes call the setter methods to store the application
data in a model bean property. The JSP author passes a reference of this
property in the value attribute of the associated JSF tag.

° The JSF framework calls the getter method of the model bean property to
get application-specific data.

° The JSF framework uses the ValueBinding class to call the setter and
getter methods of the model bean. Recall Setting properties of a component
on page 51, where we created the ValueBinding objects for the model
bean properties.

° In addition to the setter and getter methods, the model bean also contains a
couple of event-handling methods: showCatalogView() and
showCartView(). The JSP author passes the reference of these methods
in the valueChangeListener or the actionListener attributes of the
JSF tag.

° The JSF framework uses the MethodBinding class to call the
event-handling methods of the model bean. Recall Setting properties of a
component on page 51, where we created a MethodBinding object for the
valueChangeListener property and passed it to the component class.

° Whenever the user interacts with a component that contains the
valueChangeListener or actionListener attributes, the JSF
framework calls the event-handling methods, passing the event object along
with the method call. We will explain this event-handling capability of the
model bean in detail in Handling value-change events on page71 .

Next, we'll discuss the association of model beans with a JSF component.

Associating model beans with JSF components

You can associate a specific property of a model bean with any JSF component
during application development. To do this, provide a reference to the name of
the bean and its property with the corresponding JSF tag. For example, look at
the following JSF tag:

<jsf:selectOneRadio value="#{productData.product}">

The substring #{ in the contents of the value attribute indicates that it is a
reference value (that is, the reference to a model bean property or method). The
name of the model bean and its property are wrapped inside the curly brackets.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 67 of 201

The substring (inside the curly brackets) before the dot symbol in the value of
the value attribute specifies the name of the model bean (productData). The
string after the dot (product) is the name of the property to associate with the
JSF component. The name of the bean should match the bean already present
in the application.

The component classes interact with the model beans with the help of the
ValueBinding and MethodBinding classes, as discussed in The
ValueBinding class on page 48 and The MethodBinding class on page 50,
respectively.

We can instantiate the model beans in application, session, request, or
page scopes.

If we instantiate our model bean in application scope, the lifetime of our
model bean will be equal to the lifetime of the servlet. We will instantiate a
model bean in application scope if we want our model bean to preserve its
state throughout application execution. Normally, we are not required to specify
the scope of a model bean at application level. However, if a model bean is
maintaining a log throughout the application's existence, we can declare that
model bean in application scope.

If we specify the scope of our model bean as session, on each new session,
the Web server creates a new instance of the model bean. We instantiate a
model bean in session scope if we want to track the interactions of a user with
our application in a session or want to process the actions and decide the next
move. In most Web applications, application developers declare model beans in
session scope.

If we specify the scope of our model bean as request, on each request, the
Web server creates a new instance of the model bean. We instantiate a model
bean in request scope if we want our bean to instantiate on each request with
some new values.

There are a couple of ways to instantiate model beans. The first is by using the
useBean directive of the JSP; the second is by declaring a bean as
managed-bean in the application configuration file.

You should already be familiar with the first way of instantiating model beans.
The second method is new with JSF technology, so it's the only one we'll
discuss. The JSF framework introduces this managed-bean mechanism of
instantiating a model bean.

To declare a model bean as managed-bean you have to make some entries in
the faces-config.xml file. The faces-cofig.xml file contains an element named
managed-bean, which wraps the following information:

° A small description about the model bean
° The name of the model bean
° The fully qualified name of the model bean class
° The scope at which the model bean is declared

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 68 of 201 Using JSF technology for XForms applications

Look at the following entry of managed-bean in the faces-config.xml file:

<?xml version="1.0"?>
<faces-config>

......
<managed-bean>

<description>Data Bean </description>
<managed-bean-name>productData</managed-bean-name>
<managed-bean-class>

xforms_jsf.ProductData
</managed-bean-class>
<managed-bean-scope> session </managed-bean-scope>
<managed-property>

<property-name>action</property-name>
<value>product</value>

<managed-property>
</managed-bean>
......

</faces-config>

Note the following points:

° The managed-bean-name element wraps the name of the instance we will
use in the application to access the model bean.

° The managed-bean-class element specifies the fully qualified name of
the model bean class.

° The managed-bean-scope element defines the scope of the model bean.

° The managed-property element is used to set the value of a property in
the model bean when the model bean is first initialized. It contains
property-name and value child elements.

° The property-name element contains the name of a property (action) of
the model bean. The value element contains the actual value that the JSF
framework will set in the property specified in the property-name element
when it initializes the model bean. As you can guess, the JSF framework
simply calls the setter method of the property, passing the value as the
parameter.

Telling the application that some value has changed
or some event has occurred

UI components, like input boxes, radio buttons, check boxes, can re-put
changes in model objects. The JSF components tell the application that the
user has changed a value. For example, a page can have radio buttons to
select an option from a list of options.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 69 of 201

Suppose the user has selected a value and submitted it to the server. When the
JSF framework receives the request, it does the following to inform the
application about the user's selection:

1. Decodes the request
2. Validates the values by comparing the old value and new value from the

request; if the values are different, the validate() method tells the
application by firing a value-change event

We have a detailed discussion of the decoding and validation processes in The
decoding process on page 56 and The Validation process on page 62,
respectively.

As a result of the event firing, the JSF framework invokes the
application-specific event-handling logic. Through this mechanism, our
application will learn what values have been changed by the user.

The JSF framework has a comprehensive event-generation and handling
mechanism for this purpose, which we'll study in detail.

Event-generation mechanism in JSF

The following events are two types of events a JSF component can generate:
value-change events and action events.

A value-change event occurs when the user changes a component value by
selecting check boxes, selecting radio buttons, entering text in an input box, etc.
The validate() method of a component fires value-change events when it
finds that the value the user entered is different from the value fetched from the
model bean.

Suppose, for example, that after adding a product to a shopping cart, the user
wants to change a feature. The user again changes the value of the feature and
submits it. On the server side, the component associated with this feature gets
the old value from the model bean and compares it with the new value from the
user. If the two values are different, it fires a value-change event, passing it the
old and new values.

To fire the value-change event, we call the queueEvent() method of the
component class. The queueEvent() method takes an instance of the event
to be thrown. In this case, it is the ValueChangeEvent class instance. The
queueEvent() method adds an event in the list of events that the JSF
framework handles after the execution of the updateModel() method.

Look at the following:

ValueChangeEvent vce = new ValueChangeEvent(this, oldValue,
newValue);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 70 of 201 Using JSF technology for XForms applications

queueEvent(vce);

In the first statement, we created an instance of the ValueChangeEvent class.
The ValueChangeEvent constructor takes three parameters: a component
object, the old value of the component (from the model bean), and the new
value (fetched by the decode() method from the request).

In the second statement, we called the queueEvent() method of the
component to fire the value-change event. The queueEvent() method takes
the ValueChangeEvent object (which we created in the first statement) along
with the method call.

The execution of these two statements results in firing a new value-change
event.

The action event occurs when the user clicks a button or a hyperlink. The action
events are fired in the decode() method of a component (refer to The
decoding process on page 56).

To fire an action event, we call the queueEvent() method of the component
class. As mentioned above, the queueEvent() method takes an instance of
the event to be thrown along with the method call. In this case, it is an
ActionEvent instance.

Look at the following, which is quite similar to the value-change event firing
code discussed above:

ActionEvent ae = new ActionEvent(this);
queueEvent(ae);

In the next couple of sections, we will discuss handling the value-change and
action events.

Handling value-change events

Handling events is an application-specific task, so the application developer
implements the listeners to handle the value-change events.

The JSF framework provides application developers with two ways to handle
the value-change events: implement a value-change event-handling method in
the model bean or implement a class, which the JSF framework invokes when a
value-change event is fired.

First, we'll demonstrate how to implement a value-change event-handling
method in the model beans.

The value-change event-handling method is a simple public method with a
return type of void. This method should take an instance of the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 71 of 201

ValueChangeEvent class along with the method call.

The ValueChangeEvent class has the record of old and new values of the
component. Recall from Event-generation mechanism in JSF on page 70 that
while firing the event, we passed both these values in the ValueChangeEvent
constructor. You can access old and new values of the component by calling
the ValueChangeEvent class methods named getOldValue() and
getNewValue() respectively.

For example, look at the following sample method:

public void valueChanged(ValueChangeEvent vce){
// Application specific processing goes here......
.......
Object oldValue = ev.getOldValue();
Object newValue = ev.getNewValue();
UIComponent component = ev.getComponent();
// Application specific processing goes here......
.......

}//valueChanged

The getOldValue() and getNewValue() methods return Object values.
Cast these values to application-specific classes. The getComponent()
method returns the instance of the component that fired this value-change
event.

The JSP author passes the name of the value-change event-handling method in
the valueChangeListener attribute of the JSF tag. We explained the method
binding for the valueChangeListener property in Setting properties of a
component on page 51. When a value-change event is fired by the
validate() method, the JSF framework uses the MethodBinding object to
call the invoke() method, which in turn calls the model bean method specified
in the valueChangeListener attribute.

Next, we will discuss the second way to handle value-change events:
implementing a value-change event-handling class.

To handle the value-change event in this way, you have to define a class that
should implement the ValueChangeListener interface. The
ValueChangeListener interface contains a method named
processValueChange(). The JSF framework calls this method to handle a
value-change event.

The processValueChange() method takes a ValueChangeEvent object
along with the method call. For example, look at the following
DemoValueChangeListener class, which implements
ValueChangeListener to catch any value-change event:

public class DemoValueChangeListener implements ValueChangeListener{
public DemoValueChangeListener (){
}
public void processValueChange(ValueChangeEvent ev){

// Application specific processing goes here......

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 72 of 201 Using JSF technology for XForms applications

.......
Object oldValue = ev.getOldValue();
Object newValue = ev.getNewValue();
UIComponent component = ev.getComponent();
// Application specific processing goes here...
.......

}//processValueChange
}//DemoValueChangeListener

The JSF framework provides JSF tags that you can use to register
value-change handler classes with the components. The tags are:

<f:valueChangeListener type="xcart.DemoValueChangeListener"/>

The JSP author uses the valueChangeListener tag to register a
value-change event handler class with a particular component. The JSP author
includes the valueChangeListener tag as a child of the JSF tag with which
he wants to register a ValueChangeListener tag. The type attribute of this
tag specifies the fully qualified name of the value-change handling class.

For example, look at the following tag definition in a JSP page:

<jsf:selectOneRadio label="Select One : "
value="#{productData.selectedFeature}">
<f:valueChangeListener type="xcart.DemoValueChangeListener"/>

</jsf:selectOneRadio>

Handling value-change events vs. updating model
beans

Handling the value-change events is an application-specific task. If our
application requirement is such that we do not need to process data coming
from the user, we do not need to write an event handler. In this case, the JSF
framework simply calls the updateModel() method of the component to
update the model bean. On the other hand, if our application requirement is
such that we need to process new data coming from the user, we can process it
in the event handlers before updating the model bean.

Application developers can achieve an important task during the handling of a
value-change event. For example, if the user sends some invalid data, you can
stop the component from updating the model bean with new data. For this
purpose, call the setValid(false) method of the component class, which
stops the component from updating the model bean:

public void processValueChange(ValueChangeEvent ev){
// Application specific processing goes here......
.......
UIComponent component = ev.getComponent();
If(/*some condition to check if user's data is invalid*/)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 73 of 201

Component.setValid(false);
// Application specific processing goes here......
.......
}//processValueChange

Handling action events

As we have seen in Event-generation mechanism in JSF on page 70, the
component fires an action event when the user clicks a button or hyperlink. To
handle the action event, the JSF framework provides two mechanisms (just like
the two mechanisms to handle the value-change events): the implementation of
an action event-handling method in the model bean and the implementation of a
separate action event-handling class.

The action event-handling method is like the one we implemented for the
value-change event previously, except that the action event-handling method
takes an instance of the ActionEvent class, rather than the
ValueChangeEvent object.

The ActionEvent class has the information about the component class that
fired the action event. Recall from Event-generation mechanism in JSF on page
70, while firing the event, we passed the component object to the
ValueChangeEvent constructor.

For example, look at the following sample method in the model bean:

public void actionPerformed(ActionEvent ae){
UIComponent uic = ae.getComponent();
// Application-specific code goes here

}//actionPerformed

The actionPerformed() method above calls the getComponent() method
of the ActionEvent class. The getComponent() method simply returns an
instance of the component class that fired this action event. You will implement
your application-specific processing after getting the component instance. For
example, you will call some getter method of the component class to learn what
action was performed.

The JSP author passes the model bean's action event-handling method name
in the actionListener attribute of the JSF tag. When a user clicks a button
or hyperlink in the JSP page, the decode() method of a component (button or
hyperlink) fires an action event.

When the JSF framework finds that the decode() method of a component has
fired an action event, it checks the value of the immediate property of the
component that fired the event. If this immediate property value is true, it uses
the MethodBinding object to call the invoke() method, which in turn calls
the model bean method specified in the actionListener attribute. If the
immediate property value is false, the JSF framework calls the action

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 74 of 201 Using JSF technology for XForms applications

event-handling method after the call to the updateModel() method of the
component.

The default value of the immediate property is false. The JSP author specifies
the value of the immediate property in the immediate attribute:

<xforms-jsf:commandButton actionListener="dataStore.actionPerformed"
immediate="true">

</xforms-jsf:commandButton>

Next, we will discuss the second way to handle value-change events:
implementing a value-change event-handling class.

To handle action through the second method, you have to define a class that
implements an interface named ActionListener. The ActionListener
interface contains a method named processAction(). The JSF framework
calls this method to process the action event. The action event-handling class
must implement at the processAction() method.

The JSF framework calls the processAction() method, passing it the event
object (fired by the component) along with the method call.

For example, look at the following ActionListener:

public class DemoActionListener implements ActionListener{
public void processAction(ActionEvent event){

UIComponent uic = ae.getComponent();
}

}

The code given for the processAction() method is similar to the code given
for the actionPerformed() method already discussed. The only difference is
in the use of the two event-handling mechanisms.

We use the actionListener tag from the JSF core tag library to register an
action event handler class with the button tag. For example, look at the
following commandButton tag:

<jsf:command_button label="Submit" >
<f:actionListener type="xforms_jsf.DemoActionListener"/>

</jsf:command_button>

We have included an f:actionListener child tag to the commandButton
tag. The type attribute of the f:actionListener tag specifies the name of
the action event-handling class.

Navigation process

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 75 of 201

The JSF framework has defined a mechanism for navigation in a JSF
application. The application developer has to write some navigation rules in the
configuration file (faces-config.xml). The following faces-config.xml file shows
the entry for a navigation rule:

<?xml version="1.0"?>
<faces-config>
.....
<navigation-rule>

<from-view-id>/catalogView.jsp</from-view-id>
<navigation-case>

<from-outcome>category</from-outcome>
<to-view-id>/catalogView.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>product</from-outcome>
<to-view-id>/productView.jsp</to-view-id>

</navigation-case>
</navigation-rule>
.....

</faces-config>

Notice the following points from the above code:

° The faces-config.xml file contains a number of navigation-rule
elements, where each navigation-rule element defines a single navigation
rule from one JSP page to another. Every navigation rule should define three
things: the initial JSP page, the action that occurs in the initial JSP page, and
the final JSP page to be loaded as a result of the action. Therefore, every
navigation rule specifies these three bits of information.

° In the above faces-config.xml file, the navigation-rule element contains
a from-view-id element, which wraps the name of the initial JSP page.

° The navigation-rule element also contains two navigation-case
child elements.

° The first navigation-case element in turn contains a from-outcome
and to-view-id child element.

° The from-outcome element specifies the action that may occur in the initial
JSP page, while the to-view-id element wraps the name of the final JSP
page that will be invoked as a result of the action specified in the
from-outcome element.

° Now look at the second navigation-case element, which contains
different combinations of action and final JSP.

° You can have any number of navigation-case elements within a
navigation-rule element.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 76 of 201 Using JSF technology for XForms applications

We have seen how the navigation rules are defined in the faces-config.xml file.
Let's now look at how the JSF framework uses the navigation rule to navigate to
a page.

After updating the model beans, the JSF framework enters the invoke
application phase, where it performs the following steps for each JSF tag that
has an action attribute (such as the xcart:category tag in the
catalogView.jsp page):

1. It calls the model bean method specified in the action attribute method call
and returns a string value.

2. The JSF framework matches this string value with the contents of each
from-outcome element in the navigation-rule element defined for the
current JSP page.

3. When the match is found, the JSF framework invokes the page specified in
the to-view-id element, which results in automatic invocation of the final
JSP page.

After going through the navigation rules, if the JSF framework finds that the
same currently loaded page needs to be invoked, nothing special happens and
the JSF framework simply calls the encoding methods of all the components in
the current component tree.

If the JSF framework finds that a new JSP page needs to be invoked, it goes
back to the beginning with the new JSP page.

Life-cycle processing phases of a JSF application

We have learned so many things that happen in a JSF application. Before we
start using these concepts to build our XForms-JSF library, however, it is better
to summarize our discussion in the form of life-cycle processing phases of a
JSF application, as follows.

A JSF application request goes through six phases. Don't worry about the
management of these phases. They are managed by the JSF framework.

The service() method of the FacesServlet class invokes the JSF
framework, which checks whether the root component exists. If not, it creates
the root component, adds (stores) it in the FacesContext, and directly goes to
the last phase (the Render response phase). If the root component is found, the
JSF framework adds (restores) the root component, along with all its children in
the FacesContext, and goes to the next phase (the Apply request values
phase). This storing or restoring of the root component in the FacesContext is
called the Restore view phase.

After restoring the components tree, JSF framework calls the decode()

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 77 of 201

method of each component in the component tree. The decode() method
decodes the client's request according to the component behavior. The
decode() method can also add action events (for clicking buttons or
hyperlinks) for later processing. This phase is called the Apply request value
phase.

After decoding the request, the JSF framework calls the validate() method
of each component in the component tree. The validate() method verifies
the changes made by the user in component values. If a change in component
values is found, it fires a value-change event. This validation of data is called
the Process validation phase.

After validating the user changes in the component, the JSF framework calls the
updateModel() method of each component in the tree. The updateModel()
method updates the model bean with the user's new data. This phase is called
the Update model values phase.

Next, the JSF framework checks the navigation rules to determine whether it
needs to invoke another JSP page. If the invocation of new JSP is not required,
the component tree, which is currently loaded in the FacesContext, remains
as it is. Otherwise, a new component tree is created (goes back to the first
phase). This phase is called the Invoke application phase.

Finally, the JSF framework checks whether the complete component tree of the
JSP page that the user requested exists. If it does not, the JSF framework goes
through the entire JSP page. When it comes across a JSF tag, it adds its
component class as a child of the root component we created in the first phase
(forming a component tree). Then it calls the encoding methods of the
component. If the component tree exists, the JSF framework simply calls the
encoding methods of all the components in the component tree. This phase is
called the Render response phase.

The phases are shown below:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 78 of 201 Using JSF technology for XForms applications

Summary

Application developers write model beans to hold application-specific data. The
component classes call the setter and getter method of the model bean
properties to get or store application-specific data.

We can bind a specific property of a model bean or a specific method of a
model bean to a component.

A JSF component can fire two types of events: value-change events and action
events. The JSF component fires a value-change event when the user changes
component values. The JSF component fires an action event when the user
clicks a button or clicks a hyperlink component on the page.

Application developers implement event-handling logic in event-handling
methods. The JSF framework internally invokes the event-handling methods at
the appropriate time to process the event.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 79 of 201

Section 6. XForms-JSF integration strategy

XForms-JSF integration requirements

We have explained the server-side programming requirements of an XForms
application. We have also demonstrated how the JSF architecture works. We
are now ready to demonstrate how we can use JSF to fulfill the server-side
requirements of XForms applications.

In this section, we are presenting the strategy for XForms-JSF integration. For
this purpose, we are going to develop an XForms-JSF sample application. This
section demonstrates the basic integration strategy by developing three
components:

° The xforms-jsf:selectOneRadio component provides users with a list
of choices (a radio button with each choice) to select one of them. It renders
the markup for the XForms select1 element.

° The xforms-jsf:commandButton component renders the markup for the
XForms submit element.

° The xforms-jsf:model component renders the markup for the XForms
model element.

The last subsection provides a small JSP page to demonstrate the use of the
three XForms-JSF tags.

In the next section (XForms-JSF tag library on page 118), we will use the same
integration strategy to implement the rest of the tags necessary for XForms-JSF
integration.

We would like to point out that an XForms-JSF application is like any other JSF
application, except that it authors and processes XForms markup, which means
that XML is used as the format for data interchange between an XForms
browser and a server. A JavaBean component sitting on the server side parses
the XML data from the browser and loads it into a Document Object Model
(DOM) object. The XForms-JSF application uses this DOM object to retrieve data
coming from the client.

While trying to fit XForms into JSF, we will try to fulfill the following
requirements:

1. We have to design a JSF tag library that works according to the JSF
framework discussed in the past three sections.

2. The names of the JSF tags should be the same as the names of
corresponding tags in the HTML tag library. While developing a JSF tag, if
we can find a similar tag in the JSF's HTML tag library, we will use the same

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 80 of 201 Using JSF technology for XForms applications

name. If we cannot find a parallel tag in the JSF's HTML tag library, we will
use a different name, which will help in porting existing HTML applications to
XForms.

3. XForms-JSF tags should be able to render XForms markup. For example,
the selectOneRadio tag of the JSF's HTML tag library generates the
following markup:

<table border="0">
<tr>

<td><input type="radio" name="r1"
value="Red">Red</td>

<td><input type="radio" name="r1"
value="Blue">White</td>
</tr>

</table>

Our XForms-JSF tag library also contains a tag named selectOneRadio.
When selectOneRadio is used in an XForms-JSF application, it generates
the following markup:

<xforms:select1 xmlns:xforms="http://www.w3.org/2002/xforms"
model="optModel" appearance="full" ref="selectedColor" >
<xforms:label>Choose a color:</xforms:label>
<xforms:item>

<xforms:label>Red</xforms:label>
<xforms:value>Red</xforms:value>

</xforms:item>
<xforms:item>

<xforms:label>White</xforms:label>
<xforms:value>White</xforms:value>

</xforms:item>
</xforms:select1>

From the HTML and XForms markup above, the selectOneRadio tags in
the JSF's HTML tag library and our XForms-JSF tag library are different from
each other, and that our XForms-JSF tags should be able to render XForms
markup.

4. XForms markup contains some attributes specific to XForms and do not
have a parallel in HTML, so the XForms-JSF tag library has to handle such
attributes.

As an example, let's look at the JSF tags used in both cases. Here's the JSF
tag used to generate HTML markup:

<f:selectOneRadio value="#{dataStore.selectedColor}">
< f:selectItems value="#{dataStore.colorsList}"/>

</xforms-jsf:selectOneRadio>

Here's the JSF tag used to generate XForms markup:

<f:selectOneRadio value="#{dataStore.selectedColor}"
model="optModel" ref=" selectedColor" label="Choose a Color:">
<f:selectItems value="#{dataStore.colorsList}"/>

</xforms-jsf:selectOneRadio>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 81 of 201

You can observe from the JSF code segments above that the difference
between the HTML and XForms tags is that the
xforms-jsf:selectOneRadio tag contains two extra attributes named
ref and model. In The select element on page 18, we explained the
purpose of these two attributes in detail. The XForms-JSF tags we are going
to develop will render XForms markup containing XForms-specific attributes.

5. The XForms-JSF tag library should be able to handle the way an XForms
browser submits data to a Web server, which is quite different from the way
an HTML browser submits data to a Web server. XForms submit XML data,
while HTML forms submit data in the form of name-value pairs. This means
our XForms-JSF tag library needs to author and process XML data. We will
implement the XML authoring and processing logic in the XForms-JSF tag
library so an XForms-JSF application developer does not have to worry
about low-level details.

6. We will design the XForms-JSF tag library to be independent of the existing
JSF's HTML tag library. You can use either or both in a JSF application,
which means that XForms and HTML tags should be able to co-exist in one
application.

Integration steps

We are going to list the programmatic steps we need to follow to implement the
XForms-JSF tag library. Some steps are required to be implemented just once
for the entire tag library, while some will be done separately for each tag in the
library.

The following steps are common for the entire library, so we will need to
implement them just once for the library:

1. Develop a JSF tag and its accompanying JSF component, which renders the
application-specific XML data wrapped inside the XForms model element.
We will call this JSF tag an xforms-jsf:model tag. This tag handles all
aspects of rendering an XForms model element in an XForms page. It also
allows an application to supply application-specific XML data to the
xforms-jsf:model tag, so that the xforms-jsf:model component can
render the same on the XForms page.

There is no equivalent of this in the present JSF framework, so we will build
the xforms-jsf:model tag from scratch.

2. Write a JavaBean component that parses an incoming XForms request and
author a DOM object that wraps the XML instance data from an XForms
browser. The name of this JavaBean will be

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 82 of 201 Using JSF technology for XForms applications

IncomingXMLInstanceRequest.

3. Create a TLD file for the library.

4. Write a faces-config.xml file for the tag library.

Complete the following steps for each tag in the library:

1. Create a tag handler class for each tag in the XForms-JSF tag library.

2. Make entries in the TLD file for each tag in the XForms-JSF tag library.

3. Make entries in the faces-config.xml file for each component in the tag
library.

4. Write the decode() method for each component that parses the incoming
XML instance data.

5. Write the encodeBegin() and encodeEnd() methods of the components
that render XForms markup.

The rest of this section elaborates on each step listed above.

Implementing the xforms-jsf:model component

The xforms-jsf:model component renders the markup for the XForms
model element. There is no equivalent of the xforms-jsf:model tag in the
present JSF framework, so this xforms-jsf:model tag needs to be
developed from scratch.

The purpose of the xforms-jsf:model tag is to author an XForms model
element that contains an XForms instance child element. The XForms
instance element in turn wraps the application-specific XML data. In The
model element on page 16, we discussed the XForms model element in detail.

For example, if the following code is the application-specific XML data:

<modelXml>
<selectedColor></selectedColor>

</modelXml>

Then the xforms-jsf:model component would author the following markup:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 83 of 201

<xforms:model id="myModel">
<xforms:submission action="/xforms-

jsf/faces/Demo.jsp;jsessionid=B30A73E86F22A6BB68A36B348CF97D6B"
method="post" id="submit" />

<xforms:instance>
<modelXml>

<action-performed></action-performed>
<selectedColor></selectedColor>

</modelXml>
</xforms:instance>

</xforms:model>

Compare the application-specific XML data with the markup that the
xforms-jsf:model component delivers, and you will find the following:

° The application-specific XML is wrapped in the instance element of the
XForms model element.

° The application-specific XML generated by the xforms-jsf:model tag
contains an extra tag named action-performed.

° This modification in the application-specific XML is required to track the user
interaction in the page. We are required to insert an extra tag because if
your application's page contains more than one button or hyperlink,
components cannot verify which button or hyperlink the user clicked.

° This action-performed tag wraps the ID of the button or hyperlink
component clicked by the user on the page. The decode() methods of the
component classes extract the ID of the button from the
action-performed tag to identify the component (button or hyperlink) the
user clicked.

The JSP author provides this component with a value attribute, whose value
points to a String type property of the model bean. For example, look at the
following use of the xforms-jsf:model tag:

<xforms-jsf:model value="#{dataStore.xformsModelData}"/>

The xforms-jsf:model component implementation calls the getter method of
the dataStore.xformsModelData property, which returns the
application-specific XML. The component class associated with the
xforms-jsf:model tag wraps the application-specific XML inside the XForms
model and instance elements.

The next subsection explains how to develop the model bean that provides the
application-specific XML model data. But first, let's see how to implement the
xforms-jsf:model tag.

The first step toward the development of a component is to make an entry in the
TLD file. The TLD file entry for xforms-jsf:model looks like the following
code:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 84 of 201 Using JSF technology for XForms applications

<tag>
<name>model</name>
<tag-class>xforms_jsf.ModelTag</tag-class>
<body-content>JSP</body-content>
<!-- JSF attributes -->
<attribute>

<name>value</name>
<required>true</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<!-- XForms Attributes -->
<attribute>

<name>id</name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>schema</name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>functions</name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
</tag>

In Associating JSF tags with tag classes on page 45, we explained the TLD file
in detail. You can refer to this for the details of the above TLD file.

In The UIComponentTag class on page 43, we explained that each JSF tag has
a tag class associated with it, whose name we have to wrap in the tag-class
element in the TLD file. Let's see the implementation of the
xforms_jsf.ModelTag class mentioned in the tag-class element in the
above TLD file entry:

public class ModelTag extends UIComponentTag{
private String id = null;
private String schema = null;
private String value = null;
private String functions = null;
public String getRendererType() {

return null;
}
public String getComponentType() {

return "Model";
}
public String getValue() {

return value;
}
public void setId(String id) {

this.id = id;
}
public void setSchema(String id) {

this.id = id;
}
public void setFunctions(String id) {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 85 of 201

this.id = id;
}
public void setValue(String value) {

this.value = value;
}
public void setProperties(UIComponent component){

super.setProperties(component);
UIModel uim = (UIModel) component;
FacesContext fc = FacesContext.getCurrentInstance();
Application app = fc.getApplication();
if(id != null) {
if(UIComponentTag.isValueReference(id)) {

ValueBinding vb = app.createValueBinding(id);
uim.setValueBinding("xid", vb);

}
else{

uim.getAttributes().put("xid", id);
}

}
if(schema != null){

uim.getAttributes().put("schema", schema);
}
if(functions != null){

uim.getAttributes().put("functions", functions);
}
if(value != null){
if(UIComponentTag.isValueReference(value)) {

ValueBinding vb = app.createValueBinding(value);
uim.setValueBinding("value", vb);

}
else{

uim.setValue(value);
}

}
}//setProperties

}//ModelTag

The ModelTag class above contains the getComponentType(),
getRendererType(), and setProperties() methods, in addition to the
simple setter and getter methods for the properties. We have already covered
the details of these methods. You can refer to The UIComponentTag class on
page 43 for the details of the getComponentType() and
getRendererType() methods. Refer to Setting properties of a component on
page 51 for the setProperties() method.

Here's how to implement the xforms-jsf:model component class. Look at
the following entry in the faces-config.xml file:

<?xml version="1.0"?>
<faces-config>

.....
<component>

<component-type>Model</component-type>
<component-class>xforms_jsf.UIModel</component-class>

</component>
<!-- other component instances-->

</faces-config>

The component-type element wraps the type of the component. The value

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 86 of 201 Using JSF technology for XForms applications

returned by the getComponentType() method of ModelTag -- "Model" -- is
matched with the content wrapped in the component-type element. The
component-class element specifies the fully qualified name of the
component class: xforms_jsf.UIModel.

Now we will implement the component class UIModel.

The following code shows the properties and methods of the UIModel class:

public class UIModel extends UIComponentBase{
private String value = null;
public void encodeBegin(FacesContext fc)

throws IOException{
}
public void setValue(String value){
}
public Object getValue(){
}
private String insertElement(String xmlData){
}
private String getContextPath(FacesContext fc){
}

}//UIModel

The UIModel class contains only one property (value), two public methods
(setValue() and encodeBegin()), and two private methods
(insertElement() and getContextPath()).

The UIModel component does not need to implement the decode() method
because the UIModel is not required to parse the incoming request from the
user. It only renders the markup for the XForms model element. That is why
UIModel only overrides the encodeBegin() method of UIComponentBase.

Let's discuss the methods of the UIModel class one by one.

The setValue() method is used to set the value property of the component.
We called this method in the setProperties() method of the ModelTag
class to set the value of the value attribute passed by the JSP author:

public void setValue(String value) {
this.value = value;

}

The insertElement() method of UIModel inserts the action-performed
tag in the application-specific XML (we have already explained the purpose of
this extra tag in the application-specific XML):

private String insertElement(String xmlData){
if(xmlData == null) {

xmlData = "<dataWraper><action-performed>
</action-performed></dataWraper>";

}
else{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 87 of 201

String temp = xmlData;
int index = xmlData.indexOf(">");
xmlData = xmlData.substring(0,index+1);
temp = temp.substring(index+1);
xmlData += "<action-performed></action-performed>";
xmlData += temp;

}
return xmlData;

}//insertElement

The getContextPath() method returns a string value that is used in the
action attribute of the XForms submission element. For details about the
XForms action attribute, see The model element on page 16.

private String getContextPath(FacesContext fc){
String viewId = fc.getViewRoot().getViewId();
Application app = fc.getApplication();
String temp = app.getViewHandler().getActionURL(fc, viewId);
return fc.getExternalContext().encodeActionURL(temp);

}//getContextPath

Now let's discuss the implementation of the encodeBegin() method:

public void encodeBegin(FacesContext fc)
throws IOException{
if(fc == null)

throw new NullPointerException();
if(!isRendered())

return;
ResponseWriter out = fc.getResponseWriter();
String id = (String) getAttributes().get("xid");
String schema = (String) getAttributes().get("schema");
String functions = (String) getAttributes().get("functions");
String xmlData = null;
ValueBinding vb = getValueBinding("value");
if (vb != null)

xmlData = (String) vb.getValue(fc);
//inserting action-performed
else

xmlData = getValue();
xmlData = insertElement(xmlData);
//retrieving path from external context
String contextPath = getContextPath(fc);
//writing model data
out.write("<xforms:model");
if(id != null)

out.write(" id=\""+ id + "\"");
if(schema != null)

out.write(" schema=\""+ schema + "\"");
if(functions != null)

out.write(" functions=\""+ functions + "\"");
out.write(" xmlns:xforms=\"http://www.w3.org/2002/xforms\">");
out.write("<xforms:submission action=\"");
out.write(contextPath);
out.write("\" ");
out.write("method=\"post\" id=\"submit\" />");
out.write("<xforms:instance>");
out.write(xmlData);
out.write("</xforms:instance>");

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 88 of 201 Using JSF technology for XForms applications

out.write("</xforms:model>");
}//encodeBegin

The encodeBegin() method:

1. First checks the value of the rendered attribute of the JSF tag. If it is false,
then it will not render the component. Instead it returns without rendering the
component.

2. Retrieves the ResponseWriter object from the FacesContext object. All
encoding methods use this ResponseWriter object to write their markup.

3. Retrieves the attribute values (set by the setProperties() method of
ModelTag) by calling the get() method and passing it the name of the
attribute.

4. Uses the ValueBinding object passed by the ModelTag class to fetch the
application-specific XML from the model bean.

5. Inserts an action-performed element in the application-specific XML (to
identify the button that the user clicked) by calling the insertElement()
method.

6. Writes the markup for the component by calling the write() method of the
ResponseWriter object.

The UIModel class is now ready to be used in a JSF application to render the
XForms model element. In the last subsection of this section, we will
demonstrate the usage of the UIModel component in a sample XForms-JSF
application.

Writing the model bean that represents
application-specific XML data

The model bean that authors application-specific XML data is like any other
application-specific bean that you may need and develop in a server-side Java
application. The only special thing that our xforms-jsf:model tag demands
from the model bean is that the bean should have a string-type property. The
xforms-jsf:model tag assumes that the string-type property contains the
application-specific XML data it needs to wrap inside the XForms instance
element. Refer to The model element on page 16 for details of the
application-specific XML data.

The JSP author passes the reference of the string property as the value of the
value attribute of the xforms-jsf:model tag. The component class
(UIModel) uses the value attribute to get application-specific data.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 89 of 201

For example, look at the following model bean named DataStore, whose
xformsModelData property is a good candidate to act as the value attribute of
an xforms-jsf:model tag:

public class DataStore{
private String action = null;
private ArrayList colorsList = null;
private String selectedColor = null;
private String xformsModelData = null;
public DataStore(){

String [] colors = new String[2];
colors [0] = "Red";
colors [1] = "Green";
selectedColor = null;
colorsList = new ArrayList(colors.length);
for (int i = 0 ; i < colors.length ; i++)
colorsList.add(new SelectItem(colors[i], colors[i],

colors[i]));
xformsModelData =

"<modelXml><selectedColor></selectedColor></modelXml>";
}
public void setSelectedColor(Object selColor) {

selectedColor = (String) selColor;
}
public Object getSelectedColor(){

return selectedColor;
}
public void setColorsList (Collection colorsList) {

this.colorsList = new ArrayList();
}
public Collection getColorsList(){

return colorsList;
}
public String getXformsModelData (){

return xformsModelData;
}
public void setXformsModelData (String xformsModelData) {

this.xformsModelData = xformsModelData;
}
public void setAction(String newAction){

this.action = newAction;
}
public String getAction(){

return action;
}
public void btnPressed(ActionEvent event) {

if(this.selectedColor.equals("Red"))
setAction("redSelected");

else if(this.selectedColor.equals("Green"))
setAction("greenSelected");

}//btnPressed
}//DataStore

Notice the following points from the DataStore class implementation above:

° The xformsModelData property of the DataStore class wraps the
application-specific XML, which the JSP author can pass to an
xforms-jsf:model tag in the value attribute.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 90 of 201 Using JSF technology for XForms applications

° We hard-coded the application-specific XML for the sake of simplicity. While
developing your application-specific bean, you can read this from a file or
database. These days, nearly all DB vendors provide XML interfaces. The
only requirement is that your bean should have a property that represents
the application-specific XML.

° The DataStore bean contains a few more properties (colorsList,
selectedColor, and action) along with their setter and getter methods.
The other JSF tags in the JSP page use these properties to pass on
application-specific data to the components.

° The public method named btnPressed() is actually an action event
handler method, which we will use for action event-handling in our sample
application.

° Similarly, the public method named valueChanged() is actually a
value-change event handler method, which we will use for value-change
event-handling in our sample application.

Parsing the incoming XML instance data

The XML that the xforms-jsf:model tag renders serves to wrap the user's
data he wants to submit back to the server. The XML rendered by the
xforms-jsf:model tag wraps the user's changes and carries the data to the
server. Our server-side application needs to parse the XML received from the
user to extract the user data.

We'll explain this concept with the following example. Suppose the request body
contains the following XML:

<modelXML>
<action-performed>id1</action-performed>
<selectedColor>Red</selectedColor>

</modelXML>

In the XML, the modelXML tag carries information in two tags:
action-performed and selectedColor. The action-performed tag
wraps the ID of the button that the user clicked, and the selectedColor tag
wraps the color name that the user selected. The decode() method of each
XForms-specific JSF component has to parse the XML request to fetch the
information sent by the user.

To make this work independently from component development, we will
implement a class that parses the incoming XForms request and author a DOM
Document object for the incoming XML. The name of this JavaBean
component is IncomingXMLInstanceRequest.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 91 of 201

The following code shows the properties and methods in the
IncomingXMLInstanceRequest JavaBean component:

public class IncomingXMLInstanceRequest{
protected Document DOMDocument;
public IncomingXMLInstanceRequest(){
}
public Document getDOMDocument()
throws org.xml.sax.SAXException,
javax.xml.parsers.ParserConfigurationException{

}
}//IncomingXMLInstanceRequest

The IncomingXMLInstanceRequest class contains a constructor, single
property (DOMDocument), and public method getDOMDocument().

The DOMDocument property contains the contents of the incoming client
request. The decode() method of each component in the XForms-JSF tag
library fetches the value of this property to learn its contents.

Now let's discuss the methods of the IncomingXMLInstanceRequest class
one by one.

The IncomingXMLInstanceRequest constructor simply initializes the
DOMDocument property with null:

public IncomingXMLInstanceRequest(){
DOMDocument = null;

}

The getDOMDocument() method returns an instance of the DOM Document
object, which contains the application-specific XML request.

public Document getDOMDocument()
throws org.xml.sax.SAXException,
javax.xml.parsers.ParserConfigurationException

{
if(DOMDocument == null){

FacesContext facesContext = FacesContext.getCurrentInstance();
ExternalContext eContext = facesContext.getExternalContext();
ServletRequest request= (ServletRequest)eContext.getRequest();
ServletInputStream sis = request.getInputStream()
try{

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();
DOMDocument = db.parse();
return DOMDocument;

}
catch(java.io.IOException e){

e.printStackTrace();
}

}//if(DOMDocument == null)
return DOMDocument;

}//getDOMDocument

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 92 of 201 Using JSF technology for XForms applications

When the getDOMDocument() method is called by any component, it first
checks the value of the DOMDocument property. If the value is null, it does the
following steps:

1. It creates an instance of the FacesContext object.

2. It calls the getExternalContext() method of the FacesContext object,
which returns an instance of the ExternalContext class. This
ExternalContext object is necessary to fetch the request.

3. It calls the getRequest() method of the ExternalContext class, which
returns an instance of the ServletRequest class. This ServletRequest
object wraps all the details about the request from the client.

4. Then it calls the getInputStream() method of the ServletRequest
object, which returns an instance of the ServletInputStream object.

5. This ServletInputStream object wraps the input stream from the client in
the binary form. This binary data is actually the XML that the user sent.

6. After fetching the input stream, the getDOMDocument() method creates an
instance of the DocumentBuilder class.

7. Then it calls the parse() method of the DocumentBuilder class, passing
it the ServletInputStream object retrieved in step 4.

8. This parse() method authors the XML from the ServletInputStream
and returns a Document object, which contains the XML the user sent to the
Web server.

9. The getDOMDocument() method assigns this Document object to the
DOMDocument property.

Finally, the getDOMDocument() method returns the DOMDocument property.

We will normally declare the IncomingXMLInstanceRequest model bean in
the faces-config.xml file to make this bean available for the whole application.
We said in Associating model beans with JSF components on page 67 that the
application-level declarations are made in the faces-config.xml file.

Look at the following declaration of the IncomingXMLInstanceRequest
bean in the faces-config.xml file:

<managed-bean>
<description>Incoming XML Request</description>

<managed-bean-name>incomingXMLInstanceRequest</managed-bean-name>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 93 of 201

<managed-bean-class>
xforms_jsf.IncomingXMLInstanceRequest

</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

The managed-bean-name element wraps the name of the bean:
incomingXMLInstanceRequest. This name acts like an instance for the
class. The application classes access the bean through this name.

The managed-bean-class element specifies the qualified name of the bean
class: xforms_jsf.IncomingXMLInstanceRequest.

The managed-bean-scope element wraps the scope for the bean. The scope
for the IncomingXMLInstanceRequest bean is specified as request, which
tells that this bean is instantiated on each request from a client.

As you know, the IncomingXMLInstanceRequest class loads incoming
requests, so this bean is instantiated on each request from the client.

Now let's discuss how the decode() method of different components uses this
class to access the request.

The decode() method of each component in the component tree does the
following:

1. Gets an instance of the incomingXMLInstanceRequest JavaBean
component from the application (as mentioned above, it's a bean defined in
the faces-config.xml file)

2. Calls the getDOMDocument() method of the
incomingXMLInstanceRequest bean

3. Iterates through the document that contains XML nodes and retrieves data
related to the component

Implementing the xforms-jsf:selectOneRadio tag

The xforms-jsf:selectOneRadio tag we are going to implement here
renders the following markup:

<xforms:select1 ref="selectedColor" model="optModel"
appearance="full" xmlns:xforms= "http://www.w3.org/2002/xforms">
<xforms:label>Choose a Color:</xforms:label>
<xforms:item>

<xforms:label>Red</xforms:label>
<xforms:value>Red</xforms:value>

</xforms:item>
<xforms:item>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 94 of 201 Using JSF technology for XForms applications

<xforms:label>White</xforms:label>
<xforms:value>White</xforms:value>

</xforms:item>
</xforms:select1>

In the XForms browser, the above markup looks like the following figure:

The tag as used in a JSP page looks like the following code:

<xforms-jsf:selectOneRadio value="#{dataStore.selectedColor}"
model="optModel" ref=" selectedColor" label="Choose a Color:"
valueChangeListener="#{dataStore.valueChanged}">
<f:selectItems value="#{dataStore.colorsList}"/>

</xforms-jsf:selectOneRadio>

There are two things to be explained regarding the above code: the
xforms-jsf:selectOneRadio and f:selectItems tags.

The three most important attributes of the xforms-jsf:selectOneRadio tag
are:

The value attribute: As explained in the previous section, the value attribute
is used to specify the model bean and its property associated with a JSF tag. In
the above example, the name of the bean (dataStore) and its property
(selectedColor) is passed to the component in value. This property tracks
the user's selection that is made from a list of choices.

The model attribute: The model attribute of the
xforms-jsf:selectOneRadio element is used to establish an association
between the select1 and model elements. The model attribute value of the
select element matches the id attribute value of the model element. The
model attribute of the select1 element in the
xforms-jsf:selectOneRadio tag indicates that the XForms select1
element is associated with the XForms model element whose id attribute has
the value "optModel."

The ref attribute: This attribute refers to a tag in the XForms model element.
In the xforms-jsf:selectOneRadio tag above, the ref attribute contains
selectedColor as a value, which is the name of a tag in the XForms model
element that we discussed in Implementing the xforms-jsf:model component on
page 83. In other words, the value of the ref attribute always contains the
name of the tag from the application-specific XML in the XForms model
element.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 95 of 201

The XForms select1 element binds itself with the XForms model element
through this ref attribute. We have already explained the purpose of having
ref attributes in XForms elements in The select element on page 18.

Now let's discuss the f:selectItems -- the child tag of the
xforms-jsf:selectOneRadio tag. Actually, we used this tag from the JSF's
core tag library where it provides components with a list of values from model
beans to render on the browser.

In the above JSP code, the f:selectItems tag has a value attribute (whose
value is "#{dataStore.colorsList}"). Here, the value attribute carries the name
of the model bean property, which holds the list of choices that will be rendered
in response to the xforms-jsf:selectOneRadio tag, as shown in the above
screenshot.

Now let's start implementing the selectOneRadio tag. The tag entry in the
TLD file for the selectOneRadio tag looks like the following code:

<tag>
<name>selectOneRadio</name>
<tag-class>xforms_jsf.Select1RadioTag</tag-class>
<body-content>JSP</body-content>
<!-- JSF Specific Attributes -->
<attribute>

<name>value</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>valueChangeListener</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>rendered</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>id</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>binding</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>immediate</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>required</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 96 of 201 Using JSF technology for XForms applications

<!-- Xforms Specific attributes -->
<attribute>

<name> model </name>
<required> false </required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name> label </name>
<required> false </required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name> navindex </name>
<required> false </required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name> accesskey </name>
<required>false </required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name> bind </name>
<required> false </required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name> ref </name>
<required> true </required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name> selection </name>
<required> false </required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name> incremental </name>
<required> false </required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<!-- JSF Specific attributes -->
<attribute>

<name>id</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name> value </name>
<required> true </required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>rendered</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

The above TLD file entry declares two types of attributes: XForms-specific
attributes and JSF-specific attributes.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 97 of 201

In the above TLD file entry, the name of the tag class is
xforms_jsf.Select1RadioTag, which we have implemented in the
following code:

public class Select1RadioTag extends UIComponentTag{
private String value = null;
private String required = null;
private String immediate = null;
private String valueChangeListener = null;

private String ref = null;
private String bind = null;
private String model = null;
private String label = null;
private String navindex = null;
private String accesskey = null;
private String selection = null;
private String incremental = null;
public String getRendererType(){

return null;
}
public String getComponentType(){

return "Select1";
}
public void setValue(String valueRef) {

this.value = valueRef;
}
public void setRequired(String required) {

this.required = required;
}
public void setImmediate(String immediate) {

this.immediate = immediate;
}
public void setValueChangeListener(String valueChangeListener) {

this.valueChangeListener = valueChangeListener;
}
public void setRef(String ref){

this.ref = ref;
}
public void setBind(String bind){

this.bind = bind;
}
public void setModel(String model){

this.model = model;
}
public void setLabel(String label){

this.label = label;
}
public void setNavindex(String navindex){

this.navindex = navindex;
}
public void setAccesskey(String accesskey){

this.accesskey = accesskey;
}
public void setSelection(String selection){

this.selection = selection;
}
public void setIncremental(String incremental){

this.incremental = incremental;
}
public void setProperties(UIComponent component) {

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 98 of 201 Using JSF technology for XForms applications

super.setProperties(component);
UISelect1 uis = (UISelect1)component;
FacesContext fc = FacesContext.getCurrentInstance();
Application app = fc.getApplication();
if(required != null) {
if(UIComponentTag.isValueReference(required)) {

ValueBinding vb = app.createValueBinding(required);
uis.setValueBinding("required", vb);

}
else{

boolean boolRequired =
(new Boolean(required)).booleanValue();

uis.setRequired(boolRequired);
}

}
if(valueChangeListener != null) {
if(UIComponentTag.isValueReference(valueChangeListener)) {

Class args[] = {
javax.faces.event.ValueChangeEvent.class

};
MethodBinding mb =

app.createMethodBinding(valueChangeListener, args);
uis.setValueChangeListener(mb);

}
}
if(immediate != null) {
if(UIComponentTag.isValueReference(immediate)) {

ValueBinding vb = app.createValueBinding(immediate);
uis.setValueBinding("immediate", vb);

}
else{

boolean boolImmediate =
(new Boolean(immediate)).booleanValue();

uis.setImmediate(boolImmediate);
}

}
if(value != null) {
if(UIComponentTag.isValueReference(value)) {

ValueBinding vb = app.createValueBinding(value);
uis.setValueBinding("value", vb);

}
else{

uis.setValue(value);
}

}
if(ref != null)

uis.getAttributes().put("ref", ref);
if(bind != null)

uis.getAttributes().put("bind", bind);
if(label != null)

uis.getAttributes().put("label", label);
if(model != null)

uis.getAttributes().put("model", model);
if(navindex != null)

uis.getAttributes().put("navindex", navindex);
if(accesskey != null)

uis.getAttributes().put("accesskey", accesskey);
if(selection != null)

uis.getAttributes().put("selection", selection);
if(incremental != null)

uis.getAttributes().put("incremental", incremental);
uis.getAttributes().put("appearance", "full");

}//setProperties

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 99 of 201

}//Select1RadioTag

This code is exactly like the code used in Implementing the xforms-jsf:model
component on page 83, so we won't explain it here.

Here's how to implement the component class associated with the
xforms-jsf:selectOneRadio tag. Look at the following entry in the
faces-config.xml file:

<?xml version="1.0"?>
<faces-config>

.....
<component>

<component-type>Select1</component-type>

<component-class>xforms_jsf.UISelect1</component-class>
</component>
<!-- other component instances-->

</faces-config>

In the next section, we will implement the component class mentioned in the
component-class element of the faces-config.xml file above (UISelect1).

Implementing the UISelect1 component

The UISelect1 component class lets users select one choice from a list of
given choices. If the user changes the component's value, the UISelect1
component class fires a value-change event and automatically updates the
application-specific model bean with the user's new selection.

The UISelect1 component informs application-specific event-handlers about
the user's selection of a new value by firing a value-change event.

The behavior of the xforms-jsf:selectOneRadio component is quite
similar to the behavior of its equivalent component provided by the JSF's HTML
tag library. However, there are slight differences in the implementation. The
JSF's HTML tag library component renders HTML markup while its equivalent
XForms-JSF tag library component (UISelect1) renders XForms markup.

While implementing the UISelect1 component, we extended our component
from the UIInput class, which is part of the JSF's HTML tag library. The
difference is between encoding the markup and decoding the request. And
while implementing, we will override these two methods in UISelect1.

The methods in the UISelect1 class are shown in the following code:

public class UISelect1 extends UIInput{
private Iterator getItems(FacesContext context) {
}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 100 of 201 Using JSF technology for XForms applications

public void encodeEnd(FacesContext fc) throws IOException {
}
private String getNewValue(Document doc, String tag) {
}
public void decode(FacesContext fc) throws IOException {
}
public void validate(FacesContext context){
}

}//UISelect1

Now let's discuss the implementation of the methods shown one by one.

The getItems() helper method returns an instance of the Iterator object,
which contains the list of choices that the encodeEnd() method renders. The
following code shows the implementation of the getItems() method:

private Iterator getItems(FacesContext context) {
Object value = null;
ArrayList list = new ArrayList();
for(Iterator kids = this.getChildren(); kids.hasNext();)
{

UIComponent kid = (UIComponent)kids.next();
if(kid instanceof UISelectItems)
{

value = ((UISelectItems)kid).currentValue(context);
if(value instanceof Collection)
{
for(Iterator item = ((Collection)value).iterator();

item.hasNext();)
list.add((SelectItem)item.next());

return list.iterator();
}

}
}
return new Iterator(){

public void remove(){}
public boolean hasNext(){return false;}
public Object next(){throw new NoSuchElementException();}

};
}//getItems

Notice the following points:

° The getItems() method first gets the child component of UISelect1.

° Then it gets the model bean property value that the JSP author specified in
the value attribute of the f:selectItems tag.

° Then the getItems() method iterates through the values fetched in step 2
and adds them to an ArrayList object.

° Next, it converts the ArrayList into an Iterator object and returns the
Iterator object.

° If there is no child component, this method returns an empty Iterator.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 101 of 201

Now let's discuss the implementation of the encodeEnd() method:

public void encodeEnd(FacesContext fc) throws IOException {
if(fc == null)

throw new NullPointerException();
if(!isRendered())

return;
String ref = (String) getAttributes().get("ref");
String bind = (String) getAttributes().get("bind");
String model = (String) getAttributes().get("model");
String label = (String) getAttributes().get("label");
String navindex = (String) getAttributes().get("navindex");
String accesskey = (String) getAttributes().get("accesskey");
String selection = (String) getAttributes().get("selection");
String appearance = (String) getAttributes().get("appearance");
String incremental = (String) getAttributes().get("incremental");
ResponseWriter out = fc.getResponseWriter();
out.write("<xforms:select1 ref=\"" + ref +"\"");
if(bind != null)

out.write(" bind=\""+ bind + "\"");
if(model != null)

out.write(" model=\""+ model + "\"");
if(navindex != null)

out.write(" navindex=\""+ navindex + "\"");
if(selection != null)

out.write(" selection=\""+ selection + "\"");
if(accesskey != null)

out.write(" accesskey=\""+ accesskey + "\"");
if(appearance != null)

out.write(" appearance=\""+ appearance + "\"");
if(incremental != null)

out.write(" incremental=\""+ incremental + "\"");
out.write(" xmlns:xforms=\"http://www.w3.org/2002/xforms\">");
if(label != null)

out.write("<xforms:label>" + label +
"</xforms:label>");
else

out.write("<xforms:label>" + "Select One" +
"</xforms:label>");
Iterator items = null;
items = getItems(fc);
SelectItem si = null;
if(items == null)

throw new NullPointerException();
while(items.hasNext()){

si = (SelectItem)items.next();
out.write("<xforms:item>");

String itemLabel = (String)si.getLabel();
String strValue = (String)si.getValue();
if(itemLabel != null){
out.write("<xforms:label>" + itemLabel +

"</xforms:label>");
out.write("<xforms:value>" + strValue +

"</xforms:value>");
}
else

out.write("<xforms:label>Option</xforms:label>");
out.write("</xforms:item>");

}//while()
out.write("</xforms:select1>");

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 102 of 201 Using JSF technology for XForms applications

}//encodeEnd

The encodeEnd() method above performs the following steps:

1. It first verifies the value of the FacesContext object. If it is null, it throws
a NullPointerException.

2. After verifying the context, it retrieves the ResponseWriter object from
FacesContext by calling its getResponseWriter() method.

3. Then it retrieves the values of attributes set by the setProperties()
method of Select1RadioTag by calling the get() method and passing it
the name of the attribute.

4. Next, it calls the getItems() method as already explained.

5. Finally, the encodeEnd() method writes the markup to render the list of
choices returned by the getItems() method call.

The decode() method calls a helper method named getNewValue(),
passing it the document that contains the request and the XML tag that wraps
the user's selected value along with the method call. The getNewValue()
method returns the user's selected value after retrieving it from the document.
The code for the getNewValue() method:

private String getNewValue(Document doc, String tag) {
String newValue = null;
NodeList nl = doc.getElementsByTagName(tag);
if (nl != null){

Node tags = null;
int length = nl.getLength();
for(int i=0; i<length ; i++){

tags = nl.item(i);
NodeList children = tags.getChildNodes();
if(children == null)

break;
if(children.item(i) == null)

break;
newValue = (String)children.item(i).getNodeValue();

}
}//if(nl != null)
return newValue;

}//getNewValue

The decode() method needs another helper method named
getModelBeanObject(). The getModelBeanObject() method takes a
string value (the name of the model bean property that contains the request)
and the FacesContext object along with the method call. This method returns
the actual value of the model bean property:

public Object getModelBeanObject(String ref, FacesContext fc){
Application app = fc.getApplication();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 103 of 201

ValueBinding vb = app.createValueBinding(ref);
return vb.getValue(fc);

}//getModelBeanObject

The decode() method is implemented to parse the incoming request. In an
XForms-JSF application, the request is in XML. We demonstrated the parsing
mechanism in Parsing the incoming XML instance data on page 91.

The code for the decode() method:

public void decode(FacesContext fc){
if(fc == null)

throw new NullPointerException();
String tag = null;
String newValue = null;
String ref = (String) getAttributes().get("ref");
String bind = (String) getAttributes().get("bind");
String clientId = getClientId(fc);
if(bind == null)

tag = ref;
else

tag = bind;
Document doc = (Document) getModelBeanObject

("#{IncomingXMLInstanceRequest.DOMDocument}", fc);
if(doc != null){

newValue = getNewValue(doc, tag);
}
setSubmittedValue(newValue);
setValid(true);

}//decode

Notice the following points from the decode() method above:

1. It retrieves the values of the attributes set by the setProperties()
method of Select1RadioTag by calling the get() method and passing it
the name of the attribute.

2. The decode() method calls the getModelBeanObject() method,
passing it the "incomingXMLInstanceRequest.DOMDocument" model bean
and the FacesContext instance along with the method call. This method
call returns a Document object, which contains the XML request.

3. If the Document object fetched in step 2 is null, the decode() method
stops processing and returns.

4. If the document is not null, it calls the getNewValue() method, which
returns the value selected by the user.

5. Next, decode() calls the setSubmittedValue() method to store the
user's selected values.

Now the UISelect1 class is ready to be used with any JSF application. In the
last subsection of this section (Trying out the sample application on page 116),

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 104 of 201 Using JSF technology for XForms applications

we will explain the usage of this component in a sample XForms-JSF
application.

Next, we will implement the xforms-jsf:commandButton tag.

Implementing the xforms-jsf:commandButton tag

The xforms-jsf:commandButton tag we are going to implement here
renders the following markup:

<xforms:submit submission="submit"
xmlns:xforms="http://www.w3.org/2002/xforms">
<xforms:action ev:event="DOMActivate"

xmlns:ev="http://www.w3.org/2001/xml-events">
<xforms:setvalue

ref="action_performed">id1</xforms:setvalue>
</xforms:action>
<xforms:label>Submit</xforms:label>

</xforms:submit>

In the XForms browser, the above markup looks like the following figure:

The tag as used in a JSP page looks like the following code:

<xforms-jsf:commandButton label="Submit"
actionListener="#{dataStore.actionPerformed}">

</xforms-jsf:commandButton >

The xforms-jsf:commandButton tag renders the markup for the XForms
submit element.

The tag entry in the TLD file for the commandButton tag looks like the
following code:

<tag>
<name>commandButton </name>
<tag-class>xforms_jsf.ButtonTag</tag-class>
<!-- Xforms Specific attributes -->
<attribute>

<name> model </name>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 105 of 201

<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> appearance </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> navindex </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> accesskey </name>
<required>false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> bind </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> ref </name>
<required> true </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<!-- JSF Specific attributes -->
<attribute>

<name>id</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>action</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>actionListener</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>immediate</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>value</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>binding</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>rendered</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 106 of 201 Using JSF technology for XForms applications

</attribute>
</tag>

In the above TLD file, we mentioned xforms_jsf.ButtonTag as the tag
handler class. The following code shows the implementation of the ButtonTag
class:

public class ButtonTag extends UIComponentTag{
private String value = null;
private String action = null;
private String immediate = null;
private String actionListener = null;

private String ref = null;
private String bind = null;
private String label = null;
private String model = null;
private String navindex = null;
private String accesskey = null;
private String appearance = null;

public String getRendererType(){
return null;

}
public String getComponentType(){

return "Submit";
}
public String getValue(){
return value;

}
public void setValue(String newValue) {

value = newValue;
}
public String getAction(){

return action;
}
public void setAction(String newAction) {

action = newAction;
}
public String getImmediate(){

return immediate;
}
public void setImmediate(String newImmediate) {

immediate = newImmediate;
}
public String getActionListener(){

return actionListener;
}
public void setActionListener(String newActionListener) {

actionListener = newActionListener;
}
public String getRef(){

return ref;
}
public String getBind(){

return bind;
}
public String getModel(){

return model;
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 107 of 201

public String getLabel(){
return label;

}
public String getNavindex(){

return navindex;
}
public String getAccesskey(){

return accesskey;
}
public String getAppearance(){

return appearance;
}
public void setRef(String newRef){

ref = newRef;
}
public void setBind(String newBind){

bind = newBind;
}
public void setLabel(String newLabel){

label = newLabel;
}
public void setModel(String newModel){

model = newModel;
}
public void setNavindex(String newNavindex){

navindex = newNavindex;
}
public void setAccesskey(String newAccesskey){

accesskey = newAccesskey;
}
public void setAppearance(String newAppearance) {

appearance = newAppearance;
}
protected void setProperties(UIComponent component) {

super.setProperties(component);
UIButton uib = (UIButton)component;
FacesContext fc = FacesContext.getCurrentInstance();
Application app = fc.getApplication();
if(action != null) {

if(UIComponentTag.isValueReference(action)) {
MethodBinding mb = app.createMethodBinding(action, null);
uib.setAction(mb);

}
else{
MethodBinding mb = new ConstantMethodBinding(action);
uib.setAction(mb);

}
}
if(actionListener != null) {

if(UIComponentTag.isValueReference(actionListener)) {
Class args[] = {

javax.faces.event.ActionEvent.class
};
MethodBinding mb=app.createMethodBinding(actionListener,args);
uib.setActionListener(mb);

}
}
if(immediate != null) {

if(UIComponentTag.isValueReference(immediate)) {
ValueBinding vb = app.createValueBinding(immediate);
uib.setValueBinding("immediate", vb);

}
else{

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 108 of 201 Using JSF technology for XForms applications

boolean boolImmediate =
(new Boolean(immediate)).booleanValue();

uib.setImmediate(boolImmediate);
}

}
if(value != null) {

if(UIComponentTag.isValueReference(value)) {
ValueBinding vb = app.createValueBinding(value);
uib.setValueBinding("value", vb);

}
else{
uib.setValue(value);

}
}
if(ref != null)

uib.getAttributes().put("ref", ref);
if(bind != null)

uib.getAttributes().put("bind", bind);
if(label != null)

uib.getAttributes().put("label", label);
if(model != null)

uib.getAttributes().put("model", model);
if(navindex != null)

uib.getAttributes().put("navindex", navindex);
if(accesskey != null)

uib.getAttributes().put("accesskey", accesskey);
if(appearance != null)

uib.getAttributes().put("appearance", appearance);
}//setProperties

}//ButtonTag

This code is exactly like the code used in Implementing the xforms-jsf:model
component on page 83, so we won't explain it here.

Here's how to implement the component class associated with the
xforms-jsf:commandButton tag. Look at the following entry in the
faces-config.xml file:

<component>
<component-type>Submit</component-type>
<component-class>xforms_jsf.UIButton</component-class>

</component>

In the next section, we will implement the component class mentioned in the
component-class element of the faces-config.xml file above (UIButton).

Implementing the UIButton component

The UIButton component renders an XForms submit element. The
UIButton component provides users with a facility to submit data back to the
application after making changes in the components.

The behavior of the xforms-jsf:commandButton component is quite similar
to the behavior of its equivalent component in the JSF HTML tag library. The

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 109 of 201

difference comes while performing the same task with two different
technologies. The xforms-jsf:commandButton component renders XForms
markup and works according to the XForms requirements (such as parsing a
request that is in XML).

While implementing the UIButton component class, we extended the class
from the UICommand class, which is the component class for the
h:commandButton tag in the JSF HTML tag library. The difference is between
encoding and decoding so, while implementing, we override these methods in
the UIButton class.

The following code shows the method in the UIButton component class:

public class UIButton extends UICommand{
public void encodeBegin(FacesContext context)

throws IOException{
}
public void decode(FacesContext fc) {
}
private Object getModelBeanObject(String valueRef, FacesContext fc){
}
private String getButtonValue(Document doc, String tag) {
}

}//UIButton

The UIButton class implements two public methods (encodeBegin() and
decode()) and two private methods (getModelBeanObject() and
getButtonValue()).

The following code shows the implementation of the encodeBegin() method:

public void encodeBegin(FacesContext context)
throws IOException

{
if(context == null)

throw new NullPointerException();
if(!isRendered())

return;
String ref = (String) getAttributes().get("ref");
String bind = (String) getAttributes().get("bind");
String model = (String) getAttributes().get("model");
String label = (String) getAttributes().get("label");
String navindex = (String) getAttributes().get("navindex");
String accesskey = (String) getAttributes().get("accesskey");
String appearance = (String) getAttributes().get("appearance");
ResponseWriter writer = context.getResponseWriter();
writer.write("
<xforms:submit");
writer.write(" submission=\"submit\"");
if(bind != null)

writer.write(" bind=\""+ bind + "\"");
if(model != null)

writer.write(" model=\""+ model + "\"");
if(navindex != null)

writer.write(" navindex=\""+ navindex + "\"");
if(accesskey != null)

writer.write(" accesskey=\""+ accesskey + "\"");

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 110 of 201 Using JSF technology for XForms applications

if(appearance != null)
writer.write("appearance=\""+ appearance + "\"");

writer.write(" xmlns:xforms=\"http://www.w3.org/2002/xforms\"");
writer.write(" xmlns:ev=\"http://www.w3.org/2001/xml-events\">");
writer.write("<xforms:action ev:event=\"DOMActivate\">");
writer.write("<xforms:setvalue ref=\"action-performed\">");
writer.write(getClientId(context));
writer.write("</xforms:setvalue>");
writer.write("</xforms:action>");
writer.write("<xforms:label>");
if(label != null)

writer.write(label);
else

writer.write("Submit");
writer.write("</xforms:label>");
writer.write("</xforms:submit>
");

}//encodeBegin

The following points explain the encodeBegin() method:

1. It checks the value of the rendered attribute. If it is false, it does not render
the markup for the component and returns.

2. It retrieves the ResponseWriter object from the FacesContext object.

3. It fetches the attribute values (set by the setProperties() method of
ButtonTag) by calling the get() method and passing it the name of the
attribute.

4. The encodeBegin() method writes the markup for the component by
calling the write() method of the ResponseWriter object.

The decode() method calls a private helper method named
getButtonValue(), which returns the ID of the button the user clicked:

private String getButtonValue(Document doc, String tag){
String value = null;
NodeList nl = doc.getElementsByTagName(tag);
if (nl != null){

Node tags = null;
int length = nl.getLength();
for(int i=0; i<length ; i++){

tags = nl.item(i);
if (tags.getNodeName().equals(tag)){
NodeList children = tags.getChildNodes();
value = children.item(i).getNodeValue();

}
}//for

}//if (nl != null)
return value;

}//getButtonValue

The following code shows the implementation of the decode() method:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 111 of 201

public void decode(FacesContext fc){
if(fc == null)

throw new NullPointerException();
String value = null;
String clientId = getClientId(fc);
Document doc = (Document) getModelBeanObject

("#{IncomingXMLInstanceRequest.DOMDocument}", fc);
if(doc != null){

value = getButtonValue(doc, "action-performed");
if(value == null)

return;
}
if(clientId.equals(value)){

queueEvent(new ActionEvent(this));
}

}//decode

Notice the following points in the decode() method above:

1. The decode() method retrieves the client ID by calling the
getClientId() method.

2. The decode() method calls the getModelBeanObject() helper method,
passing it the "incomingXMLInstanceRequest.DOMDocument" model bean
and FacesContext instance, along with the method call. This method call
returns a Document object, which contains the XML request.

3. If the Document object is null, the decode() method stops processing
and returns.

4. If the Document object is not null, it calls the getButtonValue() private
method, which returns the ID of the button clicked by the user.

5. It compares this ID with the client ID retrieved in step 1.

6. If the two values are the same, it fires an action event. Otherwise, it returns
without firing any event.

After implementing the UIButton class, this component is ready to be used in
JSF applications to render the markup for the submit element of XForms.

In the next section, we will explain the usage of this component in an
XForms-JSF sample application.

Using the model, selectOneRadio, and
commandButton tags

We're almost ready to show you how to use all the XForms-JSF components
we developed. Before we do, however, we would like to explain the behavior of

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 112 of 201 Using JSF technology for XForms applications

the sample JSP page named Demo.jsp. This JSP page provides an option to
select one color from a given list of colors and redirect you to the selected
color's JSP page.

This page uses the following components:

1. xforms-jsf:selectOneRadio to render radio buttons
2. xforms-jsf:commandButton to submit the selected option to the

application server
3. xforms-jsf:model to render the XForms model element
4. DataStore JavaBean that acts as an application-specific model bean and

implements event-handlers

The JSP author has to take care when mapping components to the XForms
model. For example, XForms can have more than one model elements and
identifies each model with an id attribute, which a UI component (such as a
select1 element) refers to using its model attribute. Observe the id attribute
in the xforms-jsf:model element and the model attribute in the
jsf:selectOneRadio element in the JSP code below:

<?xml version="1.0" encoding="iso-8859-1"?>
<html>
... ...
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="/WEB-INF/xforms-jsf.tld" prefix="xforms-jsf"%>
<view>
<head>

<xforms-jsf:model value="#{dataStore.xformsModelData}"
id="optModel"/>

</head>
<body>

<xforms-jsf:selectOneRadio ref="selectedColor" label="Select
color"

value="#{dataStore.selectedColor}">
<f:selectItems value="#{dataStore.colorsList}"/>

</xforms-jsf:selectOneRadio>
<xforms-jsf:commandButton label="Show selection"

immediate="false"
action="#{dataStore.getAction}"
actionListener="#{dataStore.btnPressed}">

</xforms-jsf:commandButton>
</body>
</view>

</html>

This JSP page renders the following markup:

<?xml version="1.0" encoding="iso-8859-1"?>
<html xmlns:xforms="http://www.w3.org/2002/xforms">
<head>

<xforms:model xmlns:xforms="http://www.w3.org/2002/xforms">
<xforms:submission

action="/xforms-jsf/faces/Demo.jsp;jsessionid=B30A73E86F22A6BB68A36B348CF97D6B"
method="post" id="submit" />

<xforms:instance>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 113 of 201

<modelXml>
<action-performed></action-performed>
<selectedColor></selectedColor>

</modelXml>
</xforms:instance>

</xforms:model>
</head>
<body>

<xforms:select1 ref="selectedColor" appearance="full"
xmlns:xforms="http://www.w3.org/2002/xforms">
<xforms:label>Select a color:</xforms:label>
<xforms:item>
<xforms:label>Red</xforms:label>
<xforms:value>Red</xforms:value>

</xforms:item>
<xforms:item>
<xforms:label>Green</xforms:label>
<xforms:value>Green</xforms:value>

</xforms:item>
</xforms:select1>

<xforms:submit submission="submit"

xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:ev="http://www.w3.org/2001/xml-events">
<xforms:action ev:event="DOMActivate">
<xforms:setvalue

ref="action-performed">id0</xforms:setvalue>
</xforms:action>
<xforms:label>Show Selection</xforms:label>

</xforms:submit>

</body>
</html>

The output of this markup is shown in the following screenshot:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 114 of 201 Using JSF technology for XForms applications

This page shows two colors: red and green. You can select one of them and
send it to the application server.

Suppose you selected red and submitted it. On the server side, the component
checks the selected value (as explained earlier in this tutorial) and redirects it
according to the selection -- in this case, to the red.jsp shown below.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 115 of 201

All the compiled and uncompiled code of this sample application resides inside
the section6.zip file; see Resources on page 200. The next section explains how
you can try this code.

Trying out the sample application

I tested the sample application on the Sun Java System Application Server
Platform Edition V8 with J2EE V1.4 Update 1 to run the sample application, but
you can use any J2EE 1.4-compliant application server to deploy it.

I've provided a WAR file (Demo.war) so you can deploy the application directly
in your application server (be sure to enter the URL
http://localhost:8080/Demo in the address bar of your XForms browser
to run the sample application). The WAR and the Demo folder are in the
section6.zip file available in the source code download of this tutorial; see
Resources on page200 .

The Demo folder contains the hierarchy of folders and files that the WAR file
requires: the JSP pages of our sample application (discussed in the previous
section) and a WEB-INF folder. The WEB-INF folder contains a TLD,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 116 of 201 Using JSF technology for XForms applications

faces-config.xml, and web.xml file, as well as a folder named classes
(containing the compiled classes for the sample application and the three
XForms-JSF tag library-specific components we developed in this section). The
arrangement of these files and folders in the Demo folder maps with the
arrangement of folders and files in a WAR file, as shown in the screenshot
below:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 117 of 201

Section 7. XForms-JSF tag library

Completing the XForms-JSF tag library

In this section, we will complete the XForms-JSF tag library and demonstrate
the development of each JSF component in it.

In the previous section, we demonstrated the development of
xforms-jsf:model, xforms-jsf:commandButton, and
xforms-jsf:selectOneRadio components in detail. Now, without going into
too much detail, we will discuss the development of the remaining components.
We will only stick to the behavior and implementation specific to the
components we are developing.

The following components are XForms-JSF tag library components we will
develop:

° xforms-jsf:selectOneMenu

° xforms-jsf:selectOneListbox

° xforms-jsf:selectManyListbox

° xforms-jsf:selectManyCheckbox

° xforms-jsf:selectManyMenu

° xforms-jsf:inputText

° xforms-jsf:inputSecret

° xforms-jsf:inputTextarea

We will explain these components in detail shortly, but first, we'll give a brief
description of each component. We'll also discuss the markup generated by the
component and the expected interpretation by the XForms browser for the
markup, how the JSP author uses the component in the JSP page, and the
possible entries for the JSF tag in the TLD file. Finally, we'll discuss the
implementation of the tag handler class associated with the tag. After the
development of the tag handler class, we will implement the component class
for the tag.

Implementing the xforms-jsf:selectOneMenu
component

The xforms-jsf:selectOneMenu component is similar to the
xforms-jsf:selectOneRadio component we developed in Implementing
the xforms-jsf:selectOneRadio tag on page 94. The only difference is in the
graphical appearance of the components in the XForms browser. The remaining
features are the same as the xforms-jsf:selectOneRadio tag.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 118 of 201 Using JSF technology for XForms applications

In the case of the xforms-jsf:selectOneRadio tag, each choice appears
with a radio button, while the xforms-jsf:selectOneMenu tag choices
appear in a menu list.

The xforms-jsf:selectOneMenu component renders the following markup:

<xforms:select1 ref="selectedColor" model="optModel"
appearance="minimal"

xmlns:xforms="http://www.w3.org/2002/xforms">
<xforms:label>Choose a Color</xforms:label>
<xforms:item>

<xforms:label>Red</xforms:label>
<xforms:value>Red</xforms:value>

</xforms:item>
<xforms:item>

<xforms:label>White</xforms:label>
<xforms:value>White</xforms:value>

</xforms:item>
</xforms:select1>

Notice the value of the appearance attribute in the above markup ("minimal").
In the markup of xforms-jsf:selectOneRadio, the value of the
appearance attribute was "full."

In the XForms browser, the above markup looks like the following:

The JSP author codes the following elements to use the component in the JSP
page:

<xforms-jsf:selectOneMenu value="#{dataStore.selectedColor}"
ref="selectedColor" model="optModel">
<f:selectItems value="#{dataStore.colorsList}"/>

</xforms-jsf:selectOneMenu>

The explanation of this JSP code is the same as for the selectOneRadio tag
in Implementing the xforms-jsf:selectOneRadio tag on page 94.

Let's start implementing the selectOneMenu tag.

The first step is to make an entry in the TLD file. The entries in the TLD files are
the same as for the selectOneRadio tag. The only difference is between the
entry in the name element and in the tag-class element. Look at the TLD file
for selectOneMenu:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 119 of 201

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib>
.....
<tag>

<name>selectOneMenu</name>
<tag-class>xforms_jsf.Select1MenuTag</tag-class>
<!-- remaining is same as listed for selectOneRadio -->

</tag>
<!-- other tag instances-->

</taglib>

In this TLD file, we mentioned that the tag-class element contains the
xforms_jsf.Select1MenuTag class. We will implement this tag handler
class.

Except for the appearance property of the component, most of the features are
the same as for selectOneRadio in Implementing the
xforms-jsf:selectOneRadio tag on page 94. We will extend the
Select1MenuTag class from Select1RadioTag and override only the
setProperties() method. The following code shows the implementation of
the Select1MenuTag class:

public class Select1MenuTag extends Select1RadioTag{
public void setProperties(UIComponent component){

super.setProperties(component);
UISelect1 uis = (UISelect1)component;
uis.getAttributes().put("appearance", "minimal");

}//setProperties
}//Select1MenuTag

We first make a call to the same method of its base class that will perform the
default functionality of the setProperties() method defined in the base
class. Then we override the appearance property of the component with the
"minimal" value.

The JSF component class we will associate with the selectOneMenu is
UISelect1. It is the same component class we developed for the
selectOneRadio component in Implementing the UISelect1 component on
page 100.

Implementing the xforms-jsf:selectOneListbox
component

The behavior of the xforms-jsf:selectOneListbox tag is similar to the
xforms-jsf:selectOneRadio component we developed in Implementing
the xforms-jsf:selectOneRadio tag on page 94. The only difference is in the
graphical appearance of the components in the browser. The remaining aspects
are similar to the xforms-jsf:selectOneRadio component. In the case of
xforms-jsf:selectOneRadio, each choice appears with a radio button. In
the case of xforms-jsf:selectOneMenu, the choices appear in a list box.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 120 of 201 Using JSF technology for XForms applications

The xforms-jsf:selectOneListbox component we are going to
implement renders the following markup:

<xforms:select1 ref="selectedColor" model="optModel"
appearance="compact" xmlns:xforms="http://www.w3.org/2002/xforms">
<xforms:label>Choose a Color</xforms:label>
<xforms:item>

<xforms:label>Red</xforms:label>
<xforms:value>Red</xforms:value>

</xforms:item>
<xforms:item>

<xforms:label>White</xforms:label>
<xforms:value>White</xforms:value>

</xforms:item>
</xforms:select1>

Notice the value of the appearance attribute in the above markup ("compact").
In the markup of xforms-jsf:selectOneRadio, the value of the
appearance attribute was "full."

In the XForms browser, the above markup looks like the following:

The JSP author codes the following elements to use the component in the JSP
file:

<xforms-jsf:selectOneListbox value="#{dataStore.selectedColor}"
ref="selectedColor" model="optModel">
<f:selectItems value="#{dataStore.colorsList}"/>

</xforms-jsf:selectOneListbox>

The TLD file entry for the selectOneListbox tag is similar to the
selectOneRadio tag:

<tag>
<name>selectOneListbox</name>
<tag-class>xforms_jsf.Select1ListTag</tag-class>
<!-- remaining is same as listed for selectOneRadio -->

</tag>

In the above TLD file entry, the tag-class element contains the
Select1ListTag class, which is the name of the tag handler class for the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 121 of 201

selectOneListbox tag. We will now implement the Select1ListTag class.

Like the selectOneMenu tag, the selectOneListbox tag is similar to the
selectOneRadio tag, except for the appearance property. We will extend
the tag handler class for selectOneListbox from Select1RadioTag, as we
did earlier for the selectOneMenu tag. The following code shows the
implementation of the Select1ListTag class:

public class Select1ListTag extends Select1RadioTag{
public void setProperties(UIComponent component){

super.setProperties(component);
UISelect1 uis = (UISelect1)component;
uis.getAttributes().put("appearance", "compact");

}//setProperties
}//Select1ListTag

The JSF component class we will associate with the selectOneListbox is
UISelect1. It is the same class that we developed for the selectOneRadio
component in Implementing the UISelect1 component on page 100. There is no
need to develop a separate component class, as the behavior of both
components is the same.

Implementing the xforms-jsf:selectManyListbox
component

The xforms-jsf:selectManyListbox component provides users with an
option to select multiple choices from a list of given choices in a list box. It
renders the XForms select element's markup.

The xforms-jsf:selectManyListbox component renders the following
markup:

<xforms:select ref="selectedColors" model="optModel"
appearance="compact" xmlns:xforms="http://www.w3.org/2002/xforms">
<xforms:label>Choose a Color</xforms:label>
<xforms:item>

<xforms:label>Red</xforms:label>
<xforms:value>Red</xforms:value>

</xforms:item>
<xforms:item>

<xforms:label>White</xforms:label>
<xforms:value>White</xforms:value>

</xforms:item>
</xforms:select>

In the XForms browser, the above markup looks like this:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 122 of 201 Using JSF technology for XForms applications

The JSP author codes the following elements to use the component in the JSP
file:

<xforms-jsf:selectManyListbox ref="selectedColors" model="optModel"
value="#{dataStore.selectedColors}">
<f:selectItems value="#{dataStore.colorsList}"/>

</xforms-jsf:selectManyListbox>

The details of the attributes of this component are the same as the
xforms-jsf:selectOneRadio component in Implementing the
xforms-jsf:selectOneRadio tag on page 94. The only difference is between the
value attribute of selectManyListbox. As we explained, that value is used
by the component to set or get the JavaBeans property. The property that the
JSP author passes in the value attribute for the selectManyListbox tag
should be an array of the string object in the model bean (while in the case of
the selectOneRadio tag, it was simply a string type property).

Now we will implement the selectManyListbox tag by making an entry in the
TLD file to declare it. The entry looks like this:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib>
......
<tag>

<name>selectManyListbox</name>
<tag-class>xforms_jsf.SelectListBoxTag</tag-class>
<!-- JSF Specific Attributes -->
<attribute>

<name>value</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>valueChangeListener</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>rendered</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>id</name>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 123 of 201

<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>binding</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>immediate</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>required</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<!-- XForms Attributes -->
<attribute>

<name> model </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>label</name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> navindex </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> accesskey </name>
<required>false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> bind </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> ref </name>
<required> true </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> selection </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> incremental </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
</tag>
<!-other tag instances-->

</taglib>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 124 of 201 Using JSF technology for XForms applications

In the above TLD file, we mentioned the tag handler
xforms_jsf.SelectListBoxTag class in the tag-class element. Now we
will implement the SelectListBoxTag class:

public class SelectListBoxTag extends UIComponentTag{
private String value = null;
private String required = null;
private String immediate = null;
private String valueChangeListener = null;

private String ref = null;
private String bind = null;
private String model = null;
private String label = null;
private String navindex = null;
private String accesskey = null;
private String selection = null;
private String incremental = null;
public String getRendererType(){

return null;
}
public String getComponentType(){

return "Select";
}
public void setValue(String valueRef) {

this.value = valueRef;
}
public void setRequired(String required) {

this.required = required;
}
public void setImmediate(String immediate) {

this.immediate = immediate;
}
public void setValueChangeListener(String valueChangeListener) {

this.valueChangeListener = valueChangeListener;
}
public void setRef(String ref) {

this.ref = ref;
}
public void setBind(String bind) {

this.bind = bind;
}
public void setModel(String model) {

this.model = model;
}
public void setLabel(String label) {

this.label = label;
}
public void setNavindex(String navindex) {

this.navindex = navindex;
}
public void setAccesskey(String accesskey) {

this.accesskey = accesskey;
}
public void setSelection(String selection) {

this.selection = selection;
}
public void setIncremental(String incremental) {

this.incremental = incremental;
}
public void setProperties(UIComponent component) {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 125 of 201

super.setProperties(component);
UISelect uis = (UISelect)component;
FacesContext fc = FacesContext.getCurrentInstance();
Application app = fc.getApplication();
if(required != null){

if(UIComponentTag.isValueReference(required)){
ValueBinding vb = app.createValueBinding(required);
uis.setValueBinding("required", vb);

}
else{
boolean boolRequired = (new Boolean(required)).booleanValue();
uis.setRequired(boolRequired);

}
}
if(valueChangeListener != null){

if(UIComponentTag.isValueReference(valueChangeListener)) {
Class args[] = {

javax.faces.event.ValueChangeEvent.class
};
MethodBinding mb =

app.createMethodBinding(valueChangeListener, args);
uis.setValueChangeListener(mb);

}
}
if(immediate != null) {

if(UIComponentTag.isValueReference(immediate)) {
ValueBinding vb = app.createValueBinding(immediate);
uis.setValueBinding("immediate", vb);

}
else{
boolean boolImmediate =

(new Boolean(immediate)).booleanValue();
uis.setImmediate(boolImmediate);

}
}
if(value != null) {

if(UIComponentTag.isValueReference(value)) {
ValueBinding vb = app.createValueBinding(value);
uis.setValueBinding("value", vb);

}
uis.setValue(value);

}
if(ref != null)

uis.getAttributes().put("ref", ref);
if(bind != null)

uis.getAttributes().put("bind", bind);
if(label != null)

uis.getAttributes().put("label", label);
if(model != null)

uis.getAttributes().put("model", model);
if(navindex != null)

uis.getAttributes().put("navindex", navindex);
if(accesskey != null)

uis.getAttributes().put("accesskey", accesskey);
if(selection != null)

uis.getAttributes().put("selection", selection);
if(incremental != null)

uis.getAttributes().put("incremental", incremental);
uis.getAttributes().put("appearance", "compact");

}//setProperties
}//SelectListBoxTag

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 126 of 201 Using JSF technology for XForms applications

This code is exactly like the code used in Implementing the xforms-jsf:model
component on page 83, so we won't explain it here.

Now we'll discuss the JSF component class associated with the
xforms-jsf:selectManyListbox tag.

UISelect is the component class we will associate with the
xforms-jsf:selectManyListbox tag. The UISelect component is similar
to the UISelect1 component discussed in Implementing the UISelect1
component on page 100. We extended the UISelect class from UISelect1,
which is part of the JSF's HTML tag library.

The following code shows the methods in the UISelect class:

public class UISelect extends UISelect1{
public void encodeEnd(FacesContext fc)

throws IOException{
}
private String[] getNewValues(Document doc, String tag){
}

}//UISelect

The UISelect class overrides the encodeEnd() method and implements a
new helper method named getNewValues().

The encodeEnd() method is similar to the same method in the UISelect1
class, except that it renders a different markup.

The getNewValues() helper method returns the values selected by the user,
after fetching from the XML request. We need this method because the values
selected by the user come as an array of strings in which each individual string
is separated from the other by a space. The getNewValues() method parses
the user's data and returns it in the form of a String[].

The decode() method calls the getNewValues() method, passing it the
Document object (that contains the request) and the name of the XML tag that
wraps values selected by the user:

private String[] getNewValues(Document doc, String tag){
String[] newValues = null;
NodeList nl = doc.getElementsByTagName(tag);
if (nl != null){

Node tags = null;
int length = nl.getLength();
for(int i=0; i<length ; i++){

tags = nl.item(i);
NodeList children = tags.getChildNodes();
if (children == null)
break;

if(children.item(i) == null)
break;

String values = children.item(i).getNodeValue();
if(values == null)
break;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 127 of 201

int spaceCounter = 0;
int j = -1;
while(true) {
j = values.indexOf(" ", j + 1);
if(j == -1){

spaceCounter++;
break;

}
else

spaceCounter++;
}
newValues = new String[spaceCounter];
int index = 0;
for(int k = 0 ; values.length() > 0 ; k++){
k = values.indexOf(" ");
if(k != -1){

newValues[index++] = values.substring(0,k);
values = values.substring(k+1);

}
else{

newValues[index] = values.substring(0);
break;

}
}//for(int k = 0 ; values.length() > 0 ; k++)

}//for(int i=0; i<length ; i++)
}//if (nl != null)
return newValues;

}//getNewValues

Notice the following points in this code:

1. It retrieves the node (from the Document) that wraps the new values.

2. It retrieves the contents of the node fetched in step 1 (the list of choices
selected by the user).

3. Because this component lets users select more than one choice at a time, a
space separates each choice in the node fetched in step 2.

4. The getNewValues() method extracts each choice and places it in an
array of string type, then returns the array.

Now look at the following code, which shows the decode method
implementation:

public void decode(FacesContext fc) {
if(fc == null)

throw new NullPointerException();
String tag = null;
String[] newValue = null;
String ref = (String) getAttributes().get("ref");
String bind = (String) getAttributes().get("bind");
String clientId = getClientId(fc);
if(bind == null)

tag = ref;
else

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 128 of 201 Using JSF technology for XForms applications

tag = bind;
Document doc = (Document) getModelBeanObject

("#{incomingXMLInstanceRequest.DOMDocument}", fc);
if(doc != null) {

newValue = getNewValues(doc, tag);
}
if(newValue == null)

setSubmittedValue(new String[0]);
else

setSubmittedValue(newValue);
setValid(true);

}//decode

Now you can use this component with any JSF application after making an
entry in the faces-config.xml file:

<component>
<component-type>Select</component-type>
<component-class>xforms_jsf.UISelect</component-class>

</component>

Implementing the xforms-jsf:selectManyCheckbox
component

The behavior of the xforms-jsf:selectManyCheckbox component is
similar to selectManyListbox. The only difference is between the
appearances of both the components. This component provides users with an
option to select one or more check boxes from a list of check boxes (each
check box represents a choice).

The xforms-jsf:selectManyCheckbox tag renders the following markup:

<xforms:select ref="selectedColors" model="optModel"
appearance="full" xmlns:xforms= "http://www.w3.org/2002/xforms">
<xforms:label>Choose a Color</xforms:label>
<xforms:item>

<xforms:label>Red</xforms:label>
<xforms:value>Red</xforms:value>

</xforms:item>
<xforms:item>

<xforms:label>White</xforms:label>
<xforms:value>White</xforms:value>

</xforms:item>
</xforms:select>

The only difference between the markups of the xforms-jsf:
selectManyCheckbox and xforms-jsf:selectManyListbox tags is the
appearance attribute.

In the XForms browser, the above markup looks like the following:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 129 of 201

The JSP author codes the following elements to use the tag in the JSP file:

<xforms-jsf:selectManyCheckbox ref="selectedColors"
value="#{dataStore.selectedColors}" model="optModel">
<f:selectItems value="#{dataStore.colorsList}"/>

</xforms-jsf:selectManyCheckbox>

Now let's start implementing the selectManyCheckbox tag. Its TLD entry:

<tag>
<name>selectManyCheckbox</name>
<tag-class>xforms_jsf.SelectCheckListTag</tag-class>
<!-- remaining is same as listed for selectManyListbox -->

</tag>

In the above TLD file, we mentioned
<tag-class>xforms_jsf.SelectCheckListTag</tag-class>. We will
implement this tag handler class.

As explained earlier, the selectManyCheckbox and selectManyListbox
components are similar. The only difference is the appearance of the
components, which are controlled by the appearance property of the
component.

We extend the tag handler class for this component from SelectListBoxTag,
which is the tag handler class for the selectManyListbox component
(explained in the previous section), and override the setProperties()
method, which only sets the appearance property for the component.

The following code shows the implementation of the SelectCheckListTag
class, which represents the selectManyCheckbox tag:

public class SelectCheckListTag extends SelectListBoxTag{
public void setProperties(UIComponent component){

super.setProperties(component);
UISelect uis = (UISelect)component;
uis.getAttributes().put("appearance", "full");

}
}//SelectCheckListTag

In the setProperties() method, we first make a call to the same method of

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 130 of 201 Using JSF technology for XForms applications

its base class that performs the default functionality of the setProperties()
method defined in the base class, then we override the appearance property
of the component with "full."

The component class for this JSF tag is UISelect, the same as for
selectManyListbox.

Implementing the xforms-jsf:selectManyMenu
component

The xforms-jsf:selectManyMenu component provides users with an
option to select check boxes from a tree of check boxes (in the tree, each node
has a check box and a label. Each node represents a choice).

The xforms-jsf:selectManyMenu component renders the following
markup:

<xforms:select ref="selectedColors" model="optModel"
appearance = "minimal"

xmlns:xforms="http://www.w3.org/2002/xforms">
<xforms:label>Choose a Color</xforms:label>
<xforms:item>

<xforms:label>Red</xforms:label>
<xforms:value>Red</xforms:value>

</xforms:item>
<xforms:item>

<xforms:label>White</xforms:label>
<xforms:value>White</xforms:value>

</xforms:item>
</xforms:select>

If you compare the markups generated by the
xforms-jsf:selectManyMenu and xforms-jsf:selectManyListbox
components, you will see that the difference is only in the value of the
appearance attribute.

In the XForms browser, the above markup looks like the following:

The JSP author codes the following elements to use the component in the JSP
file:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 131 of 201

<xforms-jsf:selectManyMenu value="#{dataStore.selectedColors}"
ref="selectedColors" model="optModel">
<f:selectItems value="#{dataStore.colorsList}"/>

</xforms-jsf:selectManyMenu>

The TLD file entry for the selectManyMenu tag:

<tag>
<name>selectManyCheckbox</name>
<tag-class>xforms_jsf.SelectMenuTag</tag-class>
<!-- remaining is same as listed for selectManyListbox -->

</tag>

In the above TLD file, we mentioned
<tag-class>xforms_jsf.SelectMenuTag</tag-class>. Now we will
implement this tag handler class.

The following code shows the implementation of the SelectMenuTag class,
which represents the selectManyMenu tag:

public class SelectMenuTag extends SelectListBoxTag{
public void setProperties(UIComponent component){

super.setProperties(component);
UISelect uis = (UISelect)component;
uis.getAttributes().put("appearance", "minimal");

}
}//SelectMenuTag

In the setProperties() method, we first make a call to the same method of
its base class, which performs the default functionality of the
setProperties() method defined in the base class. We then override the
appearance property of the component with "minimal."

As before, we can use the UISelect component class for this tag.

Implementing the xforms-jsf:inputText component

The xforms-jsf:inputText component provides the user with an input box
to enter text into it. In addition, xforms-jsf:inputText renders the following
markup:

<xforms:input ref="name" model="optModel"
xmlns:xforms= "http://www.w3.org/2002/xforms">
<xforms:label>Name</xforms:label>
<xforms:hint>Please enter your name.</xforms:hint>

</xforms:input>

In the above markup, the XForms hint element is used. In the hint element,
you can wrap a description about the text to enter. For example, in the markup

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 132 of 201 Using JSF technology for XForms applications

shown above, the label is "Name." When the user rolls the mouse on the input
box, the hint is displayed to the user.

In the XForms browser, the above markup looks like the following:

The JSP author codes the following elements to use the component in the JSP
file:

<xforms-jsf:inputText value="#{customerData.name}" ref="name"
model="optModel">

</xforms-jsf:inputText>

The component saves the user data in the bean property passed in the value
attribute.

Let's start implementing the xforms-jsf:inputText component. The first
step is to make a new tag entry in the TLD file. The tag entry in the TLD file for
xforms-jsf:inputText looks like the following:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib>
.....
<tag>

<name>inputText</name>
<tag-class>xforms_jsf.InputBoxTag</tag-class>
<!-- JSF Specific Attributes -->
<attribute>

<name>value</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>valueChangeListener</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>rendered</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>id</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 133 of 201

</attribute>
<attribute>

<name>binding</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>immediate</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>required</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<!-- XForms Attributes -->

<attribute>
<name> model </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>label</name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> navindex </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> accesskey </name>
<required>false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> bind </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> hint </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> ref </name>
<required> true </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> inputmode </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name> incremental </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 134 of 201 Using JSF technology for XForms applications

<name> appearance </name>
<required> false </required>
<rtexprvalue> false </rtexprvalue>

</attribute>
</tag>
<!-other tag instances-->

</taglib>

In the above TLD file, we mentioned
<tag-class>xforms_jsf.InputBoxTag</tag-class>. Now let's
implement this tag handler class.

The following code shows the implementation of the InputBoxTag class:

public class InputBoxTag extends UIComponentTag{
protected String value = null;
protected String required = null;
protected String immediate = null;
protected String valueChangeListener = null;

protected String ref = null;
protected String bind = null;
protected String hint = null;
protected String model = null;
protected String label = null;
protected String navindex = null;
protected String accesskey = null;
protected String inputmode = null;
protected String appearance = null;
protected String incremental = null;
public String getRendererType(){

return null;
}
public String getComponentType(){

return "InputBox";
}
public void setRef(String ref){

this.ref = ref;
}
public void setBind(String bind){

this.bind = bind;
}
public void setHint(String hint){

this.hint = hint;
}
public void setModel(String model){

this.model = model;
}
public void setLabel(String label){

this.label = label;
}
public void setValue(String valueRef){

this.value = valueRef;
}
public void setNavindex(String navindex){

this.navindex = navindex;
}
public void setAccesskey(String accesskey){

this.accesskey = accesskey;
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 135 of 201

public void setInputmode(String inputmode){
this.inputmode = inputmode;

}
public void setAppearance(String appearance){

this.appearance = appearance;
}
public void setIncremental(String incremental){

this.incremental = incremental;
}
public void setProperties(UIComponent component){

super.setProperties(component);
UIInputBox uib = (UIInputBox)component;
FacesContext fc = FacesContext.getCurrentInstance();
Application app = fc.getApplication();
if(required != null) {

if(UIComponentTag.isValueReference(required)) {
ValueBinding vb = app.createValueBinding(required);
uib.setValueBinding("required", vb);

}
else{
boolean boolRequired = (new Boolean(required)).booleanValue();
uib.setRequired(boolRequired);

}
}
if(valueChangeListener != null){

if(UIComponentTag.isValueReference(valueChangeListener)){
Class args[] = {

javax.faces.event.ValueChangeEvent.class
};
MethodBinding mb =

app.createMethodBinding(valueChangeListener, args);
uib.setValueChangeListener(mb);

}
}
if(immediate != null){

if(UIComponentTag.isValueReference(immediate)){
ValueBinding vb = app.createValueBinding(immediate);
uib.setValueBinding("immediate", vb);

}
else{
boolean boolImmediate =

(new Boolean(immediate)).booleanValue();
uib.setImmediate(boolImmediate);

}
}
if(value != null){

if(UIComponentTag.isValueReference(value)){
ValueBinding vb = app.createValueBinding(value);
uib.setValueBinding("value", vb);

}
else
uib.setValue(value);

}
if(ref != null)

uib.getAttributes().put("ref", ref);
if(bind != null)

uib.getAttributes().put("bind", bind);
if(hint != null)

uib.getAttributes().put("hint", hint);
if(label != null)

uib.getAttributes().put("label", label);
if(model != null)

uib.getAttributes().put("model", model);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 136 of 201 Using JSF technology for XForms applications

if(navindex != null)
uib.getAttributes().put("navindex", navindex);

if(accesskey != null)
uib.getAttributes().put("accesskey", accesskey);

if(inputmode != null)
uib.getAttributes().put("inputmode", inputmode);

if(appearance != null)
uib.getAttributes().put("appearance", appearance);

if(incremental != null)
uib.getAttributes().put("incremental", incremental);

}//setProperties
}//InputBoxTag

Now let's implement the JSF component class associated with
xforms-jsf:inputText.

The UIInputBox is the component class we associate with
xforms-jsf:inputText. We extend UIInputBox from UISelect1:

public class UIInputBox extends UISelect1{
public void encodeEnd(FacesContext fc) throws IOException{

if(fc == null)
throw new NullPointerException();

if(!isRendered())
return;

String ref = (String) getAttributes().get("ref");
String bind = (String) getAttributes().get("bind");
String hint = (String) getAttributes().get("hint");
String model = (String) getAttributes().get("model");
String label = (String) getAttributes().get("label");
String navindex = (String) getAttributes().get("navindex");
String inputmode = (String) getAttributes().get("inputmode");
String accesskey = (String) getAttributes().get("accesskey");
String appearance = (String) getAttributes().get("appearance");
String incremental = (String) getAttributes().get("incremental");
ResponseWriter out = fc.getResponseWriter();
out.write("<xforms:input ref=\"" + ref +"\"");
if(bind != null)

out.write(" bind=\""+ bind + "\"");
if(model != null)

out.write(" model=\""+ model + "\"");
if(navindex != null)

out.write(" navindex=\""+ navindex + "\"");
if(inputmode != null)

out.write(" inputmode=\""+ inputmode + "\"");
if(accesskey != null)

out.write(" accesskey=\""+ accesskey + "\"");
if(appearance != null)

out.write(" appearance=\""+ appearance + "\"");
if(incremental != null)

out.write(" incremental=\""+ incremental + "\"");
out.write(" xmlns:xforms=\"http://www.w3.org/2002/xforms\">");
if(label != null)

out.write("<xforms:label>" + label +
"</xforms:label>");

else
out.write("<xforms:label>" + "Enter data " +

"</xforms:label>");
if(hint != null)

out.write("<xforms:hint>" + hint + "</xforms:hint>");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 137 of 201

out.write("</xforms:input>");
}//encodeEnd

}//UIInputBox

The UIInputBox class only overrides the encodeEnd() method of the
UISelect1 class to render its own markup. The reason is because the markup
rendered is different from the parent class, but the behavior of the tag is not
different. It has to manage only one string coming from the user.

Now you can use this component with any JSF application after an entry in the
faces-config.xml file:

<component>
<component-type>InputBox</component-type>
<component-class>xforms_jsf.UIInputBox</component-class>

</component>

Implementing the xforms-jsf:inputSecret component

The xforms-jsf:inputSecret component provides the user with an input
box to enter text in a nonreadable form.

The xforms-jsf:inputSecret renders the following markup:

<xforms:secret ref="password" model="optModel"
xmlns:xforms= "http://www.w3.org/2002/xforms">
<xforms:label>Password</xforms:label>
<xforms:hint>Pls. Enter password here.</xforms:hint>

</xforms:secret>

In the XForms browser, the above markup looks like the following:

The JSP author codes the following elements to use the component in the JSP
file.

<xforms-jsf:inputSecret value="#{customerData.pwd}" ref="password"
model="optModel">

</xforms-jsf:inputSecret>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 138 of 201 Using JSF technology for XForms applications

The component saves the user's password in the bean property passed in the
value attribute.

The TLD file for xforms-jsf:inputSecret looks like the following:

<tag>
<name>inputSecret</name>
<tag-class>xforms_jsf.InputSecretTag</tag-class>
<!-- Remaining is same as implemented for inputText-->

</tag>

In the above TLD file, we mentioned
<tag-class>xforms_jsf.InputSecretTag</tag-class>. Now let's
implement this tag handler class.

Next, we'll implement the tag handler class for xforms-jsf:inputSecret.
The attributes for the inputSecret tag are the same as were defined for the
inputText tag. We extended the tag handler class for inputSecret from
InputBoxTag that is implemented for the inputText tag in the previous
topic. The following code shows the implementation of the InputSecretTag
class:

public class InputSecretTag extends InputBoxTag{
public String getComponentType(){

return "InputSecret";
}
public void setProperties(UIComponent component){

super.setProperties(component);
UIInputSecret uis = (UIInputSecret)component;
FacesContext fc = FacesContext.getCurrentInstance();
Application app = fc.getApplication();
if(required != null) {

if(UIComponentTag.isValueReference(required)) {
ValueBinding vb = app.createValueBinding(required);
uis.setValueBinding("required", vb);

}
else{
boolean boolRequired = (new Boolean(required)).booleanValue();
uis.setRequired(boolRequired);

}
}
if(valueChangeListener != null) {

if(UIComponentTag.isValueReference(valueChangeListener)){
Class args[] = {

javax.faces.event.ValueChangeEvent.class
};
MethodBinding mb =

app.createMethodBinding(valueChangeListener, args);
uis.setValueChangeListener(mb);

}
}
if(immediate != null) {

if(UIComponentTag.isValueReference(immediate)) {
ValueBinding vb = app.createValueBinding(immediate);
uis.setValueBinding("immediate", vb);

}
else{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 139 of 201

boolean boolImmediate =
(new Boolean(immediate)).booleanValue();

uis.setImmediate(boolImmediate);
}

}
if(value != null) {

if(UIComponentTag.isValueReference(value)) {
ValueBinding vb = app.createValueBinding(value);
uis.setValueBinding("value", vb);

}
else
uis.setValue(value);

}
if(ref != null)

uis.getAttributes().put("ref", ref);
if(bind != null)

uis.getAttributes().put("bind", bind);
if(hint != null)

uis.getAttributes().put("hint", hint);
if(label != null)

uis.getAttributes().put("label", label);
if(model != null)

uis.getAttributes().put("model", model);
if(navindex != null)

uis.getAttributes().put("navindex", navindex);
if(accesskey != null)

uis.getAttributes().put("accesskey", accesskey);
if(inputmode != null)

uis.getAttributes().put("inputmode", inputmode);
if(appearance != null)

uis.getAttributes().put("appearance", appearance);
if(incremental != null)

uis.getAttributes().put("incremental", incremental);
}//setProperties

}//InputSecretTag

The InputSecretTag class overrides the getComponentType() and
setProperties() methods of the InputBoxTag class. The
getComponentType() method returns the type of component associated with
the xforms-jsf:inputSecret tag.

Now we will discuss the JSF component class associated with
xforms-jsf:inputSecret.

UIInputSecret is the component class we associated with
xforms-jsf:inputSecret. We extended the UIInputSecret class from
the UIInputBox class:

public class UIInputSecret extends UIInputBox{
public void encodeEnd(FacesContext fc) throws IOException{

if(fc == null)
throw new NullPointerException();

if(!isRendered())
return;

String ref = (String) getAttribute("ref");
String bind = (String) getAttribute("bind");
String hint = (String) getAttribute("hint");
String model = (String) getAttribute("model");
String label = (String) getAttribute("label");

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 140 of 201 Using JSF technology for XForms applications

String navindex = (String) getAttribute("navindex");
String accesskey = (String) getAttribute("accesskey");
String inputmode = (String) getAttribute("inputmode");
String appearance = (String) getAttribute("appearance");
String incremental = (String) getAttribute("incremental");
ResponseWriter out = fc.getResponseWriter();
out.write("<xforms:secret ref=\"" + ref +"\"");
if(bind != null)

out.write(" bind=\""+ bind + "\"");
if(model != null)

out.write(" model=\""+ model + "\"");
if(navindex != null)

out.write(" navindex=\""+ navindex + "\"");
if(inputmode != null)

out.write(" inputmode=\""+ inputmode + "\"");
if(accesskey != null)

out.write(" accesskey=\""+ accesskey + "\"");
if(appearance != null)

out.write(" appearance=\""+ appearance + "\"");
if(incremental != null)

out.write(" incremental=\""+ incremental + "\"");
out.write(" xmlns:xforms=\"http://www.w3.org/2002/xforms\">");
if(label != null)

out.write("<xforms:label>" + label +
"</xforms:label>");

else
out.write("<xforms:label>"+"Enter Secret:"+

"</xforms:label>");
if(hint != null)

out.write("<xforms:hint>" + hint +
"</xforms:hint>");

out.write("</xforms:secret>");
}//encodeEnd

}//UIInputSecret

The UIInputSecret class extends the UIInputBox class and overrides the
encodeEnd() method, which renders the markup for the XForms secret
element.

After implementing the UIInputSecret class, you can use this component
with any JSF application after an entry in the faces-config.xml file:

<component>
<component-type>InputSecret</component-type>

<component-class>xforms_jsf.UIInputSecret</component-class>
</component>

Implementing the xforms-jsf:inputTextarea
component

The xforms-jsf:inputTextarea component provides the user with an edit
box to enter multiple lines of text and renders the following markup:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 141 of 201

<xforms:textarea ref="comments" model="optModel"
xmlns:xforms= "http://www.w3.org/2002/xforms">
<xforms:label>Comments</xforms:label>
<xforms:hint>Please enter your comments.</xforms:hint>

</xforms:textarea>

In the XForms browser, the above markup looks like the following:

The JSP author codes the following elements to use the component in the JSP
page.

<xforms-jsf:inputTextarea value="#{customerData.comments}"
ref="comments" model="optModel">

</xforms-jsf:inputTextarea>

The component saves the text entered by the user in the model bean property
passed in the value attribute.

The TLD file entry for the xforms-jsf:inputTextarea tag looks like the
following markup:

<tag>
<name>inputTextarea</name>
<tag-class>xforms_jsf.InputTextAreaTag</tag-class>
<!-- Remaining is same as implemented for inputText-->

</tag>

In the above TLD file, we mentioned
<tag-class>xforms_jsf.InputTextAreaTag</tag-class>. Now let's
implement this tag handler class.

The attributes for the inputTextarea tag are the same as defined for
inputText. We extended the InputTextAreaTag tag handler class from the
InputBoxTag class implemented for the inputText tag. The following code
shows the implementation of the InputTextAreaTag class:

public class InputTextAreaTag extends InputBoxTag{

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 142 of 201 Using JSF technology for XForms applications

public void setProperties(UIComponent component){
super.setProperties(component);
UIInputTextArea uita = (UIInputTextArea)component;
FacesContext fc = FacesContext.getCurrentInstance();
Application app = fc.getApplication();
if(required != null) {

if(UIComponentTag.isValueReference(required)) {
ValueBinding vb = app.createValueBinding(required);
uita.setValueBinding("required", vb);

}
else{
boolean boolRequired = (new Boolean(required)).booleanValue();
uita.setRequired(boolRequired);

}
}
if(valueChangeListener != null) {

if(UIComponentTag.isValueReference(valueChangeListener)){
Class args[] = {

javax.faces.event.ValueChangeEvent.class
};
MethodBinding mb =

app.createMethodBinding(valueChangeListener, args);
uita.setValueChangeListener(mb);

}
}
if(immediate != null) {

if(UIComponentTag.isValueReference(immediate)) {
ValueBinding vb = app.createValueBinding(immediate);
uita.setValueBinding("immediate", vb);

}
else{
boolean boolImmediate =
(new Boolean(immediate)).booleanValue();

uita.setImmediate(boolImmediate);
}

}
if(value != null) {

if(UIComponentTag.isValueReference(value)) {
ValueBinding vb = app.createValueBinding(value);
uita.setValueBinding("value", vb);

}
else
uita.setValue(value);

}
if(ref != null)

uita.getAttributes().put("ref", ref);
if(bind != null)

uita.getAttributes().put("bind", bind);
if(hint != null)

uita.getAttributes().put("hint", hint);
if(label != null)

uita.getAttributes().put("label", label);
if(model != null)

uita.getAttributes().put("model", model);
if(navindex != null)

uita.getAttributes().put("navindex", navindex);
if(accesskey != null)

uita.getAttributes().put("accesskey", accesskey);
if(inputmode != null)

uita.getAttributes().put("inputmode", inputmode);
if(appearance != null)

uita.getAttributes().put("appearance", appearance);
if(incremental != null)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 143 of 201

uita.getAttributes().put("incremental", incremental);
}//setProperties

}//InputTextAreaTag

Now let's discuss the UIInputTextArea component class associated with
xforms-jsf:inputTextarea:

public class UIInputTextArea extends UIInputBox{
public void encodeEnd(FacesContext fc) throws IOException{

if(fc == null)
throw new NullPointerException();

if(!isRendered())
return;

String ref = (String) getAttributes().get("ref");
String bind = (String) getAttributes().get("bind");
String hint = (String) getAttributes().get("hint");
String model = (String) getAttributes().get("model");
String label = (String) getAttributes().get("label");
String navindex = (String) getAttributes().get("navindex");
String inputmode = (String) getAttributes().get("inputmode");
String accesskey = (String) getAttributes().get("accesskey");
String appearance = (String) getAttributes().get("appearance");
String incremental = (String) getAttributes().get("incremental");
ResponseWriter out = fc.getResponseWriter();
out.write("<xforms:textarea ref=\"" + ref +"\"");
if(bind != null)

out.write(" bind=\""+ bind + "\"");
if(model != null)

out.write(" model=\""+ model + "\"");
if(navindex != null)

out.write(" navindex=\""+ navindex + "\"");
if(inputmode != null)

out.write(" inputmode=\""+ inputmode + "\"");
if(accesskey != null)

out.write(" accesskey=\""+ accesskey + "\"");
if(appearance != null)

out.write(" appearance=\""+ appearance + "\"");
if(incremental != null)

out.write(" incremental=\""+ incremental + "\"");
out.write(" xmlns:xforms=\"http://www.w3.org/2002/xforms\">");

if(label != null)
out.write("<xforms:label>" + label +

"</xforms:label>");
else

out.write("<xforms:label>"+" Enter Message
"+"</xforms:label>");

if(hint != null)
out.write("<xforms:hint>" + hint +

"</xforms:hint>");
out.write("</xforms:textarea>");

}//encodeEnd
}//UIInputTextArea

The UIInputTextArea class extends the UIInputBox class. The
UIInputTextArea class only overrides the encodeEnd() method, which
renders the markup for the XForms text area element.

The UIInputBox class renders a text box, which takes a single line string as

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 144 of 201 Using JSF technology for XForms applications

input. On the other hand, the UIInputTextArea class renders a text area,
which can take multiple lines of text as input. Whether it is a single line or a
number of lines, it is always a string (a multiple line string contains "\r" and "\n"
characters at the end of each line). We can treat both types of strings the same.
That's why the UIInputTextArea class does not override the decode()
method of the parent class.

Now we can use the UIInputTextArea component with any JSF application
after including the component entry in the faces-config.xml file:

<component>
<component-type>InputSecret</component-type>

<component-class>xforms_jsf.UIInputSecret</component-class>
</component>

By implementing the UIInputTextArea component, our XForms-JSF tab
library is complete. In the next section, we will see how to compile a tag library
in a JAR file.

How to distribute tag libraries

To distribute a tag library, you have to compile its components in a JAR file. The
JAR file (compiled tag library) should contain the following information:

° The compiled tag handler, component, and model bean classes of a tag
library in their respective packages

° The configuration files (faces-config.xml) and TLD file in a folder named
META-INF

To create the JAR file, place the compiled classes and META-INF folder in a
single folder (such as the XForms-JSF folder, which you will find when you
unzip the section7.zip file; see Resources on page200 .

Run the following command in the command prompt:

d:\XForms-JSF>jar cvf xforms-jsf.jar *.*

This command creates a JAR file named xforms-jsf.jar, which contains the
META-INF folder (which in turn contains the TLD and configuration files) and
the class files available in the XForms-JSF folder.

The xforms-JSF.jar file is available in the section7.zip file; see Resources on
page200 .

Now the tag library is ready to be used with any JSF application. Place this JAR

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 145 of 201

file in the WEB-INF\lib folder of your application. In the next section, we will
develop a sample application to show you how to use the JAR file in a JSF
application.

A sample JSP page to try the XForms-JSF tag library

To show how to use the tag library in an application, I have written a simple JSP
page, which includes different components from our tag library:

<?xml version="1.0" encoding="iso-8859-1"?>
<html
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xforms="http://www.w3.org/2002/xforms">
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri=" http://afictitiousshoppingcart.com/XForms-JSF"
prefix="xforms-jsf" %>
<f:view>
<head>

<xforms-jsf:model value="#{customerData.model}"/>
</head>
<body>
<h1>Customer Information</h1>
<xforms-jsf:inputText ref="login" value="#{customerData.login}"

label="Login" hint="Please enter your login name."/>
<xforms-jsf:inputSecret ref="password"

value="#{customerData.password}"
label="Password" hint="Please enter your password."/>

<xforms-jsf:inputText ref="name" value="#{customerData.name}"
label="Name"

hint="Please enter your full name."/>
<xforms-jsf:textarea ref="address"

value="#{customerData.address}"
label="Mailing Address" hint="Please enter your address."/>

<xforms-jsf:commandButton label=" Finish ">
</xforms-jsf:commandButton>

</body>
</f:view>

</html>

The output of the above JSP page is shown in the following screenshot:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 146 of 201 Using JSF technology for XForms applications

To try the XForms-JSF tag library and JSP page, unzip the section7.zip file in
the source code download for this tutorial; see Resources on page200 .

The section7.zip file contains two folders named Demo1 and src, and a couple
of files named xforms-jsf.jar and Demo1.war. The Demo1 folder contains the
sample JSP page, and the src folder contains the complete source code for our
XForms-JSF tag library we created in this section.

Now simply deploy the Demo1.war file in your application server. Be sure to use
following URL in the address bar of your XForms browser:

http://localhost:8080/Demo1

As a result, the JSP page shown in the above screenshot displays in your
XForms browser.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 147 of 201

Section 8. Designing the XForms-JSF shopping cart

What will our XForms-JSF shopping cart
demonstrate?

The XForms-JSF shopping cart application tests the concepts discussed so far.
We will demonstrate the architecture of a real-world XForms-JSF application
and demonstrate how to use a few tags we have developed in the past two
sections. In this section, we will develop a small shopping cart-specific tag
library and show how to use the tag library to fit the requirements of a shopping
cart.

Recall the XForms-JSF shopping cart application described in A sample
XForms application on page 5. Our XForms-JSF shopping cart application is the
JSF implementation of exactly the same XForms shopping cart.

Components of the XForms-JSF shopping cart
application

As mentioned in Components of a JSF application on page 29, a JSF
application can have different types of components. Our shopping cart has the
following components:

° JSF components:

Our XForms-JSF shopping cart uses some components from the JSF core
tag library (for instance, f:actionListener, f:selectItems, and so
on). We will also use some components from the XForms-JSF tag library
developed in XForms-JSF integration strategy on page 80 and XForms-JSF
tag library on page 118.

We will also develop three JSF components (xcart:category,
xcart:product, and xcart:cart) for our shopping cart. The
xcart:category tag renders the list of categories and products as buttons
in the catalog view. The xcart:product tag renders the details of an
individual product in a tabular format. The xcart:cart tag displays the
details of products in the cart.

° JSP pages:

We will have the following six JSP pages in our shopping cart application:

° catalogView.jsp: The first page with which a visitor starts browsing our
shopping cart. It displays the list of categories and products in the catalog
view.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 148 of 201 Using JSF technology for XForms applications

° productView.jsp: Appears when the user clicks a product in the
catalogView.jsp page. It shows the features of the clicked product and a
button to add the product in the cart. This page also allows the user to
select from available optional features of a product.

° cartView.jsp: Appears when the user clicks the Add to cart button in the
productView.jsp page. This page shows a list of all the products the user
put in the cart, with buttons to remove and edit them. The cartView.jsp
page also shows a Buy button to buy the contents of the cart.

° editProductView.jsp: Appears when the user clicks the Edit product
button in the cart. This page provides the user with a facility to edit a
particular product added in the cart.

° checkout.jsp: Appears when the user clicks the Buy button in the
cartView.jsp page. This page takes the user's bio data and provides a
Checkout button.

° thankyou.jsp: Appears when the user clicks the Checkout button in the
checkout.jsp page. It's the last page for our XForms shopping cart.

° Model beans to hold application data:

Our shopping cart has the following three model beans to store the
application data:

° CategoryData: Holds the data of the complete catalog. As the user
browses through the catalog view, he clicks on various categories. When
he clicks on any category, that category becomes the selected category.
The CategoryData model bean keeps track of the current category.

° ProductData: Holds the data of a product (name, ID, description, price,
and features).

° CartData: Wraps cart data -- the list of all products the user added to the
cart.

° Event handler classes:

We also need to implement two action event handler classes to handle the
events generated by the UICategory and UICart components. The action
handlers prepare the model beans according to the action performed.

For example, when the user clicks a product or category in the catalog view,
an action event will occur. The UICategoryActionListener action
listener handles this action event. Similarly, when a user clicks the Edit or
Remove button against a product, UICartActionListener handles the
generated action event.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 149 of 201

The interaction of components in our shopping cart

In the next few panels, we will elaborate on the interaction between the different
components of our shopping cart application for the following actions:

° Rendering the catalog data (categories and products names)
° Rendering product data
° Adding a product to the cart
° Editing a product entry from the cart
° Saving an edited product entry to the cart

Each action represents a sequence of events, which we will explain in the next
five sections. The explanations of these actions act as a high-level view of our
shopping cart application and will provide a practical example of the concepts
we have learned so far.

Rendering the catalog data (catalog view)

The first job a shopping cart application does is generate a list of the products
and categories.

Recall the Views of the shopping cart on page 7, where we described the
rendering of catalog data as a catalog view. The following diagram shows the
sequence of events that occur inside our XForms-JSF shopping cart application
while rendering the catalog view:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 150 of 201 Using JSF technology for XForms applications

The events of the figure are explained below. Each step in the following
discussion is marked as a number in the figure shown above:

1. Suppose a user requests the following URL:

www.aFictitiousShoppingCart.com

2. The Web server receives the request and invokes the JSF framework.

3. Now the JSF framework initializes the model beans defined in the
faces-config.xml file. All the beans in our XForms shopping cart application
are in session scope, so a separate set of beans is instantiated for every
session. The first model bean our shopping cart application uses is the
CategoryData class. The CategoryData constructor is built in such a
manner that it prepares itself with the catalog data when it is initialized. Note
that the other model beans in our shopping cart application are initialized,
but they are not prepared for use with components. The user interactions
with our shopping cart prepare the remaining model beans.

4. After initializing the model beans, the JSF framework starts the request
processing life cycle of the catalogView.jsp page. It first checks whether the
root of the JSF component (the UIViewRoot object) exists. Because it is
the first request for the page, the root does not exist, so it creates a new
UIViewRoot object and stores it in the FacesContext object.

5. The JSF framework dispatches the request to the JSP container (that
executes the JSP page).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 151 of 201

6. The JSP container goes through the catalogView.jsp page. When it comes
across a JSF tag in the catalogView.jsp, it finds its corresponding tag
handler class from the TLD file and instantiates the tag class.

7. The tag handler class extracts the reference of the corresponding JSF
component class by reading the faces-config.xml file.

8. The tag handler class adds the component in the JSF component tree as a
child of the root component (UIViewRoot) and calls the encode methods
(encodeBegin(), encodeChildren(), and encodeEnd() methods) of
the JSF component just added to the tree.

9. The encode methods extract the application-specific data from the
CategoryData model bean, which we instantiated in step 3. This
application-specific data contains categories and products to be rendered.
Steps 6-9 repeat for each JSF tag in the catalogView.jsp page.

10.The JSF framework saves the component tree in the session.

11.Finally, it sends the generated markup back to the user. The output of this
markup is already shown in Views of the shopping cart on page 7.

Now the catalog view is in front of the user, displaying the list of categories
and products. The user can click a category or a product. The following
diagram shows the sequence of events that occur when the user clicks on a
category:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 152 of 201 Using JSF technology for XForms applications

The events of the figure are explained below:

12.The user clicks a category in the catalog view. The XForms browser wraps
the information related to the category in the application-specific XML. Next,
it wraps the XML structure in the body of a request for the same JSP page
(catalogView.jsp) and sends the request to the Web server.

13.The Web server receives the request and invokes the JSF framework.

14.All the model beans in our XForms-JSF shopping cart are in session
scope, so they will not be initialized this time. All the model beans will
maintain their previous states.

15.The JSF framework checks whether the root of the component tree exists,
and this time it finds the UIViewRoot object. It sets the UIViewRoot
component in the FacesContext object as the root of the component tree.
(Recall step 6, where we added all components into the component tree.)

16.The JSF framework iterates through the JSF component tree and calls the
decode() method of each JSF component in the tree. The decode()
method of the xcart:category component decodes the request and
extracts the ID of the clicked item. Then the decode() method fires an
action event.

17.The action event handler class associated with the xcart:category JSF
tag catches the event. The action listener checks whether the ID belongs to
a category or a product. In this case, the ID is of a category, so it tells the
CategoryData model bean which category was clicked. The
CategoryData model bean stores this information for future use.

18.Next, the JSF framework invokes the model bean method specified in the
action property of the component. This method call returns a string value.
The JSF framework searches this string value in the navigation-rule
written in the application configuration file (faces-config.xml) for the
catalogView.jsp page. If the contents of the from-outcome child of any of
the navigation-case element matched with the string value, the JSF
framework returns the JSP page specified in the accompanying
to-view-id element. In this case, the user clicked a category, which
means he just wants to browse deeper into the catalog view. The same
categoryView.jsp page handles this request. The event handler classes will
not change the view ID.

19.Next, the JSF framework calls the encoding method of each component in
the tree one by one.

20.It then saves the component tree.

21.Finally, the JSF framework sends back the response to the user.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 153 of 201

Rendering the product data (product-specification
view)

Clicking a product in the catalog view brings up the product-specification view.
The productView.jsp page shows product details like product name, price,
description, features, and optional features, and allows the user to select them.
The following diagram shows the sequence of events that occur while rendering
the product-specification view:

The events of the figure are explained below:

1. The user clicks a product button in the catalogView.jsp page.

2. The Web server receives the request and invokes the JSF framework.

3. As you know, the model beans in our XForms-JSF shopping cart are in
session scope, so they will not be initialized this time. All the model beans
will maintain their previous states.

4. The JSF framework checks whether the root of the component tree exists,
and this time it finds the UIViewRoot object. It sets the UIViewRoot
component in the FacesContext object as the root of the component tree.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 154 of 201 Using JSF technology for XForms applications

(Recall step 6, where we added all components into the component tree.)

5. The JSF framework iterates through the JSF component tree and calls the
decode() method of each JSF component in the tree. The decode()
method of the xcart:category component decodes the request and
extracts the ID of the clicked item. Then the decode() method fires an
action event.

6. The action event handler class associated with the xcart:category JSF
tag catches the event. The action listener checks whether the ID belongs to
a category or a product. In this case, the ID is of a category, so it tells the
CategoryData model bean which category was clicked. The
CategoryData model bean stores this information for future use.

7. Similar to step 18 from the previous panel, but this time the JSF framework
invokes the productView.jsp page.

8. Steps 8-14 are the same as steps 5-11 discussed in the previous panel,
except that the productView.jsp page and ProductData model bean are
used instead of the catalogView.jsp page and CategoryData model bean
respectively.

Adding a product to the shopping cart (cart view)

The following diagram shows the sequence of events that occur when a user
clicks the Add to cart button in the product-specification view.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 155 of 201

The events of the figure are explained below:

1. The user clicks the Add to cart button in the product-specification view. The
XForms browser gathers the information about the product to be added to
the cart, wraps this information in application-specific XML, and sends the
request to the Web server.

2. The Web server receives the request and invokes the JSF framework.

3. As you know, the model beans in our XForms-JSF shopping cart are in
session scope, so they will not be initialized this time. All the model beans
will maintain their previous states.

4. The JSF framework checks whether the root of the component tree exists,
and this time it finds the UIViewRoot object. It sets the UIViewRoot
component in the FacesContext object as the root of the component tree.
(Recall step 6, where we added all components into the component tree.)

5. The JSF framework iterates through the JSF component tree and calls the
decode() method of each JSF component in the tree. The decode()
method of the JSF component against the XForms-JSF:commandButton
tag decodes the request, extracts the ID of the clicked button and fires an
action event.

6. The action event handler method passed in the actionListener attribute
of the XForms-JSF:commandButton JSF tag handles the event. The
action handler adds the product in the CartData model bean, which holds

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 156 of 201 Using JSF technology for XForms applications

the data of a cart.

7. Now the JSF framework checks the faces-config.xml file and invokes the
cartView.jsp page.

8. Steps 8-14 are the same as steps 5-11 discussed in Rendering the catalog
data (catalog view) on page 150, except that the cartView.jsp page and
CartData model bean are used instead of the catalogView.jsp page and
CategoryData model bean, respectively.

Editing the product entry from cart (edit product view)

The cart view contains an Edit product entry button with each product in the
cart. The following diagram shows the sequence of events that occurs when a
user clicks that button:

The events of the figure are explained below:

1. The user clicks the Edit button in the cart view. The XForms browser wraps
the button-identifying information in the application-specific XML data. The
XForms-JSF component sitting on the server side uses this
button-identifying information to check which button was clicked by the user.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 157 of 201

2. The Web server receives the request and invokes the JSF framework.

3. The model beans in our XForms-JSF shopping cart are in session scope,
so they will not be initialized this time. All the model beans will maintain their
previous states.

4. The JSF framework checks whether the root of the component tree exists,
and this time it finds the UIViewRoot object. It sets the UIViewRoot
component in the FacesContext object as the root of the component tree.
(Recall step 6, where we added all components into the component tree.)

5. When the decode() method of the JSF component against the
xcart:cart JSF tag is called, it decodes the request and extracts the ID of
the clicked button and fires an event.

6. The action event handler class (UICartActionListener) associated with
the xcart:cart JSF tag handles the event. The action handler adds the
product in the model bean, which holds the data of a cart (CartData).

7. The JSF framework checks the navigation-rule and invokes the
editProductView.jsp page.

8. Steps 8-14 are same as steps 5-11 discussed in Rendering the catalog data
(catalog view) on page 150, except that the editProductView.jsp page and
ProductData model bean are used instead of the catalogView.jsp page
and CategoryData model bean, respectively.

Saving edited product entries to the cart

The edit product view renders the product for editing, which is accompanied by
an Edit cart entry button. The user edits the product entry in the edit cart view.
The following sequence of events occurs when saving the edited product:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 158 of 201 Using JSF technology for XForms applications

The events of the figure are explained below. Each step in the following
discussion is marked as a number in the figure shown above:

1. A user clicks the Save edited product button in the editProductView.jsp
page.

2. The Web server receives the request and invokes the JSF framework.

3. The model beans in our XForms-JSF shopping cart are in session scope,
so they will not be initialized this time. All the model beans will maintain their
previous states.

4. The JSF framework checks whether the root of the component tree exists,
and this time it finds the UIViewRoot object. It sets the UIViewRoot
component in the FacesContext object as the root of the component tree.
(Recall step 6, where we added all components into the component tree.)

5. The JSF framework iterates through the JSF component tree and calls the
decode() method of each JSF component in the tree. The decode()
method of the JSF component against the xforms-jsf:commandButton
tag decodes the request, extracts the ID of the clicked button, and fires an
action event.

6. The action event handler method passed in the actionListener attribute
of the xforms-jsf:commandButton JSF tag handles the event. The
action handler replaces the product-edited product in the CartData model

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 159 of 201

bean, which holds the data of a cart.

7. The JSF framework checks the faces-config.xml file and invoke the
cartView.jsp page.

8. Steps 8-14 are the same as steps 5-11 discussed in Rendering the catalog
data (catalog view) on page 150, except that the cartView.jsp page and
ProductData model bean are used instead of the catalogView.jsp page
and CategoryData model bean, respectively.

Summary

In this section, we have provided the high-level view of our XForms-JSF
shopping cart application. We discussed the components required to develop
the application (JSP pages, model beans, event handlers, etc.). We also
explained how these components interact with each other.

In the next section, we will implement the components introduced in this section
and complete the implementation of our XForms-JSF shopping cart application.
The next section also explains all the low-level details of the implementation.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 160 of 201 Using JSF technology for XForms applications

Section 9. Implementing the XForms-JSF shopping cart

Implementing the NameValuePair, Category, and
Product classes

In Components of the XForms-JSF shopping cart application on page 148, we
discussed three JSF tags: xcart:category, xcart:product, and
xcart:cart. These tags form the XForms-based shopping cart tag library. We
wish to make this tag library independent of our shopping cart application to
ensure that you can integrate our shopping cart tag library into your own
shopping cart application.

To make our shopping cart tag library independent of the shopping cart
application, we need to implement three classes: NameValuePair, Category,
and Product. These classes will be part of the shopping cart tag library.
Application-specific model beans initialize and use these classes.

The NameValuePair class just wraps a name-value pair. The Category class
holds the subcategories and products corresponding to a particular category.
The Product class holds the details of an individual product (name, ID,
description, price, etc.).

Let's look at the implementation details of the NameValuePair, Category,
and Product classes in detail.

The NameValuePair class contains two fields -- name and value -- and their
respective setter and getter methods. The following code shows the
implementation of the NameValuePair class:

public class NameValuePair{
protected String name;
protected String value;
public void setName(String name) {

this.name = name;
}
public String getName(){

return name;
}
public void setValue(String value){

this.value = value;
}
public String getValue(){

return value;
}

}//NameValuePair

Many of the classes in our shopping cart tag library and shopping cart
application use the NameValuePair class.

Any application that wants its data to be rendered using the xcart:category
tag instantiates a Category object and populates it with application-specific

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 161 of 201

data. The xcart:category component uses this Category object to fetch
the application-specific data.

The Category class holds the category data in id, products, ancestors,
and subcategories properties.

The id property of the Category class is a String object that holds the ID of
the current category. The products, ancestors, and subCategories
properties are arrays of NameValuePair objects. The products property
contains the information of each product in the category. The ancestors
property tracks the ancestors of the current category. The subCategories
property stores the list of subcategories in the current category.

The following code shows the implementation of the Category class:

public class Category{
protected String id;
protected NameValuePair[] products;
protected NameValuePair[] ancestors;
protected NameValuePair[] subCategories;
public void setAncestors(NameValuePair[] nameId) {

ancestors = nameId;
}
public NameValuePair[] getAncestors(){

return ancestors;
}
public void setSubCategories(NameValuePair[] nameId) {

subCategories = nameId;
}
public NameValuePair[] getSubCategories(){

return subCategories;
}
public void setProducts (NameValuePair[] nameId) {

products = nameId;
}
public NameValuePair[] getProducts(){

return products;
} public void setId(String id) {

this.id = id;
}
public String getId(){

return id;
}

}//Category

Now let's discuss the implementation of the Product class.

The Product class holds the product data in seven properties:

° id: Stores the ID of a particular product the user clicked in the catalog view

° name: Stores the name of the product

° price: Stores the price of the product

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 162 of 201 Using JSF technology for XForms applications

° description: Stores the description of the product

° features: Stores the features of a product in name-value pair form

° optional-features: Stores the optional features of the product

° selectedOptionalFeatures: Stores those optional features the user
selected in the product specification view

The following code shows the implementation of the ProductData class:

public class Product{
protected String id;
protected String name;
protected String price;
protected String[] options;
protected String description;
protected NameValuePair[] features;
protected NameValuePair[] optionalFeatures;
protected NameValuePair[] selectedOptionalFeatures;
public void setName (String name) {

this.name = name;
}
public String getName (){

return name;
}
public void setId (String id) {

this.id = id;
}
public String getId(){

return id;
}
public void setDescription (String description) {

this.description = description;
}
public String getDescription (){

return description;
}
public void setPrice(String price) {

this.price = price;
}
public String getPrice(){

return price;
}
public void setFeatures(NameValuePair[] features) {

this.features = features;
}
public NameValuePair[] getFeatures (){

return features;
}
public void setSelectedOptionalFeatures(NameValuePair[]

selOptFeatures){
this.selectedOptionalFeatures = selectedOptionalFeatures;

}
public NameValuePair[] getSelectedOptionalFeatures(){

return selectedOptionalFeatures;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 163 of 201

}
public void setOptionalFeatures (NameValuePair[] optionalFeatures){

this.optionalFeatures = optionalFeatures;
}
public NameValuePair[] getOptionalFeatures (){

return optionalFeatures;
}
public void setOptions (String[] options) {

this.options = options;
}
public String[] getOptions(){

return options;
}

}//Product

Now let's start implementing our sample XForms-JSF shopping cart. We have
to implement three JSP pages (catalogView.jsp, productView.jsp, and
cartView.jsp), three JSF components (UICategory, UIProduct, and
UICart), two event handler classes (UICategoryActionListener and
UICartActionListener), and three model beans (CategoryData,
ProductData, and CartData).

The catalogView.jsp page, UICategory component,
UICategoryActionListener event handler, and CartData model bean
form a set. We will explain the working of this set in the next four sections. For
the rest of the JSP pages, components, event handlers, and model beans, we
will only explain the differences from the first set.

Using the xcart:category tag to generate the catalog
view

Look at the following catalogView.jsp page, which generates the catalog view:

<?xml version="1.0" encoding="iso-8859-1"?>
<html
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xforms="http://www.w3.org/2002/xforms">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://afictitiousshoppingcart.com/XCart"
prefix="xcart" %>

<%@ taglib uri="http://afictitiousshoppingcart.com/XForms-JSF"
prefix="xforms-jsf" %>

<f:view>
<head>
<xforms-jsf:model value="#{categoryData.model" />

</head>
<body>
<xcart:category value="#{categoryData.category}"

action="#{categoryData.getAction}">
<f:action_listener type="model.UICategoryActionListener"/>

</xcart:category>
<xforms-jsf:commandButton label="Show Cart" immediate="true"

action="#{categoryData.getAction}"

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 164 of 201 Using JSF technology for XForms applications

actionListener="#{categoryData.showCartView}">
</xforms-jsf:commandButton> </body>

</body>
</f:view>
</html>

Note the following points:

° We have used the xforms-jsf:model tag from the XForms-JSF tag
library in the head element. We explained this tag in Implementing the
xforms-jsf:model component on page 83.

° We have included the xcart:category tag in the body element, which
contains two attributes: value and action.

° The JSP author provides the xcart:category tag with a value attribute.
The value attribute contains the property of the model bean
(categoryData.category), which contains the application data
associated with the catalog view. The categoryData.category property
is an object of the Category class explained earlier. Note that the model
bean (categoryData) can be an object of any class, but the property that
contains the application data should be an object of the Category class.

° The method of the model bean specified in the action attribute
("categoryData.getAction") controls navigation. In Navigation process on
page 75, we explained how navigation works and how the JSF framework
uses the action attribute for navigation.

° We have associated an action listener (UICategoryActionListener)
with the xcart:category component. When the user clicks any category
or product in the catalog view, the UICategoryActionListener class
handles the generated action event, which we will discuss in Implementing
the UICategoryActionListener class on page176 .

° We have used the xforms-jsf:commandButton tag to show the cart
view. The actionListener attribute of the
xforms-jsf:commandButton tag refers to the event handling method of
the model bean. When the user clicks this button, the JSF framework calls
this method to handle the generated action event.

Implementing the UICategory component

The xcart:category tag renders the list of categories and products available
in the catalog view. Each category or product is rendered as a button. If the
user clicks on any category, its subcategories and products are displayed. If the
user clicks on a product, the product-specification view appears to show the
details of the product.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 165 of 201

The first step toward the development of any JSF tag is to make an entry in the
TLD file. The TLD entry for the xcart:category tag looks like the following
code:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib>
......
<tag>

<name>category</name>
<tag-class>xcart.CategoryTag</tag-class>
<attribute>

<name>value</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>id</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>action</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>binding</name>
<required>false</required>
<rtexprvalue> false </rtexprvalue>

</attribute>
<attribute>

<name>actionListener</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>immediate</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>rendered</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>
.....
<!--other tag instances-->

<taglib>

In the above TLD entry, the name element inside the tag element wraps the
name of the JSF tag (category), and the tag-class element wraps the
complete qualified name of the tag handler class (xcart.CategoryTag).

The xcart:category tag contains two attributes: value and action. The
two attribute elements in the above TLD entry correspond to these two
attributes.

Here's how we implement the xcart.CategoryTag tag handler class:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 166 of 201 Using JSF technology for XForms applications

public class CategoryTag extends UIComponentTag {
private String value;
private String action;
private String immediate;
private String actionListener;
public void setValue(Object value){

this.value = value;
}
public Object getValue(){

return this.value;
}
public void setAction(Object action) {

this.action = action;
}
public Object getAction(){

return this.action;
}
public String getComponentType(){

return "category";
}
public String getRendererType(){

return null;
}
public String getImmediate(){

return immediate;
}
public void setImmediate(String newImmediate) {

immediate = newImmediate;
}
public String getActionListener(){

return actionListener;
}
public void setActionListener(String newActionListener) {

actionListener = newActionListener;
}
public void setProperties(UIComponent component) {

super.setProperties(component);
UICategory catComp = (UICategory)component;

FacesContext fc = FacesContext.getCurrentInstance();
Application app = fc.getApplication();

if(action != null) {
if(UIComponentTag.isValueReference(action)) {
MethodBinding mb = app.createMethodBinding(action, null);
catComp.setAction(mb);

}
else{
MethodBinding mb = new ConstantMethodBinding(action);
catComp.setAction(mb);

}
}
if(value != null) {

if(UIComponentTag.isValueReference(value))
{
ValueBinding vb = app.createValueBinding(value);
catComp.setValueBinding("value", vb);

}
else
catComp.setValue(value);

}
if(actionListener != null) {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 167 of 201

if(UIComponentTag.isValueReference(actionListener)) {
Class args[] = {

javax.faces.event.ActionEvent.class
};
MethodBinding mb =

app.createMethodBinding(actionListener, args);
catComp.setActionListener(mb);

}
}
if(immediate != null) {

if(UIComponentTag.isValueReference(immediate)) {
ValueBinding vb = app.createValueBinding(immediate);
catComp.setValueBinding("immediate", vb);

}
else{
boolean boolImmediate =

(new Boolean(immediate)).booleanValue();
catComp.setImmediate(boolImmediate);

}
}

}//setProperties
}//CategoryTag

The CategoryTag class extends the UIComponentTag class to act as a tag
class. Notice the following points from the CategoryTag class implementation
above:

° The getComponentType() method returns the type of the component
(category), which tells the JSF framework about the component class used
with this tag. Later, we will implement the matching component class.

° The getRendererType() method returns null, which indicates that there is
no renderer class associated with this JSF tag.

° There are two setter methods (setValue() and setAction()) in the tag
class, which the JSF framework uses to pass the attribute values from the
JSP page to the CategoryTag tag handler class.

° The setProperties() method is used to pass on the values of value
and action attributes from the tag handler class to the matching
component class.

Here's how to implement the component class associated with the
xcart:category tag. Look at the following entry in the faces-config.xml file:

<?xml version="1.0"?>
<faces-config>
.....
<component>

<component-type>category</component-type>
<component-class>xcart.UICategory</component-class>

</component>
<!-- other component instances-->

</faces-config>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 168 of 201 Using JSF technology for XForms applications

The component-type element wraps the type of the component (category).
The name of the component class is specified in the accompanying
component-class element (xcart.UICategory). Now we will implement
this UICategory component class.

The UICategory component renders the categories and products as buttons.
An action event is generated whenever the user clicks on a category or a
product button. We will extend our UICategory component class from the
UICommand class, which helps us handle action events.

The following code shows the fields and methods of the UICategory class:

public class UICategory extends UICommand{
private String btnId = null;
private void renderValueAsButton (ResponseWriter writer, String name,

String id, String clientId) {
}
public void encodeBegin(FacesContext context)

throws IOException {
}
private String getActionValueFromRequest(FacesContext fc, String ref,

String tagName) {
}
private Object getModelBeanObject(String ref, FacesContext fc){
}
public void decode (FacesContext context)

throws IOException {
}
public void setBtnId(String id) {
}
public String getBtnId(){
}

}//UICategory

The UICategory class contains only one property (btnId), its setter and
getter methods, two public methods (encodeBegin() and decode()), and
three private helper methods (renderValueAsButton(),
getActionValueFromRequest(), and getModelBeanObject()).

The btnId property contains the ID of the category or product button that the
user clicks. When the UICategory component fires an action, the action event
handling class calls the getter method of this property to identify the category or
product the user clicked in the catalog view.

Let's discuss the methods of the UICategory class one by one.

The renderValueAsButton() method writes the markup to render a single
product or category as a button. The encodeBegin() method of the
UICategory class calls this method once for every category and product
available in the catalog view.

The renderValueAsButton() method takes the following four parameters:

° writer: An object of the ResponseWriter class. The
renderValueAsButton() method writes XForms markup on this

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 169 of 201

ResponseWriter object.

° name: The name of a product or category.

° id: The ID of a product or category.

° clientId: uniquely identifies a JSF component on the client side.

The code for the renderValueAsButton() method:

private void renderValueAsButton(ResponseWriter writer, String name,
String id, String clientId){
try{

writer.write("<xforms:submit submission=\"submit\" >");

writer.write("<xforms:label>"+name.trim()+"</xforms:label>");
writer.write("<xforms:action ev:event=\"DOMActivate\">");
writer.write("<xforms:setvalue ref=\"action-performed\">"+

clientId+"@"+id+"</xforms:setvalue>");
writer.write("</xforms:action>");
writer.write("</xforms:submit>");

}
catch (java.io.IOException ie){

ie.printStackTrace();
}

}//renderValueAsButton

The above code authors the following markup:

<xforms:submit submission="submit"
xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:ev="http://www.w3.org/2001/xml-events">
<xforms:label>Computer</xforms:label>
<xforms:action ev:event="DOMActivate">

<xforms:setvalue
ref="action-performed">_id1@1</xforms:setvalue>
</xforms:action>

</xforms:submit>

This markup renders a button. The whole markup is hard-coded in the
renderValueAsButton() method, except the strings "Computer" and
"_id1@1" (boldface in the markup above). The string "Computer" is the value of
the second parameter (name). The second string "_id1@1" is the result of
concatenating the third and fourth parameters (id and clientId). This data
uniquely identifies a product or category. It consists of two parts separated by
an "@" symbol. The first part (_id1, value of the third parameter) is the ID of the
UICategory component. The second part (1, value of the fourth parameter)
identifies a particular category or product in the catalog view.

Recall from Implementing the xforms-jsf:model component on page 83, where
we explained the purpose of inserting an extra action-performed tag in the
application-specific XML. The renderValueAsButton() method wraps the
component and category (or product) ID in the action-performed tag. When

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 170 of 201 Using JSF technology for XForms applications

a user clicks the button corresponding to a particular category or product, the
data in boldface (_id1@1) is sent back to the server, where it is used to identify
which button was clicked.

The encodeBegin() method of the UICategory class is lengthy, so we will
implement this method incrementally.

The encodeBegin() method first checks whether the FacesContext
instance is null. If it is null, it simply throws an exception.

Then it extracts the component ID by calling the getClientId() method.
Next, it gets the ResponseWriter object so it can render the markup for this
component. These steps are shown in the following code:

public void encodeBegin(FacesContext context)
throws IOException

{
if (context == null)

throw new NullPointerException();
String clientId = getClientId(context);
ExternalContext externalContext = context.getExternalContext();
ResponseWriter writer = context.getResponseWriter();
.....

}//encodeBegin

Now the encodeBegin() method calls the getModelBeanObject()
method. We explained how the getModelBeanObject() method works in
Implementing the UISelect1 component on page 100. The
getModelBeanObject() method returns an object of the Category class,
which contains the data to be rendered, as shown in boldface below:

public void encodeBegin(FacesContext context)
throws IOException

{
if (context == null)

throw new NullPointerException();
String clientId = getClientId(context);
ExternalContext externalContext = context.getExternalContext();
ResponseWriter writer = context.getResponseWriter();
categoryData = (Category) getModelBeanObject(context,

value);
.....

}//encodeBegin

Now we check if the Category instance returned by the
getModelBeanObject() method is null. If it is null, it means that we have
no data (that is, categories and products) to render in the catalog view.

public void encodeBegin(FacesContext context)
throws IOException

{
if (context == null)

throw new NullPointerException();
String clientId = getClientId(context);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 171 of 201

ExternalContext externalContext = context.getExternalContext();
ResponseWriter writer = context.getResponseWriter();
categoryData = (Category) getModelBeanObject(context,

value);
if (categoryData == null){

writer.write ("catalog is empty...");
return;

}
.....

}//encodeBegin

Recall Views of the shopping cart on page 7, where we discussed that the
catalog view contains three boxes: ancestors, subcategories, and products.
Now we will code to display these boxes one by one.

The encodeBegin() method calls the getAncestors() method of the
Category object to check whether the current category has any ancestors. If
the category contains ancestors, the encodeBegin() method writes markup to
display the ancestors in the ancestors box.

public void encodeBegin(FacesContext context)
throws IOException

{
......
if (categoryData == null){

writer.write ("category data is null...");
return;

}
if (categoryData.getAncestors() != null){

writer.write("<table border=\"1\" width=\"100%\">");
writer.write("<tr>");
writer.write("<td>");
NameValuePair[] ancestors = categoryData.getAncestors();
if (ancestors != null){

for(int x = 0; x < ancestors.length-1; x++){
renderValueAsButton (writer, ancestors[x].getValue(),

ancestors[x].getName(), clientId);
writer.write(" > ");

}
}//if (ancestors != null)
writer.write (ancestors[ancestors.length-1].getValue());
writer.write("</td>");
writer.write("</tr>");
writer.write ("</table>");

}//if (categoryData.getAncestors() != null)
.....

}//encodeBegin

Next it calls the getSubCategories() and getProducts() methods of the
Category object to check for the subcategories and products in the current
category. If it contains any subcategory or product, the encodeBegin()
method writes markup to display subcategories and products as buttons in their
respective boxes. For this purpose, it calls the renderValueAsButton()
method explained earlier.

If the category does not contain a subcategory or product, the encodeBegin()
method writes the markup to display that there is no subcategory or product in

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 172 of 201 Using JSF technology for XForms applications

the current category.

public void encodeBegin(FacesContext context)
throws IOException

{
......
if (categoryData.getAncestors() != null){

......
}
if (categoryData.getSubCategories() != null){

writer.write("<table border=\"1\" width=\"100%\">");
writer.write("Sub-Categories");
writer.write("<tr>");
writer.write("<td>");
writer.write("");
NameValuePair[] categories = categoryData.getSubCategories();
for (int x =0; x < categories.length; x++){

writer.write("");
renderValueAsButton (writer, categories[x].getValue(),
categories[x].getName(), clientId);

writer.write("");
}//for
writer.write("");
writer.write("</td>");
writer.write("</tr>");
writer.write("</table>");

}//if
else{

NameValuePair[] ancestors = categoryData.getAncestors();
writer.write("<table border=\"1\" width=\"100%\">");
writer.write("Sub-Categories");
writer.write("<tr>");
writer.write("</tr>");
writer.write("<tr><td>");
writer.write("<h3> There is no sub-category in the ");
writer.write (ancestors[ancestors.length-1].getValue());
writer.write(" category. . . </h3> ");
writer.write("</td></tr>");
writer.write("<tr>");
writer.write("</tr>");
writer.write("</table>");

}//else
if (categoryData.getProducts() != null){

writer.write("<table border=\"1\" width=\"100%\" >");
writer.write("Products");
writer.write("<tr>");
writer.write("<td>");
writer.write("");
NameValuePair[] products = categoryData.getProducts();
for (int x =0; x < products.length; x++){

writer.write("");
renderValueAsButton(writer, products[x].getValue(),
products[x].getName(), clientId);

writer.write("");
}//for
writer.write("");
writer.write("</td>");
writer.write("</tr>");
writer.write("</table>");

}//if
else{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 173 of 201

NameValuePair[] ancestors = categoryData.getAncestors();
writer.write("<table border=\"1\" width=\"100%\">");
writer.write("Products");
writer.write("<tr> ");
writer.write("</tr>");
writer.write("<tr><td>");
writer.write("<h3> There is no product in the ");
writer.write (ancestors[ancestors.length-1].getValue());
writer.write(" category. . . </h3> ");
writer.write("</td></tr>");
writer.write("<tr>");
writer.write("</tr>");
writer.write("</table>");

}//else
writer.write("</tr>");
writer.write("</table>");

}//encodeBegin

Now let's see the implementation of the getActionValueFromRequest()
method. This method parses the incoming request and extracts an identifier
from the request (the identifier used to identify which category or product was
clicked by the user). The decode method uses this method.

The getActionValueFromRequest() method takes the following
parameters:

° fContext: The FacesContext instance.

° ref: Contains the model bean (IncomingXMLInstanceRequest) name
and the property that contains the incoming XML request from the client
side. See Parsing the incoming XML instance data on page 91 for details
about this model bean.

° tagName: The name of the tag (action-performed) that contains the
information about the button clicked by the user.

private String getActionValueFromRequest(
FacesContext fContext,
String ref,
String tagName){

Document doc = (Document) getModelBeanObject(fContext, ref);
String value = new String();
if(doc != null) {

NodeList nl = doc.getElementsByTagName(tagName);
if (nl != null) {

for (int i=0; i < nl.getLength(); i++){
if(nl.item(i).getFirstChild().getNodeType() ==

Node.TEXT_NODE) {
value = nl.item(i).getFirstChild().getNodeValue();
if (value.indexOf('@') != -1) {

int index = value.indexOf('@');
String id = value.substring(0,index);
if (id.equals(getClientId(fContext)))

return value.substring(index+1);
else

return null;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 174 of 201 Using JSF technology for XForms applications

}//if (value.indexOf('@') != -1)
}//if(nl.item(i).getFirstChild()

}//for
}//if(nl != null)

}//if(doc != null)
return null;

}//getActionValueFromRequest()

Notice the following points from the getActionValueFromRequest()
method above:

1. It first calls the getModelBeanObject() method, which returns a DOM
Document object. The DOM Document object contains DOM representation of
the application-specific XML from the user's request.

2. Then it extracts the action-performed tag from the DOM document and
extracts its contents. The contents of the action-performed tag consist
of two parts separated by the "@" symbol. The first part identifies the
component; the second part identifies the category or the product that was
clicked. The getActionValueFromRequest() method identifies both the
values and returns the product and category ID.

Next, we will discuss the implementation details of the decode() method.

public void decode (FacesContext context){
if (context == null)

throw new NullPointerException();
String id = getActionValueFromRequest(context,

"#{incomingXMLInstanceRequest.DOMDocument}", "action-performed");
if (id != null){

this.btnId = id;
queueEvent(new ActionEvent(this));

}//if
}//decode

You are already familiar with the functionality of the decode() method. Here,
the decode() method is performing the following steps:

1. It checks whether the FacesContext object is null. If it is null, the
decode() method throws an exception.

2. It calls the getActionValueFromRequest() method explained above.

3. The call in step 2 returns a string value. This value can tell which product or
category was clicked.

4. if the ID returned by the getActionValueFromRequest() method is not
null, the decode() method will set this ID in the btnId property of the
component (which the event handling logic will use to identify the category or
product ID the user clicked).

5. Finally, the decode() method fires an action event. To fire an action event,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 175 of 201

the decode() method first instantiates an ActionEvent object, passing it
the component instance. It then calls the queueEvent() method, passing it
the ActionEvent object along with the method call. Note that the event
handler class will extract the component object from the ActionEvent
object, then call the getBtnId() method of the component to identify the
category or product the user clicked.

Implementing the UICategoryActionListener class

The UICategoryActionListener class is associated with the UICategory
component. When the user clicks any category or product in the catalog view,
the UICategory component fires an action event. this action event is handled
by UICategoryActionListener. The following code shows the methods in
the UICategoryActionListener class:

public class UICategoryActionListener implements
ActionListener {
public void processAction(ActionEvent event) {
}

}//UICategoryActionListener

UICategoryActionListener implements the processAction() method
of the ActionListener interface.

The processAction() method first creates an instance of the
FacesContext object. It then gets an instance of the model bean from the
context by calling the getModelBeanObject() method. The
getModelBeanObject() method returns an object of the CategoryData
class, which contains complete catalog data, as shown in boldface below:

public void processAction(ActionEvent event)
{
FacesContext context = FacesContext.getCurrentInstance();
CategoryData categoryData = (CategoryData) getModelBeanObject

("#{categoryData}", context);
.......

}//processAction

Next, the processAction() method calls the getComponent() method of
the event object, which returns the instance of the component that fires the
action event. Then it calls the getBtnId() method, which returns the ID of the
category or product that identifies the category or product button clicked by the
user in the catalog view. The processAction() method stores the ID in a
String type variable named actionId:

public void processAction(ActionEvent event){
FacesContext context = FacesContext.getCurrentInstance();
CategoryData categoryData = (CategoryData) getModelBeanObject

("#{categoryData}", context);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 176 of 201 Using JSF technology for XForms applications

UICategory uic = (UICategory) event.getComponent();
String actionId = (String) uic.getBtnId();
.......

}//processAction

Next, we check whether the user clicked a category or product. If the user
clicked a category, there can be two further subcases: The user can click the
root category or any subcategory.

If the user clicked the root category, we will set the category ID as null (as the
root category does not have an ID). If the user clicked any subcategory in the
catalog view, we will set the category ID as the actionId value. We then call
the setAction() method of the model bean, passing the string "category" to
tell the model bean that the user clicked a category.

public void processAction(ActionEvent event){
.......
UICategory uic = (UICategory) event.getComponent();
String actionId = (String) uic.getBtnId();

if(actionId.equals("null"))
category = true;

else
category = categoryData.isCategory(actionId);

if (category){
if(actionId.equals("null"))

categoryData.getCategoryData().setId(null);
else

categoryData.getCategoryData().setId(actionId);
categoryData.setAction("category");

}//if(category)
.......

}//processAction

Now the processAction() method handles the case when the user clicks a
product in the catalog view. Clicking a product shows the product-specification
view. First, we have to prepare the ProductData model bean, then we have to
tell the CategoryData model bean that the user clicked a product.

So we call the getModelBeanObject() method, which returns an instance of
the ProductData class. The ProductData model bean was initialized when
the first request was made of the shopping cart, but it does not contains any
data. Now we populate the ProductData object with the data of the product
that the user wants. The product-specification view uses this data to render the
specifications of the product.

Finally, we call the setAction() method of the CategoryData model bean,
passing the string "product" to tell the CategoryData model bean that the user
clicked a product:

public void processAction(ActionEvent event){
.......
if(actionId.equals("null"))

category = true;
else

category = categoryData.isCategory(actionId);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 177 of 201

if (category){
.......

}
else {

ProductData productData = (ProductData) getModelBeanObject
("#{ProductData}", context);

productData.setDocument(categoryData.getDocument());
productData.setProductId(actionId);
categoryData.setAction("product");

}//else
}//processAction

Implementing the CategoryData model bean

The CategoryData bean is an application-specific model bean that performs
the following actions:

° It parses the XML file, which holds the complete catalog data comprising all
products and categories in our shopping cart. Note that we are using a
simple XML file for back-end data storage. If you want to use some other
type of back-end data storage in your shopping cart application, you will only
need to reimplement the CategoryData model bean, and the rest of the
application will work fine.

° It also instantiates and populates the Category class required by the
components to render the catalog view.

° The CategoryData model bean also implements action event handling
methods to handle the events fired by the xforms-jsf:commandButton
components in the catalog view.

The following code shows the properties and methods of the CategoryData
class:

public class CategoryData{
private String model = null;
private String outcome = null;
private Category categoryData;
private Document document = null;

public CategoryData() {}
public void setModel(String model) {}
public String getModel() {}
public void setDocument (Document doc) {}
public Document getDocument() {}
public void setAction(String action) {}
public Action getAction() {}
public void setCategoryData(Category categoryData) {}
public Category getCategoryData() {}
public boolean isCategory(String id) {}
private Category setCategoryDataValues(String id, Document doc) {}
private void setSubCategoriesAndProducts (Element element,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 178 of 201 Using JSF technology for XForms applications

Category categoryData) {}
private void setNameValuePair(Element[] elements, NameValuePair[]

nameValuePair) {}
private Element[] getElementsByTagName(Element element, String

tagName) {}
private Element getElementById(Element element, String tagName,

String id) {}
private void loadXML(String fileName) {}

public void showCartView(ActionEvent ae) {
}

}//CategoryData

The CategoryData class has a constructor, four properties (document,
model, outcome, and categoryData), setter and getter methods for these
properties, some private helper methods, and a public showCartView()
action event handling method.

The document property contains the complete catalog of our shopping cart.
The UICategoryActionListener class calls the getter method
(getDocument()) to pass on the document to the ProductData model bean.

The model property contains the application-specific XML, which is used to
track the category or product the user clicked in the catalog view. The
xforms-jsf:model component renders the application-specific XML, so the
UIModel component explained in Implementing the xforms-jsf:model
component on page 83 calls the getter method of the model property to fetch
the application-specific XML.

The outcome property specifies the string used to navigate to the next page.
This property can have any of the following three values: "category," "product,"
and "cart." If the value of the outcome property is "category" (which tells that
the user clicked a category in the catalog view), the next page will be the same:
catalogView.jsp. If the value of the outcome property is "product" (which tells
that the user clicked a product), the next page will be productView.jsp. If the
value of the outcome property is "cart" (which tells that the user clicked the
Show cart button), the next page will be cartView.jsp.

The categoryData property is an instance of the Category class, which this
model bean instantiates and populates for the UICategory component.

Let's discuss the methods of the CategoryData class one by one.

The CategoryData constructor first initializes the Category object. It then
calls the loadXML() method, passing along the name of the XML file that
contains the complete catalog data of our shopping cart. The constructor also
sets the ID property of the newly created Category object to null. The
loadXML() method parses the XML file and then loads it in the document
property of the bean discussed above.

public CategoryData(){
categoryData = new Category();
categoryData.setId(null);
String path = fc.getApplication().getViewHandler().getResourceURL

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 179 of 201

(fc, "/shoppingcart.xml");
String url = fc.getExternalContext().encodeResourceURL(path);
this.loadXML(url);

}//CategoryData

The CategoryData class implements the setAction() method. The
setAction() method takes a string parameter and sets it in the outcome
property of the model bean. The decode() method of the UICategory class
knows the ID of the category or product that the user clicked in the catalog view.
Before firing the action event, the decode() method sets this ID in the btnId
property of the component.

The event handler class (UICategoryActionListener) calls the getter
method of the btnId to check if the ID belongs to a category. Then it calls the
setAction() method and passes it a string value "category."

public void setAction(String action){
this.outcome = action;

}//setAction

The getAction() method returns a string value, which the JSF framework
uses for navigation. In Using the xcart:category tag to generate the catalog view
on page 164, we provided the catalogView.jsp page. Notice the action
attribute in the xcart:category tag shown in the JSP page. The action
attribute specifies the categoryData.getAction() method name that
decides the navigation. The following code shows the implementation of this
method in the model bean:

public String getAction(){
return outcome;

}//getAction

The getAction() method returns the value of the outcome property (which
UICategoryActionListener has already set by calling the setAction()
method).

The setCategoryData() method simply takes an instance of the Category
object and assigns it to the categoryData property.

public void setCategoryData(Category categoryData){
this.categoryData = categoryData;

}//setCategoryData

The decode() method extracts the ID of the category or product the user
clicked in the catalog view and passes it to the event handler class (the
UICategoryActionListener class). When UICategoryActionListener
receives the ID, it instantiates the Category class and sets the id property of
the Category object. It then calls the setCategoryData() method of the
model bean and passes the Category object along with the method call.

The getCategoryData() method simply calls a helper method named
getCategoryDataValues(). The getCategoryDataValues() method

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 180 of 201 Using JSF technology for XForms applications

takes the same ID that the UICategoryActionListener supplied to the
model bean. The getCategoryDataValues() helper method returns another
Category object that contains the same ID, as well as all the data related to
the same category (list of subcategories, ancestors, and products).

public Category getCategoryData(){
Category catData = getCategoryDataValues(categoryData.getId());
return catData;

}//getCategoryData

The CategoryData model bean implements an action event handling method
named showCartView(). Recall the screen shot for the catalog view from
Views of the shopping cart on page 7, which contains a Show cart button. When
the user clicks this, the JSF framework calls the showCartView() method of
the model bean, which simply sets the action property with a "cart" string and
causes the navigation to the cartView.jsp page.

public void showCartView(ActionEvent ae){
this.action = "cart";

}//showCartView

In the past four sections, we have seen the implementation of the
catalogView.jsp page, UICategory component,
UICategoryActionListener, and the CategoryData model bean. These
four components together form a set, which renders the catalog view.

In the next two sections, we will implement similar kinds of sets to render the
product-specification view and catalog view. But this time, we will not go into
low-level details like we did for first set.

Implementing the productView.jsp page, UIProduct
component, and ProductData model bean

In the productView.jsp page, we have used three tags from our XForms-JSF tag
library (xforms-jsf:model, xforms-jsf:selectManyCheckbox, and
xforms-jsf:commandButton) and one tag (xcart:product) from our
shopping cart tag library.

The JSP author provides the xcart:product tag with a value attribute,
whose value refers to a Product class type property of a ProductData model
bean. For example, look at the following xcart:product tag in the JSP page:

<?xml version="1.0" encoding="iso-8859-1"?>
<html
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xforms="http://www.w3.org/2002/xforms">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://afictitiousshoppingcart.com/XCart"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 181 of 201

prefix="xcart" %>
<%@ taglib uri="http://afictitiousshoppingcart.com/XForms-JSF"
prefix="xforms-jsf" %>

<f:view>
<head>
<xforms-jsf:model value="#{productData.model}"/>
</head>
<body>
<xcart:product value="#{productData.product}"/>
<xforms-jsf:selectManyCheckbox label="Optional Features: "

value="#{productData.selectedOptionalFeatures}" ref="options">
<f:selectItems value="#{productData.optionalFeatures}"/>

</xforms-jsf:selectManyCheckbox>
<xforms-jsf:commandButton label="Add to cart" immediate="false"

action="#{productData.getAction}"
actionListener="#{productData.addProductToCart}">

</xforms-jsf:commandButton>
<xforms-jsf:commandButton label="Back to catalog view"

action="#{productData.getAction}" immediate="true"
actionListener="#{productData.showCatalogView}">

</xforms-jsf:commandButton>
</body>

</f:view>
</html>

The xcart:product tag takes only one attribute: value. You are already
familiar with the functionality of the value attribute. In the above JSP, the
value attribute contains the product property of the ProductData model
bean. The xcart:product component implementation calls the getter method
of the productData.product property and gets the Product instance that
contains the complete details of a single product.

The xcart:product tag renders the details of the product the user clicked in
the catalog view. These details of a product consist of the name, price,
description, and features of a particular product.

Now let's implement the component class mentioned in the component-class
element of the faces-config.xml file above: the UIProduct class.

The following code shows the properties and methods of the UIProduct class:

public class UIProduct extends UIComponentBase{
private String value;
public void encodeBegin(FacesContext context)

throws IOException {
}
public void setValue(Object value) {
}

}//UIProduct

The UIProduct class contains only one property (value), two public methods
(encodeBegin() and setValue()), and four private helper methods
(renderProductSpec(), renderFeatures(), renderNameValue(), and
getModelBeanObject()).

The value property contains the name of the Product object associated with
the UIProduct component. The UIProduct component uses the value

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 182 of 201 Using JSF technology for XForms applications

attribute to get the Product object. It then uses the Product object to fetch
the application-specific data (name, id, price, and description of a product).

Let's look at the encodeBegin() method of the UIProduct class.

public void encodeBegin(FacesContext context)
throws IOException

{
if (context == null)

throw new NullPointerException();
Product productData = (Product) getModelBeanObject (context,

value);
ResponseWriter writer = context.getResponseWriter();
if (productData == null)

writer.write("
product data is null"); //show nothing
else
{

writer.write("<h3> X-Cart Product Detail </h3>");
writer.write("<table width=\"100%\">");
writer.write("<tr>");
writer.write("<table colspan=\"3\" border=\"1\" width=\"70%\"");
String[] spec = new String[4];
spec[0] = productData.getId();
spec[1] = productData.getName();
spec[2] = productData.getDescription();
spec[3] = productData.getPrice();
String[] labels = {"Product_ID","Product_Name:",

"Product_Description:", "Product_Price:"};
renderProductSpec(writer, spec, labels);
NameValuePair[] features = productData.getFeatures();
if (features != null)

renderFeatures(writer, "Product Features",features);
writer.write("</table>");
writer.write("</tr>");
writer.write("</table>"); //colspan=\"4\" border=\"1\"

}//else
}//encodeBegin

The following points explain the above code:

° It first verifies the FacesContext instance passed to it. If it is null, it
throws a NullPointerException.

° After verifying the FacesContext object, it calls the
getModelBeanObject() method, which returns an instance of the
Product object.

° It fetches the ResponseWriter object.

° It then determines whether the Product instance is null. If so, it
hard-codes the markup to display that the product is null.

° If the Product instance retrieved in step 2 is not null, it uses the Product
instance to get the name, description, price, and features of the product.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 183 of 201

° Finally, it calls the renderProductSpec() and renderFeatures()
private helper methods to display the product specifications (product name,
description, price, etc.) and product features.

Now we will implement the ProductData model bean.

The ProductData model bean is associated with the product-specification
view. This model bean basically populates the Product class used by
UIProduct and UISelect components to display the product details like
name, price, features, and optional features. The ProductData model bean
also implements the action event handling methods to handle the action events
generated in the product-specification view and in the edit product view.

The following code shows the implementation of the ProductData model
bean:

public class ProductData{
private Product productData;
private Document document = null;
private String model = null;
private String productId = null;
private boolean isProductSet = false;
private ArrayList optionalFeatures;
private String[] selectedOptionalFeatures = null;

public ProductData() {}
public String getModel() {}
public void setModel(String model){}
public void setDocument(Document doc) {}
public Document getDocument(){}
public String getProductId(){}
public void setProductId(String id) {}
public Product getProductData(){}
public void setProductData(Product pData) {}
public void setOptionalFeatures (String[] optFeatures, Product pd) {}
public Collection getOptionalFeatures (){}
public void setSelectedOptionalFeatures (String[]

selectedOptionalFeatures) {}
public String[] getSelectedOptionalFeatures(){}
public void showCatalogView(ActionEvent ae){
}
public void showCartView(ActionEvent ae){
}
public void addProductToCart(ActionEvent ae){
}
public void saveToCart(ActionEvent ae){
}

}//ProductData

The UIProduct class contains a constructor, six properties (document,
model, productData, productId, optionalFeatures, and
selectedOptionalFeatures), setter and getter methods for these
properties, and four event handler methods (showCatalogView(),
addProductToCart(), showCartView(), and saveToCart()).

The document property contains the complete catalog of our shopping cart.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 184 of 201 Using JSF technology for XForms applications

UICategoryActionListener calls the setter method (setDocument()) to
pass on the document to the ProductData model bean.

The model property contains the application-specific XML. The UIModel
component calls the getter method of the model property to fetch the
application-specific XML.

The productId property contains the ID of the product the user clicked in the
catalog view. UICategoryActionListener calls the setter method
(setProductId()) to pass on the product ID the user clicked.

The optionalFeatures property of bean contains the optional feature of the
product the user clicked in the catalog view. The UISelect component calls
the getOptionalFeatures() method to render the optional features of the
product as check boxes.

The selectedOptionalFeatures property stores those optional features the
user selects in the product-specification view. The updateModel() method of
the UISelect component calls the setSelectedOptionalFeatures()
method to set the user's selected optional features that its respective
decode() method retrieved from the request.

The product property of the ProductData model bean is an instance of the
Product class. This property only stores the record of a single product. The
UIProduct and UISelect components call the getProduct() method to
render the product details.

Let's discuss the implementation of the event handling methods in the
ProductData model bean one by one.

The showCatalogView() method takes an instance of the ActionEvent
class along with the method call. Recall the product-specification view from
Views of the shopping cart on page 7, where a Back to catalog view button is
shown. When the user clicks this, an action event occurs. The JSF framework
calls the showCatalogView() method to handle the event. This method
simply sets the action property with the "catalogView" string:

public void showCatalogView(ActionEvent ae){
this.action = "catalogView";

}//showCatalogView

The showCartView() method takes an instance of the ActionEvent class
along with the method call. Recall the edit product view from Views of the
shopping cart on page 7, where a Back to cart button is shown. When the user
clicks this, an action event occurs. The JSF framework calls the
showCartView() method to handle the event. This method simply sets the
action property with the "cart" string.

public void showCartView(ActionEvent ae){
this.action = "cart";

}//showCartView

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 185 of 201

The addProductToCart() event handling method takes an instance of the
ActionEvent object along with the method call. When the user clicks the Add
to cart button in the product-specification page, the JSF calls the
addProductToCart() method to handle the event. The following code shows
the implementation of the addProductToCart() method:

public void addProductToCart(ActionEvent ae) {
FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
ValueBinding vb = app.createValueBinding("#{cartData}");
CartData cdmb = (CartData) vb.getValue(context);
Product pd = getProduct();
String[] selectedFeatures = getSelectedOptionalFeatures();
if (selectedFeatures != null) {

NameValuePair[] optionalFeatures = pd.getOptionalFeatures();
NameValuePair[] new_optionalFeatures = new

NameValuePair[selectedFeatures.length];
for (int x = 0; x < selectedFeatures.length; x++){

for (int y = 0; y < optionalFeatures.length; y++){
NameValuePair pair = optionalFeatures[y];
if (selectedFeatures[x].equals(pair.getName()))

new_optionalFeatures[x] = pair;
}//for

}
pd.setSelectedOptionalFeatures(new_optionalFeatures);

}//if(selectedFeatures != null)
cdmb.addProduct(pd);
this.action = "cart";

}//addProductToCart

Note the following points:

° The addProductToCart() method first gets an instance of the
FacesContext object.

° It fetches an instance of the CartData model bean from the application
context.

° The addProductToCart() method then calls the getProduct() method,
which returns the Product class instance that wraps the details of the
product the user clicked in the catalog view.

° Next, the addProductToCart() method calls the
getSelectedOptionalFeatures() method, which returns the list of
features the user selected in the product-specification view.

° It checks if the selected optional features are not null, then it sets the
selected optional features in the selectedOptionalFeatures property of
the Product object.

° After setting the selected features, it adds the product to the cart. It calls the
addProduct() method of the CartData model bean to add the product to
the cart.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 186 of 201 Using JSF technology for XForms applications

° Finally, the addProductToCart() method sets the action property of the
model bean with the "cart" string.

When the user clicks the Save edited product button in the edit product view,
the JSF calls the saveToCart() method to handle the event. The following
code shows the implementation of the saveToCart() method:

public void saveToCart(ActionEvent ae){
FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
ValueBinding vb = app.createValueBinding("#{cartData}");
CartData cd = (CartData) vb.getValue(context);
Product pd = getProduct();
String[] selectedFeatures = getSelectedOptionalFeatures();
if (selectedFeatures == null || selectedFeatures.length == 0)

pd.setSelectedOptionalFeatures(new NameValuePair[0]);
else{

NameValuePair[] optionalFeatures = pd.getOptionalFeatures();
NameValuePair[] new_optionalFeatures =

new NameValuePair[selectedFeatures.length];
for (int x = 0; x < selectedFeatures.length; x++){

for (int y = 0; y < optionalFeatures.length; y++){
NameValuePair pair = optionalFeatures[y];
if (selectedFeatures[x].equals(pair.getName()))

new_optionalFeatures[x] = pair;
}//for(int y = 0; y < optionalFeatures.length; y++)

}//for(int x = 0; x < selectedFeatures.length; x++)
pd.setSelectedOptionalFeatures(new_optionalFeatures);

}//else
Product[] pData = cd.getProducts();
for(int i = 0; i< pData.length; i++){

if(pData[i].getId().equals(pd.getId()))
cd.setProductAt(pd, i);

}//for
this.action = "cart";

}//saveToCart

Note the following code points:

° The saveToCart() method first gets an instance of the FacesContext
object.

° It then fetches an instance of the CartData model bean from the
application context.

° Then the saveToCart() method calls the getProduct() method, which
returns the Product class instance that wraps the details of the product the
user clicked in the catalog view.

° The saveToCart() method calls the
getSelectedOptionalFeatures() method, which returns the list of
features the user selected in the product-specification view.

° It then checks if the selected optional features are null and sets the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 187 of 201

selectedOptionalFeatures property of the Product object as null.

° If the selected optional features are not null, it sets the selected optional
feature in the selectedOptionalFeatures property of the
ProductData model bean class.

° After adding the selected features, it calls the getProducts() method of
CartData, which returns all products in the cart as an array of the Product
object.

° After iterating through all the products until the current product (edited) is
found, it overwrites the edited product.

° Finally, the saveToCart() method sets the action property of the model
bean with the "cart" string.

Implementing the cartView.jsp page, UICart
component, UICartActionListener, and CartData
model bean

Look at the following cartView.jsp page, which generates the cart view:

<?xml version="1.0" encoding="iso-8859-1"?>
<html
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xforms="http://www.w3.org/2002/xforms">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://afictitiousshoppingcart.com/XCart"
prefix="xcart" %>
<%@ taglib uri="http://afictitiousshoppingcart.com/XForms-JSF"
prefix="xforms-jsf" %>

<f:view>
<head>
<xforms-jsf:model value="#{cartData.model}"/>

</head>
<body>
<xcart:cart value="#{cartData.products}"

action="#{cartData.getAction}">
<f:actionListener type="model.UICartActionListener"/>

</xcart:cart>
<xforms-jsf:commandButton label="Buy Cart"

action="#{cartData.getAction}"
actionListener="#{cartData.buy}" immediate="true">

</xforms-jsf:commandButton>
<xforms-jsf:commandButton label="Back to catalog view"

action="#{cartData.getAction}"
actionListener="#{cartData.showCatalogView}" immediate="true">

</xforms-jsf:commandButton>
</body>

</f:view>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 188 of 201 Using JSF technology for XForms applications

</html>

Note the following points:

° We have included the xcart:cart tag in the body element, which contains
two attributes: value and action.

° The xcart:cart tag renders the list of all the products a user added to the
cart. The xcart:cart tag also renders Remove and Edit buttons with each
product in the cart.

° The method of the model bean specified in the action attribute
(cart.getAction) controls navigation.

° We have associated an action listener (UICartActionListener) with the
xcart:cart component. When the user clicks the edit or Remove button of
any product in the cart view, the UICartActionListener class handles
the generated action event, which we will discuss shortly.

° We have used two xforms-jsf:commandButton tags. The first is used to
go back to the catalog view; the second is to buy the cart.

Next, we'll implement the component class associated with the xcart:cart
tag.

The following code shows the properties and methods in the UICart
component:

public class UICart extends UICommand{
private String btnId = null;
private String productId = null;
private void renderValueAsButton (ResponseWriter writer, String name,

String id, String clientId) {}
public void encodeBegin(FacesContext context)

throws IOException {}
public void decode (FacesContext context) {}
private String getActionValueFromRequest(String retValue,

FacesContext fc, String ref, String tagName) {}
}//UICart

The UICart class contains two properties (btnId, productId), setter and
getter methods for the properties, two public methods (encodeBegin() and
decode()), and three private helper methods (renderValueAsButton(),
getModelBeanObject(), and getActionValueFromRequest()).

The btnId property contains the ID of the Edit or Remove button the user
clicks in the cart view. When the UICart component fires an action, the action
event handling class calls the getter method of this property to compare the
button the user clicked against a particular product in the cart view.

The productId property contains the ID of the product whose Edit or Remove

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 189 of 201

button the user clicks in the cart view. When the UICart component fires an
action, the action event handling class calls the getter method of the
productId property to get the product ID.

Let's discuss the methods of the UICart class one by one.

The renderValueAsButton() method writes the markup to render a single
product as a button. The encodeBegin() method of the UICategory class
calls this method once for every product available in the cart view.

The renderValueAsButton() method takes the following four parameters:

° writer: An object of the ResponseWriter class. Its write() method is
used to write the response markup.

° name: The name of a product.

° id: The ID of a product.

° clientId: Uniquely identifies a component on the client side.

The code for the renderValueAsButton() method:

private void renderValueAsButton(ResponseWriter writer, String name,
String id, String clientId){
try {

writer.write("<xforms:submit submission=\"submit\"");
writer.write("

xmlns:xforms=\"http://www.w3.org/2002/xforms\">");

writer.write("<xforms:label>"+name.trim()+"</xforms:label>");
writer.write("<xforms:action ev:event=\"DOMActivate\"");
writer.write("

xmlns:ev=\"http://www.w3.org/2001/xml-events\">");
writer.write("<xforms:setvalue ref=\"action-performed\">"+

clientId+"@"+id+"@"+name.trim()+"</xforms:setvalue>");
writer.write("</xforms:action>");
writer.write("</xforms:submit>");

}
catch (java.io.IOException ie){

ie.printStackTrace();
}

}//renderValueAsButton

The above code authors the following markup:

<xforms:submit submission="submit"
xmlns:xforms="http://www.w3.org/2002/xforms"
xmlns:ev="http://www.w3.org/2001/xml-events">
<xforms:label>Intel_Pentinum4</xforms:label>
<xforms:action ev:event="DOMActivate">

<xforms:setvalue ref="action-performed">
_id1@1@edit

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 190 of 201 Using JSF technology for XForms applications

</xforms:setvalue>
</xforms:action>

</xforms:submit>

This markup renders a button. The whole markup is hard-coded in the
renderValueAsButton() method, except the strings "Intel_Pentinum4" and
"_id1@1@edit" (boldface in the markup above). The first string
"Intel_Pentinum4" is the value of the second parameter (name). The second
string "_id1@1@edit" uniquely identifies the product whose Remove and Edit
button the user clicks. The second string consists of three parts, each of which
is separated by an "@" symbol. The first part (_id1) is the ID of the component.
The second part (1) identifies a particular product in the catalog view. The third
part (edit) identifies the button clicked.

Recall Implementing the xforms-jsf:model component on page 83, where we
explained the purpose of inserting an extra action-performed tag in the
application-specific XML. The renderValueAsButton() method wraps the
component, product ID, and button name (edit or remove) in the
action-performed tag. When a user clicks the button corresponding to a
particular product in the cart view, the string "_id1@1@edit" is sent back to the
server.

The encodeBegin() method of the UICart class is lengthy, so we will
implement this method incrementally.

The encodeBegin() method first checks whether the FacesContext
instance is null. If it is null, it simply throws an exception. Then it extracts the
component ID by calling the getClientId() method. Next, it gets the
ResponseWriter object so that it can render the markup for this component.
See these steps in the following code:

public void encodeBegin(FacesContext context) throws IOException {
if (context == null)

throw new NullPointerException();
String clientId = getClientId(context);
ExternalContext externalContext = context.getExternalContext();
ResponseWriter writer = context.getResponseWriter();
double totalPrice = 0;
.....

}//encodeBegin

Now the encodeBegin() method calls the getModelBeanObject()
method. We explained how this method works in Implementing the UISelect1
component on page 100. The getModelBeanObject() method returns an
array-type object Product class, which contains the data to be rendered. See
the boldface code below:

public void encodeBegin(FacesContext context)
throws IOException {
if (context == null)

throw new NullPointerException();
String clientId = getClientId(context);
ExternalContext externalContext = context.getExternalContext();
ResponseWriter writer = context.getResponseWriter();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 191 of 201

double totalPrice = 0;
Product[] products = (Product[]) getModelBeanObject(context,

value);
.....

}//encodeBegin

Now we check if the Product instance returned by the
getModelBeanObject() method is null. If it is null, it means that we have
no data (products) to render in the cart view.

public void encodeBegin(FacesContext context)
throws IOException {
......
Product[] products = (Product[]) getModelBeanObject(context,

value);
if (products == null){

writer.write ("Cart is empty......");
return;

}//if(products == null)
.....

}//encodeBegin

Now the encodeBegin() method writes the markup to display each product
and its price in tabular format from the Product object, as shown in boldface
below:

public void encodeBegin(FacesContext context)
throws IOException {
......
if (products == null){

writer.write ("
<h3> Cart is
empty......</h3>");

return;
}//if (products == null)

writer.write("\r\n X-Cart View
 ");
writer.write("<table border=\"1\">");
writer.write("<ol type=\"1\">");
for (int x = 0; x<products.length; x++){

Product product = products[x];
double price = Integer.parseInt(product.getPrice());
NameValuePair[] pair = product.getSelectedOptionalFeatures();
if(pair != null){

for(int y = 0; y < pair.length; y++){
price += Integer.parseInt(pair[y].getValue());

}
}//if(pair != null)
totalPrice += price;
writer.write("<tr>");
writer.write("<td>");
writer.write(""+product.getName()+"");
writer.write("</td>");
writer.write("<td>");
renderValueAsButton(writer, " Edit ",

new Integer(x).toString(), clientId);
writer.write("</td>");
writer.write("<td>");
renderValueAsButton(writer, " Remove ",

new Integer(x).toString(), clientId);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 192 of 201 Using JSF technology for XForms applications

writer.write("</td>");
writer.write("<td>");
writer.write("" + price);
writer.write("</td>");
writer.write("</tr>");

}//for (int x = 0; x<products.length; x++)
writer.write("");
writer.write("</table>");
writer.write("<table border=\"1\">");
writer.write("");
writer.write("<tr>");
writer.write("<td>");
writer.write(" Total Cart Price ");
writer.write("</td>");
writer.write("<td>");
writer.write(""+totalPrice);
writer.write("</td>");
writer.write("</tr>");
writer.write("");
writer.write("</table>");

}//encodeBegin

Now we'll implement the getActionValueFromRequest() method. The
decode() method calls this method to get the ID of the product whose Edit or
Remove button the user clicked in the cart view.

The getActionValueFromRequest() method takes the following four
parameters:

° retValue: Contains the string value "id" or "action," which decides the return
value of the method.

° fc: The FacesContext instance.

° ref: Contains the model bean (that is, IncomingXMLInstanceRequest)
name and the property that contains the incoming XML request from the
client side. See Parsing the incoming XML instance data on page 91 for
details about this model bean.

° tagName: The name of the tag (that is, action-performed) that contains
the clicked button information.

private String getActionValueFromRequest(String retValue,
FacesContext fc, String ref, String tagName){

String value = new String();
Document doc = (Document) getModelBeanObject(fc, ref);
if(doc != null){

NodeList nl = doc.getElementsByTagName(tagName);
if (nl != null){

for (int i=0; i < nl.getLength(); i++){
if (nl.item(i).getFirstChild().getNodeType() ==

Node.TEXT_NODE){
value = nl.item(i).getFirstChild().getNodeValue();
if (retValue.equals("id")){

if (value.indexOf('@') != -1){
int index = value.indexOf('@');

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 193 of 201

String id = value.substring(0,index);
if (id.equals(getClientId(fc)))
return value.substring(index+1,

value.lastIndexOf('@'));
else
return null;

}//if(value.indexOf('@') != -1)
}//if(retValue.equals("id"))
else

return value.substring(value.lastIndexOf('@')+1);
}//if

}//for
}//if(nl != null)

}//if(doc != null)
return null;

}//getActionValueFromRequest

Note the following points from the getActionValueFromRequest() method:

° The method first gets the property from the model bean that contains the
client request as DOM Document object.

° Then it extracts the action-performed tag from the DOM document and
extracts its value.

° Finally, it checks the value of the retValue parameter. If it is "id," then it
returns the product ID whose Edit or Remove button is clicked. Otherwise, it
returns the ID of the button -- edit or Remove -- from the request.

Next, we will discuss the implementation details of the decode() method.

public void decode(FacesContext context){
if (context == null)

throw new NullPointerException();
String id = getActionValueFromRequest("id", context,

"#{incomingXMLInstanceRequest.DOMDocument}", "action-performed");
String action = getActionValueFromRequest("action", context,

"#{incomingXMLInstanceRequest.DOMDocument}","action-performed");
if(id != null){

this.btnId = action;
this.productId = id;
queueEvent(new ActionEvent(this));

}//if(id != null)
}//decode

Note the following points in the decode() method implementation:

° It first verifies the FacesContext instance passed to it by the JSF
framework. If it is null, it throws a NullPointerException.

° If the FacesContext instance is not null, the decode() method calls the
getActionValueFromRequest() method, passing it the string "id" in the
retValue parameter, as explained above. This method returns the ID of the
product that the user clicked.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 194 of 201 Using JSF technology for XForms applications

° The decode() method again calls the getActionValueFromRequest()
method, passing it the string "action." It returns the name of the button the
user clicked (edit or Remove).

° If the product ID returned by the getActionValueFromRequest()
method is not null, it sets the product name ID in the btnId property and
the product ID in the productId property of the component (that the event
handling logic uses to identify the Edit or Remove button of a particular
product the user clicked).

° Finally, the decode() method fires an action event by instantiating an
ActionEvent object, passing it the component instance. It then calls the
queueEvent() method, passing it the ActionEvent object along with the
method call. Note that the event handler class extracts the component object
from the ActionEvent object and calls the getBtnId() method of the
component to identify the product the user clicked.

Next, we will implement the UICartActionListener.

The UICartActionListener class is associated with the UICart
component. When the user clicks the Edit or Remove button of a particular
product in the cart view, the UICart component fires an action event. This
action event is handled by the UICartActionListener class. The
implementation of the UICartActionListener class:

public class UICartActionListener implements ActionListener {
public void processAction(ActionEvent event) {
}
private Object getModelBeanObject(FacesContext context,String value){
}

}//UICartActionListener

The UICartActionListener class contains two methods
(processAction() and getModelBeanObject()). We explained the
getModelBeanObject() method in Implementing the UISelect1 component
on page 100. The processAction() method processes the action event fired
by the component:

public void processAction(ActionEvent event) {
FacesContext context = FacesContext.getCurrentInstance();
CartData cd = (CartData) getModelBeanObject("#{cartData}",

context);
ProductData pdm = (ProductData)

getModelBeanObject("#{editProductData}", context);
UICart uic = (UICart) event.getComponent();
String productId = uic.getProductId();
String btn = uic.getBtnId();
if(btn.equals("Edit")){

Product pd = cd.getProductAt(productId);
if (pd != null)

pdm.setProduct(pd);
cd.setAction("edit");

}//if(btn.equals("Edit"))

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 195 of 201

else{
cd.removeProduct(productId);
cd.setAction("remove");

}//else
}//processAction

Note the following points:

° The processAction() method first retrieves the FacesContext
instance.

° It then fetches the CartData and ProductData model bean instances
from the application context.

° Next, it calls the getComponent() method of the event object, which
returns an object of the component class that fired the event.

° Then it calls the getBtnId() and getProductId() methods of the
component class, which returns the ID of the button the user clicked and the
product ID against that button, respectively.

° It then checks if the button ID is Edit. if it is, it fetches the product from the
cart against the product ID and sets it in the ProductData model bean by
calling its setProduct() method.

° If the button ID is not Edit, it simply calls the removeProduct() method of
the CartData model bean, passing it the product ID. This method call
simply removes the product from the cart.

Now let's implement the CartData model bean.

The CartData model bean stores all the products added by the user in the
cart. The UICart component uses this CartData model bean to fetch the list
of products added to the cart and also to handle some action events that
occurred in the cart view.

The following code shows the implementation of the CartData class:

public class CartData{
protected String model = null;
protected String outcome = null;
protected Product[] products = null;

public String getAction(){
}
public void setAction (String outcome){
}
public String getModel(){
}
public void setModel(String model){
}
public Product [] getProducts(){

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 196 of 201 Using JSF technology for XForms applications

}
public Product getProductAt(String index){
}
public void setProductAt(Product pd, int index)
}
public void removeProduct(String index){
}
public void addProduct(ProductData productData){
}
public void showCatalogView(ActionEvent ae){
}
public void buy(ActionEvent ae){
}

}//CartData

The CartData class has three properties (model, outcome, and products),
setter and getter methods for these properties, some private helper methods,
four public methods (getProductAt(), setProductAt(), addProduct(),
and removeProduct()), and two action event handling methods
(showCatalogView() and buy()).

The model property contains the application-specific XML, which is used to
track the product the user clicked in the cart view. The xforms-jsf:model
component renders the application-specific XML, so the UIModel component
explained in Implementing the xforms-jsf:model component on page 83 calls the
getter method of the model property to fetch the application-specific XML.

The outcome property specifies the string used for navigation. This property
can have one of three values: "catalogView," "buy," or "edit." If the value of the
outcome property is "catalogView" (which indicates that the user clicked the
Back to catalog view button in the cart view), the next page will be the
catalogView.jsp. If the value is "edit" (which indicates that the user clicked the
Edit button of particular product), the next page will be editProductView.jsp. If
the value is "buy" (which indicates that the user clicked the Buy button), the next
page will be checkout.jsp.

The products property is an array of the Product object, which stores all the
products added by the user to the cart. The UICart component calls its getter
method to fetch the list of products added to the cart.

Let's discuss the methods of the CartData class one by one.

The CartData class implements the setAction() method. The
setAction() method takes a string parameter and sets it in the outcome
property of the model bean. The action event handling logic calls the
setAction() method, passing it a string value.

public void setAction(String action){
this.outcome = action;

}//setAction

The getAction() method returns a string value, which the JSF framework
uses for the navigation. In the cartView.jsp page above, notice the action
attribute in the xcart:cart tag. The action attribute specifies the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 197 of 201

cartData.getAction method name that decides the navigation. The following
code shows the implementation of this method in the model bean:

public String getAction(){
return outcome;

}//getAction

The getAction() method returns the value of the outcome property (which
the event handling logic has already set by calling the setAction() method).

The getProductAt() method returns a product from the array of Product
objects at some specific index. It takes the product index along with the method
call. The UICartActionListener calls this method to fetch the product at
some specific location in the cart.

public Product getProductAt(String index) {
if (productsVector.size() > 0)

return (Product)productsVector.elementAt(Integer.parseInt(index));
return null;

}//getProductAt

The setProductAt() method sets a product at some specific index in the
array of the Product object. It takes the Product object and index along with
the method call. The UICartActionListener calls this method to set the
product at a particular location:

public void setProductAt(Product pd, int index) {
if (pd != null)

productsVector.setElementAt(pd, index);
}//setProductAt

The addProduct() method adds the product to the cart that is passed to it
along with the method call. The event handling logic behind the Add to cart
button in the product-specification view calls the addProduct() method,
passing it the Product object along with the method call.

public void addProduct(Product productData) {
if (productData != null) {

productsVector.addElement(productData);
}

}//addProduct

The removeProduct() method removes the product from the array of
Product objects at the given index. When the user clicks the Remove button in
the cart view, the UICartActionListener calls the removeProduct()
method, passing it the index of the product in the cart.

public void removeProduct(String index) {
productsVector.removeElementAt(Integer.parseInt(index));

}//removeProduct

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 198 of 201 Using JSF technology for XForms applications

The CartData model bean implements an action event handling method
named showCatalogView(). Recall the screenshot for the cart view from
Views of the shopping cart on page 7, which contains a Back to catalog view
button. When the user clicks this, the JSF framework calls the
showCatalogView() method of the model bean, which sets the action
property with a "catalogView" string and causes the navigation to the
catalogView.jsp page.

public void showCatalogView(ActionEvent ae){
this.outcome = "catalogView";

}//showCatalogView

The screenshot for the cart view shown in Views of the shopping cart on page 7
contains a Buy button. When the user clicks this, the JSF framework calls the
buy() method of the model bean, which sets the action property with a "buy"
string and causes the navigation to the checkout.jsp page.

public void buy(ActionEvent ae){
if(getProducts().length == 0){

return;
}
this.outcome = "buy";

}//buy

Trying out the shopping cart

We have placed the source code for our complete XForms-JSF shopping cart
application in the section9.zip file available in the source code download of this
tutorial; see Resources on page 200. When you unzip the section9.zip file, you
will find that it contains an xcart.jar file (that is, the shopping cart-specific tag
library developed in this section), ShoppingCart.war file (that is, the
XForms-JSF Shopping cart application developed in this section), and a folder
named ShoppingCart. The ShoppingCart folder contains the complete source
code for our XForms-JSF shopping cart application, including all the JSP pages,
model beans, and action listeners developed for our sample shopping cart
application.

To try our XForms-JSF shopping cart application, you deploy the
ShoppingCart.war file in your application server. Be sure to use the following
URL in the address bar of your XForms browser:

http://localhost:8080/ShoppingCart

Once the catalog view displays, you can browse through our shopping cart, as
we discussed in Views of the shopping cart on page 7.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 199 of 201

Section 10. Wrap-up and resources

Summary

Throughout this tutorial, our goal has been to give an inside-out picture of the
JSF framework, to show how to use JSF for XForms applications, and enable
you to develop your own JSF components and tag libraries. For this purpose,
we developed tag libraries and many sample applications.

We also discussed the XForms authoring requirements in a server-side Java
application and listed the tasks you need to perform to develop an XForms
application using JSF technology. We discussed how the JSF framework
internally works and how the different modules of the JSF application cooperate
with each other. Finally, we developed the XForms-JSF tag library and several
XForms applications using the JSF framework.

Resources

° Download the j-jsfx-source.zip file for the complete source code (sample
application, WAR, and JAR files) developed in this tutorial.

° Download J2SE V1.4.2 (http://java.sun.com/j2se/1.4.2/download.html) and
J2EE V1.4 (http://java.sun.com/j2ee/1.4/download.html) (Update 1)
reference implementation.

° Visit the official JavaServer Faces information at Sun Microsystems.

° For an overview of JSF, and to learn about the existing JSF core and HTML
tag libraries, read UI development with JavaServer Faces (developerWorks,
September 2003), a tutorial by Jackwind Li Guojie.

° Learn more about JSF with Rick Hightower's series, JSF for non believers
(developerWorks, February 2005).

° Read Integrating Struts, Tiles, and JavaServer Faces (developerWorks
September 2003) by Srikanth Shenoy and Nithin Mallya, which explains how
to use JSF with the Apache Struts framework.

° Visit the official XForms information (http://www.w3.org/TR/xforms/) at
w3.org.

° To understand XForms in detail, read Understanding XForms
(developerWorks, December 2002) by Nicholas Chase.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 200 of 201 Using JSF technology for XForms applications

j-jsfx-source.zip
http://java.sun.com/j2se/1.4.2/download.html
http://java.sun.com/j2ee/1.4/download.html
http://java.sun.com/j2ee/javaserverfaces/download.html
http://www.ibm.com/developerworks/java/edu/j-dw-java-jsf-i.html
http://www.ibm.com/developerworks/java/library/j-jsf1/
http://www-106.ibm.com/developerworks/java/library/j-integrate/
http://www.w3.org/TR/xforms/
http://www-106.ibm.com/developerworks/web/edu/wa-dw-waxforms-i.html

° To get started with XForms, read Get ready for XForms (developerWorks,
September 2002) by Joel Rivera and Len Taing.

° XSmiles (http://www.xsmiles.org/download.html) is an XForms browser to
render the XForms markup.

° formsPlayer (http://www.formsplayer.com/download/) is an XForms plug-in
for Internet Explorer V6.0. We used formsPlayer to test our sample
applications in this tutorial.

° Visit the developerWorks Java technology zone
(http://www-136.ibm.com/developerworks/java/) for hundreds of articles and
tutorials about every aspect of Java programming.

° Visit The Developer Bookstore (http://devworks.krcinfo.com/) for a
comprehensive listing of technical books, including hundreds of Java-related
titles.

Your feedback

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

For more information about the Toot-O-Matic, visit
www-106.ibm.com/developerworks/xml/library/x-toot/ .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using JSF technology for XForms applications Page 201 of 201

http://www-106.ibm.com/developerworks/xml/library/x-xforms/
http://www.xsmiles.org/download.html
http://www.formsplayer.com/download/
http://www-136.ibm.com/developerworks/java/
http://devworks.krcinfo.com/
http://devworks.krcinfo.com/WebForms/ProductList.aspx?Search=Category&id=1200&p=Java
http://devworks.krcinfo.com/WebForms/ProductList.aspx?Search=Category&id=1200&p=Java
http://www-106.ibm.com/developerworks/xml/library/x-toot/

	Table of contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	Tutorial topics
	Code samples and installation requirements
	About the author

	A sample XForms application
	How is XForms different from HTML forms?
	Features of the sample XForms-based shopping
cart
	Views of the shopping cart
	XML structures for the shopping cart
	Using XForms
	The model element
	The select element
	The submit element
	User interaction and flow of data in our shopping cart
application
	Server-side processing requirements of an XForms
application

	The JSF architecture
	Components of a JSF application
	JSF tags and JSF components
	Using JSF tags in JSPs
	Model bean wrappers for application's business logic and data
	The JSF framework
	How to make FacesServlet handle your requests
	Methods in the FacesServlet class
	The Lifecycle class
	The FacesContext class
	The URL processing life cycle in a JSF application
	The URL processing life cycle in an XForms-JSF application

	How does a JSF component tree work?
	The JSF component tree
	The UIComponentTag class
	Associating JSF tags with tag classes
	The ValueBinding class
	The MethodBinding class
	Setting properties of a component
	Associating a tag with a component
	The UIComponentBase class
	The decoding process
	The encoding methods
	Rendering a component
	Associating a tag with a renderer
	The Validation process
	Updating model beans
	Summary

	Model beans and events in JSF
	Developing model beans
	Associating model beans with JSF components
	Telling the application that some value has changed or some event has occurred
	Event-generation mechanism in JSF
	Handling value-change events
	Handling value-change events vs. updating model beans
	Handling action events
	Navigation process
	Life-cycle processing phases of a JSF application
	Summary

	XForms-JSF integration strategy
	XForms-JSF integration requirements
	Integration steps
	Implementing the xforms-jsf:model component
	Writing the model bean that represents application-specific XML data
	Parsing the incoming XML instance data
	Implementing the xforms-jsf:selectOneRadio tag
	Implementing the UISelect1 component
	Implementing the xforms-jsf:commandButton tag
	Implementing the UIButton component
	Using the model, selectOneRadio, and commandButton tags
	Trying out the sample application

	XForms-JSF tag library
	Completing the XForms-JSF tag library
	Implementing the xforms-jsf:selectOneMenu component
	Implementing the xforms-jsf:selectOneListbox component
	Implementing the xforms-jsf:selectManyListbox component
	Implementing the xforms-jsf:selectManyCheckbox component
	Implementing the xforms-jsf:selectManyMenu component
	Implementing the xforms-jsf:inputText
component
	Implementing the xforms-jsf:inputSecret component
	Implementing the xforms-jsf:inputTextarea component
	How to distribute tag libraries
	A sample JSP page to try the XForms-JSF tag library

	Designing the XForms-JSF shopping cart
	What will our XForms-JSF shopping cart demonstrate?
	Components of the XForms-JSF shopping cart application
	The interaction of components in our shopping cart
	Rendering the catalog data (catalog view)
	Rendering the product data (product-specification view)
	Adding a product to the shopping cart (cart view)
	Editing the product entry from cart (edit product view)
	Saving edited product entries to the cart
	Summary

	Implementing the XForms-JSF shopping cart
	Implementing the NameValuePair, Category, and Product classes
	Using the xcart:category tag to generate the catalog
view
	Implementing the UICategory component
	Implementing the UICategoryActionListener class
	Implementing the CategoryData model bean
	Implementing the productView.jsp page, UIProduct component, and
ProductData model bean
	Implementing the cartView.jsp page, UICart component,
UICartActionListener, and CartData model bean
	Trying out the shopping cart

	Wrap-up and resources
	Summary
	Resources
	Your feedback

