
Introducing EJB-CMP/CMR, Part 2 of 3

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Introduction.. 2
2. Application design.. 6
3. Example 3: The one-to-one bidirectional relationship............ 8
4. Example 4: The many-to-many unidirectional relationship...... 21
5. Example 5: The one-to-many bidirectional relationship.......... 27
6. Summary .. 35
7. Feedback .. 37

Introducing EJB-CMP/CMR, Part 2 of 3 Page 1 of 37

Section 1. Introduction

Introduction to CMP/CMR, Part 2
This is the second part of a tutorial series that is designed to introduce you to
Container-Managed Persistence (CMP) and Container-Managed Relationships (CMR) in
Enterprise JavaBeans 2.0 (EJB). These features are particular to EJB entity beans that are
typically long-lived as compared to that are normally transitory.

Enterprise JavaBeans (EJB) 2.0 extends the earlier version 1.1 by adding advanced support
for entity beans as follows:
• Updated container-managed persistence for entity beans

• Support for container-managed relationships

• EJB-Query Language (EJB-QL) for portable select and find query methods defined in
the deployment descriptor

• The addition of local interfaces and local home interfaces to optimize access from other
beans in the same container

If you want to buy or sell components, you will most likely want a layer of persistence in your
components to work cross-platform on application servers (for example, IBM WebSphere,
BEA WebLogic, JBoss/Tomcat, etc.) and persistence storage systems (for example, Oracle,
DB2, etc.). You do not have to write low-level Java Database Connectivity (JDBC) calls in
your EJBs to add these features, which is a great saver of time and complexity. Once you get
the hang of CMP/CMR, it is faster to write entity beans using this technology, than using
low-level JDBC inside of bean-managed persistence (BMP) beans .

This tutorial assumes that you have completed the first part of this three part series (see
Resources on page 36). Again, if you are not familiar with EJB or you need to refresh your
memory, I recommended that you read Enterprise JavaBeans Fundamentals, an IBM tutorial
written by Richard Monson-Haefel and Tim Rohaly. The Enterprise JavaBeans
Fundamentals is an excellent tutorial written by an excellent author.

Should I care about CMP/CMR?
What is the use of a container-managed entity bean? Well, for starters, you do not have to
write low-level JDBC calls to save the state of the bean and you do not have to write code to
manage relationships. It is all built into the EJB framework. Your interface to relationships is
through the pervasive java.util.Collection and java.util.Set which most EJB
developers are already familiar with. Very cool!

This additional feature includes support for JavaBeans component patterns for persistent
fields, inside of the entity bean. Thus, instead of making your class variables public -- which
has always felt strange to me -- you create get and set methods following the JavaBean
technology standard naming pattern we all know and love.

I can't stress this point enough. Since EJB 2.0 containers will support the most common SQL
databases (and other data stores as well), you can write components that work with many
types of databases. This makes it easier to sell components that require persistent storage.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

For example, you can sell components that will work in an IT department that uses Oracle or
a shop that uses DB2. Thus, instead of writing low-level JDBC calls using SQL native to a
particular database, you will use EJB-QL to create finder and select methods, and describe
relationships in deployment descriptors.

Simply put, CMP/CMR is the missing link in cross-platform component creation. CMP/CMR
will spur the growth of the enterprise level component marketplace. In addition, CMP/CMR is
easier to use then low-level JDBC calls. CMP/CMR corrects many of the foibles, and missing
functionality of earlier versions of CMP. There are many persistence frameworks, none are
available on as many application server platforms as EJB CMP/CMR!

What do I need to know for this tutorial?
The example code in this tutorial is written to work with any J2EE compliant application
server that supports EJB 2.0. The example code endeavors to be compliant; thus, all
example code was deployed on the J2EE reference implementation that ships with Java 2
SDK, Enterprise Edition 1.3. The example code should deploy to your application server of
choice by just modifying the Ant build scripts and corresponding deployment descriptors as
long as your application server support EJB 2.0, and therefore, supports CMP/CMR.

This tutorial assumes that you are familiar with Java programming language and to some
extent EJB; although, you do not have to be an expert. Since I will be covering deployment
descriptors, which are written in XML, you should have a rudimentary knowledge of XML. If
you are not familiar with EJB, I recommended that you read Enterprise JavaBeans
Fundamentals, an developerWorks tutorial written by Richard Monson-Haefel and Tim
Rohaly (See Resources on page 36). This is an excellent tutorial written by great authors.
Even if you do not read this tutorial word for word, I suggest you at least use it as a
reference.

Although not a prerequisite per se, knowledge of Ant, an XML-based, open source build
system similar to make, will be helpful to understand the build scripts presented in the
examples.

You do not need knowledge of JDBC since there will be no low-level calls in this tutorial, but
basic knowledge of SQL and relational database theory is required.

What will this tutorial cover?
Instead of writing a giant tutorial that would take days to go through. I have split the tutorial
into three parts that can each be finished in an hour or so. You could finish each tutorial
during a lunch break, so get a sandwich and a beverage, and get started.

EJB 2.0 added a lot of features and functionality, this tutorial focuses on CMP/CMR. Thus,
this tutorial assumes you have a background with EJB, and entity beans. You don't have to
be an EJB expert to follow along. The tutorials cover local interfaces, deployment descriptor
CMP, CMR fields, and relationship elements. I also cover the full range of relationship types
as follows:
• One-to-one

• One-to-many

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 3 of 37

• Many-to-many

The relationships in the example also cover both unidirectional support and bidirectional
support. The relationships are defined in XML deployment descriptors.

In the first tutorial, you get a taste of CMP/CMR and EJB-QL, with an example of a simple
EJB 2.0 style CMP entity bean. Part of the example demonstrates simple EJB-QL to create a
finder method without a Java implementation. This tutorial gets you acclimated to the
terminology and technology, and adds a basic example.

In this tutorial, the second one in this series, you will build on the first example to cover each
type of relationship and each type of relationship direction. You will create a a client that
accessesthe relationships you created to add, remove and change related members.

About the Author

Rick Hightower, Director of Development at eBlox, has over a decade of experience as a
software developer. He leads the adoption of new processes like Extreme Programming, and
technology adoption like adoption of CMP and CMR.

Rick's publications include Java Tools for eXtreme Programming, which covers deploying
and testing J2EE projects (published by John Wiley), contributions to Java Distributed
Objects (published by Sams), and several articles in Java Developer's Journal.

Java Tools for XP Covers creating, testing and deploying J2EE components and
applications using:
• JUnit,

• Cactus,

• JMeter and

• Ant, etc.

Also expect to see his book on Jython from Addison Wesley in the near future.

Rick has also taught classes on developing Enterprise JavaBeans, JDBC, CORBA, Applets
as CORBA clients, etc.

Rick is also updating the next version of the Enterprise JavaBeans Developer's Guide to the
2.0 Specification for TriveraTech. The last version of this guide, which covered EJB 1.1 was

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

http://www.rickhightower.com
http://www.rickhightower.com
http://www.eblox.com
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.wiley.com
http://www.wiley.com
http://www.sys-con.com
http://www.sys-con.com
http://www.sys-con.com
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/

distributed to over 100,000 developers. This free guide discusses key EJB architectural
concepts so developers can have a deeper understanding of EJB. The newest version of this
guide will be released soon.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 5 of 37

Section 2. Application design

Application design: Entity design
The examples in this tutorial series use a fictitious authentication subsystem for an online
content management system that is designed to allow the following:
• log users into system

• authenticate users are in certain roles

• allow user to be organized into groups to allow group operations

• store user information like address and contact information

• manage roles, users, groups (manage = add, edit, delete)

Figure 1: Overview of the entities in this tutorial

An overview of the entities in the system in Figure 1 shows that there are four distinct
entities: User, Group, Role, and UserInfo. Each of these entities have the following three
relationships:
• Users are associated with Roles (many-to-many)

• A User has UserInfo (one-to-one)

• A Group contains Users (one-to-many)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

The first tutorial showed how to build CMP into the UserManagement entity beans for this
project. In this second tutorial, I will show how to implement each of these entites with their
relationships.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 7 of 37

Section 3. Example 3: The one-to-one bidirectional
relationship

Relationships
Relationships have directions: unidirectional and bidirectional. And, relationships have
<multiplicity>: one-to-one, one-to-many, and many-to-many.

The first example relationship is bidirectional with a <multiplicity> of one-to-one. The
relationship will be between the User and his or her contact information stored in UserInfo.
This example will do the following:

1. Define the UserInfoBean entity bean.

2. Add CMR fields to the UserBean.

3. Add a relationship element to the deployment descriptor.

4. Add code to the UserManagement session bean to use this relationship.

5. Add code to the client to use the new code in the UserManagement session bean.

Defining the UserInfoBean
The UserInfoBean, like the UserBean, defines CMP fields. The CMP fields are used to
store contact information and other information describing the UserBean.

Thus the UserInfoBean defines a local interface, a local home interface, an entity bean
implementation class, and a entity element entity in the deployment descriptor. All of these
are shown in Listings 1 through 4.

Listing 1: UserInfoBean's Local interface

/* Local interface */
package com.rickhightower.auth;

import javax.ejb.EJBLocalObject;

public interface LocalUserInfo extends EJBLocalObject {
public abstract String getEmail();

public abstract LocalUser getUser();
public abstract void setUser(LocalUser user);

public abstract String getDept();
public abstract void setDept(String value);

public abstract String getWorkPhone();
public abstract void setWorkPhone(String value);

public abstract String getExtention();
public abstract void setExtention(String value);

public abstract boolean getEmployee();
public abstract void setEmployee(boolean value);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

public abstract String getHomePhone();
public abstract void setHomePhone(String value);

public abstract String getFirstName();
public abstract void setFirstName(String value);

public abstract String getLastName();
public abstract void setLastName(String value);

public abstract String getMiddleName();
public abstract void setMiddleName(String value);

}

Listing 2: UserInfoBean's Home interface

/* Local home interface */
package com.rickhightower.auth;

import javax.ejb.EJBLocalHome;
import javax.ejb.CreateException;
import javax.ejb.FinderException;

import java.util.Collection;

public interface LocalUserInfoHome extends EJBLocalHome {

public LocalUserInfo create(
String firstName, String middleName,
String lastName, String email,
String dept, String workPhone,
String extention, String homePhone,
boolean isEmployee)

throws CreateException;

public LocalUserInfo findByPrimaryKey (String email)
throws FinderException;

}

Packaging UserInfoBean
Please note that entities involved in a relationship must be defined in the same deployment
descriptor; thus, they must be packaged in the same EJB .jar file. The UserBean and the
UserInfoBean are packaged together in the same .jar file and defined together in the same
deployment descriptor.

Listing 3: UserInfoBean's implementation

/* entity bean implementation class */
package com.rickhightower.auth;

import javax.ejb.EntityBean;
import javax.ejb.EntityContext;
import javax.ejb.CreateException;
import javax.naming.*;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 9 of 37

public abstract class UserInfoBean implements EntityBean {

public String ejbCreate(
String firstName, String middleName,
String lastName, String email,
String dept, String workPhone,
String extention, String homePhone,
boolean isEmployee)

throws CreateException {
setEmail(email);
setDept(dept);
setWorkPhone(workPhone);
setExtention(extention);
setHomePhone(homePhone);
setEmployee(isEmployee);
setFirstName(firstName);
setLastName(lastName);
setMiddleName(middleName);
return null;

}

public void ejbPostCreate(
String firstName, String middleName,
String lastName, String email,
String dept, String workPhone,
String extention, String homePhone,
boolean isEmployee)

throws CreateException { }

public abstract String getEmail();
public abstract void setEmail(String value);

public abstract String getFirstName();
public abstract void setFirstName(String value);

public abstract String getLastName();
public abstract void setLastName(String value);

public abstract String getMiddleName();
public abstract void setMiddleName(String value);

public abstract LocalUser getUser();
public abstract void setUser(LocalUser user);

public abstract String getDept();
public abstract void setDept(String value);

public abstract String getExtention();
public abstract void setExtention(String value);

public abstract String getWorkPhone();
public abstract void setWorkPhone(String value);

public abstract boolean getEmployee();
public abstract void setEmployee(boolean value);

public abstract String getHomePhone();
public abstract void setHomePhone(String value);

public void setEntityContext(EntityContext context){ }
public void unsetEntityContext(){ }
public void ejbRemove(){ }
public void ejbLoad(){ }

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

public void ejbStore(){ }
public void ejbPassivate(){ }
public void ejbActivate(){ }

}

Also note that the following:

public abstract LocalUser getUser();
public abstract void setUser(LocalUser user);

is in both the local interface and the implementation of the UserInfoBean. This setter and
getter method defines the CMR filed of this bidirectional relationship. Since the relationship is
bidirectional, both UserInfo and UserInfoBean must have CMR fields referring to the
other.

Listing 4: UserInfoBean's deployment descriptor

<entity>
<display-name>UserInfoBean</display-name>
<ejb-name>UserInfoBean</ejb-name>

<local-home>com.rickhightower.auth.LocalUserInfoHome</local-home>
<local>com.rickhightower.auth.LocalUserInfo</local>
<ejb-class>com.rickhightower.auth.UserInfoBean</ejb-class>

<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>

<reentrant>True</reentrant>
<cmp-version>2.x</cmp-version>

<abstract-schema-name>UserInfoBean</abstract-schema-name>

<cmp-field>
<field-name>firstName</field-name>

</cmp-field>

<cmp-field>
<field-name>middleName</field-name>

</cmp-field>

<cmp-field>
<field-name>lastName</field-name>

</cmp-field>

<cmp-field>
<field-name>email</field-name>

</cmp-field>

<cmp-field>
<field-name>dept</field-name>

</cmp-field>

<cmp-field>
<field-name>workPhone</field-name>

</cmp-field>

<cmp-field>
<field-name>extention</field-name>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 11 of 37

</cmp-field>

<cmp-field>
<field-name>homePhone</field-name>

</cmp-field>

<cmp-field>
<field-name>employee</field-name>

</cmp-field>

<cmp-field>
<field-name>email</field-name>

</cmp-field>

<primkey-field>email</primkey-field>

</entity>

Now you have to add the CMR fields to the UserBean in the next panel.

Adding CMR fields to UserBean
You need to add a CMR field to both the local interface and the entity bean class of the
UserBean.

Defining a CMR field is much like defining a CMP field with the exception that the CMR field
will return and pass the local interface of the other entity bean in the relationship from the
getter and setter methods respectively. In this case the getter method will return
LocalUserInfo as follows:

public abstract LocalUserInfo getUserInfo();

and the setter method will pass the LocalUserInfo as follows:

public abstract void setUserInfo(LocalUserInfo, userInfo);

Like the CMP fields the actual code to implement these methods are defined by the container
implementation. All you have to do is define the relationship in the deployment descriptor and
the EJB container will provide the code to manage the relationship. Sweet!

package com.rickhightower.auth;

import javax.ejb.EJBLocalObject;

public interface LocalUser extends EJBLocalObject {

public String getEmail();
public String getPassword();
public LocalUserInfo getUserInfo();
public void setUserInfo(LocalUserInfo userInfo);

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

public abstract class UserBean implements EntityBean {

public abstract LocalUserInfo getUserInfo();
public abstract void setUserInfo(LocalUserInfo userInfo);

}

Defining the relationships in the deployment descriptor
The relationships are defined outside of the <enterprise-beans> element. When you
specify the relationship, you must specify both entity beans involved in the relationship. The
relationship is defined in the <ejb-relation> element. Each role in the relationship is
defined in the <ejb-relationship-role>.

Listing 5: Relationships for the entity beans

<relationships>
<ejb-relation>
<ejb-relation-name>UserHasUserInfo</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>

UserHasUserInfo
</ejb-relationship-role-name>

<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>UserBean</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>userInfo</cmr-field-name>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>

UserInfoPartOfUser
</ejb-relationship-role-name>

<multiplicity>One</multiplicity>
<cascade-delete />
<relationship-role-source>
<ejb-name>UserInfoBean</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>user</cmr-field-name>

</cmr-field>
</ejb-relationship-role>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 13 of 37

</ejb-relation>
</relationships>

The <ejb-relationship-role> has a name, multiplicity, source, and an optional CMR
field defined by the following elements respectively: <ejb-relationship-role-name>,
<multiplicity>, <relationship-role-source> with <ejb-name> sub-element, and
the <cmr-field> with <cmr-field-name> sub-element, respectively.

Defining the relationships in the deployment descriptor
The <ejb-relationship-role-name> element body can be any name you wish. Try to
make it descriptive for the relationship you are describing. Also, try to make it unique in the
context of the deployment descriptor as follows:.

<ejb-relationship-role>
<ejb-relationship-role-name>UserHasUserInfo</ejb-relationship-role-name>
<multiplicity>One</multiplicity>

The <relationship-role-source>/<ejb-name> body must be set to the ejb-bean
name as defined by the entity/<ejb-name> in the <enterprise-beans> element.

<relationship-role-source>
<ejb-name>UserBean</ejb-name>

</relationship-role-source>

The <cmr-field>/<cmr-field-name> body must be set to the CMR field name as
defined in the on page panel. If the <cmr-field> is defined by <getUserInfo()> and
<setUserInfo()> in the local interface then it will be defined by <userInfo> in the
<cmr-field-name> as follows:

<cmr-field>
<cmr-field-name>userInfo</cmr-field-name>

</cmr-field>
</ejb-relationship-role>

There are always two <ejb-relationship-role>s defined in an <ejb-relation>. If
the relationship is bidirectional then both sides of the relationships will have a <cmr-field>.
Here it the other side of the UserHasUserInfo relationship as follows:

<ejb-relationship-role>
<ejb-relationship-role-name>UserInfoPartOfUser</ejb-relationship-role-name>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

<multiplicity>One</multiplicity>
<cascade-delete />
<relationship-role-source>
<ejb-name>UserInfoBean</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>user</cmr-field-name>

</cmr-field>
</ejb-relationship-role>

Here you can see that the name of this role is UserInfoPartOfUser (body of
<ejb-relationship-role-name>). You can also see that the entity bean source is
UserInfoBean (body of element <relationship-role-source>/<ejb-name>). And,
you can pick out the CMR field involved in the relationship is user by looking at
<cmr-field>/<cmr-field-name>.

Change UserManagement to use the relationship
To show how to work with CMR fields the UserManagement session bean adds three
methods:
• a new version of addUser() that takes contact information

• a getUsersInfo() method that returns an array of value objects

• a changeLastName() method that uses the <userInfo> CMR field

Listing 6 and Listing 7 show the modified UserManagement bean.

Listing 6: UserManagement and UserManagementBean interface and implementation

/** Remote interface */
public interface UserManagement extends EJBObject {

public void addUser(String email, String password,
String firstName, String middleName,
String lastName, String dept,
String workPhone, String extention,
String homePhone, boolean isEmployee

) throws RemoteException;

public UserValue[] getUsersInfo()throws RemoteException;

public void changeLastName(String email, String lastName)
throws RemoteException;

/** Entity Implementation class */
public class UserManagementBean implements SessionBean {

public void addUser(String email, String password,
String firstName, String middleName,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 15 of 37

String lastName, String dept,
String workPhone, String extention,
String homePhone, boolean isEmployee){

try {
LocalUser user = userHome.create(email, password);
LocalUserInfo info = infoHome.create(firstName,

middleName, lastName, email, dept,
workPhone, extention, homePhone,
isEmployee);

user.setUserInfo(info);
} catch (CreateException e) {

throw new EJBException
("Unable to create the local user " + email, e);

}

}

public UserValue[] getUsersInfo(){
try{

ArrayList userList = new ArrayList(50);
Collection collection = userHome.findAll();
Iterator iterator = collection.iterator();
while(iterator.hasNext()){

LocalUser user = (LocalUser)iterator.next();
LocalUserInfo info = user.getUserInfo();
UserValue userValue = new UserValue(user.getEmail());
copyUserInfo(userValue, info);
userList.add(userValue);

}
return (UserValue[])

userList.toArray(new UserValue[userList.size()]);

} catch (FinderException e){
throw new EJBException

("Unable to get list of users ", e);
}

}

public void changeLastName(String email, String lastName){
try {

LocalUser user = userHome.findByPrimaryKey(email);
LocalUserInfo info = user.getUserInfo();
info.setLastName(lastName);

} catch (FinderException e) {
throw new EJBException

("Unable to change the last name " + lastName, e);
}

}

Listing 7: The Serializable UserValue class for UserManagementBean

/** Serializable value class */

package com.rickhightower.auth;

public class UserValue implements java.io.Serializable{

private String email="";
private String firstName="";

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

private String middleName="";
private String lastName="";
private String dept="";
private String workPhone="";
private String extention="";
private String homePhone="";
private boolean employee;

public UserValue() {
}

public UserValue(String aEmail) {
email = aEmail;

}

public String getEmail() { return email;}
public void setEmail(String email) {this.email=email;}

public String getFirstName() {return firstName;}
public void setFirstName(String firstName){

this.firstName=firstName;
}

public String getMiddleName() {return middleName;}
public void setMiddleName(String middleName){

this.middleName=middleName;
}

public String getLastName() {return lastName;}
public void setLastName(String lastName) {

this.lastName=lastName;
}

public String getDept() {return dept;}
public void setDept(String dept) {

this.dept=dept;
}

public String getWorkPhone() {return workPhone;}
public void setWorkPhone(String workPhone) {

this.workPhone=workPhone;
}

public String getExtention() {return extention;}
public void setExtention(String extention) {

this.extention=extention;
}

public String getHomePhone() {return homePhone;}
public void setHomePhone(String homePhone) {

this.homePhone=homePhone;
}

public boolean isEmployee() {return employee;}
public void setEmployee(boolean employee) {

this.employee = employee;
}

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 17 of 37

The new UserManagement methods
addUser()

The addUser() method demonstrates setting a CMR field.

The addUser() method takes all of the contact information and the

user information as arguments. It then creates a LocalUser and a

LocalUserInfoinstance using the home interfaces of both the

UserBean and the UserInfoBean as follows:

public void addUser(String email, String password, boolean isEmployee){

LocalUser user = userHome.create(email, password);
LocalUserInfo info = infoHome.create(firstName, middleName, lastName,
email, dept, workPhone, extention, homePhone, isEmployee);

Once both the LocalUser and

LocalUserInfo object are created, the addUser()

method sets the <userInfo> CMR field of the

User with the newly create UserInfo as follows:

user.setUserInfo(info);

getUsersInfo()

The <getUserInfo()> method demonstrates getting a CMR field.

Since you can not return a collection of local entity from a remote method, the

<getUserInfo()> demonstrates how to return a number entity beans with value objects.

Similar to the getUsers method, the getUsersInfo() method uses the findAll method of
the

UserBean's home interface (LocalUserHome). However, instead of returning the ID of the

UserBean (the e-mail) for each user, it returns a value object for each user that contains the

department, e-mail address, employment status, phone with extention, last name,

middle name, and first name of each user as follows:

ArrayList userList = new ArrayList(50);
Collection collection = userHome.findAll();
Iterator iterator = collection.iterator();
while(iterator.hasNext()){
LocalUser user = (LocalUser)iterator.next();
LocalUserInfo info = user.getUserInfo();

UserValue userValue = new UserValue(user.getEmail());

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

copyUserInfo(userValue, info);
userList.add(userValue);
}

return (UserValue[]) userList.toArray(new UserValue[userList.size()]);

The UserValue class is populate for each User/UserInfo pair.

The UserValue class is a simple serliazable class listed left. The getUsersInfo()

method call a helper method called copyUserInfo() for each User/UserInfo

pair. The copyUserInfo() copies the values from the User/UserInfo pair into

a UserValue object. The copyUserInfo() method is listed below.

private void copyUserInfo(UserValue userValue, LocalUserInfo info){
if (info != null){
userValue.setFirstName(info.getFirstName());

userValue.setMiddleName(info.getMiddleName());
userValue.setLastName(info.getLastName());

userValue.setDept(info.getDept());
userValue.setWorkPhone(info.getWorkPhone());
userValue.setExtention(info.getExtention());
userValue.setHomePhone(info.getHomePhone());
userValue.setEmployee(info.getEmployee());

}
}

changeLastName()

The changeLastName() method demonstrates accessing the CMR field of an entity bean

to modify one of the related objects CMP fields.

The changeLastName() method uses the e-mail address passed to it to

look up the UserBean local interface LocalUser and

then use the LocalUser's CMR field to gain access to the UserInfoBean.

It then modifies the last name of the UserInfoBean all shown as follows:

LocalUser user = userHome.findByPrimaryKey(email);
LocalUserInfo info = user.getUserInfo();

info.setLastName(lastName);

The next section will go over the changes to the client to exercise these three new methods.

Change the client to use new UserManagement
methods
Just as before you have to change the client to use the new methods defined in the
UserManagement bean.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 19 of 37

Note the code below uses the new addUser(), changeLastName(), and
getUsersInfo() methods.

In fact you create two users with addUsers. Then you change the last name of the user
Andy. And verify the name change went through by printing out the lastName by utilizing the
getUsersInfo() method of the UserManagementBean. Serendipity!

/* Add some user with the new addUser method */
userMgmt.addUser("andy@rickhightower.com", "starwars",

"Andy", "Mike", "Barfight",
"Engineering", "555-1212", "x102",
"555-5555", true);

userMgmt.addUser("donna@rickhightower.com", "cusslikeasailor",
"Donna", "Marie", "Smith",
"Marketing", "555-1213", "x103",
"555-7777", true);

System.out.println("Change last name");
userMgmt.changeLastName("andy@rickhightower.com", "Smith-Barfight");

System.out.println("Get User Info");
UserValue [] users = userMgmt.getUsersInfo();

for (int index=0; index < users.length; index++){
UserValue user = users[index];
System.out.println("user firstName =" + user.getFirstName());
System.out.println("user lastName =" + user.getLastName());
System.out.println("user homePhone =" + user.getHomePhone());
}

Compiling and deploying the one-to-one example
The same technique can be used to the build, package, deploy, and run the client. Please
refer to the section 8 in the first installment of this tuturial (see Resources on page 36) to
refresh your memory how to build and run this example application. Look for the source and
build file under cmpCmr/section3.

Be sure to run ant clean to delete the old examples intermediate build files.

On the home stretch now!
You are done with the first three examples. If you made it this far, you are speeding to the
finish line. The next section will cover many to many relationships.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

Section 4. Example 4: The many-to-many unidirectional
relationship

Many-to-many relationship
A many to many relationship sound pretty tough to implement. Actually, it is just as easy to
implement as a one-to-one relationship. The EJB container does all of the hard work for you.

For this example, you will add different roles that a user can be in. An individual user can be
in more than one role. And a role can be associated with more than one user.

In this example you will do the following:
1. Define the RoleBean.

2. Define the relationship from UserBean to RoleBean in the deployment descriptor.

3. Add a CMR collection field to the UserBean.

4. Add code to the UserManagement session bean to use this relationship.

5. Add code to the client to use the new code in the UserManagement session bean.

Define the RoleBean
The RoleBean is similar to the UserInfoBean in the last example. Like all of the other
entity bean., it has CMP fields. Also it has a local home, a local interface, and entity bean
implementation.

Unlike the UserInfoBean in the last example, the RoleBean does not have a
<cmr-field>. The complete listings for the RoleBean is listed below.

Listing 8: RoleBean Local interface

package com.rickhightower.auth;
import javax.ejb.EJBLocalObject;

public interface LocalRole extends EJBLocalObject {
public abstract String getName();
public abstract String getDescription();

}

Listing 9: RoleBean Home interface

package com.rickhightower.auth;
import javax.ejb.EJBLocalHome;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import java.util.Collection;

public interface LocalRoleHome extends EJBLocalHome {
public LocalRole create (String name, String description) throws CreateException;
public LocalRole findByPrimaryKey (String email) throws FinderException;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 21 of 37

public Collection findAll() throws FinderException;
}

Listing 10: RoleBean EntityBean implementation class

package com.rickhightower.auth;
import javax.ejb.EntityBean;
import javax.ejb.EntityContext;
import javax.ejb.CreateException;
import javax.naming.*;

public abstract class RoleBean implements EntityBean {

public String ejbCreate(String name, String description) throws CreateException {
setName(name);
setDescription(description);
return null;

} public

void ejbPostCreate(String name, String description) throws CreateException{ }

public abstract String getName();
public abstract void setName(String name);

public abstract String getDescription();
public abstract void setDescription(String description);

public void setEntityContext(EntityContext context){ }
public void unsetEntityContext(){ }
public void ejbRemove(){ }
public void ejbLoad(){ }
public void ejbStore(){ }
public void ejbPassivate(){ }
public void ejbActivate(){ }

}

Listing 11: RoleBean deployment descriptor entry

<entity>
<display-name>RoleBean</display-name>
<ejb-name>RoleBean</ejb-name>

<local-home>com.rickhightower.auth.LocalRoleHome</local-home>
<local>com.rickhightower.auth.LocalRole</local>
<ejb-class>com.rickhightower.auth.RoleBean</ejb-class>

<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>

<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>

<abstract-schema-name>RoleBean</abstract-schema-name>

<cmp-field>
<description>no description</description>
<field-name>name</field-name>

</cmp-field>
<cmp-field>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

<description>no description</description>
<field-name>description</field-name>

</cmp-field>
<primkey-field>name</primkey-field>
<security-identity>
<description></description>
<use-caller-identity></use-caller-identity>

</security-identity>

<query>
<description></description>
<query-method>
<method-name>findAll</method-name>
<method-params />

</query-method>
<ejb-ql>select Object(o) from RoleBean o</ejb-ql>

</query>

</entity>

</enterprise-beans>

Define the relationship in the deployment descriptor
The XML elements and technique for adding a many-to-many relationship is nearly identical
as doing the one-to-one relationship. The only key difference is the multiplicity. The
<ejb-relationship-role> for the RoleBean does not have a CMR field element
because the relationship is unidirectional from the UserBean to the RoleBean. The
RoleBean does not have knowledge of the UserBean. The <ejb-relation> element is
listed as follows:

<ejb-relation>
<ejb-relation-name>UserAssociateWithRoles</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>UserBeanToRoleBean</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>UserBean</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>roles</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>RoleBeanToUserBean</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>RoleBean</ejb-name>

</relationship-role-source>
</ejb-relationship-role>

</ejb-relation>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 23 of 37

Notice that the UserBeanToRoleBean has a <multiplicity> of Many, and the
<cmr-field> of UserBeanToRoleBean has a sub-element <cmr-field-type>. The
<cmr-field-type> element defines the Java code type of the relationship with a
<multiplicity> of Many. Note that the two possibilities are java.util.Collection
and java.util.Set. Since you picked java.util.Collection and the CMR field name
is roles, then you can expect to see a CMR field called roles (setter and getter method pair)
in the local interface of the UserBean that returns and sets a java.util.Collection.

Add collection CMR field to UserBean
The CMR fields return many roles and set many roles. Thus unlike the CMR fields for the
one-to-one relationship for UserInfo, you are going to set and get a collection of roles as
follows:

Listing 12: UserBean EntityBean Implementation Class

public abstract class UserBean implements EntityBean {

public abstract Collection getRoles();
public abstract void setRoles(Collection roles);

}

Listing 13: UserBean Local interface

package com.rickhightower.auth;
import javax.ejb.EJBLocalObject;
import java.util.Collection;

public interface LocalUser extends EJBLocalObject {

public Collection getRoles();
public void setRoles(Collection roles);

public String getEmail();
public String getPassword();
public LocalUserInfo getUserInfo();
public void setUserInfo(LocalUserInfo userInfo);

}

That's it. It is not much different then the one-to-one relationship. Next I will show the
methods in the UserManagement session bean that use the many-to-many relationship.

Use many-to-many relationship in the
UserManagement bean
The UserManagementBean adds four methods to operate on Roles and the relationship
between User and roles as follows: inRole(), addRole(), createRole(), and

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

removeRole().

The createRole() and removeRole() methods are just boiler plate code to add and
remove roles into the datastore -- nothing new.

addRole()

The addRole() adds a role to a UserBean as follows:

public void addRole(String email, String roleName){

LocalUser user = userHome.findByPrimaryKey(email);
LocalRole role = roleHome.findByPrimaryKey(roleName);
Collection roles = user.getRoles();
roles.add(role);

}

Notice that the addRole() looks up the role with the roleHome, then it adds the role to the
collection from the CMR roles field. Thus, when a role gets added to the roles collection, the
EJB container updates the datastore. Thus, the code that inserts the relationship in the
datastore is the interface of the Collection class. Cool!

inRole()

The inRole() method checks to see if a user is in a certain role:

public boolean inRole(String email, String roleName){

LocalUser user = userHome.findByPrimaryKey(email);
Collection roles = user.getRoles();
Iterator iter = roles.iterator();
while (iter.hasNext()){

LocalRole role = (LocalRole)iter.next();
if (role.getName().equals(roleName)) return true;

}

return false;
}

Because the API for the datastore is the same as java.util.Collection, coding with
CMR is easy and fast. In the next panel I will cover accessing these method from the client.

Using UserManagement inRole() and addRole()
methods
The client uses all of the new UserManagement methods as follows:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 25 of 37

//Create Roles -- section 4
userMgmt.createRole("admin", "Adminstrator");
userMgmt.createRole("manager", "Content Manager");
userMgmt.createRole("user", "Normal User");
userMgmt.createRole("guest", "Guest User");

//Add roles to user Andy -- section 4
userMgmt.addRole("andy@rickhightower.com", "admin");
userMgmt.addRole("andy@rickhightower.com", "user");

//See if Andy is in role admin -- section 4
if (userMgmt.inRole("andy@rickhightower.com","admin")){

System.out.println("Andy is an admin");
}

//See if Andy is in role manager -- section 4
if (!userMgmt.inRole("andy@rickhightower.com","manager")){

System.out.println("Andy is not a manager");
}

/* Remove Roles -- section 4 */
userMgmt.removeRole("admin");
userMgmt.removeRole("manager");
userMgmt.removeRole("user");
userMgmt.removeRole("guest");

Compiling and deploying the many-to-many example
The same technique can be used to the build, package, deploy, and run the client. Please
refer to section 8 in the first installment of this tuturial (see Resources on page 36) to refresh
your memory how to build and run this example application. Look for the source and build file
under cmpCmr/section4.

Be sure to run ant clean to delete the old examples intermediate build files.

Final lap
You are done with the first four examples. If you made it this far, it's all down hill from here
and the wind is at your back. The next section will cover one-to-many relationships.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

Section 5. Example 5: The one-to-many bidirectional
relationship

One-to-many relationship
A one-to-many relationship is a lot like the other relationships. Just as before the EJB
container does most of the heavy lifting.

In this example you will do the following:
1. Define the GroupBean.

2. Define the bidirectional relationship from UserBean to GroupBean in the deployment
descriptor.

3. Add a CMR collection field to the UserBean.

4. Add code to the UserManagement session bean to use this relationship.

5. Add code to the client to use the new code in the UserManagement session bean.

Define the GroupBean
The GroupBean is similar to the UserInfoBean and the RoleBean in the last two
examples. Like all of the other entity beans, it has CMP fields. Also it has a local home, a
local interface, and entity bean implementation.

Like the UserInfoBean in the first relationship example, the GroupBean has a
<cmr-field> referring to the UserBean. Unlike the UserInfoBean, the <cmr-field>
users, in the GroupBean is a collection of UserBeans. The complete listing for the
GroupBean is listed below.

Listing 14: GroupBean Local interface

package com.rickhightower.auth;
import javax.ejb.EJBLocalObject;
import java.util.Collection;

public interface LocalGroup extends EJBLocalObject {

public abstract Collection getUsers();
public abstract void setUsers(Collection collection);

public abstract String getName();
public abstract String getDescription();

}

Listing 15: GroupBean Home interface

package com.rickhightower.auth;

import javax.ejb.EJBLocalHome;
import javax.ejb.CreateException;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 27 of 37

import javax.ejb.FinderException;
import java.util.Collection;

public interface LocalGroupHome extends EJBLocalHome {
public LocalGroup create (String name, String description) throws CreateException;
public LocalGroup findByPrimaryKey (String name) throws FinderException;

public Collection findAll() throws FinderException;
}

Listing 16: GroupBean EntityBean implementation Class

package com.rickhightower.auth;

import javax.ejb.EntityBean;
import javax.ejb.EntityContext;
import javax.ejb.CreateException;
import java.util.Collection;
import javax.naming.*;

public abstract class GroupBean implements EntityBean {

public String ejbCreate(String name, String description) throws CreateException {
setName(name);
setDescription(description);
return null;

}

public void ejbPostCreate(String name, String description) throws CreateException{ }

public abstract Collection getUsers();
public abstract void setUsers(Collection collection);

public abstract String getName();
public abstract void setName(String name);

public abstract String getDescription();
public abstract void setDescription(String description);

public void setEntityContext(EntityContext context){ }
public void unsetEntityContext(){ }
public void ejbRemove(){ }
public void ejbLoad(){ }
public void ejbStore(){ }
public void ejbPassivate(){ }
public void ejbActivate(){ }

}

Listing 17: GroupBean deployment descriptor entry

<entity>
<display-name>GroupBean</display-name>
<ejb-name>GroupBean</ejb-name>

<local-home>com.rickhightower.auth.LocalGroupHome</local-home>
<local>com.rickhightower.auth.LocalGroup</local>
<ejb-class>com.rickhightower.auth.GroupBean</ejb-class>

<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>

<abstract-schema-name>GroupBean</abstract-schema-name>

<cmp-field>
<description>The group name</description>
<field-name>name</field-name>

</cmp-field>
<cmp-field>
<description>The description of the group</description>
<field-name>description</field-name>

</cmp-field>

<primkey-field>name</primkey-field>

<security-identity>
<description></description>
<use-caller-identity></use-caller-identity>

</security-identity>

<query>
<description></description>
<query-method>
<method-name>findAll</method-name>
<method-params />

</query-method>
<ejb-ql>select Object(group) from GroupBean group</ejb-ql>

</query>

</entity>

Define the relationship in the deployment descriptor
The xml elements and technique for adding a one-to-many relationship is nearly identical as
doing the one-to-one and the many-to-many relationship. The only key difference is the
multiplicity. The <ejb-relationship-role> for the GroupBean has a CMR field element
because the relationship is bidirectional from the UserBean to the GroupBean. The
GroupBean has a CMR field name users. The UserBean has a CMR field named group.
The <ejb-relation> element is listed as follows:

<ejb-relation>

<ejb-relation-name>GroupsHaveUsers</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>GroupHasUsers</ejb-relationship-role-name>
<multiplicity>One</multiplicity>

<relationship-role-source>
<ejb-name>GroupBean</ejb-name>

</relationship-role-source>

<cmr-field>
<cmr-field-name>users</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 29 of 37

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>UsersInGroup</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>

<relationship-role-source>
<ejb-name>UserBean</ejb-name>

</relationship-role-source>

<cmr-field>
<cmr-field-name>group</cmr-field-name>

</cmr-field>

</ejb-relationship-role>

</ejb-relation>

Notice that the GroupHasUsers has a multiplicity of One since there is one group in the
relationship, and like the last example the <cmr-field> of GroupHasUsers has a
sub-element <cmr-field-type> as follows:

<cmr-field>
<cmr-field-name>users</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

The type of the field relationship is java.util.Collection and the CMR field name is
users.

The other side of the relationship UsersInGroup has a <multiplicity> of Many since
there are many users in the group. Also notice that the <cmr-field> is set to group.

Add CMR field group to UserBean
The CMR fields group allows you to set the user into a group or get the group that the user is
in. Thus like the CMR fields for the one-to-one relationship for UserInfo, you can set and
get a collection the associated group:

Listing 18: UserBean EntityBean implementation Class

public abstract class UserBean implements EntityBean {

public abstract LocalGroup getGroup();
public abstract void setGroup(LocalGroup group);

}

Listing 19: UserBean Local interface

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

package com.rickhightower.auth;

import javax.ejb.EJBLocalObject;
import java.util.Collection;

public interface LocalUser extends EJBLocalObject {

public LocalGroup getGroup();
public void setGroup(LocalGroup group);

public Collection getRoles();
public void setRoles(Collection roles);

public String getEmail();
public String getPassword();
public LocalUserInfo getUserInfo();
public void setUserInfo(LocalUserInfo userInfo);

}

It is not much different than the other relationship examples. Next I will show the methods in
the UserManagement session bean that use the many-to-many relationship.

Use one-to-many relationship in the UserManagement
bean
The UserManagementBean adds four methods each to operate on Groups, and the
relationship between User and Groups as follows: inGroup(), moveUserToGroup(),
addRoleToUsers(), getUsersInGroup(), createGroup(), removeGroup(),
getGroups(), and getRoles().

The createGroup() and removeGroup() methods are just boiler plate code to add and
remove groups into the datastore -- again, nothing new. The methods getRoles() and
getGroups() were added to show the available roles and group -- more boiler plate code.

inGroup()

The inGroup() method checks to see if a user is in a certain group:

public boolean inGroup(String email, String groupName){

LocalUser user = userHome.findByPrimaryKey(email);
return user.getGroup().getName().equals(groupName);

}

moveUserToGroup()

The moveUserToGroup() moves the user into a different group:

public void moveUserToGroup(String email, String groupName){

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 31 of 37

LocalUser user = userHome.findByPrimaryKey(email);
LocalGroup group = groupHome.findByPrimaryKey(groupName);

user.setGroup(group);

/* The relationship works both way so this would work too! */

//<emph>group.getUsers().add(user);

addRoleToUsers()

The addRoleToUsers() utilizes both the group and the role relationships to the user. It
adds a Role to each user in a group.

public void addRoleToUsers(String groupName, String roleName){

LocalGroup group = groupHome.findByPrimaryKey(groupName);
LocalRole role = roleHome.findByPrimaryKey(roleName);
Collection users = group.getUsers();
Iterator iterator = users.iterator();

while(iterator.hasNext()){
LocalUser user = (LocalUser)iterator.next();
user.getRoles().add(role);

}

}

getUsersInGroup()

The getUsersInGroup() uses both the user to <userInfo> relationship and the user to
group relationship to return an array of strings that each contain the first name, last name,
and e-mail address of each user in the group.

public String[] getUsersInGroup(String groupName){
LocalGroup group = groupHome.findByPrimaryKey(groupName);
Collection users = group.getUsers();
Iterator iterator = users.iterator();
ArrayList userList = new ArrayList (50);
while(iterator.hasNext()){

LocalUser user = (LocalUser)iterator.next();

String firstName = user.getUserInfo().getFirstName();
String lastName = user.getUserInfo().getLastName();
String email = user.getEmail();

StringBuffer sUser = new StringBuffer(80);
sUser.append(firstName + ", ");
sUser.append(lastName + ", ");
sUser.append(email);
userList.add(sUser.toString());

}
return (String []) userList.toArray(new String[userList.size()]);

}

Now let's modify the client to use this code.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

Using UserManagement inGroup(),
moveUserToGroup(), addRoleToUsers(), and
getUsersInGroup() methods
The client uses all of the new UserManagement methods as follows:

System.out.println("Create and Display groups");
userMgmt.createGroup("marketing", "Marketing group");
userMgmt.createGroup("engineering", "Engineering group");
userMgmt.createGroup("sales", "Sales group");
userMgmt.createGroup("IT","Information Technology group");

/** Display the created groups */
String [] groups = userMgmt.getGroups();

for (int index=0; index < groups.length; index++){
System.out.println(groups[index]);

}

createUsers(userMgmt); //updated for section 3

/** Section 5 Add role to users */
String group = "engineering";
String role = "super_user";
userMgmt.addRoleToUsers(group,role);

group = "IT";
role = "admin";
userMgmt.addRoleToUsers(group,role);

group = "marketing";
role = "user";
userMgmt.addRoleToUsers(group,role);

/** Section 5 -- list users in group engineering */
String [] users = userMgmt.getUsersInGroup("engineering");
System.out.println("Users in the engineering group");

for (int index=0; index < users.length; index++){
System.out.println(users[index]);

}

/** Section 5 -- Is Andy in group Engineering ? */

if (userMgmt.inGroup("andy@rickhightower.com","engineering")){
System.out.println("Andy is in the engineering group");

}

/** Section 5 --
Is Andy in group the super_user role that was assigned
to all users in engineering? */

if (userMgmt.inRole("andy@rickhightower.com","super_user")){
System.out.println("Andy is a super_user");

}

/** Section 5 -- Move Andy to marketing */
userMgmt.moveUserToGroup("andy@rickhightower.com", "marketing");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 33 of 37

/** Section 5 -- Is Andy in group Engineering ? */
if (userMgmt.inGroup("andy@rickhightower.com","engineering")){

System.out.println("Andy is in the engineering group");
} else if(userMgmt.inGroup("andy@rickhightower.com","marketing")){

System.out.println("Andy is now in the marketing group");
}

/**Section 5 **/
userMgmt.removeGroup("marketing");
userMgmt.removeGroup("engineering");
userMgmt.removeGroup("sales");
userMgmt.removeGroup("IT");

Compiling and deploying the one-to-many example
The same technique can be used to the build, package, deploy and run the client. Please
refer to section 8 in the first installment of this tuturial (see Resources on page 36) to refresh
your memory how to build and run this example application. Look for the source and build file
under cmpCmr/section5.

Be sure to run ant clean to delete the old example's intermediate build files.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

Section 6. Summary

Done
You are now are done with the first five examples and the first two tutorials of this series.
Looks like you made it.

You've created one-to-one, one-to-many, and many-to-many relationships. You have used
the collection to add entities to other entities while the EJB Container adds the rows to the
underlying join tables and fields.

For summary, you can view the relationships in the entity .jar file with the deploytool
pictured in Figure 2 and Figure 3.

Figure 2: All the relationships you created in this tutorial

Figure 3: The CMR and CMP fields of Group

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 35 of 37

In the third and last tutorial of this series I will explain the power of EJB-QL.

Resources
• Here is a zip file with all the code.

• The first tutorial in this series Introduction to CMP/CMR, Part 1

• A good tutorial on EJB CMP/CMR and EJB-QL

• The J2EE tutorial from Sun

• Developer's Guide to Understanding EJB 2.0 (updated by Rick Hightower)

• Enterprise JavaBeans fundamentals

Books:
• Mastering Enterprise JavaBeans (2nd Edition) by Ed Roman, Scott W. Ambler, Tyler

Jewell, Floyd Marinescu

The EJB Encyclodpedia!

• Enterprise JavaBeans (3rd Edition) by Richard Monson-Haefel

Get this one too!

• Java Tools for Extreme Programming by Richard Hightower, Nicholas Lesiecki

Covers building and deploying J2EE applications with EJBs.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 37 Introducing EJB-CMP/CMR, Part 2 of 3

cmp-cmr1.zip
cmp-cmr1.zip
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/EB2ADE177F8C3EF386256A0A006DCBCD?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/EB2ADE177F8C3EF386256A0A006DCBCD?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/EB2ADE177F8C3EF386256A0A006DCBCD?OpenDocument
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.amazon.com/exec/obidos/ASIN/0596002262
http://www.amazon.com/exec/obidos/ASIN/0596002262
http://www.amazon.com/exec/obidos/ASIN/0596002262
http://www.amazon.com/exec/obidos/ASIN/0596002262
http://www.amazon.com/exec/obidos/ASIN/047120708X
http://www.amazon.com/exec/obidos/ASIN/047120708X
http://www.amazon.com/exec/obidos/ASIN/047120708X
http://www.amazon.com/exec/obidos/ASIN/047120708X
http://www.amazon.com/exec/obidos/ASIN/047120708X

Section 7. Feedback

Feedback
Please let us know whether this tutorial was helpful to you and how I could make it better. I'd
also like to hear about other tutorial topics you'd like to see covered. Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introducing EJB-CMP/CMR, Part 2 of 3 Page 37 of 37

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Introduction
	Introduction to CMP/CMR, Part 2
	Should I care about CMP/CMR?
	What do I need to know for this tutorial?
	What will this tutorial cover?
	About the Author

	Application design
	Application design: Entity design

	Example 3: The one-to-one bidirectional relationship
	Relationships
	Defining the UserInfoBean
			
	Packaging UserInfoBean
			
	Adding CMR fields to UserBean
			
	Defining the relationships in the deployment descriptor
	Defining the relationships in the deployment descriptor
	Change UserManagement to use the relationship
	The new UserManagement methods
	Change the client to use new UserManagement methods
	Compiling and deploying the one-to-one example
	On the home stretch now!

	Example 4: The many-to-many unidirectional relationship
	Many-to-many relationship
	Define the RoleBean
			
	Define the relationship in the deployment descriptor
	Add collection CMR field to UserBean
			
	Use many-to-many relationship in the UserManagement bean
	Using UserManagement
				inRole() and addRole() methods
	Compiling and deploying the many-to-many example
	Final lap

	Example 5: The one-to-many bidirectional relationship
	One-to-many relationship
	Define the GroupBean
			
	Define the relationship in the deployment descriptor
	Add CMR field group to UserBean
			
	Use one-to-many relationship in the UserManagement bean
	Using UserManagement
				inGroup(), moveUserToGroup(), addRoleToUsers(), and
		 getUsersInGroup() methods
	Compiling and deploying the one-to-many example

	Summary
	Done
	Resources

	Feedback
	Feedback

