Introducing EJB-CMP/CMR, Part 2 of 3

Presented by developerWorks, your source for great tutorials

I bm conl devel oper Wr ks

Table of Contents

If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. INtrOdUCTION . ... 2
2. Application design. ... ..o 6
3. Example 3: The one-to-one bidirectional relationship............ 8
4. Example 4: The many-to-many unidirectional relationship...... 21
5. Example 5: The one-to-many bidirectional relationship.......... 27
B, SUMIMIAIY Lttt et e e 35
7. FeedbacCK .....oovii i 37

Introducing EJB-CMP/CMR, Part 2 of 3 Page 1 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 1. Introduction
Introduction to CMP/CMR, Part 2

This is the second part of a tutorial series that is designed to introduce you to
Container-Managed Persistence (CMP) and Container-Managed Relationships (CMR) in
Enterprise JavaBeans 2.0 (EJB). These features are particular to EJB entity beans that are
typically long-lived as compared to that are normally transitory.

Enterprise JavaBeans (EJB) 2.0 extends the earlier version 1.1 by adding advanced support
for entity beans as follows:
« Updated container-managed persistence for entity beans

» Support for container-managed relationships

« EJB-Query Language (EJB-QL) for portable sel ect and fi nd query methods defined in
the deployment descriptor

» The addition of local interfaces and local home interfaces to optimize access from other
beans in the same container

If you want to buy or sell components, you will most likely want a layer of persistence in your
components to work cross-platform on application servers (for example, IBM WebSphere,
BEA WebLogic, JBoss/Tomcat, etc.) and persistence storage systems (for example, Oracle,
DB2, etc.). You do not have to write low-level Java Database Connectivity (JDBC) calls in
your EJBs to add these features, which is a great saver of time and complexity. Once you get
the hang of CMP/CMR, it is faster to write entity beans using this technology, than using
low-level JDBC inside of bean-managed persistence (BMP) beans .

This tutorial assumes that you have completed the first part of this three part series (see
Resources on page 36 ). Again, if you are not familiar with EJB or you need to refresh your
memory, | recommended that you read Enterprise JavaBeans Fundamentals, an IBM tutorial
written by Richard Monson-Haefel and Tim Rohaly. The Enterprise JavaBeans
Fundamentals is an excellent tutorial written by an excellent author.

Should | care about CMP/CMR?

What is the use of a container-managed entity bean? Well, for starters, you do not have to
write low-level JDBC calls to save the state of the bean and you do not have to write code to
manage relationships. It is all built into the EJB framework. Your interface to relationships is
through the pervasive j ava. util . Col l ectionandjava. util . Set which most EJB
developers are already familiar with. Very cool!

This additional feature includes support for JavaBeans component patterns for persistent
fields, inside of the entity bean. Thus, instead of making your class variables public -- which
has always felt strange to me -- you create get and set methods following the JavaBean
technology standard naming pattern we all know and love.

| can't stress this point enough. Since EJB 2.0 containers will support the most common SQL

databases (and other data stores as well), you can write components that work with many
types of databases. This makes it easier to sell components that require persistent storage.

Page 2 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

For example, you can sell components that will work in an IT department that uses Oracle or
a shop that uses DB2. Thus, instead of writing low-level JDBC calls using SQL native to a
particular database, you will use EJB-QL to create finder and select methods, and describe
relationships in deployment descriptors.

Simply put, CMP/CMR is the missing link in cross-platform component creation. CMP/CMR
will spur the growth of the enterprise level component marketplace. In addition, CMP/CMR is
easier to use then low-level JDBC calls. CMP/CMR corrects many of the foibles, and missing
functionality of earlier versions of CMP. There are many persistence frameworks, none are
available on as many application server platforms as EJB CMP/CMR!

What do | need to know for this tutorial?

The example code in this tutorial is written to work with any J2EE compliant application
server that supports EJB 2.0. The example code endeavors to be compliant; thus, all
example code was deployed on the J2EE reference implementation that ships with Java 2
SDK, Enterprise Edition 1.3. The example code should deploy to your application server of
choice by just modifying the Ant build scripts and corresponding deployment descriptors as
long as your application server support EJB 2.0, and therefore, supports CMP/CMR.

This tutorial assumes that you are familiar with Java programming language and to some
extent EJB; although, you do not have to be an expert. Since | will be covering deployment
descriptors, which are written in XML, you should have a rudimentary knowledge of XML. If
you are not familiar with EJB, | recommended that you read Enterprise JavaBeans
Fundamentals, an developerWorks tutorial written by Richard Monson-Haefel and Tim
Rohaly (See Resources on page 36 ). This is an excellent tutorial written by great authors.
Even if you do not read this tutorial word for word, | suggest you at least use it as a
reference.

Although not a prerequisite per se, knowledge of Ant , an XML-based, open source build
system similar to make, will be helpful to understand the build scripts presented in the
examples.

You do not need knowledge of JDBC since there will be no low-level calls in this tutorial, but
basic knowledge of SQL and relational database theory is required.

What will this tutorial cover?

Instead of writing a giant tutorial that would take days to go through. | have split the tutorial
into three parts that can each be finished in an hour or so. You could finish each tutorial
during a lunch break, so get a sandwich and a beverage, and get started.

EJB 2.0 added a lot of features and functionality, this tutorial focuses on CMP/CMR. Thus,
this tutorial assumes you have a background with EJB, and entity beans. You don't have to
be an EJB expert to follow along. The tutorials cover local interfaces, deployment descriptor
CMP, CMR fields, and relationship elements. | also cover the full range of relationship types
as follows:

* One-to-one

* One-to-many

Introducing EJB-CMP/CMR, Part 2 of 3 Page 3 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

¢ Many-to-many

The relationships in the example also cover both unidirectional support and bidirectional
support. The relationships are defined in XML deployment descriptors.

In the first tutorial, you get a taste of CMP/CMR and EJB-QL, with an example of a simple
EJB 2.0 style CMP entity bean. Part of the example demonstrates simple EJB-QL to create a
finder method without a Java implementation. This tutorial gets you acclimated to the
terminology and technology, and adds a basic example.

In this tutorial, the second one in this series, you will build on the first example to cover each
type of relationship and each type of relationship direction. You will create a a client that
accessesthe relationships you created to add, remove and change related members.

About the Author

Riék Hightower, Director of Development at eBlox, has over a decade of experience as a
software developer. He leads the adoption of new processes like Extreme Programming, and
technology adoption like adoption of CMP and CMR.

Rick's publications include Java Tools for eXtreme Programming, which covers deploying
and testing J2EE projects (published by John Wiley), contributions to Java Distributed
Objects (published by Sams), and several articles in Java Developer's Journal.

Java Tools for XP Covers creating, testing and deploying
— applications using:
Java Tools * JUnit,

eXitreme B—-

+ JMeter and

pmgramml?q  Ant, etc.

Also expect to see his book on Jython from Addison Wesley in the near future.

Rick has also taught classes on developing Enterprise JavaBeans, JDBC, CORBA, Applets
as CORBA clients, etc.

Rick is also updating the next version of the Enterprise JavaBeans Developer's Guide to the
2.0 Specification for TriveraTech. The last version of this guide, which covered EJB 1.1 was

Page 4 of 37 Introducing EJB-CMP/CMR, Part 2 of 3


http://www.rickhightower.com
http://www.rickhightower.com
http://www.eblox.com
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.wiley.com
http://www.wiley.com
http://www.sys-con.com
http://www.sys-con.com
http://www.sys-con.com
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

distributed to over 100,000 developers. This free guide discusses key EJB architectural
concepts so developers can have a deeper understanding of EJB. The newest version of this
guide will be released soon.

Introducing EJB-CMP/CMR, Part 2 of 3 Page 5 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 2. Application design

Application design: Entity design

The examples in this tutorial series use a fictitious authentication subsystem for an online
content management system that is designed to allow the following:
* log users into system

 authenticate users are in certain roles

« allow user to be organized into groups to allow group operations
« store user information like address and contact information

e manage roles, users, groups (manage = add, edit, delete)

Figure 1: Overview of the entities in this tutorial

Group Bean
name
pescrption 1.7 users
RoleBaan
. UzerBean
Group contains users hame
Email .
plescription
pas=word { = rales 4 =
user associgted with roles
uzer has user info
userinfo

{

UzerinfoBean

pddrazs
Eip
phone

An overview of the entities in the system in Figure 1 shows that there are four distinct
entities: User, Group, Role, and UserInfo. Each of these entities have the following three
relationships:

» Users are associated with Roles (many-to-many)

e A User has Userlnfo (one-to-one)
« A Group contains Users (one-to-many )

Page 6 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

The first tutorial showed how to build CMP into the UserManagement entity beans for this
project. In this second tutorial, | will show how to implement each of these entites with their
relationships.

Introducing EJB-CMP/CMR, Part 2 of 3 Page 7 of 37



a ks e

i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Section 3. Example 3: The one-to-one bidirectional
relationship

Relationships

Relationships have directions: unidirectional and bidirectional. And, relationships have
<mul ti pli city>: one-to-one, one-to-many, and many-to-many.

The first example relationship is bidirectional with a <rrul ti pl i ci t y> of one-to-one. The
relationship will be between the User and his or her contact information stored in User | nf o.
This example will do the following:

Define the User | nf oBean entity bean.

Add CMR fields to the User Bean.

Add a relationship element to the deployment descriptor.

Add code to the User Managenent session bean to use this relationship.

Add code to the client to use the new code in the User Managenent session bean.

Defining the User | nf oBean

The User | nf oBean, like the User Bean, defines CMP fields. The CMP fields are used to
store contact information and other information describing the User Bean.

Thus the User | nf oBean defines a local interface, a local home interface, an entity bean
implementation class, and a entity element entity in the deployment descriptor. All of these
are shown in Listings 1 through 4.

Listing 1: UserinfoBean's Local interface

/* Local interface */
package com ri ckhi ght ower. aut h;

i mport j avax.ejb. EJBLocal Obj ect;

public interface Local Userlnfo extends EJBLocal Object {
public abstract String getEmail ();

public abstract Local User getUser();
public abstract void setUser(Local User user);

public abstract String getDept();
public abstract void setDept(String val ue);

public abstract String getWrkPhone();
public abstract void setWrkPhone(String val ue);

public abstract String getExtention();
public abstract void setExtention(String val ue);

public abstract bool ean get Enpl oyee();
public abstract void set Enpl oyee(bool ean val ue);

Page 8 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

public abstract String get HonePhone();
public abstract void set HonePhone(String val ue);

public abstract String getFirstName();
public abstract void setFirstNane(String val ue);

public abstract String getlLastName();
public abstract void setlLastNane(String val ue);

public abstract String getM ddl eNane();
public abstract void setM ddl eNanme(String val ue);

Listing 2: UserinfoBean's Home interface

/* Local hone interface */
package com ri ckhi ght ower. aut h;

i mport javax.ejb. EJBLocal Hone;
i mport j avax.ejb. Creat eExcepti on;
i mport javax.ejb. Fi nder Excepti on;

import java.util.Collection;
public interface Local Userl nfoHonme extends EJBLocal Honme {

public Local Userlnfo create(
String firstNane, String niddl eNane,
String | astNanme, String enail,
String dept, String workPhone,
String extention, String honePhone,
bool ean i sEnpl oyee)
t hrows Creat eException;

public Local Userlnfo findByPrimaryKey (String email)
t hrows Fi nder Excepti on;

Packaging User | nf oBean

Please note that entities involved in a relationship must be defined in the same deployment
descriptor; thus, they must be packaged in the same EJB .jar file. The User Bean and the
User | nf oBean are packaged together in the same .jar file and defined together in the same
deployment descriptor.

Listing 3: UserinfoBean's implementation

/* entity bean inplenmentation class */
package com ri ckhi ght ower. aut h;

i mport javax.ejb.EntityBean;

i mport javax.ejb.EntityContext;

i mport j avax.ejb. Creat eExcepti on;
i mport javax.nam ng. *;

Introducing EJB-CMP/CMR, Part 2 of 3 Page 9 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

public abstract class UserlnfoBean inplenents EntityBean {

public String ej bCreate(
String firstNane, String m ddl eNane,
String | astNane, String enail,
String dept, String workPhone,
String extention, String honePhone,
bool ean i sEnpl oyee)
t hrows CreateException {

setEmail (emai l);

set Dept (dept) ;

set Wr kPhone(wor kPhone) ;

set Ext enti on(extention);

set HonePhone( honePhone) ;

set Enpl oyee(i sEnpl oyee) ;

set Fi rst Name(first Nane);

set Last Nane( | ast Nane) ;

set M ddl eNarre( m ddl eNane) ;

return null;

}

public void ej bPost Creat e(
String firstNane, String niddl eNane,
String | astNanme, String enail,
String dept, String workPhone,
String extention, String honePhone,
bool ean i sEnpl oyee)
throws CreateException { }

public abstract String getEmail ();
public abstract void setEmail (String val ue);

public abstract String getFirstNanme();
public abstract void setFirstNane(String val ue);

public abstract String getlLastName();
public abstract void setlLastNane(String val ue);

public abstract String getM ddl eName();
public abstract void setM ddl eNane(String val ue);

public abstract Local User getUser();
public abstract void setUser(Local User user);

public abstract String getDept();
public abstract void setDept(String val ue);

public abstract String getExtention();
public abstract void setExtention(String val ue);

public abstract String getWrkPhone();
public abstract void set WrkPhone(String val ue);

public abstract bool ean get Enpl oyee();
public abstract void set Enpl oyee(bool ean val ue);

public abstract String get HonePhone();
public abstract void set HonePhone(String val ue);

public void setEntityContext(EntityContext context){ }
public void unsetEntityContext(){ }

public void ejbRenove(){ }

public void ejbLoad(){ }

Page 10 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

public void ejbStore(){ }
public void ejbPassivate(){ }
public void ejbActivate(){ }

Also note that the following:

public abstract Local User getUser();
public abstract void setUser(Local User user);

is in both the local interface and the implementation of the User | nf oBean. This setter and
getter method defines the CMR filed of this bidirectional relationship. Since the relationship is
bidirectional, both User | nf o and User | nf oBean must have CMR fields referring to the
other.

Listing 4: UserinfoBean's deployment descriptor

<entity>
<di spl ay- name>User | nf oBean</ di spl ay- nane>
<ej b- nanme>User | nf oBean</ ej b- nane>

<l ocal - home>com ri ckhi ght ower . aut h. Local User | nf oHone</ | ocal - hone>
<l ocal >com ri ckhi ght ower. aut h. Local User | nf o</ | ocal >
<ej b-cl ass>com ri ckhi ght ower . aut h. User | nf oBean</ ej b- cl ass>

<per si st ence-t ype>Cont ai ner </ per si st ence-type>
<primkey-cl ass>java. |l ang. Stri ng</ pri mkey-cl ass>

<reentrant >True</reentrant>
<cnp-ver si on>2. x</ cnp- ver si on>

<abstract - schema- nane>User | nf oBean</ abstr act - schema- nane>

<cnp-field>
<fi el d- name>first Nane</fi el d- nane>
</cnp-field>

<cnp-field>
<fi el d- nanme>m ddl eNane</ fi el d- nane>
</cnp-field>

<cnp-field>
<fi el d- nane>| ast Nane</ fi el d- name>
</cnp-field>

<cnp-field>
<fi el d-nanme>enmmi | </ fi el d- name>
</cnp-field>

<cnp-field>
<fi el d- nane>dept </ fi el d- nanme>
</cnp-field>

<cnp-field>

<fi el d- nanme>wor kPhone</ fi el d- nane>
</cnp-field>
<cnp-field>

<fi el d- nane>ext enti on</fi el d- nane>

Introducing EJB-CMP/CMR, Part 2 of 3 Page 11 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

</cnp-field>
<cnp-field>

<fi el d- nane>honePhone</ fi el d- name>
</cnp-field>
<cnp-field>

<fi el d- nane>enpl oyee</fi el d- nane>
</cnp-field>
<cnp-field>

<fi el d- nane>enui | </ fi el d- nane>
</cnp-field>

<prinkey-fiel d>enuil </ prinkey-fiel d>

</entity>

Now you have to add the CMR fields to the User Bean in the next panel.

Adding CMR fields to User Bean

You need to add a CMR field to both the local interface and the entity bean class of the
User Bean.

Defining a CMR field is much like defining a CMP field with the exception that the CMR field
will return and pass the local interface of the other entity bean in the relationship from the
getter and setter methods respectively. In this case the getter method will return

Local User I nf o as follows:

public abstract Local Userlnfo getUserlnfo();

and the setter method will pass the Local User | nf o as follows:

public abstract void setUserlnfo(Local Userlnfo, userlnfo);

Like the CMP fields the actual code to implement these methods are defined by the container
implementation. All you have to do is define the relationship in the deployment descriptor and
the EJB container will provide the code to manage the relationship. Sweet!

package com ri ckhi ght ower. aut h;

i mport j avax.ej b. EJBLocal Obj ect;

public interface Local User extends EJBLocal Object ({
public String getEmail ();
public String getPassword();

public Local Userlnfo getUserlnfo();
public void setUserlnfo(Local Userlnfo userlnfo);

Page 12 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

public abstract class UserBean inplenents EntityBean {

public abstract Local Userlnfo getUserlnfo();
public abstract void setUserlnfo(Local Userlnfo userlnfo);

Defining the relationships in the deployment descriptor

The relationships are defined outside of the <ent er pri se- beans> element. When you
specify the relationship, you must specify both entity beans involved in the relationship. The
relationship is defined in the <ej b-r el at i on> element. Each role in the relationship is
defined in the <ej b-r el ati onshi p-rol e>.

Listing 5: Relationships for the entity beans

<rel ati onshi ps>
<ej b-rel ati on>
<ej b-rel ati on- name>User HasUser | nf o</ ej b-rel ati on- nane>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>
User HasUser I nf o
</ ej b-rel ati onshi p-rol e- nane>

<multiplicity>One</nultiplicity>
<rel ati onshi p-rol e-source>
<ej b- nane>User Bean</ ej b- nane>
</rel ati onshi p-rol e-source>
<cnr-field>
<cnr-fiel d-name>user | nfo</cnr-fiel d- nane>
</cm-field>
</ ej b-rel ati onshi p-rol e>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- name>
User | nf oPart OFf User
</ ej b-rel ati onshi p-rol e- name>

<multiplicity>One</nultiplicity>
<cascade-del ete />
<rel ati onshi p-rol e-source>

<ej b- name>User | nf oBean</ ej b- nane>
</rel ationshi p-rol e-source>
<cnr-field>

<cnr-fiel d-name>user</cnr-fi el d- name>
</cnr-field>

</ ejb-rel ationship-rol e>

Introducing EJB-CMP/CMR, Part 2 of 3 Page 13 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

</ejb-relation>
</rel ati onshi ps>

The <ej b-rel ati onshi p-rol e> has a name, multiplicity, source, and an optional CMR
field defined by the following elements respectively: <ej b-r el at i onshi p-r ol e- nane>,
<nmul tiplicity>, <relationshi p-rol e-sour ce> with <ej b- nane> sub-element, and
the <cnr - fi el d>with <cnr - fi el d- nane> sub-element, respectively.

Defining the relationships in the deployment descriptor

The <ej b-r el ati onshi p-rol e- name> element body can be any name you wish. Try to
make it descriptive for the relationship you are describing. Also, try to make it unique in the
context of the deployment descriptor as follows:.

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e-nane>User HasUser | nf o</ ej b-r el ati onshi p-rol e- nane>
<multiplicity>One</multiplicity>

The <r el ati onshi p-rol e- sour ce>/<ej b- nane> body must be set to the ejb-bean
name as defined by the entity/<ej b- name> in the <ent er pri se- beans> element.

<rel ati onshi p-rol e-source>
<ej b- nane>User Bean</ ej b- nanme>
</rel ati onshi p-rol e-source>

The <cnr-fi el d>/<cnr -fi el d- name> body must be set to the CMR field name as
defined in the on page panel. If the <cnr - fi el d>is defined by <get User | nf o() > and
<set User | nf o() > in the local interface then it will be defined by <user | nf 0> in the
<cnr - fi el d- nane> as follows:

<cnr-field>
<cnr -fi el d- nanme>user | nfo</cnr-fi el d- nane>
</fcmr-field>
</ ej b-rel ati onshi p-rol e>

There are always two <ej b-r el ati onshi p-rol e>s defined in an <ej b-rel ati on>. If
the relationship is bidirectional then both sides of the relationships will have a <cnr -fi el d>.
Here it the other side of the User HasUser | nf o relationship as follows:

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>User | nfoPart O User </ ej b-r el ati onshi p-rol e- nane>

Page 14 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

<multiplicity>One</nultiplicity>
<cascade-del ete />
<rel ati onshi p-rol e-source>

<ej b- name>User | nf oBean</ ej b- nane>
</rel ati onshi p-rol e-source>
<cnr-field>

<cnr-fiel d-name>user</cnr-fiel d- nane>
</cnr-field>

</ ejb-rel ationship-rol e>

Here you can see that the name of this role is User | nf oPar t O User (body of

<ej b-rel ati onshi p-rol e- nanme>). You can also see that the entity bean source is
User | nf oBean (body of element <r el ati onshi p-r ol e- sour ce>/<ej b- nane>). And,
you can pick out the CMR field involved in the relationship is user by looking at
<cnr-field>/<cnr-field-nane>.

Change User Managenent to use the relationship

To show how to work with CMR fields the User Managenent session bean adds three
methods:
» anew version of addUser () that takes contact information

e aget Userslnfo() method that returns an array of value objects
» achangelLast Nane() method that uses the <user | nf 0> CMR field

Listing 6 and Listing 7 show the modified User Managenent bean.

Listing 6: UserManagement and UserManagementBean interface and implementation

/** Renmote interface */
public interface User Managenent extends EJBObject ({

public void addUser(String email, String password,
String firstNane, String niddl eNane,
String lastNanme, String dept,
String workPhone, String extention,
String honePhone, bool ean i sEnpl oyee
) throws RenoteException;

public UserVal ue[] getUserslnfo()throws RenoteException;

public void changeLast Name(String enail, String |astNane)
t hr ows Renot eExcepti on;

/** Entity |nplenmentation class */
public class User Managenent Bean i npl enents Sessi onBean ({

public void addUser(String email, String password,
String firstNane, String m ddl eNane,

Introducing EJB-CMP/CMR, Part 2 of 3 Page 15 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

String lastNanme, String dept,
String workPhone, String extention,
String honePhone, bool ean i sEnpl oyee){

try {
Local User user = userHone.create(emil, password);
Local UserI nfo info = infoHome. create(firstNane,
m ddl eNanme, | ast Nane, ennil, dept,
wor kPhone, extention, honmePhone,
i sEnpl oyee);

user. set User I nfo(info);
} catch (CreateException e) {
t hr ow new EJBExcepti on
("Unable to create the local user

+ email, e);

}

public UserVal ue[] getUserslnfo(){
try{

ArraylLi st userlist = new Arrayli st (50);

Col I ection collection = userHone.findAl ();

Iterator iterator = collection.iterator();

whil e(iterator. hasNext ()){
Local User user = (Local User)iterator.next();
Local Userinfo info = user.getUserlnfo();
User Val ue userVal ue = new User Val ue(user. getEnail ());
copyUser | nf o(user Val ue, info);
user Li st. add(user Val ue) ;

}
return (UserVal uel[])
userLi st.toArray(new UserVal ue[ userList.size()]);

} catch (FinderException e){
t hr ow new EJBEXxcepti on
("Unable to get list of users ", e);

}

public void changeLast Nane(String enmail, String |astNane){
try {
Local User user = userHone. findByPrimaryKey(enuil);
Local Userl nfo info = user.getUserlnfo();
i nfo. set Last Nanme( | ast Nane) ;
} catch (FinderException e) {
t hr ow new EJBExcepti on
("Unabl e to change the last name " + | astNanme, e);

Listing 7: The Serializable UserValue class for UserManagementBean

/** Serializable value class */
package com ri ckhi ght ower. aut h;
public class UserValue inplenents java.io. Serializabl ef

private String email="";
private String firstName="";

Page 16 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

private String m ddl eNane="";
private String | ast Name="";
private String dept="";
private String wor kPhone="";
private String extention="";
private String honmePhone="";

private bool ean enpl oyee;

public UserVal ue() {

}

public UserValue(String aEmail) {
emai |l = aEmail;

}

public String getEnmail () { return email;}
public void setEmail (String email) {this.enmil=emil;}

public String getFirstNanme() {return firstNane;}

public void setFirstName(String firstNane)({
this.firstNane=firstNane;

}

public String getMddl eNane() {return m ddl eNane; }
public void setM ddl eNane(String m ddl eNane) {

t hi s. m ddl eNane=ni ddl eNane;
}

public String getLastNane() {return | astNane;}
public void setlLastName(String | astNane) ({

t hi s. | ast Nanme=I| ast Nane;
}

public String getDept() {return dept;}
public void setDept(String dept) {

thi s. dept =dept ;
}

public String getWrkPhone() {return workPhone;}
public void set WrkPhone(String workPhone) {

t hi s. wor kPhone=wor kPhone;
}

public String getExtention() {return extention;}
public void setExtention(String extention) {

t his. extention=extention;
}

public String getHonmePhone() {return honmePhone;}
public void set HomePhone(String honePhone) {

t hi s. homePhone=honePhone;
}

public bool ean i senpl oyee() {return enpl oyee;}

public void set Enpl oyee(bool ean enpl oyee) {
this. enpl oyee = enpl oyee;

}

Introducing EJB-CMP/CMR, Part 2 of 3 Page 17 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

The new User Managenent methods

addUser ()
The addUser () method demonstrates setting a CMR field.

The addUser () method takes all of the contact information and the
user information as arguments. It then creates a Local User and a
Local User I nf oinstance using the home interfaces of both the

User Bean and the User | nf oBean as follows:

public void addUser(String email, String password, bool ean i senpl oyee){

Local User user = userHone.create(email, password);
Local UserI nfo info = infoHome.create(firstNanme, m ddl eNanme, | ast Nane,
emai |, dept, workPhone, extention, honmePhone, isEnployee);

Once both the Local User and
Local User | nf o object are created, the addUser ()
method sets the <user | nf 0> CMR field of the

User with the newly create User | nf o as follows:

user. set User I nfo(info);

get User sl nfo()

The <get User | nf o() > method demonstrates getting a CMR field.
Since you can not return a collection of local entity from a remote method, the

<get User | nf o() > demonstrates how to return a number entity beans with value objects.

Similar to the getUsers method, the get User sl nf o() method uses the findAll method of
the

User Bean's home interface (LocalUserHome). However, instead of returning the ID of the
User Bean (the e-mail) for each user, it returns a value object for each user that contains the
department, e-mail address, employment status, phone with extention, last name,

middle name, and first name of each user as follows:

ArraylLi st userList = new Arrayli st (50);
Col l ection collection = userHone.findAl ();
Iterator iterator = collection.iterator();
whil e(iterator. hasNext ()){
Local User user = (Local User)iterator.next();
Local Userinfo info = user.getUserlnfo();
User Val ue userVal ue = new User Val ue(user. getEnmail ());

Page 18 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

copyUser | nf o(user Val ue, info);
user Li st. add(user Val ue) ;

}

return (UserValue[]) userlList.toArray(new User Val ue[ userlList.size()]);

The User Val ue class is populate for each User /User | nf o pair.

The User Val ue class is a simple serliazable class listed left. The get User sl nf o()
method call a helper method called copyUser | nf o() for each User /User | nfo
pair. The copyUser | nf o() copies the values from the User /User | nf o pair into

a User Val ue object. The copyUser | nf o() method is listed below.

private void copyUserlnfo(UserVal ue userVal ue, Local Userlnfo info){
if (info !'= null){
user Val ue. set Fi r st Nane(i nfo. get Fi rst Name());

user Val ue. set M ddl eNanme(i nf o. get M ddl eNare() ) ;

user Val ue. set Last Nane(i nf o. get Last Nane());
user Val ue. set Dept (i nfo. get Dept());
user Val ue. set Wor kPhone(i nf 0. get Wor kPhone() ) ;
user Val ue. set Extenti on(i nfo. get Extention());
user Val ue. set HonePhone(i nf 0. get HonePhone() ) ;
user Val ue. set Enpl oyee(i nf 0. get Enpl oyee());

}

}

changelLast Nane()

The changelLast Nane() method demonstrates accessing the CMR field of an entity bean

to modify one of the related objects CMP fields.

The changelLast Nane() method uses the e-mail address passed to it to
look up the User Bean local interface Local User and
then use the Local User's CMR field to gain access to the User | nf oBean.

It then modifies the last name of the User | nf oBean all shown as follows:

Local User user = userHone. findByPri maryKey(email);
Local UserI nfo info = user.getUserlnfo();
i nf o. set Last Narme( | ast Nane) ;

The next section will go over the changes to the client to exercise these three new methods.

Change the client to use new User Managenent
methods

Just as before you have to change the client to use the new methods defined in the
User Managenent bean.

Introducing EJB-CMP/CMR, Part 2 of 3 Page 19 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Note the code below uses the new addUser (), changelLast Nane(), and
get User sl nf o() methods.

In fact you create two users with addUsers. Then you change the last name of the user
Andy. And verify the name change went through by printing out the lastName by utilizing the
get User sl nf o() method of the User Managemnent Bean. Serendipity!

/* Add some user with the new addUser nethod */

user Mgnt . addUser ("andy@ i ckhi ght ower. conf, "starwars",

"Andy", "M ke", "Barfight",
"Engi neering", "555-1212", "x102",

"555-5555", true);

user Mgnt . addUser ("donna@ i ckhi ght ower. cont', "cussli keasailor",
"Donna", "Marie", "Smth",
"Marketing", "555-1213", "x103",
"555-7777", true);

System out. printl n("Change | ast nane");
user Mgnt . changelLast Name("andy@ i ckhi ght ower . cont, "Smith-Barfight");

Systemout.println("Get User Info");
UserVal ue [] users = userMnt. get Usersinfo();

for (int index=0; index < users.length; index++){
User Val ue user = users[index];

Systemout.println("user firstNane =" + user.getFirstNanme());

Systemout.println("user |astName =" + user.getlLastNanme());

System out. println("user honePhone =" + user. get HonePhone());
}

Compiling and deploying the one-to-one example

The same technigue can be used to the build, package, deploy, and run the client. Please
refer to the section 8 in the first installment of this tuturial (see Resources on page 36 ) to
refresh your memory how to build and run this example application. Look for the source and
build file under cmpCmr/section3.

Be sure to run ant cl ean to delete the old examples intermediate build files.

On the home stretch now!

You are done with the first three examples. If you made it this far, you are speeding to the
finish line. The next section will cover many to many relationships.

Page 20 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 4. Example 4: The many-to-many unidirectional
relationship

Many-to-many relationship

A many to many relationship sound pretty tough to implement. Actually, it is just as easy to
implement as a one-to-one relationship. The EJB container does all of the hard work for you.

For this example, you will add different roles that a user can be in. An individual user can be
in more than one role. And a role can be associated with more than one user.

In this example you will do the following:
Define the Rol eBean.

Define the relationship from User Bean to Rol eBean in the deployment descriptor.
Add a CMR caollection field to the User Bean.

Add code to the User Managenent session bean to use this relationship.

Add code to the client to use the new code in the User Managenent session bean.

a bk wne

Define the Rol eBean

The Rol eBean is similar to the User | nf oBean in the last example. Like all of the other
entity bean., it has CMP fields. Also it has a local home, a local interface, and entity bean
implementation.

Unlike the User | nf oBean in the last example, the Rol eBean does not have a
<cnr - fi el d>. The complete listings for the Rol eBean is listed below.

Listing 8: Rol eBean Local interface

package com ri ckhi ght ower. aut h;
i mport javax.ejb. EJBLocal Obj ect;

public interface Local Rol e extends EJBLocal (bject {
public abstract String getNane();
public abstract String getDescription();

Listing 9: Rol eBean Home interface

package com ri ckhi ght ower. aut h;

i mport javax.ejb. EJBLocal Hore;

i mport javax.ejb. Creat eException;
i mport javax.ejb. Fi nder Excepti on;
import java.util.Collection;

public interface Local Rol eHone extends EJBLocal Hone {

public Local Role create (String name, String description) throws CreateException;
public Local Role findByPrimaryKey (String email) throws Finder Exception;

Introducing EJB-CMP/CMR, Part 2 of 3 Page 21 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

public Collection findAl'l () throws FinderException

Listing 10: Rol eBean EntityBean implementation class

package com ri ckhi ght ower. aut h;

i mport javax.ejb.EntityBean;

i mport javax.ejb.EntityContext;

i mport j avax.ejb. Creat eException
i mport javax.nam ng. *;

public abstract class Rol eBean inplenents EntityBean {

public String ejbCreate(String nane, String description) throws CreateException {
set Nane( nane) ;
set Descri ption(description);
return null;

} public

voi d ej bPostCreate(String nane, String description) throws CreateException{ }

public abstract String getNane();
public abstract void set Nane(String nane);

public abstract String getDescription();
public abstract void setDescription(String description);

public void setEntityContext(EntityContext context){ }
public void unsetEntityContext(){ }

public void ejbRenove(){ }

public void ejbLoad(){ }

public void ejbStore(){ }

public void ejbPassivate(){ }

public void ejbActivate(){ }

Listing 11: Rol eBean deployment descriptor entry

<entity>
<di spl ay- nane>Rol eBean</ di spl ay- name>
<ej b- nanme>Rol eBean</ ej b- name>

<l ocal - home>com ri ckhi ght ower . aut h. Local Rol eHone</ | ocal - hone>
<l ocal >com ri ckhi ght ower. aut h. Local Rol e</ | ocal >
<ej b-cl ass>com ri ckhi ght ower . aut h. Rol eBean</ ej b- cl ass>

<per si st ence-t ype>Cont ai ner </ per si st ence-type>
<primkey-cl ass>java. |l ang. Stri ng</ pri mkey-cl ass>

<r eentrant >Fal se</reentrant>
<cnp-ver si on>2. x</ cnp- ver si on>

<abstract - schenma- nane>Rol eBean</ abstr act - schema- name>

<cnp-field>
<descri ption>no description</description>
<fi el d- nane>nane</fi el d- name>
</cnp-field>
<cnp-field>

Page 22 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

<descri pti on>no descri pti on</description>

<fi el d- nane>descri ption</fi el d- nane>
</cnp-field>
<prinkey-fiel d>nane</ pri nkey-fi el d>
<security-identity>

<descri pti on></descri pti on>

<use-caller-identity></use-caller-identity>
</security-identity>

<query>
<descri pti on></descri pti on>
<query- net hod>
<met hod- nane>fi ndAl | </ net hod- name>
<net hod- parans />
</ query- net hod>
<ej b-gl >sel ect Object (o) from Rol eBean o</ ejb-ql >
</ query>

</entity>

</ enterprise-beans>

Define the relationship in the deployment descriptor

The XML elements and technique for adding a many-to-many relationship is nearly identical
as doing the one-to-one relationship. The only key difference is the multiplicity. The

<ej b-rel ati onshi p-r ol e> for the Rol eBean does not have a CMR field element
because the relationship is unidirectional from the User Bean to the Rol eBean. The

Rol eBean does not have knowledge of the User Bean. The <ej b-rel ati on> element is
listed as follows:

<ej b-rel ati on>
<ej b-rel ati on- name>User Associ at eW t hRol es</ ej b-r el ati on- name>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>User BeanToRol eBean</ ej b-r el ati onshi p-r ol e- nane>
<mul tiplicity>Many</nultiplicity>
<rel ati onshi p-rol e-source>
<ej b- nane>User Bean</ ej b- nanme>
</rel ationshi p-rol e-source>
<cnr-field>
<cnr-fiel d-nanme>rol es</cnmr-fiel d- nane>
<cnr-field-type>java.util.Collection</cnr-field-type>
</cm-field>
</ ej b-rel ati onshi p-rol e>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>Rol eBeanToUser Bean</ ej b-r el ati onshi p-r ol e- nane>
<mul tiplicity>Many</nultiplicity>
<rel ati onshi p-rol e-source>
<ej b- nane>Rol eBean</ ej b- nanme>
</rel ationshi p-rol e-source>
</ ej b-rel ati onshi p-rol e>

</ejb-relation>

Introducing EJB-CMP/CMR, Part 2 of 3 Page 23 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Notice that the User BeanToRol eBean has a <rul ti pl i ci t y> of Many, and the

<cnr -fi el d>of User BeanToRol eBean has a sub-element <cnr-fi el d-type>. The
<cnr - fi el d-type> element defines the Java code type of the relationship with a

<nmul ti pli city> of Many. Note that the two possibilities are j ava. uti |l . Col | ecti on
andjava. util. Set. Since you picked j ava. util . Col | ecti on and the CMR field name
is roles, then you can expect to see a CMR field called roles (setter and getter method pair)
in the local interface of the User Bean that returns and setsaj ava. util. Col | ecti on.

Add collection CMR field to User Bean

The CMR fields return many roles and set many roles. Thus unlike the CMR fields for the
one-to-one relationship for User | nf o, you are going to set and get a collection of roles as
follows:

Listing 12: User Bean EntityBean Implementation Class

public abstract class UserBean inplenents EntityBean {

public abstract Collection getRoles();
public abstract void setRoles(Collection roles);

Listing 13: User Bean Local interface

package comri ckhi ght ower. aut h;
i mport j avax. ej b. EJBLocal Obj ect;
i mport java.util.Collection;

public interface Local User extends EJBLocal Object ({

public Collection getRoles();
public void setRoles(Collection roles);

public String getEmail ();

public String getPassword();

public Local Userlnfo getUserlnfo();

public void setUserlnfo(Local Userlnfo userlnfo);

That's it. It is not much different then the one-to-one relationship. Next | will show the
methods in the User Managenent session bean that use the many-to-many relationship.

Use many-to-many relationship in the
User Managenent bean

The User Managenent Bean adds four methods to operate on Roles and the relationship
between User and roles as follows: i nRol e(), addRol e(), cr eat eRol e(), and

Page 24 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

renmoveRol e().

The cr eat eRol e() and r enoveRol e() methods are just boiler plate code to add and
remove roles into the datastore -- nothing new.

addRol e()

The addRol e() adds arole to a User Bean as follows:

public void addRol e(String email, String rol eNane) {

Local User user user Hone. fi ndByPri mar yKey(emai | ) ;
Local Rol e role rol eHorre. fi ndByPri mar yKey(r ol eNane) ;
Col l ection roles = user.getRol es();

rol es.add(rol e);

Notice that the addRol e() looks up the role with the roleHome, then it adds the role to the
collection from the CMR roles field. Thus, when a role gets added to the roles collection, the
EJB container updates the datastore. Thus, the code that inserts the relationship in the
datastore is the interface of the Collection class. Cool!

i nRol e()

The i nRol e() method checks to see if a user is in a certain role:

public boolean inRole(String email, String rol eNane){

Local User user = userHone. findByPri maryKey(email);
Col l ection roles = user.getRol es();
Iterator iter = roles.iterator();
while (iter.hasNext()){
Local Role role = (Local Role)iter.next();
if (role.getNane().equal s(rol eNane)) return true;

}

return fal se;

Because the API for the datastore is the same asj ava. util. Col | ecti on, coding with
CMR is easy and fast. In the next panel | will cover accessing these method from the client.

Using User Managenent i nRol e() and addRol e()
methods

The client uses all of the new User Managenent methods as follows:

Introducing EJB-CMP/CMR, Part 2 of 3 Page 25 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

//Create Roles -- section 4
user Mgnt . creat eRol e("adni n", "Adminstrator");
user Mgnt . cr eat eRol e( " manager", "Content Manager");
user Mgnt . creat eRol e("user”, "Normal User");
user Mgnt . creat eRol e("guest", "CGuest User");

/1 Add roles to user Andy -- section 4
user Mgnt . addRol e("andy@ i ckhi ght ower. cont, "adm n");
user Mgnt . addRol e("andy@ i ckhi ght ower . coni, "user");

//See if Andy is inrole admn -- section 4

if (userMgnt.inRol e("andy@i ckhi ght ower.cont, "adm n")) {
Systemout.println("Andy is an admn");

}

//See if Andy is in role manager -- section 4

if (luserMgnt.inRol e("andy@i ckhi ghtower. cont, "manager")){
Systemout.println("Andy is not a nmanager");

}

/* Rermove Roles -- section 4 */
user Mgnt . renoveRol e("adm n");
user Mgnt . renoveRol e( " manager ") ;
user Mgnt . renoveRol e("user");
user Mgnt . renoveRol e("guest™);

Compiling and deploying the many-to-many example

The same technique can be used to the build, package, deploy, and run the client. Please

refer to section 8 in the first installment of this tuturial (see Resources on page 36 ) to refresh
your memory how to build and run this example application. Look for the source and build file

under cmpCmr/section4.

Be sure to run ant cl ean to delete the old examples intermediate build files.

Final lap

You are done with the first four examples. If you made it this far, it's all down hill from here

and the wind is at your back. The next section will cover one-to-many relationships.

Page 26 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 5. Example 5: The one-to-many bidirectional
relationship

One-to-many relationship

A one-to-many relationship is a lot like the other relationships. Just as before the EJB
container does most of the heavy lifting.

In this example you will do the following:
Define the G oupBean.

Define the bidirectional relationship from User Bean to G- oupBean in the deployment
descriptor.

Add a CMR collection field to the User Bean.
Add code to the User Managenent session bean to use this relationship.
Add code to the client to use the new code in the User Managenent session bean.

Define the G oupBean

The Gr oupBean is similar to the User | nf oBean and the Rol eBean in the last two
examples. Like all of the other entity beans, it has CMP fields. Also it has a local home, a
local interface, and entity bean implementation.

Like the User | nf oBean in the first relationship example, the G oupBean has a

<cnr - fi el d> referring to the User Bean. Unlike the User | nf oBean, the <cnr - fi el d>
users, in the G oupBean is a collection of User Beans. The complete listing for the

Gr oupBean is listed below.

Listing 14: G oupBean Local interface

package com ri ckhi ght ower. aut h;

i mport javax.ejb.EJBLocal Obj ect;

i mport java.util.Collection;

public interface Local G oup extends EJBLocal Object {

public abstract Collection getUsers();
public abstract void setUsers(Collection collection);

public abstract String getNane();
public abstract String getDescription();

Listing 15: G- oupBean Home interface

package com ri ckhi ght ower. aut h;

i mport javax.ejb. EJBLocal Hore;
i mport javax.ejb. Creat eException;

Introducing EJB-CMP/CMR, Part 2 of 3 Page 27 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

i mport javax.ejb. Fi nder Excepti on;
i mport java.util.Collection;

public interface Local G oupHome extends EJBLocal Horme {
public Local Goup create (String name, String description) throws CreateException;
public Local G oup findByPrimaryKey (String nane) throws Finder Exception;

public Collection findAll () throws FinderException;
}

Listing 16: G- oupBean EntityBean implementation Class

package com ri ckhi ght ower. aut h;

i mport javax.ejb.EntityBean;

i mport javax.ejb.EntityContext;

i mport javax. ej b. Creat eExcepti on;
i mport java.util.Collection;

i mport javax.nam ng. *;

public abstract class G oupBean inplenents EntityBean {

public String ejbCreate(String nane, String description) throws CreateException {
set Nane( nane) ;
set Descri ption(description);
return null;

}

public void ejbPostCreate(String name, String description) throws CreateException{ ]

public abstract Collection getUsers();
public abstract void setUsers(Collection collection);

public abstract String getNane();
public abstract void set Nanme(String nane);

public abstract String getDescription();
public abstract void setDescription(String description);

public void setEntityContext(EntityContext context){ }
public void unsetEntityContext(){ }

public void ejbRenove(){ }

public void ejbLoad(){ }

public void ejbStore(){ }

public void ejbPassivate(){ }

public void ejbActivate(){ }

}

Listing 17: G oupBean deployment descriptor entry

<entity>
<di spl ay- name>G oupBean</ di spl ay- nane>
<ej b- nanme>Gr oupBean</ ej b- nane>

<l ocal - hone>com ri ckhi ght ower . aut h. Local G oupHomne</ | ocal - hone>
<l ocal >com ri ckhi ght ower . aut h. Local G oup</| ocal >
<ej b-cl ass>com ri ckhi ght ower . aut h. Gr oupBean</ ej b- cl ass>

<per si st ence-t ype>Cont ai ner </ per si st ence-type>
<pri m key-cl ass>java. | ang. Stri ng</pri m key-cl ass>

Page 28 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

<reent rant >Fal se</reentrant >
<cnp-ver si on>2. x</ cnp- ver si on>

<abstract - schema- nanme>G oupBean</ abst r act - schenma- nane>

<cmp-field>
<descri pti on>The group nane</description>
<fi el d- nane>nane</fi el d- name>
</cnp-field>
<cmp-field>
<descri pti on>The description of the group</description>
<fi el d- nane>descri ption</fi el d- nane>
</cnp-field>

<prinkey-fi el d>nane</ pri nkey-fi el d>

<security-identity>

<descri pti on></descri pti on>

<use-cal ler-identity></use-caller-identity>
</security-identity>

<query>
<descri pti on></descri pti on>
<query- net hod>
<met hod- nane>fi ndAl | </ net hod- name>
<net hod- parans />
</ query- net hod>
<ej b-gl >sel ect bj ect (group) from G oupBean group</ejb-ql>
</ query>

</entity>

Define the relationship in the deployment descriptor

The xml elements and technique for adding a one-to-many relationship is nearly identical as
doing the one-to-one and the many-to-many relationship. The only key difference is the
multiplicity. The <ej b-r el ati onshi p-r ol e> for the G oupBean has a CMR field element
because the relationship is bidirectional from the User Bean to the G oupBean. The

G oupBean has a CMR field name users. The User Bean has a CMR field named group.
The <ej b-rel ati on> element is listed as follows:

<ej b-rel ati on>
<ej b-rel ati on- name>G oupsHaveUser s</ ej b-rel ati on- nane>

<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>G oupHasUser s</ ej b-r el ati onshi p-rol e- nane>
<multiplicity>One</nultiplicity>

<rel ati onshi p-rol e-source>
<ej b- name>G oupBean</ ej b- nane>
</rel ationshi p-rol e-source>

<cnr-field>
<cnr-fiel d-nanme>users</cnr-field-nane>
<cnr-field-type>java.util.Collection</cnr-field-type>
</cnr-field>

Introducing EJB-CMP/CMR, Part 2 of 3 Page 29 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

</ ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e>

<ej b-rel ati onshi p-rol e- nane>User sl nG oup</ ej b-rel ati onshi p-rol e- nanme>
<mul tiplicity>Many</nultiplicity>

<rel ati onshi p-rol e-source>
<ej b- nane>User Bean</ ej b- nane>
</rel ati onshi p-rol e-source>

<cnr-field>
<cnr-fiel d- name>group</cnr-fi el d- nane>
</cnr-field>

</ ej b-rel ati onshi p-rol e>

</ejb-relation>

Notice that the G oupHasUser s has a multiplicity of One since there is one group in the
relationship, and like the last example the <cnr - f i el d> of G oupHasUser s has a
sub-element <cnr - fi el d-t ype> as follows:

<cnr-field>
<cnr-fiel d- nanme>users</cnr-fiel d- nane>
<cnr-field-type>ava.util.Collection</cnr-field-type>
</cmr-field>

The type of the field relationship isj ava. uti |l . Col | ect i on and the CMR field name is
users.

The other side of the relationship UsersinGroup has a <mul ti pl i ci t y> of Many since
there are many users in the group. Also notice that the <cnr - f i el d> is set to group.

Add CMR field group to User Bean

The CMR fields group allows you to set the user into a group or get the group that the user is
in. Thus like the CMR fields for the one-to-one relationship for User | nf o, you can set and
get a collection the associated group:

Listing 18: User Bean EntityBean implementation Class

public abstract class UserBean inplenents EntityBean {

public abstract Local G oup get Goup();
public abstract void set Group(Local G oup group);

}

Listing 19: User Bean Local interface

Page 30 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

package com ri ckhi ght ower. aut h;

i mport j avax.ej b. EJBLocal Obj ect;
i mport java.util.Collection;

public interface Local User extends EJBLocal Object {

public Local G oup get G oup();
public void setGroup(Local Goup group);

public Collection getRoles();
public void setRoles(Collection roles);

public String getEmail ();

public String getPassword();

public Local Userlnfo getUserlnfo();

public void setUserlnfo(Local Userlnfo userlnfo);

}

It is not much different than the other relationship examples. Next | will show the methods in
the User Managenent session bean that use the many-to-many relationship.

Use one-to-many relationship in the User Managenent
bean

The User Managenent Bean adds four methods each to operate on G oups, and the
relationship between User and Gr oups as follows: i nG oup(), mnoveUser ToG oup(),
addRol eToUser s(), get User sl nG oup(), createG oup(), removeG oup(),

get G oups(), and get Rol es().

The creat eG oup() and r emoveG oup() methods are just boiler plate code to add and
remove groups into the datastore -- again, nothing new. The methods get Rol es() and
get G oups() were added to show the available roles and group -- more boiler plate code.

i nG oup()

The i nGroup() method checks to see if a user is in a certain group:

public boolean inGoup(String enmail, String groupNane) {

Local User user = userHone.findByPrimaryKey(enail);
return user.get G oup().get Nane(). equal s(groupNane);

}
nmoveUser ToG oup()

The noveUser ToGr oup() moves the user into a different group:
public void noveUser ToG oup(String enmail, String groupNane){

Introducing EJB-CMP/CMR, Part 2 of 3 Page 31 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

Local User user = userHomne. findByPrimaryKey(enuail);
Local Group group = groupHone. fi ndByPri maryKey( groupNane) ;

user. set G oup(group);
/* The relationship works both way so this would work too! */

/| <enph>gr oup. get User s() . add(user);

addRol eToUser s()

The addRol eToUser s() utilizes both the group and the role relationships to the user. It
adds a Role to each user in a group.

public void addRol eToUsers(String groupNane, String rol eNane){

Local Group group = groupHone. fi ndByPri maryKey( groupNane) ;
Local Rol e role = rol eHone. fi ndByPri mar yKey(r ol eNang) ;

Col l ection users = group. getUsers();

Iterator iterator = users.iterator();

whil e(iterator. hasNext ()){
Local User user = (Local User)iterator.next();
user. get Rol es().add(rol e);

}
get User sl nG oup()

The get User sl nG oup() uses both the user to <user | nf 0> relationship and the user to
group relationship to return an array of strings that each contain the first name, last name,
and e-mail address of each user in the group.

public String[] getUsersl nGoup(String groupNane) {
Local Group group = groupHone. fi ndByPri maryKey( groupNane) ;
Col l ection users group. get Users();
Iterator iterator = users.iterator();
ArraylLi st userList = new ArraylList (50);
whil e(iterator. hasNext ()){
Local User user = (Local User)iterator.next();

String firstNane = user.getUserlnfo().getFirstNanme();
String | ast Nane = user. get Userlnfo().getLast Nane();
String email = user.getEmail ();

StringBuffer sUser = new StringBuffer(80);

sUser. append(firstNane + ", ");

sUser. append(l astNamre + ", ");

sUser. append(enuail);

userLi st.add(sUser.toString());

return (String []) userList.toArray(new String[userlList.size()]);

}

Now let's modify the client to use this code.

Page 32 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Using User Managenent i nG oup(),
moveUser ToG oup( ), addRol eToUser s(), and
get User sl nG oup() methods

The client uses all of the new User Managemnment methods as follows:

Systemout.println("Create and Di splay groups");
user Mgnt . cr eat eG oup( " mar keti ng", "Marketing group");

user Mgnt . cr eat eG oup( " engi neeri ng", "Engi neering group");
user Mgnt . creat eG oup("sal es", "Sal es group");
userMgnt . createG oup("IT", "I nformati on Technol ogy group");

/** Display the created groups */
String [] groups = userMnt.get G oups();

for (int index=0; index < groups.length; index++){
System out . printl n(groups[index]);
}

createUsers(userMgnt); //updated for section 3

/** Section 5 Add role to users */
String group = "engi neering";
String role = "super_user";
user Mgnt . addRol eToUser s(group, rol e);

group = "IT";
role = "admi n";
user Mgnt . addRol eToUser s(group, rol e);

group = "narketing";
role = "user";
user Mgnt . addRol eToUser s(group, rol e);

/** Section 5 -- list users in group engineering */
String [] users = userMnt. get User sl nG oup("engi neering");
Systemout.println("Users in the engineering group");

for (int index=0; index < users.length; index++){
System out. printl n(users[index]);
}

/** Section 5 -- |Is Andy in group Engineering ? */

if (userMgnt.inG oup("andy@ickhi ght ower.con', "engi neering")){
Systemout.printin("Andy is in the engineering group");
}

/** Section 5 --
Is Andy in group the super_user role that was assigned
to all users in engineering? */
if (userMgnt.inRol e("andy@i ckhi ght ower. cont', "super_user")){
Systemout.println("Andy is a super_user");
}

/** Section 5 -- Myve Andy to marketing */
user Mgnt . moveUser ToG oup("andy@ i ckhi ght ower. conf', "narketing");

Introducing EJB-CMP/CMR, Part 2 of 3 Page 33 of 37



i bm conl devel oper Wr ks Presented by developerWorks, your source for great tutorials

/** Section 5 -- |Is Andy in group Engineering ? */

if (userMgnt.inG oup("andy@i ckhi ght ower. cont', "engi neering")){
Systemout.println("Andy is in the engineering group");

} else if(userMynt.inG oup("andy@i ckhi ghtower. cont', "narketing")){
Systemout.println("Andy is nowin the nmarketing group");

}

/**Section 5 **/

user Mgnt . renoveG oup( " mar keti ng");
user Mgnt . renoveG oup( " engi neering");
user Mgnt . removeG oup( " sal es");

user Mgnt . renmoveG oup(" I T");

Compiling and deploying the one-to-many example

The same technique can be used to the build, package, deploy and run the client. Please
refer to section 8 in the first installment of this tuturial (see Resources on page 36 ) to refresh

your memory how to build and run this example application. Look for the source and build file
under cmpCmr/section5.

Be sure to run ant cl ean to delete the old example's intermediate build files.

Page 34 of 37 Introducing EJB-CMP/CMR, Part 2 of 3



Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 6. Summary

Done

You are now are done with the first five examples and the first two tutorials of this series.
Looks like you made it.

You've created one-to-one, one-to-many, and many-to-many relationships. You have used
the collection to add entities to other entities while the EJB Container adds the rows to the
underlying join tables and fields.

For summary, you can view the relationships in the entity .jar file with the depl oyt ool
pictured in Figure 2 and Figure 3.

Figure 2: All the relationships you created in this tutorial

E.ﬁpﬂlralmn Deployment Tool: sechionb

File Edt Tools Help

eRle@s BERE oD ¢04 ¢ &

@ [C)Files
9 [ spplications :
9 <& sections : B AL
@ SectionClhient Canlalbher I‘.I.’lll.ilj‘.'«ll H:I'!l.hll.flllillqlﬁ
e @ User EJBA | BeanBRef | Muli | EJBB | BeanARer @]
& GroupBean GroupBesn  users 1.= Userflean  group
& |sarBean UserBean  userinfo 1:1 UsgrinfoBaan user K]
& RaoleBaan UsarBean  roles .. RoleBean  =nong= K|

& IzarinfoBean

@ @ main-user-mgrt
&8 Servers

Figure 3: The CMR and CMP fields of Group

Introducing EJB-CMP/CMR, Part 2 of 3 Page 35 of 37



i bm com devel oper Wr ks

Presented by developerWorks, your source for great tutorials

E._Eﬂppllr..‘:tinn Deplopment Tool: secton

Hie Edt Tools Help

eEeeE Fera sl [¢RF ¢

® CIFiles [Inspecting: Files.Applications.sections.\ser GroupBean
g ] applications e Refs  Resource et |" curity | Transactions
@ & sections Env. Entrion
[ sectionciient :
[ iser rPersistence Managemeant
& GroupBean Hean-Managed Persistence
& LsarBean
& RoleBean Comtainer managed persistence (1.0)
_ & UserinfoBean & Container managed persistence (2.0)
& rrialn-user- g mi T
% @ servers Fields To Be Persisted
& B ipcaihost [1] moarmve
4 sections Il description
[ users
Abstract Schema Hame:
| GroupBean
| Finder/Select Methas... |
| Depleyment Settings... |
Primany Key Class: ;
| java Jang Shing |
Prirmany Ky Field Harmg:
|um - |
("] Reontrant

In the third and last tutorial of this series | will explain the power of EJB-QL.

Resources

* Here is a zip file with all the code.

» The first tutorial in this series Introduction to CMP/CMR, Part 1
* A good tutorial on EJB CMP/CMR and EJB-QL

* The J2EE tutorial from Sun

» Developer's Guide to Understanding EJB 2.0 (updated by Rick Hightower)

» Enterprise JavaBeans fundamentals

Books:

» Mastering Enterprise JavaBeans (2nd Edition) by Ed Roman, Scott W. Ambler, Tyler

Jewell, Floyd Marinescu

The EJB Encyclodpedia!
» Enterprise JavaBeans (3rd Edition) by Richard Monson-Haefel

Get this one too!

» Java Tools for Extreme Programming by Richard Hightower, Nicholas Lesiecki

Covers building and deploying J2EE applications with EJBs.

Page 36 of 37

Introducing EJB-CMP/CMR, Part 2 of 3



cmp-cmr1.zip
cmp-cmr1.zip
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://www.caucho.com/products/resin-ejb/ejb-tut/cmp-tut.xtp
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www.triveratech.com/dloads/index.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/EB2ADE177F8C3EF386256A0A006DCBCD?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/EB2ADE177F8C3EF386256A0A006DCBCD?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/EB2ADE177F8C3EF386256A0A006DCBCD?OpenDocument
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.amazon.com/exec/obidos/ASIN/0471417114
http://www.amazon.com/exec/obidos/ASIN/0596002262
http://www.amazon.com/exec/obidos/ASIN/0596002262
http://www.amazon.com/exec/obidos/ASIN/0596002262
http://www.amazon.com/exec/obidos/ASIN/0596002262
http://www.amazon.com/exec/obidos/ASIN/047120708X
http://www.amazon.com/exec/obidos/ASIN/047120708X
http://www.amazon.com/exec/obidos/ASIN/047120708X
http://www.amazon.com/exec/obidos/ASIN/047120708X
http://www.amazon.com/exec/obidos/ASIN/047120708X

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 7. Feedback
Feedback

Please let us know whether this tutorial was helpful to you and how | could make it better. I'd
also like to hear about other tutorial topics you'd like to see covered. Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Introducing EJB-CMP/CMR, Part 2 of 3 Page 37 of 37


http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Introduction
	Introduction to CMP/CMR, Part 2
	Should I care about CMP/CMR?
	What do I need to know for this tutorial?
	What will this tutorial cover?
	About the Author

	Application design
	Application design: Entity design

	Example 3: The one-to-one bidirectional relationship
	Relationships
	Defining the UserInfoBean
			
	Packaging UserInfoBean
			
	Adding CMR fields to UserBean
			
	Defining the relationships in the deployment descriptor
	Defining the relationships in the deployment descriptor
	Change UserManagement to use the relationship
	The new UserManagement methods
	Change the client to use new UserManagement methods
	Compiling and deploying the one-to-one example
	On the home stretch now!

	Example 4: The many-to-many unidirectional relationship
	Many-to-many relationship
	Define the RoleBean
			
	Define the relationship in the deployment descriptor
	Add collection CMR field to UserBean
			
	Use many-to-many relationship in the UserManagement bean
	Using UserManagement
				inRole() and addRole() methods
	Compiling and deploying the many-to-many example
	Final lap

	Example 5: The one-to-many  bidirectional relationship
	One-to-many relationship
	Define the GroupBean
			
	Define the relationship in the deployment descriptor
	Add CMR field group to UserBean
			
	Use one-to-many  relationship in the UserManagement bean
	Using UserManagement
				inGroup(), moveUserToGroup(), addRoleToUsers(), and
		  getUsersInGroup() methods
	Compiling and deploying the one-to-many  example

	Summary
	Done
	Resources

	Feedback
	Feedback


