
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 2

Field guide to Java
collections

Mike Duigou (@mjduigou)

Java Core Libraries

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 3

Required Reading

 Should have used most at some point

– List, Vector, ArrayList, LinkedList, Arrays.asList

– Set, HashSet, TreeSet

– Queue, PriorityQueue

– Map, Hashtable, HashMap, TreeMap

 Bonus Points

– Deque, ConcurrentHashMap, CopyOnWriteArray, etc.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 4

Program Agenda

 Collection interfaces

– Implementations tour

– Unexpected usages

 Collections outside the JDK

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 5

Collections Categories

 Many collection classes

 Each implements one or more collection interfaces

 We will be classifying according to interfaces

Establishing the categories

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 6

Two Fundamental “Shapes”

Collection

Value

c

Key Value

Value Value

c

Key

Map

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 7

Map

Pear

Fruit

Milk

Dairy

Beef

Meat

Cheese

Dairy

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 8

Map

 Aggregation of key-value mappings

 Keys are unique

 Values can be anything

 Simple set of operations

– get, contains<key|value>, remove, {put}<single|bulk>

– iterate<keys|values|mappings>

– equivalence, size

 The reason why Object.hashCode() exists

 hashCode() or compareTo() must never change while in Map

Not that kind of map

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 9

HashMap

 Array of buckets with chaining for collisions

 Bucket array is power of two sized

 Bucket index derived from hash code

– Performance depends upon quality of hashCode() implementation

– O(1) with good hash code, O(n) with worst hash code

 Expansion (aka rehashing) occurs when fullness threshold exceeded

 Iteration order for keys, values, elements is unspecified

– and may become unpredictable (7u6 alternative hashing & Java 8)

Making a hash of it

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 10

LinkedHashMap

 Subclass of HashMap

 Tracks insertion order of mappings

 Iteration order is insertion order (predictable)

 Some are surprised it’s not a SortedMap

 Often used for LRU caches or where key order matters

A link to the past

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 11

WeakHashMap

 Map which holds keys with weak references

 When key reference is cleared value is removed

 Commonly used for look up tables and caches

 Cache pattern: soft reference value holding strong reference to key

Actually quite powerful

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 12

IdentityHashMap

 Map which uses identity equality (==) rather than equals()

 Originally used for structure preserving object graph traversal

(Serialization)

 Suggested use: associating meta-data with specific instances

 It is sometimes possible to use for higher performance map

– How often this is worthwhile is debatable

Some objects are more equal than others

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 13

EnumMap

 Map specifically for enums (Java 5)

 Keys restricted to a single enum

 Very space efficient and high performance

– Two implementations internally

 O(1) for put, get, remove, contains

 Elements are ordered according to enum order

 Not a SortedMap (frequently requested)

Optimization is key

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 14

Hashtable

 Retrofitted into Collections framework

 All public methods are synchronized

 Does not allow null keys or values

 Array of buckets with chaining for collisions.

– Bucket index derived from hash code. HashMap has better distribution

 Bucket array expansion by doubling when fullness threshold exceeded

 Iteration order for keys, values, elements is unspecified

– and may become unpredictable

It’s not faster. Really. Stop saying that.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 15

ConcurrentHashMap

 Fully concurrent

 Multiple arrays of buckets with chaining for collisions

 Individual bucket arrays grow by doubling

 Allergic to null (not supported)

– Bonus: no need for separate contains() to determine if key present

 Iteration order for keys, values, elements is unspecified

 Iterators are consistent

– But map may change while you are iterating

 Implements ConcurrentMap

Firing on all cylinders

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 16

ConcurrentMap

 Adds several methods to Map interface

 Operations that would require synchronized block for safety

– putIfAbsent

– remove(key,value)

– replace(key,value)

– replace(key,value,newvalue)

Atomics-r-us

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 17

SortedMap/NavigableMap

Milk

Dairy

Beef

Dairy

Cheese

Dairy

Pear

Fruit

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 18

SortedMap/NavigableMap

 Map with sorted keys

 Iteration order is key sort order

 Map partitioning features for creating sub-map views

 Any SortedMap can be used to make a SortedSet

Which came first?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 19

SortedMap vs NavigableMap

 SortedMap/SortedSet came first in Java 1.2

 NavigableMap/SortedSet added in Java 6

 NavigableMap extends SortedMap

 NavigableSet extends SortedSet

 TreeMap/TreeSet were upgraded to NavigableMap/Set

 Prefer Navigable to Sorted—more features

– lower(), floor(), higher(), ceiling()

– inclusive headMap() and tailMap()

What’s the deal with that?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 20

TreeMap

Red black balanced tree

Basic operations (put, get, contains) are O(log2 n)

Sorting via Comparator or Comparable

null keys not permitted for “natural ordering” Comparable

Comparators can support null

Branchin out

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 21

ConcurrentSkipListMap

 Fully concurrent map implementation based on skip lists

 A much better choice for heavy concurrent use than synchronizedMap

– Higher overhead though

 Implements ConcurrentNavigableMap

 Does not support null keys or values

Massive backup at the maze

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 22

Collection

A place for your stuff

Fruit Meat Bread Milk

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 23

Collection

 Aggregation of values

 Simple set of operations

– {add, remove, contains}<single|bulk>, equivalence, iterate, size

 No implementations of Collection in JDK

– Lots of sub-interface implementations

 Extra operations on Collections

Not one to brag

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 24

Collection-what it’s not

 Sub-interfaces add behaviour

 Definition of Collection.equals()almost never used

 Elements might be ordered

 Duplicates may be allowed

 Mutability may be allowed

 Concurrency is (mostly) not part of definition

Warranty void in Tennessee

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 25

Collection

 Inheritance isn’t just for specialization

 Commonality is expressed as well

Ignoring the differences for fun and profit

Collection

Set Queue List

Iterable

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 26

Collection

 Variables and Fields

List<String> foo = new ArrayList<>();

 Method Parameters

public void calculate(ArrayList<String> bar);

 Return types

public List<String> sort(List<String> bar);

public <A extends List<String>> A sort(A bar)

ArrayList<String> sorted = sort(list);

 If you ain’t going to need it, don’t declare it!

– You may want to keep reference with original type for some methods

Unspecific Specifics

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 27

Collection

Finally, an inheritance hierarchy

Collection

Set Queue List

LinkedList

ArrayList

…

Deque

…

SortedSet

…

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 28

Collection : Set

My Grocery List Set

Fruit Meat Bread Milk

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 29

Set

 Collection of unique elements—no duplicates

 Elements are not ordered

 Iteration order is not defined

 Iteration order may not be consistent

 SortedSet/NavigableSet also available

 Make any Map a Set with Collections.newSetFromMap()

Are you in or out?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 30

EnumSet

 Set specifically for enums (Java 5)

 Instance restricted to a single enum

 Very space efficient and high performance

– Two implementations internally

 O(1) for add, remove, contains

 Elements are ordered according to enum order

 Not a SortedSet (frequently requested)

The “members only” Set

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 31

HashSet

 Set based upon HashMap

– Can be a little wasteful (high overhead) for small objects

 O(1) for add, remove, contains

 Elements are unordered

 Iteration order may be unpredictable

Hashing it out (or is it in?)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 32

LinkedHashSet

 Set based upon LinkedHashMap

– Can be a little wasteful (high overhead) for small objects

 O(1) for add, remove, contains

 Iteration order is insertion order

 Often used for LRU caches

 Some are surprised it’s not a SortedSet

Follow the breadcrumbs

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 33

Collection : SortedSet

For the highly organized

Bread Meat Milk Fruit

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 34

Collection : SortedSet

 Collection of unique ordered elements

 Iteration order is sort order

 Subset partitioning is very useful

More than just sorted

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 35

TreeSet

 Based upon TreeMap

– Can be a little wasteful (high overhead) for small objects

 Elements stored in a balanced binary tree

 O(log n) for add, remove, contains

 Elements ordered via Comparator or Comparable elements

 null allowed if supported by Comparator

 Concurrent via Collections.synchronizedSortedSet()

Every leaf is unique

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 36

ConcurrentSkipListSet

 Based upon ConcurrentSkipListMap

 Elements stored in a skip list (aka super linked list)

 O(log n) average for add, remove, contains

 Elements ordered via Comparator or Comparable elements

 Iteration order is sort order

 Fully concurrent

– Surprising: Iterating concurrently with add and remove

– size() is O(n) and also subject to concurrent modification

Easier to use than type

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 37

Collection : List

First, make a List

Fruit Milk Bread Bread

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 38

List

 Commonly used like a more flexible array

– There is a huge difference between List<Integer> and int[]

 Elements are ordered, duplicates are allowed

 Random access is offered (but beware)

– RandomAccess marker interface on truly random access Lists

More than meets the eye

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 39

ArrayList

 List backed by an array

 Random Access

 Grows automatically, shrinking by explicit request

– trimToSize() is a method of ArrayList not of List

 Grows by 1.5x as needed by creating a new larger array (copies data)

 Single threaded only (use Collections.synchronizedList)

– Which means you will lose trimToSize() and ensureCapacity()

Everybody knows your name

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 40

Arrays.asList()

 Created from an array

 java.util.Arrays.ArrayList is it’s name

 List backed by an array

 Random Access

 Size is fixed

 Unable to grow or shrink

 May still need Collections.synchronizedList

aka “The Fake ArrayList”

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 41

CopyOnWriteArray

 Fully concurrent array-based List implementation

 Random Access

 Modification copies the backing array

 Iterators use a snapshot of List

 Great when you need concurrent modification but only rarely

 Heavy updates will cause too much copying

Where did all these clones come from?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 42

Vector

 List backed by an array

 Random Access

 Grows automatically, shrinking by explicit request

– trimToSize() is a method of Vector not of List

 Grows by 2x or increment by creating a new larger array (copies data)

 All public methods are synchronized

– No need to call Collections.synchronizedList

– No way to turn of synchronization. (But HotSpot is magic)

Faded Hero

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 43

LinkedList

 Implemented as a doubly linked list

 Cheaper add/remove within list

 Not random access

 Object overhead per element

 Single threaded only

 Also supports Queue and Deque interfaces

Indexed access is the weakest link

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 44

Collection : Queue

Things are poppin’

Milk Bread Fruit

Point

Remove

Add

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 45

Queue/Deque

 Ordered and allows duplicates like List

 Special semantics for adding and removing

– And possibly “full” and “empty”

 Deque provides additional add/remove options

 Not particularly useful as immutable structure

Get in line

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 46

ArrayDeque

 Deque implementation similar to ArrayList

 Grows as needed but never shrinks

– LinkedList may be a better choice for highly elastic queues

 Performance better for LIFO (stack) for FIFO (queue)

So you don’t like LinkedList

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 47

PriorityQueue

 Sorts according to Comparator or Comparable

 Removes “least” element next

 Sorting happens only at addition

– Need to change priority? Must remove and re-add

 Not concurrent by default

– Use PriorityBlockingQueue rather than synchronized

Getting a better position

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 48

ConcurrentLinkedQueue

 Unbounded concurrent queue

 Main advantage is latency for push/pop

Not a BlockingQueue

Getting a better position

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 49

Blocking Queue/Deque

 Block until space available

 Block until element available

 Only make sense when used concurrently

We are experiencing heavy call volume

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 50

ArrayBlockingQueue

 Fixed size

 Fully concurrent

 Offers optional “fairness”

– For very unbalanced producer/consumer more fairness might be needed

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 51

LinkedBlockingQueue/Deque

 Optionally unbounded useful for periodic long queues

 Fully concurrent

 Somewhat higher throughput than blocking

 High throughput can increase GC pressure

 No “fairness” behaviour needed

– Adding and removing only contend at empty <-> non empty state.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 52

DelayQueue

 Concurrent unbounded Queue

 Elements can only be retrieved after they have expired

 Next element returned is the “most expired”

 Can consider DelayQueue as a time oriented PriorityQueue

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 53

SynchronousQueue

 Concurrent queue with no capacity

 Pushing blocks until it is retrieved by another thread

 Retrieving blocks until an element is available from another thread

 Optional fairness policy to make waiting more FIFO

 Useful when you must know that handoff has occurred

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 54

Lambda and Collections

 Java 8 will add lambdas to the language

 Major libraries upgrade focused on use of lambda with collections

 Lambda for bulk data operations including parallel

 JDK Collections will be extended to be data sources for bulk data APIs

Same collections, new features

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 55

Other collections

 Improves readability and reduces duplication of iteration code (enforces DRY/OAOO)

 Implements several, high-level iteration patterns (select, reject, collect, inject into, etc.)

on "humane" container interfaces which are extensions of the JDK interfaces. Provides

a consistent mechanism for iterating over Collections, Arrays, Maps, and Strings

 Provides replacements for ArrayList, HashSet, and HashMap optimized for performance

and memory usage. Adds new containers including Bag, Interval, Multimap, and

immutable versions of all types

 Encapsulates a lot of the structural complexity of parallel iteration and lazy evaluation.

Performs more "behind-the-scene" optimizations in utility classes

 Has been under active development since 2005 and is a mature library

GS Collections -- github.com/goldmansachs/gs-collections

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 56

Other collections

 Guava is the open-sourced version of Google's core Java libraries: the

core utilities that Googlers use every day in their code. The Guava

utilities have been carefully designed, tested, optimized and used in

production at Google. You don't need to write them, test them, or

optimize them: you can just use them.

Guava -- code.google.com/p/guava-libraries

 Additional collections, collections utilities

 Lots of non-collections utilities

 Some very small bits are planned to be added to Java 8

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 57

Q & A

@mjduigou

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 58

