
1

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 1

“Managing Dynamic Jini Systems”

MW 2000

Managing Dynamic Distributed Jini
Systems

Michael Fahrmair, Chris Salzmann, Maurice Schoenmakers

Institute for Software & Systems Engineering
School of Informatics
Munich University of Technology - Germany

http://www4.in.tum.de/~[fahrmair|salzmann|schoenma]

[fahrmair | salzmann | schoenma]@in.tum.de

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 2

“Managing Dynamic Jini Systems”

MW 2000

Introduction

Dynamic Distributed Systems
Are distributed systems that are able to change their
structure (set of components & wiring) autonomously
during runtime.

Examples for DDS are: Salutation, UPnP and Jini

Problem:
If the wiring of the components is done autonomously
errors and internal processes are much harder
to trace.

Goal:
Design a tool that graphically describes the internal
mechanisms in a DDS on the fly.

2

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 3

“Managing Dynamic Jini Systems”

MW 2000

I Platform: Jini

II Tool Carpat
• Principle: Reflective Meta Level
• The meta model
• Carpat Beans
• GUI and features

III Future Work & Outlook

Outline

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 4

“Managing Dynamic Jini Systems”

MW 2000

• developed by Sun Microsystems
• based on Java and partly on RMI
• proposes interfaces to program dynamic distributed systems
• idea: dynamic pool of cooperating services

Services
– are described by attributes and interfaces
– are accessible with a mobile service proxy
– Join: services announce their presence at discovered lookup services

Lookup Services
– are catalogs of available services
– contain for each service descriptions and service proxies

Clients
– Lookup: search services in discovered lookup services with templates
– retrieve service proxies to use a services
– Services can also be clients

Jini in a Nutshell

3

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 5

“Managing Dynamic Jini Systems”

MW 2000

Observation: Runtime structure Í architectural structure

Management: Runtime structure Ì architectural structure

Invisible structure at runtime:
Jini / Salutation Services ?

Architectural structure:
Components and
Connectors Meta Level

Jini/Salutation
Level

Observation

Principle: A Reflective Meta Level

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 6

“Managing Dynamic Jini Systems”

MW 2000

A tool to create an architectural overview to observe and manage Jini
services and clients

Observation
Clients & Services, Locations

Channels, Messages exchanged between components
Provided and required interfaces

Administration and management
change service attributes, check memory resources,

start & stop components
configuration of channels and locations

Carp@ is itself a set of Jini services and clients

Carp@

Views
Mgmt.
Funct.

Model

Report Service

Target System

Carp@ Beans

4

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 7

“Managing Dynamic Jini Systems”

MW 2000

Component Location
0..* 1

Service
Port

0..*

Out Port In Port

Channel

1 source 1 target

Look up Service

Interface Out Port

Event Out Port Interface In Port

Event In Port
Service Out Port

0..*0..*

..

The Meta Model

Abstraction of service components
Independent of middleware
Content created by reflection

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 8

“Managing Dynamic Jini Systems”

MW 2000

• Not all information was available by standard interfaces

• Selected Solution:
– in each client or service a single Carp@ - Bean is introduced

• Carp@ - Bean is a special Jini Service
– analyzes the service with standard reflection as far as possible
– provides additional information (for example the location)
– is notified by client or service about changes
– is found by report service with normal Jini techniques
– is requested for meta-information by the report service
– propagates changes to the report service as events

Client

Service
Proxy

Service
Carp@-
Bean

Carp@-
Bean

Events Inquiry

Report
Service

Carp@ Beans

5

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 9

“Managing Dynamic Jini Systems”

MW 2000

Locations
Components
Interfaces
- Provided Ports
- RequiredPorts

Events
- Provided Ports
- Required Ports

Channels

Message tracing

Memory Usage

Java Jini Carp@

+

+

+
+

+
+

+
+

+

+
+

+

-
- -

- -

- -
- -

- -

- -

- -

Introduced API calls
Also clients became Jini services

By normal reflection, like Jini does
Tracing received references

By normal reflection (rules)
Tracing received references

By meta-model consistency

Carp@-Bean notification

Introduced API calls

Carp@ Beans

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 10

“Managing Dynamic Jini Systems”

MW 2000

[\][\][

[\][\][

[\][\

Navigation Tree
with different lists

Structure View
•Clients & Services
•Locations

Message Tracing

Attribute Editor

Start & Stop services

Carp@: GUI

6

Chris Salzmann, TU München, salzmann@in.tum.de

Slide 11

“Managing Dynamic Jini Systems”

MW 2000

Status Quo & Future Work

Development of DDS needs new description techniques, tools and methodologies.

Improvement of Carp@:

• Create additional views on the meta-model
(Message Sequence Charts, Deployment Diagrams,…)

• ”On the fly” byte code instrumentation : Insert Carp@-Beans
in predefined service and clients automatically or assisted
(using JOIE bytecode modifyier).

• Map model to Salutation and UPnP

Informations & Download: http://www4.in.tum.de/~carpat

