
Enhancing Jini for Use Across Non-Multicastable Networks

Ahmed Al-Theneyanab Piyush Mehrotrac Mohammad Zubairab

aComputer Science Department, Old Dominion University, Norfolk VA 23529 USA
{theneyan, zubair}@cs.odu.edu

bICASE, MS 132C, NASA Langley Research Center, Hampton VA 23681 USA
{theneyan, zubair}@icase.edu

cNAS Division, M/S T27A-1, NASA Ames Research Center, Moffett Field, CA 94035USA
pmehrotra@arc.nasa.gov

Abstract: Distributed heterogeneous systems are being
increasingly used to execute a variety of large size
simulation and computational problems. Resource
management is one of the most important issues in
building such systems. Recently, Sun introduced the Jini
connection technology for building plug-and-play
networks of resources. Jini relies on multicasting across
the network for its internal protocols. However, in a
distributed environment, such as the one under
consideration here, multicasting may not be supported
across the subnets for various reasons. In this paper we
describe enhancements to Jini required to use it for
building a middleware resource management system in a
distributed environment that does not support
multicasting. In particular, we introduce a lightweight
service, called the Tunneling Service, which tunnels
multicast messages across the subnets. We have
implemented our mechanism and used it to successfully
tunnel messages between subnets in a single domain and
also between different domains. In this paper we describe
our design choices and our implementation of the system.

Keywords: Distributed heterogeneous systems, Jini,
Multicasting, Resource management, Tunneling.

1. Introduction
Distributed heterogeneous systems are being increasingly
used to execute a variety of large size simulation and
computational problems. Such systems require flexible,
platform independent and scalable management of the
heterogeneous collection of the shared resources [2, 4].
For example, ARCADE is a research project in which we
are developing a Web-based framework to provide
support for a team of discipline experts collaborating to
design, execute and monitor multidisciplinary applications
on a distributed heterogeneous network of workstations
and parallel machines [3]. In such an environment, the
Resource Manager (RM) is required to manage a
distributed set of shared resources not necessarily on the
same network, which comprises the execution
environment and provides information about these
resources to the client/user upon request. Typically, these
resources could be in multiple domains, which may be
distributed geographically and collectively from the

underlying computing environment. The resources are
varied in nature ranging from compute engines, to data
servers, to specialized instruments. The RM has to be
flexible enough to not only handle such heterogeneity but
also provide information about these resources. The
environment is generally dynamic in which resources
randomly join and leave. The RM should be able to
handle such dynamic behavior without human
intervention.

Recently, Sun Microsystems introduced the Jini
connection technology which can be used to build
dynamic, flexible and easily administered distributed
systems. It is based on the idea of federating groups of
clients and the resources required by those clients. Jini
allows system resources, both hardware and software, to
dynamically join and leave the federation [1, 5, 10]. These
features of Jini makes it appropriate for building the
infrastructure of the ARCADE Resource Manager.

Jini’s internal protocols rely on multicasting for
discovering and joining lookup services. This becomes an
issue when deploying Jini across non-multicastable
networks. In this paper, we describe the enhancements
that we have made to Jini in order to support systems like
ARCADE Resource Manager that need to work with
resources in different domains. In particular, we have
introduced a lightweight service called the Tunneling
Service for tunneling multicast message across subnets. In
the paper, we describe our design decisions and the
implementation of this service.

The rest of the paper is structured as follow:
Section 2 gives a short overview of Jini while Section 3
explains the usage of Jini in ARCADE and the problems
that Jini suffers while running across non-multicastable
subnets. Section 4 explains in detail the approach that we
have designed to overcome these problems. Section 5
describes another possible approach and compares the two
alternatives. Finally, Section 6 summarizes the paper and
discusses some future work.

2. Overview of Jini

Jini is a connection technology introduced by Sun
Microsystems that can be used to build a flexible network
of resources and services to be shared by a group of
clients. Built on top of Java, Jini provides simple

mechanisms for resources to join together in a federation
with no human intervention. The resources can provide
services to clients on the network. The Jini connection
technology, based on Java, provides the necessary
protocols for services to register themselves with lookup
services and for clients to then discover these services.
Additional features make the system resilient to failures
such as removal of resources, network outages, etc. The
whole technology can be segmented into three categories:
infrastructure, programming model and services.

The infrastructure includes lookup services that
serve as a repository of services and uses RMI (Remote
Method Invocation), which defines the mechanism of
communication between the members. The programming
model includes interfaces such as discovery, lookup,
leasing, remote events and transactions which ease the
task of building distributed systems [1, 10]. A service is a
central concept within Jini. It is essentially an entity that
can be used by a person, program or another service to
perform a required task.

The runtime infrastructure supports the discovery
and join protocol that enables services to discover and
register with lookup services. Discovery is the process by
which a service locates lookup services on the network
and obtains references to them. Join is the process by
which a resource registers the services it offers with
lookup services. In particular, the resource may post with
the lookup service, objects representing the services they
provide including any code required to use the services.

Figure 1: Sequence of steps required to use Jini
Technology.

On the other hand, clients use the same protocol

to locate and contact services. The discovery protocol is
used to locate lookup services. Once an appropriate
lookup service has been found, the client can query it to
find the reference to the service that it requires. A client
may then download the posted object and utilize it to
directly use the service. Figure 1 shows a simplified

version of the sequence of steps that take place for a
service to discover and join a lookup service and for a
client to use the lookup service to locate and interact with
the service that it is seeking.

Thus, the initial phase for both clients and
services is the discovery of a lookup service (LS). As
described below, Jini has three discovery protocols: the
multicast request protocol, the unicast discovery protocol
and the multicast announcement protocol. We refer to
clients and services, which are attempting to discover
other services as discovering entities.

The Multicast Request Protocol
Discovering entities use this protocol to locate all the
nearby Lookup Services (LSs). In this protocol, each LS
establishes a multicast request server at a well-known
multicast end point (224.0.1.85/4160), where it can
receive incoming multicast request messages from
discovering entities and respond back to them, if
necessary, using a direct unicast connection.

The Unicast Discovery Protocol
Discovering entities use this protocol to communicate
with a known LS. This LS maybe local, non-local, beyond
multicast radius, or one with which a long-term
relationship has been established [1, 5, 10]. Using this
protocol, the discovering entity sends a unicast discovery
message to a specific LS.

The Multicast Announcement Protocol
The Multicast Announcement Protocol is used by LSs to
announce their existence. It can be used in two situations.
When a new is LS started, it might need to announce its
availability and services it provides to clients. Also, when
network failure happens and clients lose the connection to
an LS, a multicast announcement message can be used to
make the clients aware of the availability of the LS [5,
10].

In this protocol, each discovering entity
establishes a multicast announcement server at a well-
known multicast end point (224.0.1.84/4160), where it can
receive incoming multicast announcement messages from
LSs.

3. Jini for Resource Management
We have a built a simple middleware resource manager in
ARCADE using the Jini connection technology. We have
defined our own Java-objects to represent the resources,
workstations, and parallel machines in particular. When
the ARCADE environment comes online, it starts an
ARCADE Resource lookup service on a designated
workstation. As the resources in the environment come
online a Resource Controller is started up on the resource.
This controller then discovers and joins the ARCADE
Resource lookup service and uploads its service object.
The service object contains some static information, e.g.,

the type of machine, the speed of the CPU, memory size,
etc. It also contains dynamic information, such as the
current load. At this point the object is designed such that
the dynamic information is loaded into the service object
by the resource itself. We are looking at the possibility of
the client to pull information about the resources
dynamically.

Our experience with Jini technology has brought
out some problems in using the technology for resource
monitoring. These include scalability, security and the
lack of range queries. Here we concentrate on one specific
problem: using Jini across networks that do not support
multicasting.

The Problem
The brief description in the last section makes it clear that
Jini’s discovery protocol uses multicast traffic for both the
request and announcement messages. This works fine in
environments which support multicast. However, some
routers on the Internet do not support routing of multicast
packets for a variety of reasons. Also, some organizations
are not willing to open their firewalls to multicast so as to
avoid security problems [8]. Similarly, a local area
network divided into subnets, may disable multicast traffic
across the subnets to avoid unnecessary traffic that may
result in performance degradation. This blocking of
multicast traffic across subnets prohibits the use of Jini in
such an environment.

One method for working around this problem is
to use a tunneling mechanism where the multicast traffic
is encapsulated in a unicast packet and is then transferred
through unicast routers and non-collaborative firewalls.
This method has been used in several projects. For
example, MRoutd [9] has been used to achieve tunneling
in the MBone [9]. However, there are many problems in
the approach taken by the MRoutd implementation, such
as the lack of platform independence, wastage of available
bandwidth due to the transfer of a lot of control
information and the fact that it forwards all the multicast
traffic interfaces [8]. Other projects, such as mTunnel [8,
9] and liveGate [6], were designed to overcome some of
these problems but there are several reasons for building
our own tunneling mechanism and not using some of
those existing ones. Having decided to use Jini, we would
like to take advantage of the open source code of Jini and
embed our mechanism within Jini. Using a pure Jini
approach allows us to leverage the capabilities of Jini
while activating tunneling in the background without the
aid of any of members of the federation.

Also, unlike other tunneling mechanisms, in our
environment we do not need to tunnel some of the control
information such as the multicast address group and port
to which the message is supposed to be delivered. This is
because in the context of Jini, our needs are very specific:
we need to tunnel only the multicast request and
announcement messages that have predetermined

multicast endpoints. Providing the right proxies, as
explained in the next section, can easily satisfy these
requirements.

4. Our Approach
As described in the last section, Jini need to be extended
before it can be deployed across non-multicastable
networks. To solve this problem, we have introduced a
lightweight Tunneling Service (TS) with the aim of
embedding it within Jini’s specifications without affecting
Jini’s existing functionality.

GTLS

Subnet 2

TS2

Client2

Subnet 1

TS1

Client1 Service
LS1

Host1

Subnet 3

TS3

Service
LS2

LS3

Host2 Host3 Host4 Host5

Figure 2: Different non-multicastable subnets connected
by the TS

Our approach, as illustrated in Figure 2, involves

establishing a tunneling service end point, TS, at each
subnet. Each TS provides a window between its subnet
and the rest of the world. The TSs are implemented as Jini
services and thus have to register with a known Global
Tunneling Lookup Service (GTLS) dedicated to maintains
the list of TSs in the environment. The GTLS is
implemented as a lookup service that can be started at any
subnet of the federation. TSs will collaborate with each
other in order to tunnel all the multicastable messages
across the subnets. Thus, we name this approach the
Collaboration approach so we can distinguish with the
alternative approach the Central Directory Service (CDS)
scheme, which we discuss in the next section.

Given such architecture, the scenario is as
follows. Each TS is going to establish the appropriate
multicast endpoints and listen for incoming multicast
requests and announcements from within its subnet and
will then tunnel the messages out to all the other TSs.
Also, each TS is going to listen for incoming tunneled
multicast requests and announcements from other subnets
and will multicast them locally. Any connection that
needs to be setup between the clients, services and the
lookup services use the unicast protocol even if they have
to cross subnet boundaries.

The underlying aim of our implementation is to
make enhancements to Jini that are compatible with the
Jini functionality. Thus, we would like the tunneling
service to be active in the background without making any
changes as far as possible to the behavior of the clients,
services and the lookup services. Also, we would like the
implementation to work without any modification even if
the underlying network supports multicasting and the
tunneling service is not required. In the next few
subsections we describe the implementation of the Global
Tunneling Lookup Service and the Tunneling Service.

4.1 Global Tunneling Lookup Service (GTLS)
In order for the system to work properly, each of the TSs
needs to know about all the other TSs in the environment.
Thus, we need a central repository that keeps track of all
the currently active TSs. Jini provides the functionality
required for just such a repository. Hence, we
implemented this repository as a lookup service called the
Global Tunneling Lookup Service. Using the distributed
events interface of Jini, every TS can get notified when a
new TS joins or leaves the system. In our implementation,
since each TS relies on the unicast discovery protocol in
all its interactions with the GTLS, it needs to know the IP
address and the port where the GTLS is running.

4.2 Tunneling Service (TS)
The Tunneling Service is the central concept in our
solution. This service can be patched into the runtime
infrastructure of Jini as a new service just like any other
standalone service. A TS has to be started on each subnet
that is taking part in the larger system. The system
administrator can do this. On the other hand, if suitably
modified, the first Jini client, service or LS to start in a
subnet could check to see if a TS is already running in the
subnet. If not, it can start one. The tunneling service
consists of four major parts: the core tunneling subsystem
which is published at the GTLS as a proxy; the listener
which keeps track of local multicast requests and
announcements and uses other TSs’ proxies for tunneling
messages; the notifier which keeps track of all the other
active TSs; and the wrapper which implements the
infrastructure necessary for the TS to be a Jini service.

The Core Tunneling Subsystem: The core tunneling
subsystem is the proxy to the service that is posted with
the GTLS by the wrapper. The TSs need to contact the
GTLS and download each other’s proxies in order to
achieve tunneling amongst them. The proxy consists of
two methods: one for the incoming tunneled request
messages and the other for the incoming tunneled
announcement messages. Incoming tunneled requests
from other TSs are multicast across the local subnet so
that the local LSs can respond appropriately. Similarly,
incoming tunneled announcements from other TSs are
multicast for the discovering entities in the local subnet.

As we explain in the next subsection, a special flag is used
to avoid problem of the TS acting on the messages that it
has itself tunneled.

The Listener: This is the part of the service that is in
charge of catching the necessary multicast traffic, the
multicast requests and the multicast announcements from
within the local subnet. It listens for incoming multicast
requests from any discovering entity in its subnet, at the
same multicast request endpoint as any other LS
(224.0.1.85/4160). Similarly, it listens for incoming
multicast announcements from any LS in its subnet at the
same multicast announcement endpoint as any other
discovering entity (224.0.1.84/4160). When it receives a
request or announcement message, it tunnels it to all the
other TSs using their references and proxies that it holds.

The Notifier: This part has been implemented using one
of the most useful mechanisms of Jini, the notification
mechanism. When a TS starts up, it sends an inquiry to
the GTLS about all the currently registered TSs. Then it
uses the remote events model supported by Jini to request
that the GTLS notify it whenever a new TS registers or
leaves the environment.

The Wrapper: The wrapper is the main segment of the
service. It publishes the TS’s proxy in the GTLS and
renews its lease as and when necessary. Also, it launches
the assistant subsystems, the Listener and the Notifier, and
keeps track of them. If more functionality, such as the
encryption of the data for security reasons, or the
detection of unnecessary TSs is needed, this can be added
as subsystems of the wrapper.

4.3 Jini Modifications
We would have preferred to implement our system
without making any modifications to Jini. However, to
overcome some of the obstacles of tunneling, we have had
to modify the format of the outgoing request and
announcement messages. Note that only the message
formats need to be modified, the behavior of the rest of
Jini remains intact and does not need to be changed.
 First is the loopback problem. Consider the
situation in which a TS multicasts a message in its local
subnet that it has received from an external subnet. The
issue is that the listener which is listening for all multicast
messages within the subnet will also receive this message
and will have no way of knowing that the message
actually originated from outside the subnet. Thus, we need
to distinguish tunneled messages, both requests and
announcements, from those originating from within the
subnet. We do this by adding a new field, Tunneled Flag,
in the message’s header to show whether this message has
been tunneled. This field, added to both kinds of messages
as shown in Figure 3, will be set to zero when the message
is initially multicast. The TS which then re-multicasts the

message in another subnet will set the flag to one so that it
can be ignored when it is received by its own listener.

Protocol
Version

Port Tunneled
 Flag

Host Group
Len

Group1 .. Heard
Len

Heard1 ..

The new outgoing request message

Protocol
Version

Host Port LS ID Tunneled
Flag

Group
Len

Group1 ..

The new outgoing announcement message

Figure 3: New format of Jini messages (shaded fields
have been added)

 The second problem is the host address of the
sender in a tunneled request message. When responding to
a request message from a discovering entity, an LS uses
the port number included in the message. However, it
obtains the IP address of the sender by inquiring for the
source of the multicast message. This works well within a
subnet where the multicast message is originating from
the discovering entity itself. However, in the case of a
tunneled request, the IP address is going to represent the
TS’s host and not the host of the original discovering
entity. To overcome this problem, we have added the IP
address of the host of the sending entity in the header of
the request message, as shown at the top of Figure 3. We
don’t need to add it in the announcement message since it
is already contains the host IP address.

4.4 Current Status
The mechanisms described above have been implemented
using the Java Development Kit (JDK) 1.2 and the current
Jini reference implementation 1.0 with the modifications
that we have described in the previous subsection. We
have used the implementation to tunnel messages across
subnets in a single domain (cs.odu.edu) and also across
two separate domains (cs.odu.edu and icase.edu).

5. Alternative approach to the GTLS
Instead of using the Jini Lookup Service, the repository of
TSs in the system, can be implemented as a standalone
server that we call the Central Directory Service (CDS).
In this scenario, the CDS would not only keep track of the
currently active TSs in the system but also act as the
conduit for multicasting messages to other subnet. In this
approach, the TSs do not need to keep track of other TSs
in the system. Using this alternative, each TS listens for
incoming multicast requests and announcements in its
subnet and sends it to the CDS. It is then the CDSs
responsibility to broadcast it to all the other TSs in the
system. Each TS still has to listen for incoming requests
and announcements tunneled via the CDS and has to
multicast them on its subnet.

The Central Directory Service approach has
some advantages over the Collaboration approach. In this
scheme, the TSs are lighter in weight since they do not
have to keep track of the currently active TSs. However,
the CDS is a potential communication bottleneck since all
messages have to go through it. The Collaboration
scheme is a purely Jini approach which leverages off Jini
technology in using the mechanism for storing proxies in
the GTLS and also the event notification interface for
keeping track of active TSs. On the other hand, the CDS
scheme allows us to add more functionality to the central
repository. For example, in a system such as ARCADE
[3], we might need to do some load balancing of
executing codes or manage user’s remote directories. We
cannot add support for such features if we use the Jini LS
for our central repository. We will be implementing the
alternate approach in the near future in order to compare
both the schemes.

6. Conclusion
This paper presents the Tunneling Service, a new service
that we have introduced to allow Jini to be used smoothly
across non-multicastable subnets. We have described the
design and implementation of this service.

There are some other issues that we have not
addressed and in particular new features can be added to
the system. For example, tunneled data can be encrypted
when transported across subnets so we can make sure that
only the intended TSs can read it [8]. In addition,
tunneling can be done on demand, i.e., we can have a TS
only where we need it. Thus, the first Jini client, service or
LS that starts in the subnet can start the TS dynamically.
Sometimes, we might have more than one TS running at
the same network and not aware of each other.
Mechanisms like the ones used by mTunnel [7,8] can be
added in order to detect unnecessary TSs. A TS might
send a multicastable test messages periodically to a
specific group address and port and wait for a response.
TSs within the same network, if any, exchange messages
to identify the redundant TSs. Also, scalability seems to
be an issue as Jini is targeted at the workgroup level
(about 1000 services). We can achieve high scalability by
building a hierarchy of federations. We will be examining
our design and adding features as necessary in the near
future.

Acknowledgment
This work was supported by the National Aeronautics and
Space Administration under NASA Contract No. NAS1-
97046 while the authors were in residence at the Institute
for Computer Applications in Science and Engineering,
NASA Langley Research Center, Hampton, VA 23681.

References
1. K. Arnold, B. Osullivan, R. Scheifler, J. Waldo and

A. Wollrath, The Jini Specification, Addison-Wesley,
1999.

2. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith and S. Tuecke, A Resource
Management Architecture for Metacomputing
Systems, Proceedings of the IPPS/SPDP ’98
Workshop on Job Scheduling Strategies for Parallel
Processing, 1998.

3. Z. Chen, K. Maly, P. Mehrotra and M. Zubair,
ARCADE: A Web-Java Based Framework for
Distributed Computing, Proceedings of the WebNet
99, October 1999.

4. I. Foster, C. Kesselman, C. Lee, R. Lindell, K.
Nahrstedt and A. Roy, A Distributed Resource
Management Architecture that Supports Advance
Reservations and Co-Allocation, Proceedings of the
International Workshop on Quality of Service, 1999.

5. W. Keith, Core Jini, Prentice Hall, 1999.
6. Live Networks Inc., The "liveGate" Multicast

Tunneling Server, <http://www.lvn.com/liveGate/ >.
7. P. Parnes, K. Synnes, and D. Schefstrom, Lightweight

Application Level Multicast Tunneling using
mTunnel, Computer Communication, 1998.

8. P. Parnes, K. Synnes, and D. Schefstrom, mTunnel: A
Multicast Tunneling System With A User Based
Quality-Of-Service Model, European Workshop on
Interactive Distributed Multimedia Systems and
Telecommunication Services, 1997.

9. K. Savetz, N. Randall and Y. Lepage, MBONE:
Multicasting Tomorrow’s Internet, IDG, 1996.

10. B. Venners, A Talk on Jini/JavaSpaces,
<http://www.artima.com/javaseminars/modules/Jini/i
ndex.html>.

