
Java

F O R U M N O K I A

Version 1.0; June 24, 2002

Efficient MIDP Programming

Copyright © 2002. Nokia Mobile Phones. All rights reserved. 1

Forum.Nokia.com

C o n t e n t s
1. Introduction ..Page 3

1.1 Purpose..Page 3

1.2 References..Page 3

2. Execution Speed..Page 5

2.1 Program Execution Speed..Page 4

2.1.1 Measuring It ..Page 4

2.1.2 Graphics Operations..Page 4

2.1.3 Garbage Collection ..Page 5

2.1.4 Multi-Threading..Page 6

2.2 Networking Speed..Page 6

2.2.1 Bandwidth and Latency..Page 6

2.2.2 Minimizing HTTP Round Trips ..Page 7

2.2.3 Avoiding Inefficient Protocols..Page 7

3. JAR File Size ..Page 8

3.1 Designing for Small Size..Page 8

3.2 Using an Obfuscator ..Page 9

3.3 Libraries ..Page 9

3.4 Keeping Resources Small ..Page 9

3.5 Combining Image Files ..Page 10

4. Use of Resources..Page 10

4.1 Heap Memory..Page 10

4.2 Networking..Page 10

5. Perceived Performance..Page 11

5.1 Indicating Liveness..Page 11

5.2 Responsiveness..Page 11

5.3 Hiding Delays ..Page 11

Efficient MIDP Programming 2

Disclaimer

License

Forum.Nokia.com

The information in this document is provided ”as is,” with no warranties whatsoever, including any

warranty of merchantability, fitness for any particular purpose, or any warranty otherwise arising

out of any proposal, specification, or sample. Furthermore, information provided in this document is

preliminary, and may be changed substantially prior to final release. This document is provided for

informational purposes only.

Nokia Corporation disclaims all liability, including liability for infringement of any proprietary

rights, relating to implementation of information presented in this document. Nokia Corporation

does not warrant or represent that such use will not infringe such rights.

Nokia Corporation retains the right to make changes to this specification at any time, without

notice.

The phone UI images shown in this document are for illustrative purposes and do not represent any

real device.

Copyright © 2002 Nokia Corporation.

Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.

Other product and company names mentioned herein may be trademarks or trade names of their

respective owners.

A license is hereby granted to download and print a copy of this specification for personal use only.

No other license to any other intellectual property rights is granted herein.

Efficient MIDP Programming 3

1.1 Purpose

The following guide describes how to make your MIDlet more efficient. It covers the following aspects:

• Execution speed

• JAR file size (download costs, etc.)

• Use of resources (memory, networking)

• Perceived performance (user interface responsiveness)

It assumes familiarity with Java™ programming. It also assumes that you know the basics of MIDP

programming; for instance, that you have read the Forum Nokia paper A Brief Introduction to MIDP

Programming [MIDPPROG].

The guide focuses on MIDP performance issues, and covers only briefly the Java performance issues

that are not specific to MIDP. For more information, see Java Performance Tuning [JAVAPERF] and

Java Platform Performance [JAVAPP].

References

[FRUITMAC] A Networked MIDlet Example: Fruit Machine

Forum Nokia, 2001

http://www.forum.nokia.com

[JAVAPERF] Java Performance Tuning

Jack Shirazi

O'Reilly, 2000

ISBN: 0-596-00015-4

[JAVAPP] Java Platform Performance: Strategies and Tactics

Steve Wilson and Jeff Kesselman

Addison-Wesley, 2000

ISBN: 0-201-70969-4

[MIDPNET] A Brief Introduction to Networked MIDlets

Forum Nokia, 2001

http://www.forum.nokia.com

[MIDPPROG] A Brief Introduction to MIDP Programming

Forum Nokia, 2001

http://www.forum.nokia.com

There's an old programmer's adage that programs spend 90% of their time in 10% of their code.

Therefore, rather than trying to make all of your code efficient, you benefit far more by finding the

”bottleneck” in your code and making it work more efficiently.

Another well-known principle is that careful design and algorithm choice yield greater benefits than

line-by-line code optimizations. This is as true of MIDlets as it is of other programs, and it's easy to

slow your MIDlet by making careless design choices.

Version 1.0; June 24, 2002

Efficient MIDP Programming

Forum.Nokia.com

1. Introduction

2. Execution Speed

Java programs usually spend a small part of their time executing your program code and most of their

time executing the library code that you call. Therefore, get to know the performance of the libraries

(especially graphics libraries), and choose carefully how you call them.

Remember that different phones’ MIDP implementations vary significantly in their performance

characteristics, so the best-performing approach on one phone may not be the best on another. For

example, a particular library method may be implemented in Java on one phone, but wrap a faster

native method on another.

Finally, note that performance measurements may vary not only between different phone models, but

between different versions of the same model. Manufacturers typically update software versions and

sometimes even hardware components during a model’s production lifetime.

2.1 Program Execution Speed

2.1.1 Measuring It

The usual tool for finding performance bottlenecks in a program is a profiler. Ty p i c a l l y, however, you

won't be able to run a profiler on a MIDlet running in a phone, and profiling a MIDlet running in an

emulator may not tell you much, as emulators can have very different bottlenecks from actual phones.

The usual approach in MIDP is to take measurements yourself by adding a few extra lines to your

program. To find out how long a call takes:

long startTime = System.currentTimeMillis();
doSomething(); // the thing you want to time
long timeTaken = System.currentTimeMillis() – startTime;

This will give you the time in milliseconds. To avoid varying results due to garbage collection during

your test, you may want to call System.gc() before starting the test. To display the test

measurements, use a special MIDlet screen or overwrite the results on the normal screen display.

Make sure to check the resolution of the phone's system clock. Its returned values may not have

millisecond precision, so note if the returned value is, for example, always a multiple of ten, and make

sure your test takes long enough that this isn't a problem.

2.1.2 Graphics Operations

Typically, the execution speed of graphics operations is not a concern with MIDP's high-level screen

classes like Form and List, but only with the low-level Canvas class, used for animations and

games. The speed of Canvas's graphics operations varies greatly between different phones, as it

depends not only on the underlying hardware but also the efficiency of the phone's native graphics

libraries. In Nokia’s MIDP-enabled phones, you can draw thousands of short lines per second, or

hundreds of rectangles or small images (like sprites).

If only a small part of the screen needs to change, you should request a repaint using the method:

Canvas.repaint(int x, int y, int width, int height)

Efficient MIDP Programming 4

Forum.Nokia.com

Efficient MIDP Programming 5

Forum.Nokia.com

which allows you to specify that only the changed area be repainted. Your paint method should

then only repaint the area specified by its Graphics parameter's clip rectangle, possibly saving much

calculation. However, be aware that if you issue repaint requests faster than the device can process

them, it may merge several requests into one by calling the paint method with a clip rectangle

covering all their rectangles; if the rectangles are widely spaced this will include much area that

doesn’t need repainting.

A different optimization that should work well on most phones is to use an off-screen image if your

screen changes only slightly between repaints. Then you can draw the changes into the off-screen

image and copy it to the screen in the paint method. Again, you only need to copy the area

specified by the Graphics parameter's clip rectangle.

2.1.3 Garbage Collection

Avoid creating unnecessary garbage objects on the heap. Often it is easy to reuse existing objects instead.

A particular problem is immutable objects — that is, objects whose state cannot be changed after

creation. Immutable objects are widely used as they have great benefits for reliability of code and for

thread safety.

However, immutable objects easily become garbage objects if their initial value is not needed, for

instance if the value they represent changes. For each change, a new immutable object must be

created with the new value, and the old one discarded to be garbage-collected. In MIDlets, often the

advantages of immutable objects are not worth the cost, and it is better to make reusable objects

that can be given new values.

The most familiar example is java.lang.String. Most programmers forget just how many

normal uses of S t r i n g involve creating garbage objects. The classic example is string

concatenation; consider this function to reverse a string:

1: static String reverse(String s)
2: {
3: String t = "";
4: for (int i = s.length()-1; i >= 0; --i)
5: t += s.charAt(i);
6: return t;
7: }

The assignment on line 5 does not modify string t, as t is immutable; instead, it creates a new string

each time, copying the existing value and appending the new character. This method will unnecessarily

create s . l e n g t h () garbage objects. It is a classic example of the problem with immutable objects,

but with strings there is a simple solution: the class j a v a . l a n g . S t r i n g B u f f e r is a mutable

partner to S t r i n g, and the preceding example can be rewritten much more efficiently as:

1: static String reverse(String s)
2: {
3: StringBuffer t = new StringBuffer(s.length());
4: for (int i = s.length()-1; i >= 0; --i)

Efficient MIDP Programming 6

Forum.Nokia.com

5: t.append(s.charAt(i));
6: return t.toString();
7: }

Having said all this, often the advantages of immutability are worth the cost, and creating a few

garbage objects is not a big deal if you're not creating thousands per second. Even an MIDP virtual

machine can comfortably garbage-collect thousands of objects per second.

2.1.4 Multi-Threading

Multi-threading can make your MIDlets perform much better, as one thread may be able to work while

another is waiting on some condition (e.g., waiting for an HTTP response, waiting for user input).

Remember that Java threading is not guaranteed to be pre-emptive, but may be cooperative.

Therefore your code should not wait for a condition in a “tight loop,” but should call yield or wait
every time around the loop, e.g.:

try
{

while (!stopped)
{

try
{

doSomething();
synchronized(this)
{

wait(500); //milliseconds, i.e. half a second
}

}
}

}
catch (InterruptedException e)
{
}

Note that the InterruptedException is never in fact thrown in MIDP (since the method

Thread.interrupt does not exist). However, for compatibility with other Java environments,

the wait method still declares it as thrown, and hence an empty catch clause must be used.

2.2 Networking Speed

2.2.1 Bandwidth and Latency

Raw networking speed is usually measured in terms of bandwidth and latency, which are defined as:

• Bandwidth: the rate of data transfer in an open connection (usually measured in bits per second)

• Latency: the time taken for a single item of data to cross the network from the source to the destination

Both of these may have an average value and a variation; even if the average value is acceptable, if

the variation is large, the user will frequently experience unacceptable values.

Efficient MIDP Programming 7

Forum.Nokia.com

For large amounts of data, bandwidth usually has the most effect on networking speed. For small

amounts of data, it is often latency that is more important.

Both measures depend on the network technology and on specific details of your network connection, so

it is impossible to give precise numbers in general. However, to give you ballpark figures to help in making

your designs, here are some recent figures obtained from internal Nokia studies and informal tests:

As you can see, these figures are somewhat slower than those you're used to from broadband Internet

connections. In particular, the long latency rules out the possibility of highly interactive real-time

multi-player arcade games, as you can't see and respond to other players' actions in real time.

One way to work around network latencies is to use asynchronous network operations (in a

background networking thread). For instance, if you’re sending a new high score to your high-score

server, there’s no need for the rest of the MIDlet to hang around waiting for that operation to

complete; instead, you can leave the background networking thread to process it while you start

playing the next game.

2.2.2 Minimizing HTTP Round Trips

Since HTTP latency is higher in wireless networks, try to minimize the number of HTTP round trips your

MIDlet uses. Whereas an Internet Web browser will make many HTTP round trips to fetch different

frames and images of a Web page, a MIDlet should aim to fetch everything it needs in one go.

If the MIDlet should gather data from several sources, one option is to use a proxy servlet to do the

gathering, so that the MIDlet still only needs to make one request. For more about proxy servlets, see

the following section.

2.2.3 Avoiding Inefficient Protocols

Complex XML-based protocols like SOAP can be very inefficient, with much overhead in terms of data

size, parsing time, and parser code size. If you are designing an XML-based protocol for use with an

MIDP client, try to keep it as simple as possible.

If you don't need the advanced capabilities of these protocols, you may be able to send the same

information far more efficiently using a simple custom protocol (for instance

username=fred&password=secret). Such simple custom protocols are described in the

Efficient MIDP Programming 8

3. Jar File Size

Forum.Nokia.com

Forum Nokia documents A Brief Introduction to Networked MIDlets [MIDPNET] and A Networked

MIDlet Example: Fruit Machine [FRUITMAC]. For debugging purposes it is a great help if the protocol

is human-readable (this is why so many Internet protocols like HTTP are human-readable).

A case where you can usually use a simple custom protocol is when you are writing both the MIDlet

client and the (e.g., servlet) server. Beware of versioning – there may be a problem if you update the

client and server to use a new protocol, but deployed MIDlets still exist that use the old protocol. It

is a good idea to include a protocol version number in the opening communications between the

client and the server.

If your MIDlet is talking to a server that you didn't write or don't control, or a server that must talk

to clients other than your MIDlet, your MIDlet may have to talk XML or SOAP to it. Even in this case,

you may be able to avoid this situation by using a proxy servlet:

The proxy servlet converts between the SOAP or XML protocol and the MIDlet's custom protocol. It

may make several SOAP or XML requests per MIDlet request – this is more efficient, since the

connection between the proxy servlet and the server will be over a fast fixed-network connection.

There are several reasons to keep the JAR file size as small as possible:

• The MIDlet suite downloads faster, e.g., GSM circuit-switched data takes about 1 second per

kilobyte of JAR file

• Many WAP gateways are typically configured for small WAP pages and may not support large files

(in particular, JAR files over 30 KB may hit this problem)

• Mass-market MIDP phones may have a very limited amount of storage space for MIDlet JAR files

(this varies widely between phone models)

• Users will prefer small MIDlets because they can have more of them in their phone at once

3.1 Designing for Small Size

There are two sizes that matter: the size of the MIDlet suite's JAR file and the size occupied by the

MIDlet suite when installed in the phone (if the JAR file is not just stored “as is”). The second size

depends on the phone implementation, but the JAR size is a rather good predictor of this installed size.

Figure 1: Proxy servlet

Efficient MIDP Programming 9

Forum.Nokia.com

Since the JAR archive format has individual headers for each class file, in general you're better off

using as few classes as possible. Because of this, MIDlets will often be much less “object oriented”

than normal Java programs. In particular:

• Have one class per “thing” – e.g., don't separate something into Model, View, and Controller

classes if one class can reasonably do it all

• Limit use of interfaces – an interface is an extra class that by definition provides no functionality;

use interfaces only when needed to handle multiple implementations in the same delivered MIDlet

• Use the “unnamed package” – placing your MIDlet classes all in the same named package only

increases the size of your MIDlet's JAR file; reserve the package statement for libraries

• Consider using a source-code preprocessor instead of “static final” constants – each such

constant takes up space in your JAR file

• Limit use of static initializers – the Java class file format doesn’t support these directly; instead,

they are done using assignments at run time, e.g., statically initializing an array of bytes

(‘static byte[] data = {(byte)0x02, (byte)0x4A, …};’) costs 4 bytes per

value, not 1 byte, in the resulting class file

3.2 Using an Obfuscator

An obfuscator is a program that modifies your compiled Java program to remove all unnecessary

information (like long method and variable names), making it hard to understand the result of

“decompiling” it. As a protection method it is of less value for MIDlets, since they're so small that

with some work even a decompiled obfuscated MIDlet can be figured out.

However, removing all of that unnecessary information makes your JAR file smaller, which is very

helpful. The size reduction varies from obfuscator to obfuscator and from MIDlet to MIDlet, but tests

on a few of our own MIDlets showed that a 10% reduction is typical. This is less than usually claimed

for obfuscators, perhaps because MIDlets are small and there are some fixed overheads, and also

because resources like PNG bit map files make up a larger proportion of a MIDlet's JAR file.

3.3 Libraries

In normal software development it is wise to develop and use libraries of frequently needed

functionality. However, if the entire library is included in your MIDlet suite, you're likely to be paying

for a lot of functionality you don't actually need.

You may do better to fall back on “cut and paste” reuse. It is a less efficient use of a developer’s time,

but a more efficient use of the JAR file space.

If you do use libraries, consider whether you need all the classes in the library. Perhaps you can remove

several of the class files. You may even want to recompile some classes with unused methods removed.

Bearing this in mind, if you're writing an MIDP library you should aim to reduce dependencies

between classes, so that unneeded classes can indeed be safely removed. Unfortunately, one typical

approach to this is to use Java interfaces, which again expands your library size (see Section 3.1).

3.4 Keeping Resources Small

MIDlet suites often contain associated PNG bit maps, etc. Keep these as small and as few as possible.

There are significant differences in the size of a PNG bit map when saved with different bit map

editing tools — not all optimize for size. Try a few of these tools and save with whichever gives the

smallest result (even if you prefer to edit with another).

Efficient MIDP Programming 1 0

4. Use of Resources

Forum.Nokia.com

3.5 Combining Image Files

Just as it helps to minimize the per-file JAR overhead by having as few classes as possible, it also helps

to have as few image files as possible. One often-used trick is to combine many images into one file:

Once that large image has been loaded from the file, individual frames can be drawn as follows:

g.setClip(x, y, FRAME_WIDTH, FRAME_HEIGHT);
g.drawImage(fiveMenImage, x – FRAME_WIDTH * frameNumber, y,

Graphics.TOP | Graphics.LEFT);

Here frameNumber is from 0 to 4; by cycling it in the sequence {0, 1, 2, 3, 4, 3, 2, 1} you will

produce an animation of a walking man. If you do any more drawing in your paint method after

the above lines, remember to change the clip window again as needed.

4.1 Heap Memory

Typically, mobile phones do not have large amounts of heap memory. For instance, some of Nokia’s

first MIDP phones provide about 150 kB of MIDP heap memory.

Make sure that screens no longer needed (e.g., splash screens) are released for garbage collection.

Consider delaying creation of rarely used screens (e.g., Help, Options) until they are used, and letting

them be garbage-collected afterwards, each time. This will trade some loss of execution speed for

extra heap memory.

Be particularly careful of memory leaks. These occur when an object is no longer needed, but there

is still a reference to it somewhere (preventing it from being garbage-collected). If a reference to an

unneeded object does not quickly go out of scope, remember to set it to null.

4.2 Networking

MIDP devices are becoming mainstream around the same time as widespread use of packet data (e.g.,

GPRS), so this is probably the network technology that your HTTP connections will run over. Therefore

your user will probably be paying per-packet or per-megabyte for the networking that your MIDlet

does, and you should be conservative in spending your user's money.

Minimize the number and size of packets you send. For instance, try to only send packets when

something changes, rather than sending a stream of “nothing happened” messages. If possible, avoid

designs where your MIDlet has to send a constant stream of messages to a server, for instance by

making MIDlet and server predict how the state changes, and only sending a message when the state

differs from this prediction.

Figure 2: Combined image file

Efficient MIDP Programming 1 1

5. Perceived

Performance

Forum.Nokia.com

The user actually cares less about how fast your MIDlet is, than about how fast your MIDlet feels.

There are many well-known tricks to make the MIDlet feel faster, even though the tricks may actually

slow it down a little.

5.1 Indicating Liveness

Users notice very quickly when the MIDlet's display stops changing, and may suspect that the MIDlet

or phone has crashed. If you do something that takes a long time, such as a big calculation or an

HTTP network access, show a visible and animated indicator, for instance a Gauge as a progress

indicator. The most popular Web browsers use good examples of progress indicators while they fetch

a Web page.

5.2 Responsiveness

A MIDlet will feel unresponsive if it doesn't react quickly to users' key presses. Unfortunately, the

performance textbooks give widely differing numbers for how fast counts as “quickly.” For MIDlets,

the normal speed of response will be that which the user experiences with the phone's native

applications; this differs between phone models, but certainly anything longer than a second will feel

unusually long.

To achieve quick responsiveness, make sure that your event call-backs (e.g., C a n v a s . k e y P r e s s e d
or CommandListener.commandAction) return quickly, as they may be called from the same

thread that redraws the screen. If they need to do some long action, start that in a separate thread,

and consider having a way for the user to abort it.

Don't forget that it's not enough just to do something quickly; the user must see that something

happened. Make sure that there is a visible (or audible) reaction to each key press.

5.3 Hiding Delays

A favorite way to hide delays is to have a “splash screen,” which is shown immediately while the rest

of the MIDlet initializes itself. MIDP Alerts are good for splash screens, or you may use a Form if

you want to implement a convenient call-back when the splash screen times out or is dismissed. The

Forum Nokia Fruit Machine example [FRUITMAC] has such a splash screen.

The Fruit Machine example also features a useful trick for hiding its networking delay: it starts the

animation of the spinning wheels before making its HTTP request to the server to find out what the

result will be. The wheels continue to spin quickly until the HTTP response is received; then they

gradually slow down and stop at the server's specified result. In this way the MIDlet seems to be very

active, even when it is really just waiting for the server to respond.

Efficient MIDP Programming 1 2

Build Test Sell

1

Go to Forum.Nokia.com

Forum.Nokia.com provides the tools and resources you need for content and application development

as well as the channels for sales to operators, enterprises and consumers.

Forum.Nokia.com

Subscribe to updates

Stay abreast of news and developments through a subscription to our regional newsletters for Europe

and Africa, the Americas and Asia. Subscribing is easy and your privacy is strictly protected.

Forum.Nokia.com/newsletters

Download tools and simulators

Forum.Nokia.com/tools has links to tools from Nokia and other industry leaders including Adobe,

AppForge, Borland, Macromedia, Metrowerks and Sun.

Forum.Nokia.com/tools

Get technical support

The support area contains a library of white papers, sample code and FAQs arranged by technology.

The Nokia Knowledge Network enables you to ask questions of the global developer community.

Forum.Nokia.com/support

N K N . F o r u m . N o k i a . c o m

Test your application

The Nokia OK program provides the opportunity for your application to enjoy premium placement in

Nokia's sales channels.

Forum.Nokia.com/ok

Sell your application

Global and regional channels get your application in front of operators and XSPs, enterprises and

consumers. Go to Forum.Nokia.com/business to access all of the opportunities Nokia presents.

Forum.Nokia.com/business

Developing and marketing mobile applications with Nokia

2

3

4

5

6

Forum.Nokia.com

