

www.thingworx.com

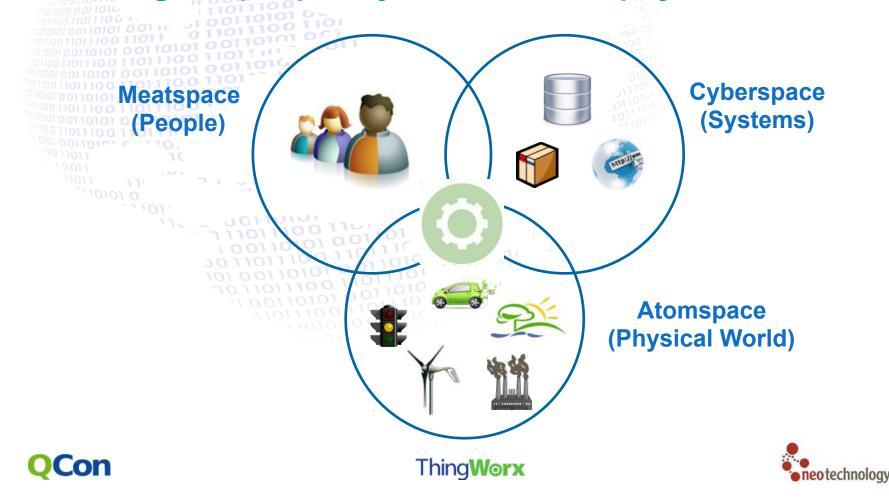
www.neotechnology.com

Using A Graph Database To Power The "Web of Things"

Rick Bullotta, CTO at ThingWorx Emil Eifrem, CEO at Neo Technology

Standard Disclaimer

QCon



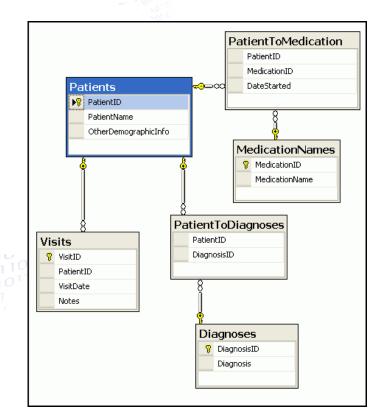
We're Solving a Large, Difficult Problem

Built the 1st platform designed for applications that integrate people, systems and the physical world

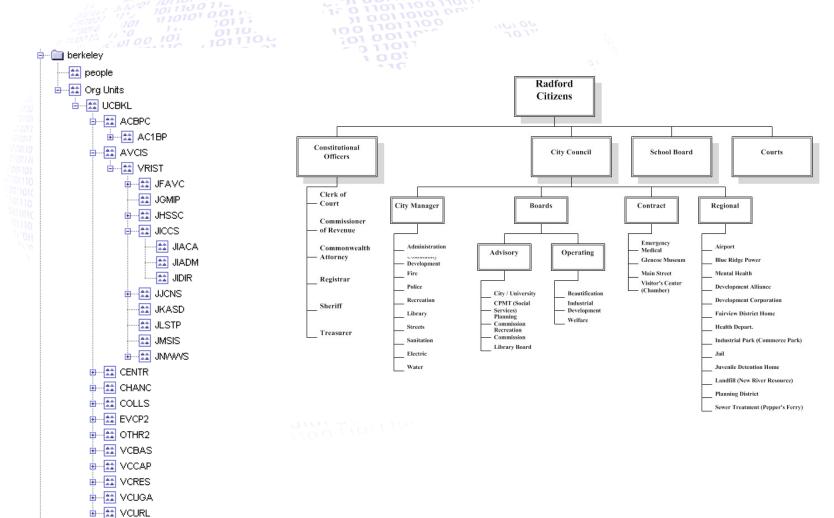
The world is definitely not flat...

NATIONAL BESTSELLER

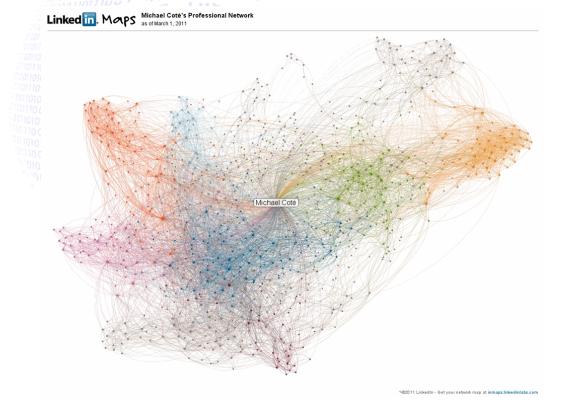
The World IS

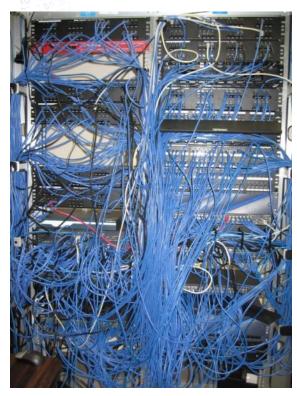

lhomas 🖬 mouman

It's also not (only) tabular...

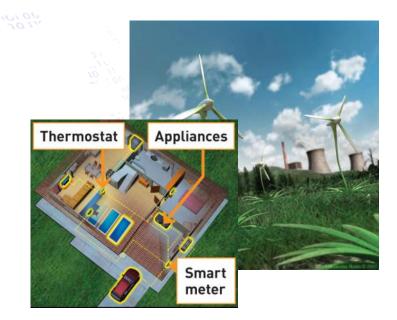

								1101100			
				71-		10.		3	0011	01110	
									101 0011		
			100 1110				1002				
		Statiloo 1101 110 0 1									
			100110.00								
1	Operation Date	Operation Direction	Operation Type 🗴	Release Time 🗴	Close Time	Maturity Start	Maturity End	# Issues ▼	Total Accepted (M)	Total Submitted (M)	
2	8/25/2005 0:00	р	COUPON	10:30 AM	11:00 AM	9/30/2005 0:00	8/15/2006 0:00	22	1298	11683.5	
3	9/7/2005 0:00	Р	COUPON	10:30 AM	11:00 AM	11/15/2008 0:00	5/15/2009 0:00	9	1201	6597	
4	9/8/2005 0:00	P	TIPS	11:00 AM	11:30 AM	1/15/2007 0:00	4/15/2032 0:00	17	450	1908	
5	9/12/2005 0:00	Р	COUPON	10:30 AM	11:00 AM	11/15/2007 0:00	10/15/2008 0:00	13	1100	6029	
6	9/21/2005 0:00	Р	BILL	10:30 AM	11:00 AM	1/12/2006 0:00	3/16/2006 0:00	10	1247	11445	
7	9/22/2005 0:00	р	COUPON	10:45 AM	11:15 AM	6/15/2009 0:00	1/15/2010 0:00	11	1104	6491	
8	10/4/2005 0:00	р	COUPON	10:30 AM	11:00 AM	10/31/2006 0:00	7/31/2007 0:00	18	1193	8334.8	
9	10/25/2005 0:00	р	COUPON	10:30 AM	11:00 AM	1/31/2006 0:00	10/31/2006 0:00	18	1000	9746	
10	10/26/2005 0:00	Р	COUPON	10:45 AM	11:15 AM	11/15/2013 0:00	2/15/2026 0:00	35	902	10949	
11	11/4/2005 0:00	Р	COUPON	10:30 AM	11:00 AM	3/15/2010 0:00	8/15/2013 0:00	17	800	9652	
12	11/14/2005 0:00	P	COUPON	10:30 AM	11:00 AM	1/31/2006 0:00	10/31/2006 0:00	18	1096	14944.9	
13	11/18/2005 0:00	P	COUPON	10:30 AM	11:00 AM	6/15/2009 0:00	4/15/2010 0:00	13	1095	9182	
14	1/4/2006 0:00	Р	COUPON	10:30 AM	11:00 AM	5/15/2010 0:00	2/15/2013 0:00	15	844	9413	
15	1/5/2006 0:00	р	TIPS	10:30 AM	11:00 AM	1/15/2007 0:00	4/15/2032 0:00	17	448	2550	
16	1/12/2006 0:00	р	BILL	10:30 AM	11:00 AM	2/23/2006 0:00	5/4/2006 0:00	11	1249	10480	
17	1/23/2006 0:00	р	COUPON	10:30 AM	11:00 AM	2/15/2014 0:00	2/15/2026 0:00	35	947	8191.5	
18	1/25/2006 0:00	P	COUPON	10:30 AM	11:00 AM	11/15/2008 0:00	7/15/2009 0:00	13	1090	7008	
19	1/26/2006 0:00	P	COUPON	10:30 AM	11:00 AM	9/30/2007 0:00	10/15/2008 0:00	15	1190	9743	
20	2/8/2006 0:00	P	COUPON	10:15 AM	10:45 AM	11/30/2006 0:00	8/31/2007 0:00	18	1250	13775	
21	2/10/2006 0:00	P	BILL	10:30 AM	11:00 AM	5/11/2006 0:00	8/10/2006 0:00	14	1244	12935	
22	2/21/2006 0:00	р	COUPON	10:30 AM	11:00 AM	2/15/2007 0:00	11/30/2007 0:00	19	1248	8695	

QCon

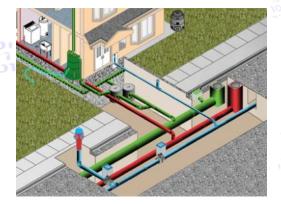

It's certainly not (only) hierchial...



It's actually very complex, interconnected, constantly changing, and extremely large

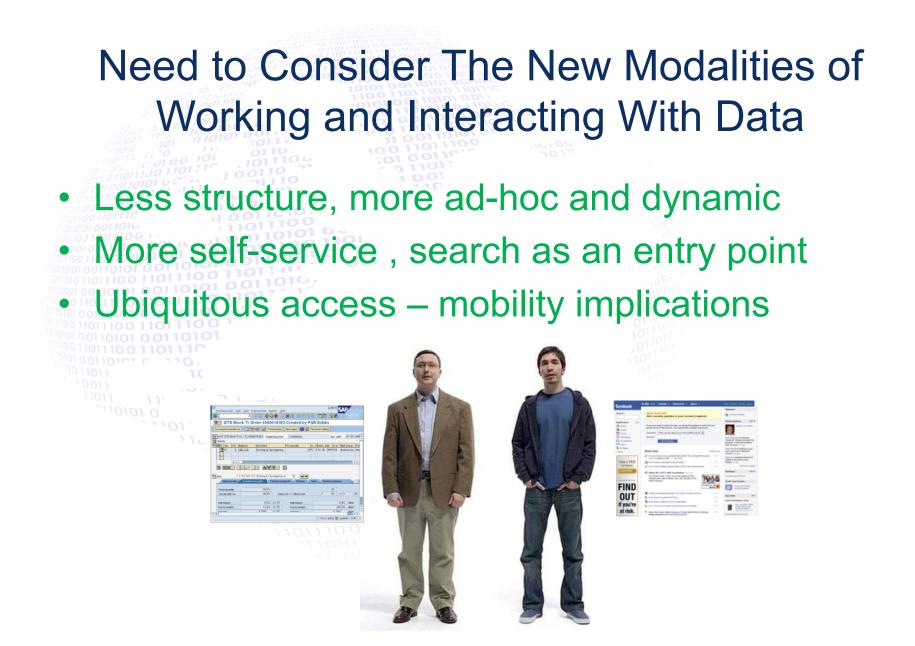

OCon

A single large chemical plant generates more raw data in a day than the NYSE and AMEX combined

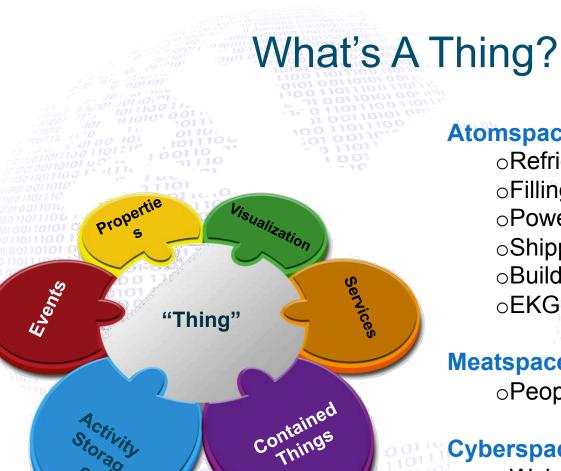

Estimates of so-called "Smart Grid"data are on the order of 35-1000 Petabytes/year

Homes, Cities, and Infrastructure Generate Lots of Data and Events, Too...

ו ווס וסוסויר



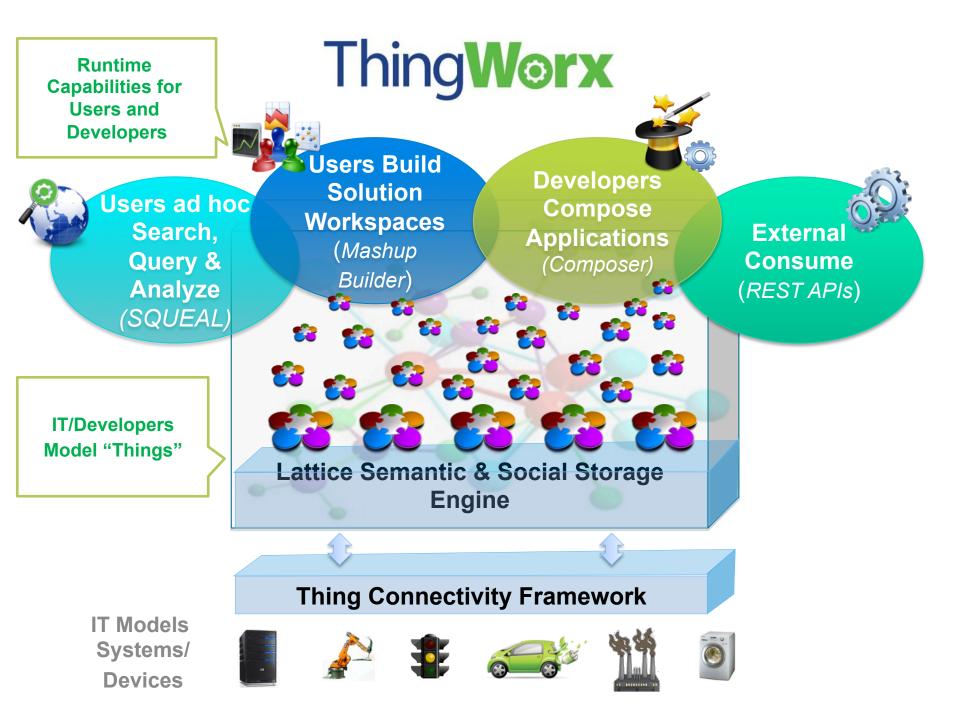
Objective: A Platform and API for the "Real World"

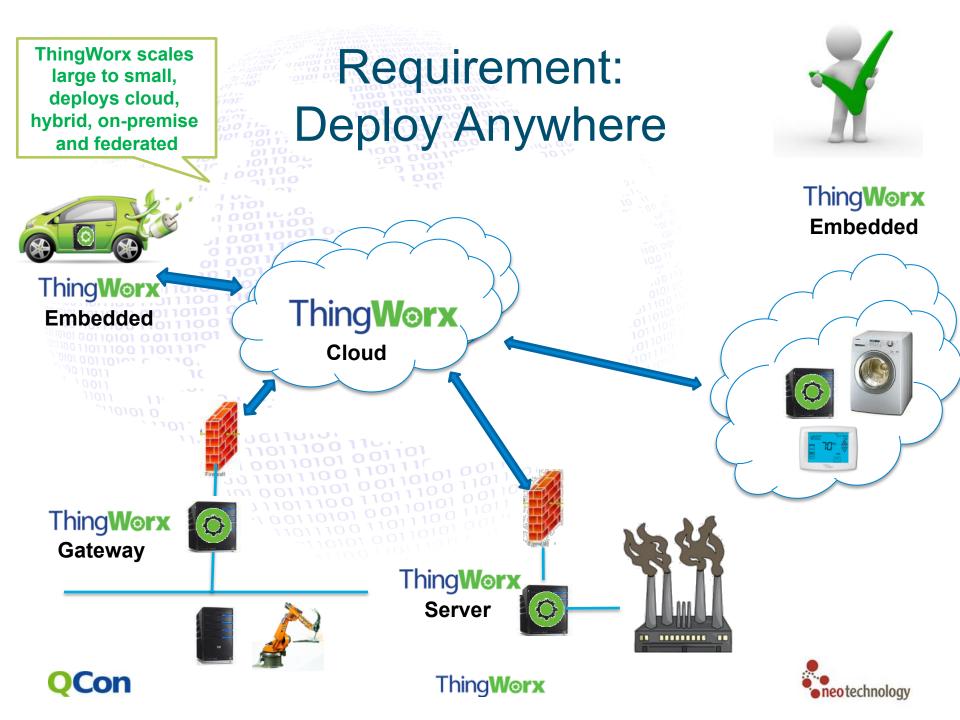

- Mashup the planet
 Make every(thing) discoverable & consumable
 Augment human decision making
- Enable fluid app-to-app interaction

Con

Atomspace

oRefrigerated Truck, Electric Car oFilling Machine, Industrial Robot oPower Transformer, Wind Turbine Shipping Container oBuilding, Floor, Office **oEKG Machine**


Meatspace oPeople


Cyberspace

•Web platform (Blog, Twitter, S3) Line of business system (ERP) ○Web service, database oE-mail or SMS gateway

Additional Design Goals

- Deal with "Big Data" massive amounts of "feeds" put into the right context (Lattice), at high burst rates
 Enable answering new kinds of questions to new kinds of problems unbounded domain (SQUEAL)
 Respond quickly and flexibly to changes and opportunities (dynamic platform)
- Support modeling of any "real world" scenario
- Integrate with external data sources on an almostequal basis

Types of Data Storage Required for ThingWorx

Model data

- Persisted objects/configuration data
 Metadata, relationships between entities
- Storage of collected data
 - Activity streams w/structured data
 - Collaboration streams
 - Table-like data
- Relationships between data and entities
 - UAC/permission models
 - "Where used", "is a", containment, app-specific
 - Tagging, source, time indexing

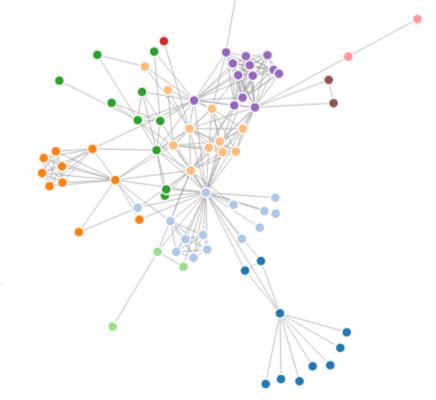
QCon

Path to a Graph Database

Started with traditional RDBMS's

 "Affordable" performance was hard to achieve
 Not friendly to dynamically changing models
 Not easy to model loosely coupled relationships

- Difficult to model many of our real-world use cases, particularly relationships
- Extremely awkward to query complex models
- Saw mention of Neo4J on Twitter!



Graphs Can Be "Elegant In Their Simplicity"

- Nodes (Vertices)
 Relationships (Edges)
- Properties

Can model almost anything

...but they can also be "Challenging In Their Simplicity"

- Not all graph databases support relationship/edge properties and types
 How can regular people, much less developers, query useful information?
- What are the "best practices" for persisting domain objects and data storage?
- Can be tricky to debug at runtime

Examples of Real-World Relationships

- That car is an electric vehicle and contains battery C91910A (all EV's contain a battery)
 My town is in Chester County which is in Pennsylvania which is in the USA
- The distance between cell towers 101 and 109 is 5 kilometers
- Pallet HD104 is in shipping container SC1101 on train car TC87154

Examples of Real-World"Networks"

Social graphs: Twitter, Facebook, etc.

These represent *extremely* simplistic data models
 Are your "life" networks that simple?

- Machines in a manufacturing plant
- Production, transmission, and consumption in a utility network
- A mobile communications network
- Transportation networks (air, land, sea)
- Mega value in "networks of networks"

QCon

Unique Challenges of Using A Graph Database

- Inherent lack of "structure"
- Lack of a general purpose query language
 Very few domain model examples or standards
- Minimal standards on implementation or terminology

Thing**Worx**

Not all graph databases created equal

Supported all of our deployment scenarios

Why Neo4J?

- Relationships can have types/properties
- Performance and reliability
- Platform neutral, many language bindings
- Open source and extensible
- Enabled REST API and/or embeddable
- Reasonable set of admin tools
- Very responsive dev team & community

QCon

Example: Streams

- Activity streams plus more

 Structured data packets w/richer metatagging
 Implicit linking to hierarchy of things

 Performance was critical

 Storage : buffered block writes (up to 10K/second)
 Retrieval : optimized for time-based query

 Multiple perspectives

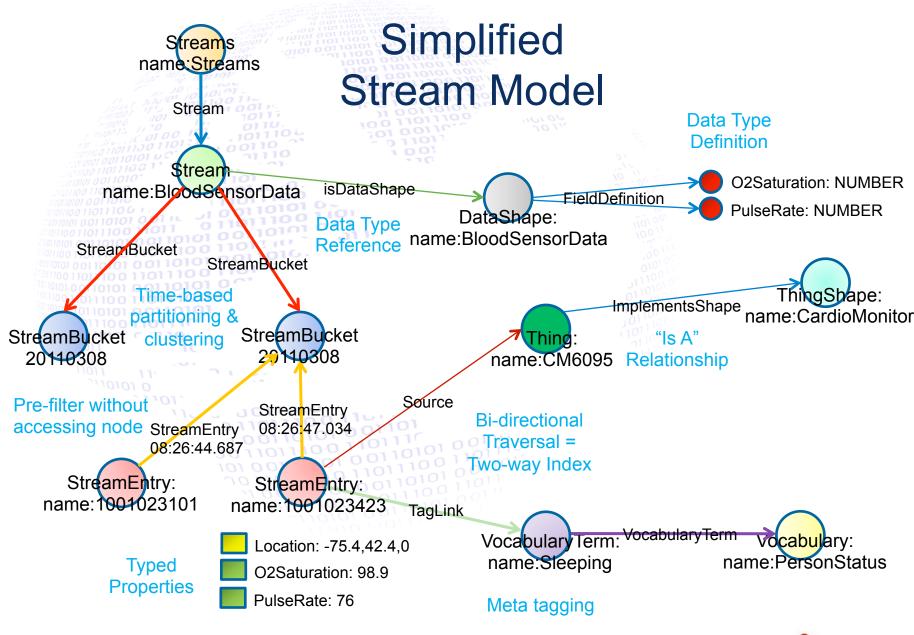
 Cross-stream (similar to "following")
 - Follow machines, orders, people, anything
 - Apply filters and transforms
 - Building iPhone/Android/browser apps
 - Within stream (faceted search/query/aggregates)

QCon

Streams

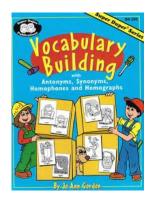
Data Shapes

Meta data for data elements/values
Relationship to data shape

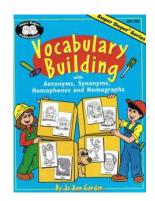

Time indexing

Implementation:

- Buckets
- Ordered traversal relationships
- Implicit Relationships
 - Source
 - Tagging to Vocabularies


QCon

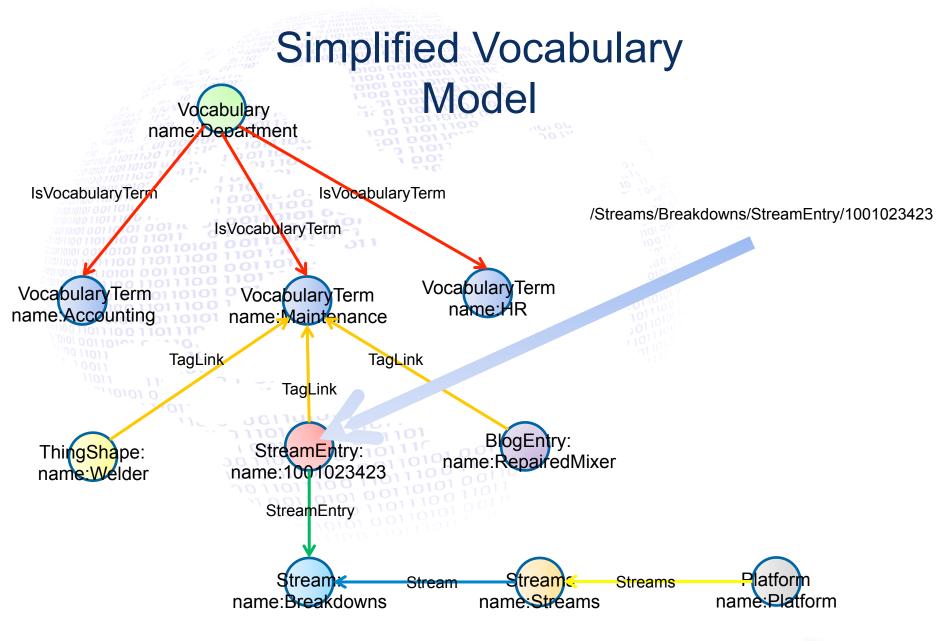
Con


- Wanted to enable tagging of:

 Model entities
 Activity streams and data table rows
 Collaboration entries (blog, wiki, forum)
 External references (real or virtual URIs)
- Wanted some structure

 Static versus dynamic, multiple tags
- Wanted to use these as search criteria

Solution: Vocabularies • Leverages Relationships • Node typing was key – What am I linked to?



Dynamic URI from node hierarchy

 Node/relationship/node/relationship
 The model drives the REST API

SQUEAL (Search, Query, and Analysis) • Synthesis of a few concepts: Semantic search and keyword search - Faceted queries Aggregation and transformation Relationship search

- Required us to: - Leverage set processing
 - "Square up" data and

Develop in-memory engine on top of graph

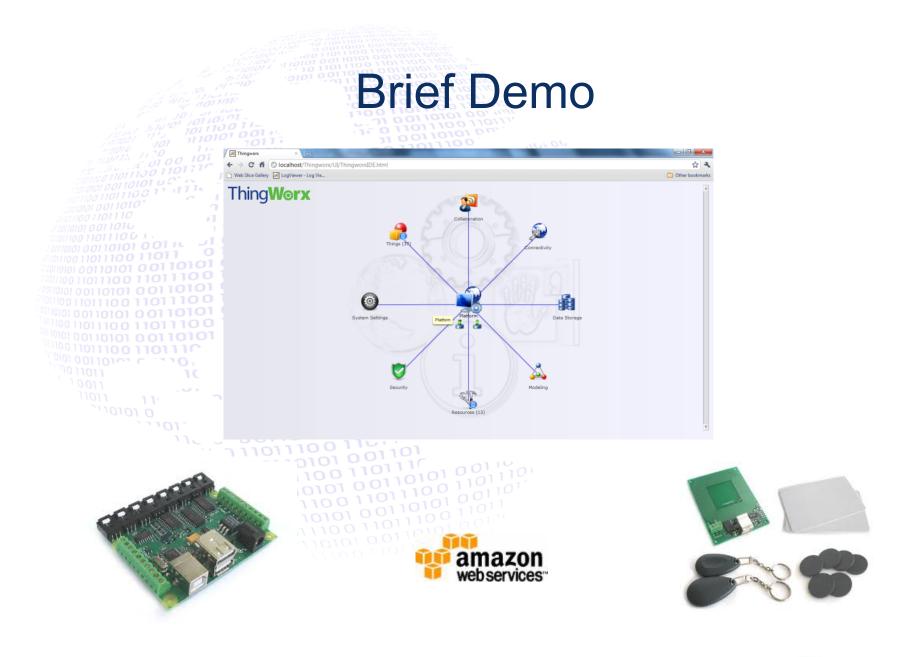
Case Study: SQUEAL

- Queries ultimately return either:
 A set of nodes
- A set of typed data, reflected as an "InfoTable"
 Needed to support SOL like functions
- Needed to support SQL-like functions
 - Filter, sort, aggregate, union, intersection...
 - ... plus location, time aggregates, interpolation
- Broad set of query criteria
 - "Is A", "Is Near", "Written By", "Tagged With", etc.
 - Full-text search

neotechno

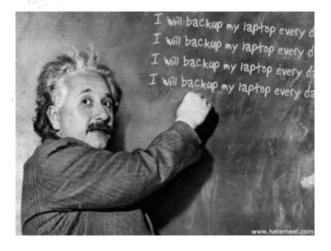
QCon

Implementation: SQUEAL



Metadata from "shapes" (data shapes, thing shapes) defines facets
Traversals & Lucene full-text searches for

- node selection
- Optimized dataset reduction where possible
- Set functions for nodes, in-memory SQL-ish functions for data
- "InfoTable" construct is in-memory "data" structure: data shape + rows w/values



QCon

Lessons Learned

- Batch writes where possible for maximum insert performance
- Refactoring data models can be a bit trickier than with other DB's
- It is a good "best practice" to stamp each node/vertex with a "type" property
- Use different approaches when indexing for ordering versus indexing for searching
- Graph databases rock

Thing**Worx**

QCon

Questions?

"Far better is it to dare mighty things, to win glorious triumphs, even though checked by failure...than to rank with those poor spirits who neither enjoy much nor suffer much, because they live in a gray twilight that knows not victory nor defeat."

- Theodore Roosevelt

